
Under review as a conference paper at ICLR 2024

IMPROVING LENGTH-GENERALIZATION IN
TRANSFORMERS VIA TASK HINTING

Pranjal Awasthi
Google Research
pranjalawasthi@google.com

Anupam Gupta
Carnegie Mellon University and Google Research
anupamg@cs.cmu.edu

ABSTRACT

It has been observed in recent years that transformers have problems with length
generalization for certain types of reasoning and arithmetic tasks. In particular, the
performance of a transformer model trained on tasks (say addition) up to a certain
length (e.g., 5 digit numbers) drops sharply when applied to longer instances of
the same problem. This work proposes an approach based on task hinting towards
addressing length generalization. Our key idea is that while training the model on
task-specific data, it is helpful to simultaneously train the model to solve a simpler
but related auxiliary task as well.
We study the classical sorting problem as a canonical example to evaluate our ap-
proach. We design a multitask training framework and show that models trained
via task hinting significantly improve length generalization. In particular, for sort-
ing we show that it is possible to train models on data consisting of sequences
having length at most 20, and improve the test accuracy on sequences of length
100 from less than 1% (for standard training) to more than 92% (via task hinting).
Our study uncovers several interesting aspects of length generalization. We ob-
serve that while several auxiliary tasks may seem natural a priori, their effective-
ness in improving length generalization differs dramatically. We further use prob-
ing and visualization-based techniques to understand the internal mechanisms via
which the model performs the task, and propose a theoretical construction consis-
tent with the observed learning behaviors of the model. Based on our construction,
we show that introducing a small number of length dependent parameters into the
training procedure can further boost the performance on unseen lengths. Finally,
we also show the efficacy of our task hinting based approach beyond sorting, giv-
ing hope that these techniques will be applicable in broader contexts.

1 INTRODUCTION

Large transformer models trained on massive datasets continue to demonstrate impressive capabili-
ties across a range of tasks in language understanding, image modeling and other domains (Radford
et al., 2019; Brown et al., 2020; Chowdhery et al., 2022; Chen et al., 2022; Tu et al., 2023). At the
same time there is a growing body of work on the limitations and vulnerabilities of such models.
This work concerns the length generalization problem. For many natural tasks—especially ones
involving multi-step reasoning such as addition, multiplication, program execution etc.—there is a
natural notion of the length of an input, e.g., the number of digits when performing the addition task
(Anil et al., 2022). It has been observed that the performance of transformers on such tasks drops
sharply when tested on instances with lengths not seen during training (Nye et al., 2021; Zhang et al.,
2022; Jelassi et al., 2023; Abbe et al., 2023). As formalized in Abbe et al. (2023) this phenomenon
can also be studied as an extreme form of out-of-distribution (OOD) robustness where the support
of the test-set distribution is disjoint from that of the training distribution.

Current approaches to tackle length generalization can be broadly divided into two categories.
One set of recent works start with a pre-trained large language model (LLM) and investigate
fine-tuning/in-context learning for extrapolating to larger lengths. Most notably, the works of
Wei et al. (2022); Anil et al. (2022) observe that in-context learning strategies such as chain-of-
thought prompting and scratchpad prompting can help improve the out-of-distribution performance

1

Under review as a conference paper at ICLR 2024

of LLMs. Another set of works consider case studies on simpler tasks, and perform task-specific
training to improve length generalization (Zhang et al., 2022; Jelassi et al., 2023; Abbe et al., 2023).

Our work falls into the second category: our goal is to develop general-purpose training techniques
to improve length generalization. To put the challenges underlying length-generalization in context,
let us list several natural approaches that do not seem to help. For instance, it was observed in
Anil et al. (2022) that simply scaling the model and data-set sizes alone does not suffice for length
generalization. The authors also observed that while scratchpad prompting helps during in-context
learning, fine-tuning a pre-trained LLM on scratchpads does not seem to work, which is surprising.
Similarly, the authors in Zhang et al. (2022) observed that while using a pre-trained BERT (Devlin
et al., 2018) model helps improve the performance on the LEGO task that the authors introduced
in the work, the improvements are limited and not enough to address the problem beyond a certain
point. Hence training-time techniques to address the length generalization problem either introduce
task-specific architectures (Zhang et al., 2022) or perform data priming/curriculum learning, where
data from higher-length instances is introduced into the training procedure (Jelassi et al., 2023; Abbe
et al., 2023). Interestingly, the authors in Jelassi et al. (2023) observed that while introducing a small
amount of training data from instances of length n may help in generalizing to test instances also of
length n, the model could fail completely on test instances of length n+ 1!

Motivated by the above works, we study whether there are general-purpose training techniques for
improving length generalization. As in prior works, we focus on some simple tasks as our use-
cases, and consider training transformer models from scratch. For most of the paper we consider
the classical problem of sorting as a canonical example. Given an unsorted sequence of natural
numbers of length n, we consider training decoder-only transformer models to learn to output the
sorted sequence. We work with standard transformer architectures and explicitly refrain from using
even a small amount of data from higher length sequences, either during training or for model
selection. Our main contribution is the framework of task hinting for tackling length generalization.
Our approach rests on the core idea that as humans, learning to solve a particular task also involves
learning to solve simpler useful sub-tasks. For instance, a human student who claims to sort numbers
well is also expected to know how to compare two numbers, identify successor/predecessor of a
number in a sequence, count the number of occurrences of a number in a sequence and so on.

Hence we propose a multi-task learning framework where the transformer network is trained si-
multaneously to solve a main task (such as sorting) and an auxiliary task (such as identifying the
successor element). We show that this approach leads to a powerful framework for improving length
generalization. In particular, we demonstrate that by training the model only on data of up to length
n = 20 sequences, one can improve the test accuracy on length n = 100 sequence from less than
1% (for standard training) to more than 92% (via task hinting). In the second part of the paper we
perform a deeper investigation of when and how task hinting helps. We observe that while many
auxiliary tasks may seem natural a priori, their effect on length generalization varies greatly. For
the task of sorting sequences, we observe that the task of identifying the successor element helps the
most, while the task of counting helps the least.

We further use visualization techniques to conclude that for each task the transformer network tends
to be biased towards a particular mechanism for solving the task. Perhaps naturally, auxiliary tasks
that align well with this bias tend to help the most. We identify certain computational primitives that
the network tends to implicitly capture at various layers and propose a theoretical construction of a
sorting transformer that is consistent with the empirical findings. Based on our theory we identify a
small number of length-dependent parameters whose introduction into the model boosts the length
generalization of transformers significantly (even for models that are trained without task hinting).
Finally, we demonstrate the effectiveness of our proposed framework for another simple task namely
that of incrementing a number. The results for this task can be found in Appendix C.

2 RELATED WORK

Length generalization in transformers is a challenging problem, with several confounding factors,
such as the role of positional embeddings, architectural choices, and dataset formatting and/or
prompting strategies. The works of Dubois et al. (2019); Press et al. (2021) propose modifications
to the standard attention mechanism to enable length extrapolation. The work of Newman et al.

2

Under review as a conference paper at ICLR 2024

Figure 3.1: An example input sequence for decoder only model training. The mask ensures that we only penalize
the model for predictions at the output positions.

(2020) observes a surprising role played by the presence/absence of the EOS token. In particular,
they observe the models without the EOS token extrapolate significantly better to higher lengths.

The work of Anil et al. (2022) explores in-context learning strategies for improving length gener-
alization. The authors show that length generalization can be significantly improved for tasks such
as parity and variable assignment by prompting via scratchpads. They also observe certain counter-
intuitive behaviors, such as the lack of improvements in length generalization when fine-tuning a
model via scratchpad prompts. While it is conceivable that length generalization can be improved via
more complex scratchpads/chain-of-thoughts, augmenting a training dataset with such prompts may
not always be feasible, and may lead to a significant blow-up of the input context length (Malach,
2023). As another example, the recent work of Liu & Low (2023) fine-tunes an open source LLaMA
model (Touvron et al., 2023) for multi-digit multiplication via scratchpad/chain-of-thought training.
It observes that while in-distribution accuracy significantly improves, the resulting models continue
to suffer from length generalization.

The work of Zhang et al. (2022) proposes a LEGO task that has a similar flavor to the task of
sorting. The authors observe that when training a BERT model from scratch for length n = 6,
the in-distribution accuracy is 100%, but the accuracy for n = 8 . . . 12 is no better than random.
Moreover, they show that training a specific architecture, namely the ALBERT model (Lan et al.,
2019), improves the length generalization to some extent. In Jelassi et al. (2023) the authors propose
the idea of data priming for length generalization. This involves introducing a small amount (less
than 1%) of the data from higher lengths (i.e., the test distribution) into the training process to
improve the out of distribution performance. However, the authors observe that priming a dataset
for an unseen length n may not have any benefits for performance at length n+1. In a similar vein,
the authors in Abbe et al. (2023) propose a curriculum learning procedure, where data from higher
and higher lengths are gradually improved into the training procedure.

Our work also involves understanding the internal learning mechanisms of the trained models via
simple projection based techniques. In a similar vein, the recent work of Nanda et al. (2023a) studies
a depth-one network trained for addition modulo 113, using d = 128-dimensional representations.
Using the structured nature (and limited size) of the task, they show how zooming in on neurons and
analyzing network weights can help understand the underlying mechanisms. Another set of recent
works (e.g., by Li et al. (2022); Nanda et al. (2023b)) use probing to find mappings from the internal
representations of networks to the actual external state of the problem (Othello) being solved. The
focus of our work is on showing that broad-spectrum techniques—based on simple projections onto
the embedding and unembedding bases—can result in surprisingly valuable insights.

Finally, our work uses the framework of multitask learning that has a rich literature (Crawshaw,
2020). Traditionally, multitask learning is used for obtaining good representations that can adapt to
new auxiliary tasks using small amounts of additional data. In contrast, in this work we use multitask
learning primarily to improve the out-of-distribution robustness of the main task itself.

3 SORTING

For the majority of the paper we focus on sorting as our canonical example. We consider solving this
task via decoder-only transformer models (Brown et al., 2020) trained from scratch. We work with
a vocabulary Σ of integers from 1 to 100 and introduce two additional tokens, ⊥ as the end-of-input
delimiter, and PAD as a padding token to ensure that all input sequences during training have the
same length. Given an input sequence, we train a decoder-only causal transformer model to predict
the sorted sequence one token at a time. The training is done via the standard next-token prediction
framework with the cross-entropy loss. See Figure 3.1 for an example input sequence, and the mask
we use to penalize the model only for the output positions.

3

Under review as a conference paper at ICLR 2024

Our training dataset consists of sequences of lengths up to 20, where each sequence is formed by
drawing numbers from Σ = {1, 2, . . . , 100} uniformly at random with replacement. Furthermore, to
simulate the realistic setting where data freely available on the internet is biased towards shorter se-
quence lengths, we ensure that 80% of the training set consists of sequence lengths from {2, 3, 4, 5},
and the remaining 20% consists of sequence lengths {6, 7, . . . , 20}. We first investigate whether
(and by how much) scaling the data and model can help with length-generalization. To do this,
we train a depth-2 model (see Appendix D for the hyperparameter settings) with dataset sizes of
{1M, 10M, 40M, 160M}, and we also train models with depths {2, 4, 8, 12} on a 1M training set.
All the models are trained using the Adam optimizer (Kingma & Ba, 2014) for 100k gradient steps1

with a batch size of 1024, and a one-cycle cosine learning rate (Loshchilov & Hutter, 2016) starting
with the base learning rate of 1e − 5. (We use the first 10 epochs for a linear warmup to the base
learning rate.) When evaluating the models, we use greedy decoding.

The result of data scaling is shown in Figure 3.2. While more data helps to some extent—the test
accuracy on length 50 sequences improves from 64% to close to 90%—further scaling does not help
and all the models achieves less than 1% accuracy on length 100 sequences. Here test accuracy
refers to the fraction of the sequences in the test set (100k examples per sequence length) where the
model outputs the correct sorted sequence. Similarly, scaling the depth from 2 to 4 helps improve the
accuracy on length 50 sequences, but we do not observe any further benefits (Figure 3.3) thereafter.
Again, the accuracy for length 100 sequences is less than 1% for all model and data sizes. This is
consistent with the behavior observed in Nye et al. (2021): model and data scaling alone does not
seem enough to tackle length-generalization.

0 20 40 60 80 100

Sequence Length
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

1M
10M
40M
160M

Figure 3.2: Effect of data scaling on length gener-
alization. While performance improves on length
50 sequences, there is no benefit at higher lengths.

0 20 40 60 80 100

Sequence Length
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
depth 2
depth 4
depth 8
depth 12

Figure 3.3: Effect of model scaling on length gen-
eralization. All the models have less than 1% test
accuracy for length 100 sequences.

3.1 TASK HINTING

We now introduce the framework of task hinting. We consider a multi-task setup where we train the
model to simultaneously perform well on the main sorting task (Figure 3.1), and also an auxiliary
task. This auxiliary task corresponds to a simpler sub-task associated with “truly learning” a solution
to the main task. In this section, let us focus on the successor task: given an input sequence and
a particular element a from the sequence, the model must learn to predict its successor, i.e., the
element that follows a in the sorted sequence (see Figure 3.4 for an example). .

Figure 3.4: An example input sequence for the successor task.

In order to jointly learn the two tasks, we use the hard-parameter-sharing model for multi-task learn-
ing (Crawshaw, 2020) where the entire model backbone is shared across the two tasks, and a task-
specific classification head is used at the final layer to make predictions for the respective tasks. We
train the models as before for 100k steps, each time alternating between performing gradient updates
on the main task and auxiliary task. The training dataset size is split equally among the two tasks.

1The in-distribution test accuracy always reaches 100% well within the first 100k steps.

4

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100

Sequence Length
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

1M
10M
40M
160M

Figure 3.5: Effect of data scaling for task hinting. We observe consistent improvements in test accuracy on
higher length sequences.

Figure 3.5 shows the effect of scaling the training-set size on a depth-2 model with task hinting.
In contrast to the single-task setup, we see consistent gains as the training set size increases. In
particular, for dataset size of 160M the test accuracy for length 100 reaches to 52.4%. Furthermore,
by modifying the training set slightly so that 10% of the sequences involve non-trivial repetitions
(see Appendix D for details), the depth-2 model trained via task hinting achieves 92.6% test accuracy
on length 100 sequences! In contrast, the model obtained without task hinting continues to have test
accuracy close to 0 on length 100 sequences, even on this modified training set.

0 20 40 60 80 100
Sequence length

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

no hint
hint

Figure 3.6: Comparing test accuracy for hinting
vs. no hinting for increasing sequence lengths;
higher is better.

0 20 40 60 80 100
Sequence length

0

5

10

15

20

25

30

Ed
it

Di
st

an
ce

no hint
hint

Figure 3.7: Comparing the edit distance for hint-
ing vs. no hinting for increasing sequence lengths;
lower is better.

In Figures 3.6 and 3.7 we compare the test performance of the depth-2 model trained on a 160M
dataset via task hinting and the model obtained via standard training, as we increase the test sequence
length. Both the models are trained on the modified dataset that contains 10% of sequences with
non-trivial repetitions. We look at two metrics: (a) the full-sequence accuracy, i.e., whether the
model outputs the entire sorted sequence correctly, and (b) the edit distance between the true sorted
sequence and the predicted sequence. We see the performance of the no-hinting model drops sharply
with sequence length; in contrast, the performance of the hinting model remains much more stable.

To further investigate the robustness of the trained models, we test them on distributions beyond
uniform random sampling. We construct test distributions of the form rep(i, r), where a sequence
of length i is created by sampling ⌊i/r⌋ elements uniformly at random without replacement, and

0.0

0.5

1.0

Te
st

 A
cc

.

Reps 2 Reps 3

50 100
Seq. Length

0.0

0.5

1.0

Te
st

 A
cc

.

Reps 4

50 100
Seq. Length

Reps 5

no hint
hint

Figure 3.8: Test accuracy comparison of hinting
vs. no hinting models on repetitions.

0

10

20

Ed
it

Di
st

an
ce

Reps 2 Reps 3

50 100
Seq. Length

0

20

Ed
it

Di
st

an
ce

Reps 4

50 100
Seq. Length

Reps 5
no hint
hint

Figure 3.9: Edit distance comparison of hinting
vs. no hinting on repetitions.

5

Under review as a conference paper at ICLR 2024

repeating each r times. (The remaining i − ⌊i/r⌋r elements are drawn uniformly at random with
replacement.) Figures 3.8 and 3.9 compare the performance of the hinting-based and no-hinting
models for repetition values (r) in {2, 3, 4, 5}. Again, we observe that the hinting-based models are
stable in their performance, both in terms of their full-sequence accuracy and their edit distance.

Alternative Hints. Many other natural auxiliary tasks can serve as hints for the principal task of
sorting. In Figure 3.10 we present two such tasks. The first is a “count” task where, given a sequence
of only two numbers repeated a certain number of times the model has to identify the least occurring
one. The underlying idea is that sorting requires producing an output with the correct number of
occurrences of any particular number, and hence understanding whether the output contains fewer
or equal occurrences of a number. A very similar intuition underlies the second task, which is a “fill”
task: given a sequence containing a single number repeated some number of times, followed by a
prefix of that sequence, the model has to fill in the remaining entries.

Figure 3.10: An example input sequence for count hints and fill hints.

We now compare the performance of the models trained via the three different types of hints—the
successor hint from the previous secton, and these count and fill hints—in Figure 3.11. Observe that
the length generalization varies greatly depending on the type of hint used. In particular, while the
fill hints result in a marginal improvement over the standard model without hinting, the use of count
hints results in a worse performance than having no hints at all!

4 INTERPRETING HINTS

Given the large differences in the performance of models trained with different kinds of hints, we
now turn to visualization and probing techniques to try and understand the mechanism by which the
network learns the sorting task. To begin with, some notation:

1. For a given trained model, let E ∈ Rq×d be the learned input embedding (usually called
the embedding table); here q is the vocabulary size, and d is the embedding dimensionality.
(In our experiments, q = 103 and d = 1024.) We call the rows of E the encoder basis; the
use of the term “basis” is not unreasonable here, since experimentally we find that the rows
are nearly orthogonal and of very similar lengths.

2. Let (W, b) denote the classifier used at the last layer to make the next-token prediction.
Here W is a d× q matrix (usually called the softmax layer), and b is the bias vector of size
d. We also observe that the columns of W are nearly-orthogonal, and we call these vectors
the decoder basis. These two bases are nearly orthogonal to each other as well, and hence
span 2q = 206 of the d = 1024 dimensions.

0 20 40 60 80 100

Sequence Length
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

successor hint
count hint
fill hint

Figure 3.11: Test accuracy comparison of various hinting tasks. Not all auxiliary tasks lead to improved length
generalization, and some (such as counting) leads to performance degradation.

6

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100
0

5

10
depth 0 position 2 pre-MLP, Encoder

0 20 40 60 80 100

0

5

10
depth 0 position 2 post-MLP, Encoder

0 20 40 60 80 100
2

0

2
depth 0 position 2 pre-MLP, Decoder

0 20 40 60 80 100
2

0

2
depth 0 position 2 post-MLP, Decoder

0 20 40 60 80 100
2

0

2
depth 1 position 2 pre-MLP, Encoder

0 20 40 60 80 100

0

5
depth 1 position 2 post-MLP, Encoder

0 20 40 60 80 100
5
0
5
depth 1 position 2 pre-MLP, Decoder

0 20 40 60 80 100

0

10

depth 1 position 2 post-MLP, Decoder

Figure 4.12: The projection of token 43 at position 2 onto the encoder and the decoder bases. We
observe a noisy copy operation being implemented in the encoder basis (see row 1, plot 1 in red).

0 20 40 60 80 100
0

5

depth 0 position 8 pre-MLP, Encoder

0 20 40 60 80 100

0.0
2.5
5.0
depth 0 position 8 post-MLP, Encoder

0 20 40 60 80 100
2.5

0.0

2.5
depth 0 position 8 pre-MLP, Decoder

0 20 40 60 80 100

2.5

0.0

2.5
depth 0 position 8 post-MLP, Decoder

0 20 40 60 80 100

0

5

depth 1 position 8 pre-MLP, Encoder

0 20 40 60 80 100

0.0

2.5

depth 1 position 8 post-MLP, Encoder

0 20 40 60 80 100

0
5

10
depth 1 position 8 pre-MLP, Decoder

0 20 40 60 80 100

0

20
depth 1 position 8 post-MLP, Decoder

Figure 4.13: The projection of token 43 at position 8 onto the encoder and the decoder bases. We
observe an Identity+Successor operation being implemented in the decoder basis after the second
attention layer (see row 2, plot 3 in red).

0 20 40 60 80 100
0
5

10
depth 0 position 5 pre-MLP, Encoder

0 20 40 60 80 100

0

5

depth 0 position 5 post-MLP, Encoder

0 20 40 60 80 100

0.0

2.5

depth 0 position 5 pre-MLP, Decoder

0 20 40 60 80 100
2.5

0.0

2.5
depth 0 position 5 post-MLP, Decoder

0 20 40 60 80 100
2.5
0.0
2.5

depth 1 position 5 pre-MLP, Encoder

0 20 40 60 80 100
2

0

depth 1 position 5 post-MLP, Encoder

0 20 40 60 80 100

0

10
depth 1 position 5 pre-MLP, Decoder

0 20 40 60 80 100

0

20
depth 1 position 5 post-MLP, Decoder

Figure 4.14: The projection of token ⊥ at position 5 onto the encoder and the decoder bases. We
observe a noisy min operation being implemented in the decoder basis (see row 1, plot 3 in red).

As the network performs inference on an input σσσ = ⟨σ0, . . . , σT−1⟩, we can compute the interme-
diate embeddings for each token σi in the sequence and visualize them in the encoder and decoder
bases. Formally, a standard decoder-only transformer model consists of layers of attention blocks,
where each attention block consists of a layer of self-attention followed by a layer of MLP. Hence,
for a given input σσσ and position index i, let Xpre

i,j denote the embedding of token σi obtained at depth
jth before applying the MLP at that depth, and let Xpost

i,j the embedding after applying the MLP. We
then visualize several positions i for various inputs by projecting the pre-MLP and the post-MLP
embeddings onto the encoder and the decoder bases. These projections are often insightful, since
the basis vectors naturally correspond to vocabulary symbols.

As an example consider the input sequence: σσσ = ⟨5, 17, 43, 78, 92,⊥⟩ of five numbers that have
to be sorted. We consider a depth-two trained model (via standard training) and plot the projected
embeddings for token σ2 = 43 in Figure 4.12. The embeddings after first attention layer (depth-0
pre-MLP) are highly concentrated on the token 43 in the encoder basis, suggesting a (noisy) copy
operation being implemented by the layer. This tendency of tokens to simply copy themselves in the
encoder basis is observed for tokens appearing before the ⊥ token at all points in the inference.

Next, in Figure 4.13 we plot the token 43 again, but now when it appears at position 8, i.e., when
it is part of the output sequence. We again observe the noisy copy operation in the encoder basis,
but the behavior in the decoder basis is quite different. Specifically, the embedding after the second
attention layer (depth-1 pre-MLP) is highly concentrated on both token 43 and on its successor in
the sorted sequence, i.e., on token 78. In fact, we consistently observe this two-peak phenomenon
in the depth-1 pre-MLP embedding for tokens in the output sequence—they appear to implement
an Identity+Successor operation. The final MLP layer then acts as a denoiser, reducing/removing
the spike on the identity part to ensure that the final embeddings are concentrated correctly on the
successor element—hence the classification based on (W, b) correctly outputs the successor element.

Finally, let us examine the embeddings for the end-of-input ⊥ token in Figure 4.14. Here we con-
sistently observe that a noisy minimum operation is being implemented right after the first attention
layer (depth-0): the embedding has largest inner product with the vector in the decoding basis that
corresponds to the minimum element in the input!

7

Under review as a conference paper at ICLR 2024

0 100 200 300 400 500

Sequence Length
0

20

40

60

80

Ac
c.

 o
f m

in
 fi

nd
in

g

no hint
hint

Figure 4.15: The accuracy of implementing the
min finding operation after layer-1 attention.

0 100 200 300 400 500

Sequence Length
0

20

40

60

80

100

Ac
c.

 o
f I

de
n.

+S
uc

c. no hint
hint

Figure 4.16: The accuracy of implementing the
Identity+Successor operation after layer-2 atten-
tion.

To summarize, consider input σ0, . . . , σn−1, with the ⊥ token at location n. We consistently observe
that the embeddings suggest the following learning mechanism:

(i) Any token σi in position i < n has a sharp spike on the encoding basis vector corresponding
to symbol σi throughout the inference.

(ii) The embedding for the end-of-input delimiter ⊥ typically implements a noisy minimum
operation in the decoding basis after the depth-0 self-attention later.

(iii) Any token in position i > n (i.e., part of the output) often implements the Iden-
tity+Successor operation after the depth-1 self-attention layer. The depth-1 MLP acts as a
denoiser, removing the spike on the symbol itself, which then correctly highlights only the
successor.

The empirical evidence suggests that the network aims to solve the sorting task using a natural algo-
rithm: (a) first finding the minimum element to follow the ⊥ symbol, and thereafter (b) computing
the successor element for each element. Moreover, this suggests why the successor hints are highly
beneficial: these hints align well with the solution concepts that the network is trying to learn. In or-
der to further validate this hypothesis we compare how effective the internal representations of these
depth-2 models (trained with/without hints) are at implementing the above-mentioned mechanisms.
In particular, we measure how often:

(i) the embedding for the ⊥ token after the depth-0 self-attention layer computes the minimum
input element (this is measured by computing the dot-product of the embedding with the
decoding basis), and

(ii) the embedding for tokens in the output sequence (those after ⊥) correctly implement the
Identity+Successor mechanism after the layer-2 attention operation.

Figures 4.15 and 4.16 show that using successor hints significantly improves the accuracy of these
two mechanisms in the internal representations, especially at lengths not seen during training. We
conjecture that in general, auxiliary tasks that align well with the implicit bias of the network tend
to help the most to obtain out-of-distribution robustness.

Our analysis above shows that direct projection-based techniques can help demystify some algorith-
mic mechanisms underlying transformer networks, and provide interesting insights. Moreover, the
generality of the techniques gives hope that they can be used for other large-scale problems.

5 THEORETICAL ANALYSIS

The previous sections relied on the toolkit of visualization and probing using the encoder/decoder
bases to gather empirical evidence about the learned mechanism, and the effectiveness of the suc-
cessor finding task. In this section we ask the questions: can we give a theoretical construction
that matches the empirical findings, and that can be implemented via a shallow transformer model?
What does this construction tell us about length generalization? Recent theoretical works have al-
luded to the possibility that log-precision transformers may capture the complexity class of TC0

circuits (Merrill et al., 2022). Since (Chandra et al., 1984) show that sorting is indeed in TC0, it is
conceivable that one can design constant-depth transformer models for sorting.

While there may be many such constructions of shallow transformer models, we impose some ad-
ditional constraints: (a) we ask for a depth-two model, and (b) the size of the network should be

8

Under review as a conference paper at ICLR 2024

independent of the input length n, even though the parameters could depend logarithmically on n.
Finally, we want a construction that displays the empirical properties we observe in Section 4. We
hope that by getting a theoretical construction that is close to the empirically observed behavior, we
may be able to generate more practically useful insights from the theory.

Formally, we fix an alphabet Σ of size q. We have one special symbol ⊥, which is the end-of-
sequence delimiter. Let Σ′ denote the extended alphabet Σ∪ {⊥}. We associate Σ with the naturals
{1, 2, . . . , q}, with the usual total order on them. Since we seek to sort sequences using next-token
prediction, the input is a sequence of length T consisting of three conceptual parts:

1. pre-delimiter: a sequence σ0, σ1, . . . , σn−1 where each σi ∈ Σ. These represent the un-
sorted input.

2. the end-of-sequence delimiter: σn = ⊥.
3. post-delimiter: a sequence of i = T−n−1 symbols σn+1, σT+2, . . . , σT−1 from Σ, which

ideally represent the smallest i symbols in the input σσσ[0:n−1] (in non-decreasing order).

Given this sequence σσσ we want to predict the next symbol in the sorted order of the input
σσσ[0:n−1]. Finally, we consider transformers with the tempered softmax operation, i.e., given
x ∈ Rd, softmaxτ (x)i = eτxi/

∑
j e

τxj . In our construction, we consider transformer models
where τ = β lnn and β is a tunable/learnable parameter, and n is the sequence length. This is a
departure from the standard practice of always setting τ = 1, independent of the input length. We
prove the following theorem:
Theorem 5.1. For any alphabet of size q and bit precision complexity b, there exists a depth-2
decoder only transformer model with two attention heads, embedding dimensionality and hidden
layer dimensionality of O(q), and network weights encoded using b bits of precision that correctly
solves the sorting task on sequence of length up to 2Ω(b). Furthermore, the network displays the
following characteristics:

1. For any position i < n, the embedding obtained after the first attention layer is highly
concentrated on σi in the encoding basis, hence implementing a copy operation.

2. For token ⊥, the embedding after the first attention layer has the highest dot product (in
the decoding basis) with the smallest element in the sequence, hence implementing the min
operation.

3. For any position i > n, the embedding obtained after the second attention layer is concen-
trated (in the decoding basis) on the token at position i and the next largest element in the
sorted sequence, thereby implementing the Identity&Successor operation.

Algorithmic Implications. Note that our theoretical construction relies on the ability to apply
length-dependent tempered-softmax operations. This is important for us to ensure that the perfor-
mance of the network does not degrade with increasing sequence lengths. Given this theoretical con-
struction, we ask whether incorporating length-dependent tempered-softmax operations suggested
by the theory could help with length generalization in practice. In order to implement this, we
modify the Flaxformer codebase (Heek et al., 2023) to introduce the tempered softmax at each
attention layer (with each its own learnable β parameter). We train depth-two transformer models
on the same training set of size 160M, both with and without hints, and compare the performance
with and without tempered softmax operations.

Standard Tempered
softmax softmax

Test Acc. 50 89 99.4
Test Acc. 100 0.0 45.2

Table 1: Test accuracy of depth-2 model
trained without hints and with/without tem-
pered softmax.

Standard Tempered
softmax softmax

Test Acc. 50 99.2 99.7
Test Acc. 100 52.4 64.8

Table 2: Test accuracy of depth-2 model
trained with successor hints and with/without
tempered softmax.

As we observe in Tables 1 and 2, the introduction of the tempered softmax significantly improves
length generalization of models trained via standard training, as well as those trained via task hinting.
Furthermore, the tempered softmax helps across all data scale ranges. In particular, even for the
model trained without hints on a training set of size 1M, the test accuracy on sequences of length
100 increases from 0% to 42% due to the introduction of the tempered softmax!

9

Under review as a conference paper at ICLR 2024

REFERENCES

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk. Generalization on the unseen, logic
reasoning and degree curriculum. arXiv preprint arXiv:2301.13105, 2023.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Ashok K. Chandra, Larry J. Stockmeyer, and Uzi Vishkin. Constant depth reducibility. SIAM
J. Comput., 13(2):423–439, 1984. doi: 10.1137/0213028. URL https://doi.org/10.
1137/0213028.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled multilingual
language-image model. arXiv preprint arXiv:2209.06794, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Michael Crawshaw. Multi-task learning with deep neural networks: A survey. arXiv preprint
arXiv:2009.09796, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Yann Dubois, Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. Location attention for extrapolation
to longer sequences. arXiv preprint arXiv:1911.03872, 2019.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023. URL
http://github.com/google/flax.

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François
Charton. Length generalization in arithmetic transformers. arXiv preprint arXiv:2306.15400,
2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite BERT for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Watten-
berg. Emergent world representations: Exploring a sequence model trained on a synthetic task.
arXiv preprint arXiv:2210.13382, 2022.

Tiedong Liu and Bryan Kian Hsiang Low. Goat: Fine-tuned LLaMA outperforms GPT-4 on arith-
metic tasks. arXiv preprint arXiv:2305.14201, 2023.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Eran Malach. Auto-regressive next-token predictors are universal learners. arXiv preprint
arXiv:2309.06979, 2023.

10

Under review as a conference paper at ICLR 2024

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022.

Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023a.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models, 2023b.

Benjamin Newman, John Hewitt, Percy Liang, and Christopher D Manning. The EOS decision and
length extrapolation. arXiv preprint arXiv:2010.07174, 2020.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaekermann, Mohamed Amin, Pi-Chuan Chang,
Andrew Carroll, Chuck Lau, Ryutaro Tanno, Ira Ktena, et al. Towards generalist biomedical AI.
arXiv preprint arXiv:2307.14334, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with LEGO: a synthetic reasoning task. arXiv preprint arXiv:2206.04301,
2022.

11

Under review as a conference paper at ICLR 2024

A DISCUSSION AND LIMITATIONS

In this work we proposed task hinting as an effective approach for the problem of length generaliza-
tion. We observe that using hints that have a strong alignment with the internal biases of the learning
mechanism can result in significant gains in out-of-distribution robustness for the problem of sort-
ing integers. For this setting, we use probing and visualization-based techniques to investigate the
internal learning mechanisms; these allow us to explain the success of the successor-based hints that
we use in our experiments. In general, even these probing/visualization approaches may not always
be feasible for large-scale settings, so designing the appropriate hinting tasks may be a problem in
itself: it would be good to develop a principled approach for deciding on hinting tasks.

While we observed that other natural hinting tasks, such as the count task and the fill task did not
help (and sometimes even hurt the performance), we feel that these are useful auxiliary capabilities
for a sorting network, and it would be good to understand their lack of success at a deeper level.
Moreover, it would also be interesting to combine multiple hints, and make the network benefit
from learn more than two tasks simultaneously. We tried this approach for the sorting problem,
where we trained the model to do well on all the three types of hinting tasks simultaneously, but
observed mixed or even negative results.

Our work also proposes the introduction of length-dependent parameters into the attention mech-
anism, and observe that they significantly boost the robustness of the models for both the sorting
problem and the increment problem. It would be interesting to apply this to larger-scale settings
of training language models, and to evaluate whether any gains in robustness can be obtained on
more general reasoning tasks. Finally, when using the framework of multitask learning to make the
network learn both tasks simultaneously, we did not make efforts to optimize the various parameters
of the setup, and followed a simple recipe of alternating gradient updates on each task. Further
optimizations in this stage could lead to better performance.

B FORMAL CONSTRUCTIONS [PROOF OF THEOREM 5.1]

We now show how to implement a min/successor operation via two-layer transformers, which allows
us to sort using next-token predictions.

B.1 NOTATION

Fix an alphabet Σ of size q. We have one special symbol ⊥, which is the end-of-sequence delimiter.
Let Σ′ denote the extended alphabet Σ ∪ {⊥}. We associate Σ with the naturals {1, 2, . . . , q}, with
the usual total order on them.

Since we seek to sort sequences using next-token prediction, the input is a sequence of length T
consists of three conceptual parts:

1. the pre-delimiter part: a sequence of n symbols σ0, σ1, . . . , σn−1 where each σi ∈ Σ.
These represent the unsorted input.

2. the end-of-sequence delimiter: σn = ⊥.

3. the post-delimiter part: a sequence of some i = T −n− 1 symbols σn+1, σT+2, . . . , σT−1

again from Σ, which ideally represent the smallest i symbols in the input σσσ[0:n−1] (in non-
decreasing order).

Given this sequence σσσ we want to predict the next symbol in the sorted order of the input σσσ[0:n−1].

B.2 THE TRANSFORMER ARCHITECTURE

The process works as follows:

1. The initial embedding function Enc : Σ′ → Rd maps each symbol to a vector in Rd. Let
X0 ∈ RT×d be the embedding of the input sequence σσσ, where the ith row of X0 equals
Enc(σi). We use Xti to denote the ith row of Xt.

12

Under review as a conference paper at ICLR 2024

2. There are b attention blocks which transform this input: we denote the operation of attention
block t by Bt : RT×d → RT×d, and hence

Xt := Bt(Xt−1).

Each block contains a self-attention layer and a multi-layer perceptron (MLP) layer, fol-
lowed a layer normalization operation, such that

Bt :=

(
normalize ◦ (I + fmlp

t) ◦ (I + fattn
t)

)
.

The identity maps are the residual stream to which the results of the various operations get
repeatedly added in.

3. Each self-attention layer consists of h attention heads: the columns of the matrix Xt are
split into h matrices Xt1, . . . ,Xth, each with d/h columns and T rows. Each head is
specified by matrices Q,K, V . It takes a matrix X ∈ RT×d/h and produces a matrix of the
same dimensions as follows:

fattn(X;K,Q, V) := smaxτ (XKQ⊺X
⊺
)XV

Here the smax operator takes a matrix A and a parameter τ and defines

smaxτ (A)ij =
eτAij 1(i≥j)∑

j′≤j e
τAij′

.

(Note that the above operator combines the softmax operation and the auto-regressive be-
havior.) Finally, the resulting h sub-matrices are concatenated together to give the re-
sult of the entire self-attention layer; let fattn

t denote the composite function. Define
Yt := (I + fattn

t)Xt−1 as the result of adding back the original signal to the result.

4. Next, the multi-layer perceptron (MLP) layer (which in our case is a two-layer perceptron)
is a transformation fmlp(Y;W1,W2, b1, b2) that is specified by two matrices W1,W2 and
bias vectors b1, b2. It is the result of applying the following map to each row y⊺ of Y
separately:

y 7→ W2 σ(W1y + b1) + b2.

Here the map σ(·) is usually the component-wise ReLU operation (or in more complicated
settings, other non-linear operators like GeLU or GLU).

5. The final piece in each block is the layer normalization operation, which again is applied
to each row of the current embedding independently. Given a vector x ∈ Rd, it subtracts
µ := ∥x∥1/d from each coordinate to make it zero-mean, and then divides each entry
by σ :=

√∑
i x

2
i /d; this makes the Euclidean length

√
d. We denote this operation by

normalize.

6. Unrolling, the entire transformer map is

Xb =
(
Bb ◦Bb−1 ◦ · · · ◦B1

)
X0.

7. The final transformation is the decoding/unembedding operation, which takes Xb ∈ RT×d

and applies some decoding map Dec : Rd → Σ′ independently on each row of Xb. This
produces characters in Σ′—these are the predictions for the next symbols. For our decoder-
only constructions, the only relevant prediction is that of the last symbol: we output this
prediction Dec(Xb,T−1) as the next token, thereby increasing the length by 1—this longer
string is then the input for the next iteration.

We now show how to implement each of these attention blocks for the sorting network.

B.3 THE ENCODING FUNCTION

Fix a set of unit vectors {es, e′s}s∈Σ′ which are all orthogonal to each other in Rd. The initial
embedding is simple: each symbol a ∈ Σ is encoded by the vector ea + e′a, and the end-of-input
delimiter is encoded as e⊥ + e′⊥. This gives us the input embedding X0.

13

Under review as a conference paper at ICLR 2024

B.4 BLOCK #1

The first block has two goals: (i) it gets each token to implement a “min/copy” operation (in which
the end-of-input delimiter predicts the minimum element from the input, whereas each other token
just predicts itself), and (ii) the tokens corresponding to the same symbol before and after the end-
of-input delimiter distinguish themselves, so that the second block can act on them accordingly.

B.4.1 BLOCK #1: SELF-ATTENTION LAYER

There are two attention heads in the first self-attention layer, each getting some d/2 columns of the
matrix X0. We denote the resulting two sub-matrices by X01,X02 ∈ RT×d/2, and ensure that for
each s, the span of {es}s∈Σ′ lies in the subspace corresponding to the first d/2 coordinates, and the
span of {e′s} lies in the one for the other d/2 coordinates.

In the entire construction, we set τ = 3 lnn, where n is the length of the input. Define the Q,K, V
matrices for the attention heads as follows:

• Attention Head #1, which operates on a subspace containing the vectors
{e0, e1, e2, . . . , eq}: for some positive scalar C ≥ 1 to be specified below, define

Qea = ea + Ce⊥ Kea = ea V ea = ẽa (B.1)
Qe⊥ = e⊥ Ke⊥ = e⊥ V e⊥ = ẽ⊥. (B.2)

(Here, and subsequently, the matrices Q,K, V map all vectors orthogonal to the specified
vectors to zero.) The vectors {ẽs}s∈Σ′ are fresh orthonormal vectors.

• Attention Head #2, which operates on a subspace containing the vectors
{e′0, e′1, e′2, . . . , e′q}: define

Qe′a = e′a Ke′a = e′a V e′a = ê′a (B.3)

Qe′⊥ =
∑
b∈Σ

γb e
′
b Ke′⊥ = e′⊥ V e⊥ = 0. (B.4)

Here {γb}b∈Σ are also values to be specified soon. Again, the vectors {ê′b}b∈Σ are fresh
orthonormal vectors.

This means that for any symbol a ∈ Σ at some position i before the ⊥ delimiter, the first attention
head outputs ∑

j≤i:σj=a e
τ ẽσj

+
∑

j≤i:σj ̸=a ẽσj∑
j≤i:σj=a e

τ +
∑

j≤i:σj ̸=a 1
=

na,[0,i] e
τ ẽa +

∑
j≤i:σj ̸=a ẽσj

na,[0,i]eτ + (i+ 1− na,[0,i])

Here na,[x,y] is the number of occurrences of a in the multiset {σx, . . . , σy}. Now since τ ≥
3 lnn, most of the attention is on all occurrences of the same symbol a seen thus far, and hence this
expression is

(1−O(1/n4)) · ẽa +O(1/n2) · u1i,

where u1 is some “error” vector of unit norm. Similarly, the second attention head gives

(1−O(1/n4)) · êa +O(1/n2) · u2i,

for some other error vector u2. Hence, adding back in the residual, we get that the ith entry (for
i < n, where σi = a for some a ∈ Σ) gives us

(I + fattn
1)(X0i) ≈ X0i + ẽa + êa = ea + e′a + ẽa + êa. (B.5)

Here and henceforth, we will use the “≈” to hide error vectors of length O(1/n2).

Now a similar analysis shows that for position i > n (such that X0i = a), setting C = 3 then most
of a’s attention (in the first head) is on the ⊥ delimiter, and hence

(I + fattn
1)(X0i) ≈ (ea + e′a) + ẽ⊥ + ê′a. (B.6)

14

Under review as a conference paper at ICLR 2024

Finally, the ⊥ delimiter pays most of its attention to itself in first head, whereas in the second head
it pays attention to all the tokens (weighted by the eτγb multipliers). Defining αb := eτγb , we get

(I + fattn
1)(X0i) ≈ (e⊥ + e′⊥) + ẽ⊥ +

∑
b αbnb,[0,n) ê

′
b∑

b αbnb,[0,n) + 1
. (B.7)

Since we have identified the symbols of Σ with {1, 2, . . . , q}, we can define γb = (q − b + 1), and
hence lnαb := 3(q− b+1) lnn. Since the αb values decrease rapidly as b increases, the fraction on
the right assigns most of its weight to vector ê′b corresponding to the minimum element in the input
σ[0,n). In other words, we get

(I + fattn
1)(X0i) ≈ (e⊥ + e′⊥) + ẽ⊥ + min

b∈σσσ[0,n−1]

ê′b. (B.8)

Let us denote the output of the first self-attention layer by Y1; i.e.,

Y1 := (I + fattn
1)(X0).

B.4.2 BLOCK #1: MLP LAYER

Recall that the MLP layer is applied to each embedding separately, and there is no interaction be-
tween the embeddings of different tokens. The first MLP layer has two goals:

1. The first goal is to convert the ẽ⊥ vector in embedding of some post-delimiter a to the
corresponding −ẽa. To this end, the

fmlp
1,1 (x) :=

∑
b∈Σ

σ(⟨x, eb⟩+ ⟨x, ẽ⊥⟩ − 1)(−ẽ′b − ẽ⊥). (B.9)

Recall that σ(z) := max(0, z) is the ReLU function.

2. The second goal is to shift the coordinates of the ẽa vectors, so that they appear in the
second half of the coordinates instead of the first. For this we use

fmlp
1,2 (x) :=

∑
b∈Σ

(
(σ(⟨x, ẽb⟩ − σ(⟨x,−ẽb⟩) · (ẽ′b − ẽb)

)
(B.10)

Finally, fmlp
1 (x) := fmlp

1,1 (x) + fmlp
1,2 (x). This gives us the output of the first attention block:

X1 := (I + fmlp
1)(Y1).

As mentioned above, we do not use the layer normalization in this construction, so this X1 is now
fed to the second attention block.

To summarize,

X1i = (I + fmlp
1)(Y1i) =

(ea + e′a) + ẽ′a + ê′a + u3i for i < n

(ea + e′a)− ẽ′a + ê′a + u3i for i > n, and
(e⊥ + e′⊥) + ẽ⊥ +minb∈σσσ[0,n−1]

ê′b + u3i for i = n.

The error vectors u3i above have magnitude O(1/n2).

B.5 BLOCK #2

The second block now ensures that the ⊥ token predicts the minimum element, whereas each other
token predicts its successor. The non-trivial part of this construction arises from duplicates in the
input, so that each symbol a ∈ Σ has to infer whether the number of copies of a already output
equals the number in the input part of σσσ, and accordingly predict whether to output another a or the
successor to a. (Observe that this is an ordinal concept, and not a cardinal one: the network does
not need the actual count of the a’s that have been output, but to just know whether the number of
a’s output is strictly less than the number in the input.)

15

Under review as a conference paper at ICLR 2024

B.5.1 BLOCK #2: SELF-ATTENTION LAYER

The self-attention layer of the second block again has two attention heads:

• Attention Head #1, which again operates on a subspace containing the “unprimed” vectors:

Qea = ea Kea = ea V ẽa = êa (B.11)
Qe⊥ = e⊥ Ke⊥ = e⊥ V e⊥ = 0. (B.12)

Again, the matrices Q,K, V map all vectors orthogonal to the specified vectors to zero.
Recall that the τ parameter is the softmax operator is set to 3 lnn.

• Attention Head #2, which operates on the primed vectors: define

Qe′a =
∑
b>a

γbe
′
b Ke′a = e′a V e′a = εê′a (B.13)

Qe′⊥ = e′⊥ Ke′⊥ = e′⊥ V e′⊥ = 0. (B.14)

(We will fix the value of ε > 0 below.)

Since we are at the final block, we are no longer concerned with the part of the input in σ[0:n−1],
and hence focus on positions n and beyond. The ⊥ delimiter at position n primarily pays attention
to itself in both attention heads, since τ is Ω(log n). This means it remains unchanged, and

(I + fattn
2)(X1n) = (e⊥ + e′⊥) + ẽ⊥ + min

b∈σσσ[0,n−1]

ê′b + u4n, (B.15)

where the new error vector u4n is still of the order O(1/n2).

Next, consider any position i > n, such that σi = a for some a ∈ Σ. The first attention head gives∑
j≤i:σj=a e

C V (X1j) +
∑

j≤i:σj ̸=a V (X1j)

eC na,[0.i] + (n− na,[0,i])
=

eC(na,[0,n] − na,[n+1,i]) êa +
∑

j≤i:σj ̸=a êσj

eC na,[0.i] + (n− na,[0,i])
(B.16)

Again, since C = Ω(lnn), this is approximately

(na,[0,n] − na,[n+1,i]) êa + u4i, (B.17)

where the error vector u4i has tiny norm O(1/n2). The second attention head for the same symbol
σi gives ∑

b>a αbnb,[0,i] ε ê
′
b +

∑
b≤a nb,[0,i] ε ê

′
b∑

b>a αbnb,[0,i] +
∑

b≤a nb,[0,i]
. (B.18)

Recall that αb = eτγb = n3(q−b+1). If the symbol a is not the largest symbol of the input (so that
other symbols b > a follow it in the input), this expression is ε(minb>a ê

′
b + u′

4i), with the error
vector u′

4i having a tiny norm compared to minb>a ê
′
b. As before, we define

Y2 := (I + fattn
2)(X1)

to be the outcome of this self-attention layer.

Let P̂ be the projection of these embeddings on the subspace spanned by the “hatted” vectors
{êa, ê′a}a∈Σ. Then

P̂Y2i = P̂ (I + fattn
2)(Y1i)

=

{
minb∈σσσ[0,n−1]

ê′b + u5i for i = n, and

(na,[0,n] − na,[n+1,i]) êa + ê′a + ε
∑

b>a αbnb,[0,i] ê
′
b+

∑
b≤a nb,[0,i] ê

′
b∑

b>a αbnb,[0,i]+
∑

b≤a nb,[0,i]
+ u5i for i > n.

(B.19)

16

Under review as a conference paper at ICLR 2024

B.5.2 BLOCK #2: MLP LAYER

The final MLP layer of the second and final block has a simple task:

fmlp
2 (x) :=

∑
b∈Σ

σ(⟨x,−ẽb⟩) · (− ê′b). (B.20)

This has the effect of adding in (−ê′a) to any post-delimiter a, and hence“nullifying” the ê′a. The
net effect (again seen after projection onto the hatted subspace) is

P̂X2i = P̂ (I + fmlp
2)(Y2i)

=

{
minb∈σσσ[0,n−1]

ê′b + u5i for i = n, and

(na,[0,n] − na,[n+1,i]) êa + ε
∑

b>a αbnb,[0,i] ê
′
b+

∑
b≤a nb,[0,i] ê

′
b∑

b>a αbnb,[0,i]+
∑

b≤a nb,[0,i]
+ u5i for i > n.

B.6 THE DECODING LAYER

Proof of Theorem 5.1. The decoding (or unembedding) layer outputs the element a for which the
vector êa + ê′a has the largest inner product with the current embedding. In other words, σi predicts

argmax
a∈Σ

⟨X2i, êa + ê′a⟩. (B.21)

From the above construction we have the following properties that establish the correctness of the
network:

1. For the delimiter at position i = n, this is simply the minimum element from σσσ[0,n−1].

2. For any other location i > n with σi = a, there are two cases:

(a) Suppose there are multiple copies of a in the input σσσ[0,n−1], and not all of them have
been output yet. This means na,[0,n] > na,[n+1,i], and hence the maximum in (B.21)
is achieved by a itself, as long as ε ≤ 1/2, say. This results in predicting and outputting
another copy of a.

(b) Else suppose the number of copies of a in the output already equals that in the input.
In this case, the argmax in (B.21) is achieved at the smallest element b ∈ σσσ[0,n−1] that
is larger than a; this is indeed the correct “successor” element for a to predict. One
exception is when i = 2n, but then we do not need any further predictions.

Here we have crucially used that the maximizing vector has norm at least a constant, which means
that the error vectors of length O(1/n2) do not alter the result.

B.7 THE LAYER NORMALIZATION

The construction above (using d = O(|Σ|) coordinates) did not use the layer normalization opera-
tion; however, we can convert it to incorporate this operation as well. Recall that layer normalization
operates on the embedding of each token independently: (i) given a vector x ∈ Rd, it subtracts the
mean µx := 1

d∥x∥1 from each coordinate, and then (ii) renormalizes it to have squared norm d.

We take the above construction using vectors x ∈ Rd and extend it by adding d new coordinates and
appending an analogous construction using the negative of these vectors. The new embedding x̄ has
mean µx̄ = 0, and hence the step (i) of layer normalization does not change anything.

This means that at the end of the first block, each of the embeddings in our construction have squared
length ≈ 4. This means the renormalization only changes the magnitude of the embeddings, but
their relative sizes remain the same. Consequently, the computations in the second block remain
unchanged. The final layer normalization again shifts and renormalizes the embedding, but this
does not change the outcome.

17

Under review as a conference paper at ICLR 2024

B.8 AGREEMENT WITH EXPERIMENTAL RESULTS

1. Consider the embedding after the first self-attention layer: decoding this embedding of ⊥
(given in (B.7) gives us the minimum element, whereas decoding the embedding of any σi

for i > n (as given in (B.6)) gives us the element σi itself. This “min/copy” behavior can
be observed in the experimental results.

2. After the second self-attention layer, consider the last occurrence of any symbol a in the
output (say at some position i > n, as given in (B.19)): since na,[0,n] = na,[n+1,i] by
our assumption, decoding this embedding puts most of its mass along a (due to ê′a) and

its successor (due to ε
∑

b>a αbnb,[0,i] ê
′
b+

∑
b≤a nb,[0,i] ê

′
b∑

b>a αbnb,[0,i]+
∑

b≤a nb,[0,i]
). Again, this “Identity+Successor”

behavior shows up in the experiments.

3. Finally, the last MLP layer nullifies the mass on the a token itself, thereby leaving most of
the mass on the successor. This aspect also shows up in the experiments.

C TASK HINTING FOR OTHER PROBLEMS

In this section we discuss the effectiveness of our proposed approach for two problems: that of
incrementing a positive integer, i.e., adding 1 to it and the LEGO task that was proposed in Zhang
et al. (2022).

C.1 INCREMENT TASK

As we will see, it is quite challenging for transformers to be able to generalize on unseen lengths
even for this simple setting of incrementing a number by 1. We again train decoder-only models that
produce one token at a time. Similar to the case of sorting, we use the ⊥ token to denote the end of
the input sequence. Each example in the training set is a sequence of the form: [1, 2, 3,⊥, 4, 2, 1],
where the output is being produced in reverse order, given that is the way in which humans tend to
solve this task. The training set contains 1M instances of lengths up to 10. Similar to the case of
sorting, we skew the distribution towards shorter sequences by sampling 80% of the instances from
lengths up to 4. Finally, we ensure that 10% of the samples end with a random sequence of 9s, since
these instances are important for the model to learn the notion of a carry.

Solving the increment task via a causal decoder-only network presents a different set of challenges
than sorting—the instance is no longer permutation-invariant, and as the number of output tokens
increases, the model has to attend to a specific position farther to the left in the input sequence. We
compare the length-generalization properties of models obtained via standard training versus those
obtained via either task hinting or via introducing the tempered softmax operation. For task hinting,
we consider the natural hint of making the model output the carry sequence along with the output
sequence. Hence an instance from the auxiliary task will be structured as

[1, 2, 3,⊥, 4, ↑, 0, 2, ↑, 0, 1, ↑, 0],

where the ↑ token represents the fact that the model should output the correct carry value at the next
step. We train depth-four transformer models for this task and evaluate their test accuracy on the
task of solving the increment problem correctly.

↓ Model, → n 11 12 13 14 15 16 17 18 19 20
Standard 98.2 93.8 81.5 60.1 41 23.2 10 4.1 1.4 0.3
Hinting 99.4 96.4 88.4 69.2 47.7 27.1 13.7 6 2.2 0.5

Temp. softmax 99.8 97.5 91.4 78.3 62.1 46.4 29 16 8 4

Table 3: Test accuracy comparison of various models on the increment task.

Table 3 compares the performance of the model trained via standard training to (a) the model trained
via task hinting, and (b) the model trained using the tempered softmax. We observe that while
task hinting helps improve length generalization, the improvements are smaller compared to the
improvements for sorting. However, we observe that the model based on tempered softmax helps
improve the length generalization to a much greater extent.

18

Under review as a conference paper at ICLR 2024

b d a c f e

+1

+ - + - +

Figure C.17: An example linear chain for the LEGO task.

[BOS] a=-d; f=-c; c=+a; d=+b; b=+1; e=+f [EOS]

Figure C.18: An example input to the model for the chain in Figure C.17. Here [BOS] and [EOS] are special
tokens for the beginning and the end of the input.

C.2 LEGO TASK

The LEGO task as proposed in the work of Zhang et al. (2022) is a variable resolution task. Given
a set of variables, say {a, b, c, d, e, f}, there is an unknown hidden linear ordering among them.
For instance Figure C.17 shows a possible linear ordering. Each variable is assigned a value in
{−1,+1}. The value of the first variable in the chain is provided. The value of any subsequent
variable can be obtained by traversing through the chain and flipping the sign of the edge is labeled
by “-”. Hence for the example shown in Figure C.17 the variable assignments are {b = +1, d =
+1, a = −1, c = −1, f = +1, e = +1}. For a given hidden chain, the input to the model is a
sequence of variable assignments describing the input but permuted in a random order. Figure C.18
shows a possible input to the model given that the hidden chain is the one in Figure C.17. Given the
input the model is the required to predict the values of all the variables.

We consider the setup described in Zhang et al. (2022) where the authors consider inputs of 12
variables, i.e., chains containing 12 variables. Furthermore, the authors train the model to predict
the first 6 variables in the chain, and at inference time evaluate how well does the model generalize
to “unseen” lengths, i.e. it’s ability to predict variables 7 to 12. We consider whether training the
models via task hinting can improve the generalization performance for this task. We consider a
natural hint where we additionally provide the model with the value of a random variable (among
the first 4 variables in the chain) and then ask it to predict the value of the variable two steps down
the chain. Note that this is an easier task then resolving the values of all the variables. Furthermore,
we still ensure that during training we do not provide the model with any supervision regarding its
performance on variables 7 to 12. Figure C.19 shows an example hinting task for the input described
in Figure C.18.

We train decoder only models of depth-12 both with and without task hinting. As expected both the
models achieve 100% test accuracy for the first 6 variables. Hence, in Table 4 we report the test
accuracy of the models for variables 7 to 12. As we can see, the use of task hinting significantly
improves the length generalization for the unseen variables.

↓ Model, → n 7 8 9 10 11 12
Standard 99.9 99.4 94.8 84.5 67.6 41.3
Hinting 99.9 99.9 98.4 91.9 79.3 56.5

Table 4: Test accuracy comparison of the models on the LEGO task.

D EXPERIMENTAL SETTINGS AND HYPERPARAMETERS

Sorting Dataset construction. For the sorting problem, we construct the data set for the main task
by sampling a length in {2, 3, . . . , 20} from a skewed distribution. For a given length, we sample an
input sequence by independently drawing random numbers in {1, 100} uniformly at random with
replacement, for each input position. The skewed length distribution places 80% of the probability
mass equally on lengths in {2, 3, 4, 5} and the remaining 20% uniformly on lengths in {6, 7, . . . , 20}.

We also train models on variants of the above dataset that contain non-trivial repetitions. These
datasets are created by first picking a length ℓ from the same skewed distribution. With probability

19

Under review as a conference paper at ICLR 2024

[BOS] a=-d; f=-c; c=+a; d=+b; b=+1; e=+f [EOS] [BOH] a=-1; f=? [EOH]

Figure C.19: An example hinting task to the model for the input in Figure C.18. Here [BOH] and [EOH] are
special tokens for the beginning and the end of the hint.

0.9, we follow the same procedure as above for creating the input sequence. With the remaining
probability 0.1, we pick ℓ

2 numbers uniformly at random from {1, 2, . . . , 100} (without replacement)
and create the input sequence by independently drawing numbers from this set (uniformly, with
repetitions) for each position in the input sequence.

The training dataset for the successor hint is created in the same manner as above: having picked
the input sequence, we pick a position uniformly at random and use the corresponding number to
create the successor hint. For creating the count hint dataset we again pick the length of the sequence
from the skewed distribution. Then we pick two numbers a, b at random (without replacement) from
{1, 2, . . . , 100}. Finally, with probability 0.5 we repeat them the same number of times, and with
the remaining probability either a or b is chosen (equally) to be the under-represented number. The
amount of under-representation is chosen uniformly among the valid choices, but restricted to be at
most 5. Similarly, for the fill task, we choose the length ℓ from the skewed distribution and choose to
repeat the element some number of times uniformly chosen from {1, 2, . . . , ⌊ℓ/2⌋}. To construct the
test set for each sequence length, we sample 100k examples uniformly at random with replacement.

All our models for the sorting network use the architecture and parameters detailed in Table 5. We do
not use position embeddings in our architectures, as causal decoder-only models are not permutation
invariant. In all our experiments with using fixed and learned positional embeddings, we observed
comparable or even worse performance compared to models using no positional embedding.

Parameter Value
Embedding size d 1024
Vocabulary size q 103

Position embedding type None
Attention heads h 16

MLP inner dimensionality d′ 2048
Sequence length 512

Base learning rate 1e-5
Optimizer Adam

LR warmup Linear for 10 epochs
LR decay schedule Cosine, one cycle with default parameters

Dropout None
Activation GELU

Table 5: Hyperparameters for the sorting task.

Increment Dataset Construction. For the problem of incrementing a positive integer, we construct
the data set for the main task by sampling a length in {2, 3, . . . , 10} from a skewed distribution. The
distribution places 80% mass equally on lengths {2, 3, 4} and the remaining 20% equally on lengths
{5, . . . , 10}. For each length ℓ, with probability 0.9 we sample input position 0 (the most significant
digit) uniformly at random from {1, . . . , 9} and the remaining positions uniformly at random (with
replacement) from {0, . . . , 9}. With the remaining probability of 0.1. we randomly replace the last
k positions with the digit 9, where k is chosen uniformly from {1, 2, . . . , ℓ}. Our test dataset for
each length consists of 100k numbers chosen uniformly at random. For the increment task we use
the parameters detailed in Table 7 and always train depth-4 models.

LEGO Dataset Construction. We follow the same setup as described in Zhang et al. (2022).
To generate a given input of 12 variables, we first randomly select 12 variables from {a, . . . , z}
uniformly without replacement and then randomly permute them to get the hidden chain. We label
each edge of the chain randomly to be {−1,+1} and we assign a random value in {−1,+1} to the
variable at the beginning of the chain. Then we form the input example by considering a random
permutation of the 12 different variable assignments. Our total training set is of size 1M and our
test set is of size 100, 000. Note, that the work of Zhang et al. (2022) considered training sets of size

20

Under review as a conference paper at ICLR 2024

Parameter Value
Embedding size d 1024
Vocabulary size q 14

Position embedding type None
Attention heads h 16

MLP inner dimensionality d′ 2048
Sequence length 512

Base learning rate 1e-5
Optimizer Adam

LR warmup Linear for 10 epochs
LR decay schedule Cosine, one cycle with default parameters

Dropout None
Activation GELU

Table 6: Hyperparameters for the increment task.

120, 000. However we found that even the standard models have high variance in the performance
at this scale of dataset size. Furthermore, as is done for the sorting task and the increment task we
train decoder-only models as opposed to the encoder models trained in Zhang et al. (2022).

Parameter Value
Embedding size d 1024
Vocabulary size q 64

Position embedding type None
Attention heads h 16

MLP inner dimensionality d′ 4096
Sequence length 128

Base learning rate 1e-5
Optimizer Adam

LR warmup Linear for 10 epochs
LR decay schedule Cosine, one cycle with default parameters

Dropout None
Activation GELU

Table 7: Hyperparameters for the LEGO task.

E OTHER BASELINES

In this section we compare the framework of task hinting with other natural baselines for improv-
ing length generalization on the sorting task. The first method we compare against is the idea of
curriculum learning that has been explored in recent works (Jelassi et al., 2023; Abbe et al., 2023).
However, curriculum learning typically requires one to successively introduce instances from higher
and higher lengths. Since our goal is to study whether we can truly generalize from training on only
short sequences (of length up to 20), we implement curriculum learning by dividing our training
set for the sorting task (as described in Section D) into sets S4, S8, S12, S16, S20 where Si contains
sequences of length up to i. We divide the total number of training epochs into four stages and in
each stage progressively introduce higher and higher lengths.

↓ Model, → n 50 100
Standard 98 0

Curriculum 98.4 1.2
Scratchpad 98.2 0

Hinting 99.8 92.6

Table 8: Test accuracy comparison of the baselines and the hinting method on the sorting task.

21

Under review as a conference paper at ICLR 2024

5 3 1 4 2 101 [BOS] [N] 1 [N] 2 [N] 3 [N] 4 [N] 5 [EOS]Input:

Figure E.20: An example input for scratchpad training. Here [BOS] and [EOS] are special tokens for the
beginning and the end of the scratchpad. The [N] token is a special token for producing the next element given
the input and the current scratchpad.

The second methodology we compare against is the idea of scratchpad training that was utilized in
the work of Anil et al. (2022) for the parity task with limited success. For the sorting task, since the
decoder only model is learning to solve the task by producing one element at a time, we consider
the natural scratchpad which defines all the successor elements that have been output by the model
so far. See Figure E.20 for an example.

We follow the same training procedure as described in Section 3. Table 8 shows the performance of
the three methods for lengths higher than 20. As we can see, both curriculum training and scratchpad
training do no better than the standard training for length generalization and only the task hinting
based model achieves non-trivial performance for length 100.

22

