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Abstract

Despite the significant breakthrough of Mixture-of-Experts (MoE), the increasing
scale of these MoE models presents huge memory and storage challenges. Existing
MoE pruning methods, which involve reducing parameter size with a uniform
sparsity across all layers, often lead to suboptimal outcomes and performance
degradation due to varying expert redundancy in different MoE layers. To address
this, we propose a non-uniform pruning strategy, dubbed Differentiable Expert
Pruning (DiEP), which adaptively adjusts pruning rates at the layer level while
jointly learning inter-layer importance, effectively capturing the varying redundancy
across different MoE layers. By transforming the global discrete search space into
a continuous one, our method handles exponentially growing non-uniform expert
combinations, enabling adaptive gradient-based pruning. Extensive experiments on
five advanced MoE models demonstrate the efficacy of our method across various
NLP tasks. Notably, DIiEP retains around 92% of original performance on Mixtral
8x7B with only half the experts, outperforming other pruning methods by up to
7.1% on the challenging MMLU dataset.

1 Intorduction

Large Language Models (LLMs), such as GPT4 [36] and Llama series [14, 33], have demonstrated
remarkable performance across diverse domains. However, real-world deployment poses significant
challenges due to an ever-growing number of parameters, including high computational demands and
storage costs. To address these issues, the Mixture-of-Experts (MoE) architecture [10, 12} 41]] has
emerged as a promising solution, activating only a subset of parameters during training and inference.
Notable MoE-based models, such as Mixtral 8 x7B [21]], and DeepSeek V3 [27], achieve faster
inference while maintaining competitive performance with dense models [[14} 3] of comparable scale.
Despite their computational efficiency, MoE models suffer from substantial memory and storage
costs due to larger model sizes, making their deployment in resource-constrained environments
challenging [19, [2]. For example, DeepSeek V3 has 256 experts per layer and 671B parameters.

Recent empirical analyses have shown that the routing policies learned by current MoE LLMs yield
markedly unbalanced expert utilization [[7, 128]]. To mitigate the attendant waste of parameters, a grow-
ing body of work aims to prune experts while preserving the task performance of the full MoE model.
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Most existing approaches impose a uniform spar- Intra-tayer Expert Similarity

sity budget on each layer: they either drop a Laver Loyer 12 Laver 20 be 20 Y
fixed number of experts in each layer, or ex- '
haustively search the combinatorial space of
per-layer expert subsets. For instance, Zhang et
al., [49]] remove the same number of experts in
each layer using activation-frequency heuristics,
whereas search-based methods such as EEP [29]
and NAEE [32] enumerate all k-expert combina-
tions inside each MoE layer. Unfortunately, con-
Sidering the discrepancy of expert redundancy 12345678 12345678 12345678 12345678
across different MoE layers (i.e., more number o ) )

of experts are required to be activated in shadow Elgure 1: V1§uqllz§d analysis of the 1ntra'-1ayer ar}d
layers than deeper layers, as demonstrated in inter-layer similarity between expert pairs for dif-
Sec. [5.3.2), simply applying uniform pruning ferent MoE layers in Mixtral 8 x7B through RBF
ratio for all layers may cause poor performance kernel-based CKA criteria [22]. Darker colors rep-
during inference. Worse still, such limitation Tresent higher expert similarity.

cannot be solved through global layer-wise brute-force searches. For instance, in a 64-expert layer,
pruning only 12.5% of the experts (k = 8) already requires evaluating (684) ~4 x 10® configurations,
making exhaustive global optimization computationally infeasible.
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Layer-aware strategies have begun to surface, but they still fall short of capturing the heterogeneous
relationships between layers. Among them, Li et al. [24], merge infrequently routed experts into their
high-traffic counterparts after within-layer normalization of activation counts. Such normalization,
however, erases cross-layer information and implicitly assumes that redundancy is independent across
depth. Figuremcontradicts this assumption: (i) the intra-layer similarity matrices for layers 8, 12, 20,
and 30 exhibit distinct block structures and sparsity patterns, and (ii) the inter-layer CKA heatmaps
reveal both strongly correlated and strongly divergent expert pairs across adjacent layers. These
observations underscore the need for an adaptive, depth-sensitive pruning framework that leverages
both intra- and inter-layer statistics to decide how many and which experts to retain at each layer.

To tackle these obstacles, we propose a novel and efficient approach, Differentiable Expert Pruning
(DiEP), which reformulates expert pruning as a continuous optimization problem. Specifically,
instead of searching over a global discrete search space with exponentially increasing choices, DiEP
relaxes expert selection into a differentiable process. It performs joint optimization to determine the
relative significance of experts within each layer and inter-layer importance scores that regulate the
contribution of different layers. By incorporating layer-aware importance modulation, DiEP enables
a globally optimized selection of experts through gradient-based optimization, effectively capturing
both expert-level and layer-level impacts on the pruning process. Beyond permanently eliminating
unimportant experts, we further propose an online expert skipping mechanism that assigns decayed
expert weights to highly similar experts during inference. It bypasses redundant expert computations
for each input token and accelerates inference speed.

While the idea of continuous search has been explored in dense neural architectures [[L1} 30,43} 48],
DiEP first introduces this principle into the sparsely activated MoE paradigm—a setting with funda-
mentally different structural and computational constraints. Unlike traditional bilevel differentiable
search methods [30], DiEP jointly optimizes intra-layer expert logits and inter-layer importance
scores in a single-stage training process, guided by a lightweight reconstruction regularizer and
without reliance on a validation set. By decoupling gradient updates for intra- and inter-layer impor-
tance scores, DiEP mitigates optimization interference and enables a global ranking mechanism that
produces precise, depth-aware sparsity patterns without manual heuristics. Extensive experiments
show that DiEP outperforms other pruning methods in various NLP tasks and MoE architectures,
while reducing model size and enhancing inference efficiency.

2 Related Work

2.1 Sparse Mixture-of-Experts Models (SMoE)

It selectively activates a small subset of specialized networks (experts) for each input, enabling
efficient model scaling [5| 20]]. In early research, Shazeer et. al. [41] introduced the Sparsely-Gated



MOoE layer, demonstrating the effectiveness of selective expert activation. [23| advanced SMoE by
implementing a distributed architecture that enabled efficient scaling across multiple devices. Recent
studies have further refined SMoE architecture based on SOTA LLMs [44]. Mixtral models [21]]
demonstrated successful scaling with a balanced approach of using two experts per token; Qwen-
MoE [44] and DeepSeek-MoE [10, [16] explored larger expert pools with selective activation. They
have attracted great attention from the Al community. Despite these advances, current SMoE-LLM
architectures require huge memory to load trillion parameters and suffer from low expert utilization
during inference.

2.2 Expert Pruning for SMoE

Inspired by recent advances in LLMs [31} 25]], expert pruning has become a promising technique
to reduce model complexity while maintaining performance for SMoE. Existing solutions can be
divided into two branches: 1) Features statistics identifies unnecessary experts based on the activation
frequency or feature similarity, but such methods either dramatically compromise performance [50,
35]] or rely on post-processing [24} [15]. 2) Greedy search heuristically searches all possible choices
for pruned experts within each layer, which becomes impractical for the latest SMoE models due to
exhaustive search [32] or task-specific fine-tuning [29, l45]. To make matters worse, all the above
methods either fail to account for the varying levels of expert redundancy in different MoE layers by
applying identical pruning rates or incur heavy computation costs to implement non-uniform pruning.
However, our DiEP uses parameter-efficient intra-layer and inter-layer differentiable optimization to
adaptively search pruned experts, reducing redundancy based on each layer/expert characteristics
while keeping the full model’s performance.

2.3 Continous Optimization

The concept of architecture search and optimization within a continuous domain has been explored
before [[1,130L 391 140, 43| 48]. Early research [1}40] focuses on fine-tuning architectural components
such as filter shapes or branching patterns in convolutional networks. After that, a representative
framework DARTS [30] and its variants [6l 46] were introduced to learn high-performance architec-
ture building blocks with complex graph topologies, but they employ memory-intensive operations in
the architectural search process and require costly nested optimization and validation-set dependence.
Moreover, DiffPruning [39] was proposed to remove redundant parallel processing units in dense
transformer architectures through differentiable pruning. Although it updates head importance scores
and model parameters via monotonic gradient descent, there’s a risk of gradient conflict between
importance scores and weight matrices, and it requires threshold tuning after continuous relaxation.
In contrast, our DiEP method decouples the intra-layer and inter-layer gradient optimization paths
and achieves exact sparsity through a unified global ranking without threshold tuning. To the best
of our knowledge, our DiEP is the first method to explore continuous expert search for Mixture of
Experts (MoE) architectures in the context of Large Language Models.

3 Preliminary: Mixture-of-Experts (MoE) Language Model

Generally, a Mixture-of-Experts (MoE) model consists of L layers, where each layer / (I = 1,...,L)
contains N experts. The input to all experts in the [-th layer is denoted as (") € R%, where d is

the input dimension. A router network produces routing logits (l-(l) for each experti (t: = 1,...,N),
O]

i -

which are normalized using a softmax function to compute the routing weights w

l

o exp(c")
Wi = &N 0
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represents the contribution of expert ¢ in layer /.
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®

%

where w
O]
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To enforce sparsity, the router network selects the top-k experts with the largest routing weights w
The output of the [-th MoE layer is then computed as:

y™ = 3wl FN(2®), ©)
i€Top-k(w®))
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Figure 2: The schematic illustration of the Differentiable Expert Pruning (DiEP) Framework. (a)
Initial MoE model with substantial expert redundancy and memory cost. (b) Differentiable Pruning:
transforming discrete expert search into a continuous optimization by jointly learning intra-layer
expert scores («) and inter-layer importance () via an alternating update strategy, enabling adaptive
non-uniform pruning. (c) Final pruned model: achieving a streamlined MoE architecture that
maintains high performance while reducing the model’s footprint.

where FFN; (-) denotes the feed-forward function of expert i, and Top-k(w(!)) refers to the indices of
the k-largest routing weights. The final output ‘1) is passed to the subsequent layer.

4 Method

4.1 Sparse Expert Search Space

Following the design principles of differentiable architecture search, we first define a sparse expert
search space tailored for Mixture-of-Experts (MoE) architectures, as illustrated in Figure[2] In this
framework, an MoE layer is modeled as a directed acyclic graph (DAG) consisting of only two nodes:
an input node representing the token representations entering the expert layer and an output node
representing the sum of selected expert transformations. Instead of treating individual experts as
independent computational units, we formulate the expert pruning process as a discrete operation
over a single aggregated expert node.

Based on expert pruning principles, a subset of experts is retained according to their importance,
M ¢ {0, 1}, where mi

% A

governed by a binary selection mask m
®

= 1 indicates that expert 7 is retained,

and m; ° = 0 indicates pruning. The expert aggregation process in an MoE layer is then expressed as:
N

y " =3 (m” - FENy) (@), 3)
i=1

where FFN; (-) denotes the feed-forward function of expert .

This discrete selection process inherently results in a non-differentiable search space, making direct
optimization intractable. To enable gradient-based optimization and structured pruning within the
MoE framework, we introduce a continuous relaxation mechanism, allowing smooth updates to the
expert selection process while preserving the structured sparsity of the model.

4.2 Continuous Relaxation and Optimization

Specifically, we decompose the expert importance into two components: intra-layer importance
scores « that determine the relative significance of experts within each layer and inter-layer im-
portance scores (3 that regulate the contribution of different layers in the selection process. This
formulation allows us to perform structured pruning in a data-driven and globally optimized manner.



We define the intra-layer importance weights, dgl)

ol

, by normalizing the intra-layer importance scores
using a softmax function:

O]
@ED _ exp(a;”)

N O]

S exp(ad’)’
where agl) are learnable logits that determine the relative importance of experts within layer [.
This normalization ensures a smooth and differentiable selection process. Similarly, the inter-layer

importance score 3(*) is introduced as a trainable scalar that modulates the overall contribution of
layer [. The output of an MoE layer [ is then computed as:

l+1) 5([ Z 0} FFN )) 5)

“

To ensure that the pruned model retains fidelity to the original MoE model F(x) (before pruning),
we introduce a reconstruction regularization term ®(«, 3), defined as:

®(a, B) = | F'(@; 0, 8) = F (@)l (6)
where || - || 7 denotes the Frobenius norm. This regularization encourages the pruned model F' to
maintain consistency with the original model.

The overall objective function is formulated as:
min L(a, ) := Lee (y, F' (@5 0 5)) + A2 (@, B), )

where ) is a regularization coefficient, and L. is the cross-entropy loss.

Alternating Update Strategy. To optimize the objective function, we adopt an alternating update
strategy where the intra-layer importance scores « and inter-layer importance scores /3 are updated
iteratively:

at — at - nava‘c(ataﬁt); (8)
Bt Bt —nsVeL(a, B). )

Here, ¢ denotes the iteration index, n, and ng are the learning rates for o and 3, respectively, and
L (v, B) represents the overall objective function defined in Equation (7} From the theoretical perspec-
tive, we summarize the optimization process in Algorithm[I]and provide the detailed convergence

analysis in Appendix

Pruning Strategy. To derive a discrete architecture, we apply a structured pruning mechanism that
eliminates the least significant experts based on their global contribution across all layers. Instead of

pruning experts layer-by-layer in isolation, we leverage the learned intra-layer importance scores a(l)

and inter-layer importance scores () to determine expert significance in a unified manner.

Formally, the overall importance of expert ¢ in layer [ is computed as the product of its intra-layer
and inter-layer importance scores:

s =all. g0, (10)
Given the expert sparsity ratio r, the total number of experts to be pruned across the entire MoE
model is K = N Lr, where N is the number of experts per layer and L is the number of layers. The
pruning process is performed by globally sorting all experts based on their importance scores s( ") and

@

removing the bottom-K least significant experts. The resulting pruning mask m,; ’ is defined as:

m® 0 if: e P,
i 711 otherwise,

Y

where P is the set of the bottom- K experts selected for pruning.

By jointly considering both intra-layer and inter-layer importance scores, this pruning strategy
ensures a globally optimized selection of experts, effectively reducing computational redundancy
while maintaining structural balance across layers.



4.3 Adaptive SKkipping During Inference

During the inference process, processing each token with all selected top-k experts introduces
unnecessary computational overhead, but researchers in [32] find that not every selected expert
provides essential contributions for tokens. This observation motivates the need for adaptive ex-
pert skipping, which selectively bypasses less significant experts during inference to enhance ef-
ficiency. For each token a in an MoE layer, the top-k experts are chosen using routing weights
W = {Wey, Weyy - -+, We,_, 1> and their outputs are denoted as ye,, Ye, s - - - , Yen - Following common
practice, we assume k = 2 for simplicity. Unlike previous approaches [32] that rely solely on routing
weights, our method incorporates expert similarity to dynamically skip less important experts during
inference, thereby enhancing computational efficiency.

Assume experts with indices eg and e; are selected, with w., < we,. To improve inference speed,
if we, < ywe,, expert e; is skipped, where v is a hyperparameter specific to each MoE layer and
generation step.

In our implementation, -y is calculated as the product of two factors. First, 1 is determined as the me-
dian value of Zﬂ across sampled calibration data for each MoE layer. Second, 7, is computed based
on the similarity between expert outputs, evaluated using Centered Kernel Alignment (CKA) [22].
Specifically, 72 is the ratio of the CKA similarity p(ye,, ye, ) to the mean CKA similarity p(ye, , ye;)

across all data samples in layer [. The final value of  is given by:
Y =71 X 2. (12)

This method dynamically adjusts expert skipping based on both expert routing weights and similarity,
significantly enhancing inference efficiency and maintaining model performance. In our experiments,
we observe a speedup in inference 1.2x to 1.3x while retaining approximately 92% of the average
performance with only half of the experts on Mixtral 8 x 7B.

5 Experiments

5.1 Experimental Settings

Model Settings. Our primary experiments are conducted using the widely adopted SMoE model,
Mixtral 8 x7B. To validate our method’s generalizability across different models, we extend our
experiments to an instruction-following model, Mixtral 8 x 7B-Instruct, the larger model Mixtral
8x22B, and other types of SMoE models such as Deepseek-MoE-16B and Qwen2-57B-14A. In
the Mixtral architecture, each token activates two experts in every MoE layer. Both Mixtral 8 x7B
and Mixtral 8 x 7B-Instruct contain 32 sparse MoE layers with eight experts per layer while Mixtral
8x22B contains 56 MoE layers with the same number of experts per layer. Deepseek-MoE-16B
employs a different architecture with 28 layers and 64 experts per layer, where each token passes
through two shared experts and selects six additional experts. Similarly, Qwen2-57B-14A consists of
28 MoE layers with 64 experts in each layer but utilizes eight experts per token during inference.

Dataset. We evaluate model performance using the Language Model Evaluation Harness library
[L3] across four zero-shot tasks: MMLU [[18]], OpenBookQA [34], BoolQ [8]], and RTE [4]. MMLU
[L8] represents the most comprehensive and challenging benchmark, encompassing 57 subtasks
distributed across four major domains: humanities, social sciences, STEM, and other. More results
on other tasks are provided in the Appendix [A.10]

Implementation Details.

During the expert pruning phase, we construct a small calibration subset with 128 samples from the
C4 dataset for fine-tuning purposes. We implement parameter-efficient differential learning through
alternating training cycles, with a 3:1 ratio between intra-layer scores « and inter-layer scores 3
updates. Both training processes employ a learning rate of Se-3 with a cosine learning rate scheduler.
In addition, the complete training protocol consists of 10 epochs with a batch size of 16. For weight
hyperparameter settings, we use A = 0.01 for all Mixtral architectures and A = 0.01 for other MoE
models. All experimental evaluations are conducted using four NVIDIA GeForce A800 GPUs.

Baselines. We compare our method with the following pruning methods: M-SMoE [24], which merges
experts based on customized permutation alignment and routing strategies; Expert Trimming [17],



Table 1: Zero-shot performance comparison of different expert pruning methods on Mixtral-8§ x 7B,
Mixtral-8 x 7B-Instruct, and Mixtral-8 x22B. Expert sparsity r indicates the proportion of pruned
experts in the full model across all layers. The first and second columns represent results for expert
sparsity 7 = 25% and r = 50%, respectively.

Method MMLU
Model r = 25%/50% humanities ~ social science stem other avg ‘ BoolQ ‘ OpenBookQA ‘ RTE ‘ Average
| Full | 605 77.8 589 742 679 | 853 | 354 | 715 | 651
M-SMOE 51.8/24.8 60.5/26.5 46.9/24.7 60.5/25.0 54.9/25.3 | 82.6/39.9 32.0/11.6 70.4/50.9 | 60.0/31.9
Mixtral $x7B | Expert Trimming | 49.2/36.9 59.7/45.6  45.0/35.1 58.2/434 S54.1/45.7 | 77.2/76.6 33.0/26.4 56.6/55.9 | 55.2/51.2
NAEE 52.4/43.5 66.4/52.7 49.0/40.4  63.7/43.5 58.7/47.3 | 84.0/80.8 32.6/28.8 67.9/61.4 | 60.8/54.6
S-MOE 56.0/48.0 73.1/57.0 52.4/43.3  68.2/54.6  59.9/50.8 | 86.4/83.3 31.4/26.2 69.3/67.1 | 61.5/55.9
DiEP(Ours) 58.8/52.9 75.4/69.3 56.8/49.1 72.0/63.5 64.9/57.9 86.6/84.0 33.1/29.6 70.7/68.2  63.8/59.9
Full 61.2 79.7 59.6 75.8 68.1 ‘ 88.5 ‘ 36.6 722 66.4
. M-SMOE 48.5/33.8 62.3/37.5 44.0/33.8 55.3/35.4 52.0/35.0 | 85.3/77.6 29.0/26.4 67.5/61.8 | 58.5/50.2
Mixtral 8x7B | gy ot Trimming | 52.9/45.0  743/61.1  50.5/39.2 64.8/50.8 58.6/473 | 863/83.0 | 37.0/323 | 63.2/66.8 | 61.3/57.3
“Instruct NAEE 55.9/48.7 69.5/55.6 54.1/42.3  68.7/56.2 62.4/52.8 | 87.3/84.8 35.6/30.4 70.0/75.5 | 63.8/60.9
DIiEP(Ours) 61.2/55.1 78.1/72.3 59.4/53.4 73.8/67.8 67.3/61.3 87.7/85.6 35.9/31.0 72.2/74.0  65.8/63.0
Full 68.6 84.1 67.1 78.7 72.6 87.9 35.8 71.5 67.0
M-SMOE 27.3/22.7 25.4/25.8 244240 27.9/23.4 26.4/239 | 62.8/62.7 12.8/13.0 54.2/49.5 | 39.1/37.3
Mixtral §x22B | Expert Trimming | 58.0/45.7 74.9/57.7 54.1/42.0  70.2/45.77 64.3/47.8 | 81.5/74.4 35.2/27.0 69.3/57.4 | 62.6/51.7
NAEE 60.4/53.9 78.0/67.2 59.5/52.3  73.0/642 67.7/59.4 | 87.4/80.5 35.0/31.1 70.1/67.9 | 65.1/59.7
S-MOE 62.3/57.8 78.5/69.7 60.2/51.3  73.4/642 68.6/60.8 | 87.6/83.1 35.8/33.2 71.1/68.1 | 65.7/61.3
DIiEP(Ours) 65.0/58.9 81.8/73.2 63.2/54.2  76.0/68.7 70.7/62.4 87.7/84.5 35.8/34.4 71.3/70.4  66.4/62.9
Average MMLU Average
45.0 56 Yoo | Taexperts| T[T
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(a) Deepseek-MoE-16B. (b) Qwen2-57B-14A.

Figure 3: Zero-shot performance comparison on Deepseek-MoE-16B and Qwen2-57B-14A.

which removes less important experts using activation frequency or removes structured modules
through layer and block dropping; NAEE [32]], which enumerates expert combinations and selects
optimal remaining experts by minimizing reconstruction loss; S-SMOE [49], which identifies and
addresses expert redundancy through similarity-based pruning and merging operations.

5.2 Main results

To illustrate the efficacy of our proposed method, we report the performance comparison of DiEP and
other state-of-the-art pruning methods through comprehensive experiments on five SMoE architectures
across various tasks.

5.2.1 Results on Mixtral Models

Table |I| shows experimental results on Mixtral 8 x 7B, Mixtral 8 x 7B-Instruct, and Mixtral 8 x22B,
where all three architectures have 8 experts in each MoE layer and we prune them under 25% and
50% expert sparsity, respectively. Mixtral 8 x7B: Compared to other pruning strategies, our proposed
DiEP significantly outperforms them on all tasks with a clear margin performance improvement, up
to 7.1%. Specifically, when evaluated on MMLU, which is a challenging dataset with numerous
sub-tasks, other methods suffer from performance bottlenecks under 50% expert sparsity, but our
DiEP effectively alleviates the negative influence of removing a large number of experts.

These results demonstrate that DiEP effectively preserves the key expert knowledge by differential
optimization and search on task-agnostic data using intra-layer scores and inter-layer scores. Mixtral
8x7B-Instruct: our DiEP significantly surpasses other pruning strategies by a substantial margin.
Specifically, DiEP achieves optimal performance with an average reduction of only 0.6% compared
to the full model under 25% expert sparsity (i.e., removing 64 experts after pruning). These outcomes
indicate that DiEP successfully mitigates the detrimental effects of expert pruning. Mixtral 8 x22B:



We further extend our pruning strategy to a larger model, Mixtral 8 x22B which activates 39 billion
parameters out of a total of 141 billion. Our proposed DiEP method continues to demonstrate
substantial improvements across all tasks, retaining 94% of the full model’s performance even after
the removal of 50% of the experts. These results reveal the significant redundancy present in the MoE
layers and showcase the scalability of DiEP for large-scale SMoE models.

5.2.2 Results on Deepseek and Qwen Models

To demonstrate the generalizability of our proposed method across various models, we further apply
it to the Deepseek-MoE-16B and Qwen2-57B-14A architectures, which differ significantly from
those Mixtral models. In these architectures, each layer comprises 64 experts, with 8 experts activated
for each token at every layer. Specifically, as shown in Figures[3a]and 3b] we averagely reduce the
number of experts in each layers from 64 to 62, 60, 58, 56, 54, 52, 50 and 48 in both models.

Deepseek-MoE-16B: We observe that the frequency-based method (M-SMOoE) suffers a significant
performance degradation on the MMLU dataset. In contrast, our DiEP consistently showcases
superior performance across various pruning ratios, achieving an average advantage of approximately
1.57% compared to second runner strategy (S-MoE), which relies on additional expert merging and
large similarity matrix computations.After removing 244 experts from the full Qwen-MoE model,
our DiEP retains a promising average performance of 68.7%, reflecting a mere 0.4% degradation
compared to the full model.

Owen2-57B-14A: Actually, DiEP always achieves comparable performance to the full model and sur-
passes all baseline methods across various tasks. This underscores the adaptability and effectiveness
of our method for different SMoE models, grounded in general-purpose differential optimization.

5.3 Ablation Studies
5.3.1 Effectiveness of Components

To measure the importance of key  Table 2: Performance analysis of different components.
components in our DIiEP, we con-

ducted ablation studies on Mixtral Method | MMLU  BoolQ  OpenBookQA  RTE Ave.

8x 7B with the following variants. As Baseline 587/47.3 84.0/80.8  32.6/288  67.9/61.4  60.8/54.6
h i1 Table Dl Row 1 th W, 60.5/51.0 86.0/82.8  322/27.8  67.5/653 61.6/56.7
shown 1n lable|z, Kow I serves as the W 61.0/51.4 85.1/833 320296  67.3/662 61.3/57.6

baseline (NAEE), it only performs a W+ Ws(random) | 57.6/492 856/83.4 323272 66.4/62.1 60.47/555
layer-wise search for all possible ex- Wa+Ws(1:2) | 551462 815774 3060268  66.4/642 57.8/54.2

. A Wo +Wp(2:1) 63.3/54.2  85.4/83.5 32.6/29.8 68.2/67.5  62.4/58.8
pert combinations and has poor per- Wo +Wp(3:1) 64.6/55.2  85.9/84.2 32.8/29.6 69.7/67.8  63.3/59.2
formance. Row 2 focuses on learn- DiEP(Ours) 64.9/57.9  86.6/84.0 33.1/29.6 70.7/68.2  63.8/59.9

ing intra-layer expert importance « to

measure the global contribution of each expert. Row 3 denotes the variant of eliminating o, and
applies inter-layer scores [ to reweight expert activation frequencies as global importance scoring
of each expert. Compared with the baseline, the substantial performance gains demonstrate that
the two components are both effective. To further investigate the efficiency of learnable inter-layer
importance scoring, we replaced learnable 8 with fixed scores in Row 4-7, where a ratio of 2:1 means
B = 2 for layers 1-16 and § = 1 for layers 17-32. The results show that assigning higher scores
to lower layers yields better performance in Mixtral 8 x7B, but this method of artificially fixing
parameters cannot be generalized to other SMoE architectures and could result in a significant waste
of computational resources to identify the optimal /3. Furthermore, our method leverages complemen-
tary knowledge from intra-layer scores « and inter-layer scores [ for better expert selection, yielding
superior performance.

5.3.2 Visualization Analysis for o and 3

To further validate the effectiveness of our proposed method, we visualized the variation of the
updated intra-layer scores « and inter-layer scores 3 after the pruning stage. As shown in Figure [da]
the distribution of intra-layer importance scores « reveals that experts in layers 1-15 tend to have
higher average scores compared to those in layers 16-32. This suggests that shallower layers generally
play a more significant role in the overall model. Figure [4b|illustrates the inter-layer importance
scores, which corroborate the intra-layer observations. The overall trend indicates that the alternating
update strategy effectively captures both intra- and inter-layer dependencies, ensuring that the MoE
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Figure 4: Visualization of values distribution for intra-layer scores « and inter-layer scores 3 on
Mixtral 8x7B when r = 50%..

model retains critical information from shallower layers. Furthermore, a closer examination of layer
2 reveals that two experts. Specifically, the fourth and eighth experts exhibit markedly high a values
relative to their peers. This shows that these experts are consistently considered highly important
by the model. Conversely, the remaining experts in layer 2 generally have low importance scores,
indicating that the pruning strategy in this layer is not governed by a single importance criterion.
Instead, it shows a clear preference for retaining these two experts through a global selection. Overall,
these empirical findings further confirm the efficacy of our proposed differentiable expert pruning
approach and underscore the synergistic relationship between « and f3.

5.3.3 Computation Cost Analysis

We further analyze the efficiency of Table 3: Pruning time comparison of our DiEP and NAEE
our DIiEP during the pruning and in- on different models under 25% expert sparsity.

ference stages. For pruning, as shown
in Table|z|, our baseline (NAEE), us- Method | Mixtral 8x7B | Mixtral 8x22B | Deepseck-MoE-16B | Qwen2-57B-14A
ing an exhaustive heuristic search, be- NAEE 1.31h 1.57h ~ 94000d ~ 113000d
comes computationally prohibitive for ~_PIEP©urs) |  0-23h 031h 0.281 0.34h
models with large expert pools like Table 4: Inference cost analysis on Mixtral 8 x 7B after expert
Deepseek-MoE-16B and Qwen2-57B-  pruning.

14A. In contrast, our DiEP, with only a

0.01% parameter overhead, maintains 7 | Pruning | Skipping | Avg. Acc | Speedup T | GPU |
consistent pruning time and achieves 0% 65.1 1.00x 1.00 x
superior performance regardless of 0% v 64.1 1.07 x 1.00 x
model architecture or expert count. 25% v 63.8 1.18x 0.76 x
Furthermore, Table [ shows DiEP’s 2(5)3” 5 v g’gg iiéx 8;2 X
o s o 0 . 20X . X
inference cost reductions on Mixtral 0% v v 0.6 s x | 03

8x7B in terms of latency and GPU
memory. Our DiEP enhances inference efficiency via an online expert skipping, which adjusts router
weights according to expert similarity with negligible loss in performance. Using half the experts,
DiEP retains nearly 92% performance on Mixtral 8 x7B, achieving 1.28 x token generation speedup
and 48% memory savings. We provide more experimental analysis for ablation study in Appendix [A]

6 Conclusion

In this paper, we propose DIiEP, a novel differentiable expert pruning framework that reframes
expert selection as a continuous optimization problem. By enabling gradient-based optimization and
introducing an adaptive expert skipping mechanism, our DiEP significantly reduces memory usage
and accelerates inference while maintaining high model performance. Extensive experiments show
that our DiEP outperforms other MoE pruning methods across various language tasks, and sets a new
benchmark for efficient Sparse MoE deployment.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [TODO]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide discussion for the limitations of the our work in Appendix [C]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We summarize the optimization process of our DiEP in Algorithm [I] and
provide the detailed convergencel70 analysis in Appendix [B.2]

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details in Section [5.1] and demonstrate result
reproducibility using extensive experiments in Section[5.2} Section and ppendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: We will release all codes after our paper is accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide experimental settings in Section [5.1]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We follow experiments statistics from the previous work [32} [24]] and don’t
report error bars, confidence intervals, or statistical significance tests. But we chose the
average results after three runs for each experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide experiments compute resources in Section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [TODO]
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide discussion for broader impacts on Appendix
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: There are no crowdsourcing experiments and research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We use LLM for formatting purposes and does not impact the core methodol-
ogy, and originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Experimental Appendices

Full Model Layer-wise Pruning DIiEP (Ours)

SMoE Layer
SMoE Layer

SMoE Layer

Expert

Expert

Expert

Figure 5: Distribution of expert activation frequencies in the Mixtral 8 x7B. The full model (left) uses
all experts across all 32 layers, resulting in substantial memory consumption. Layer-wise pruning
(middle) enforces uniform expert sparsity per layer. Our DIiEP (right) provides a more flexible
approach, performing cross-layer expert pruning based on their global contributions.

A.1 Visualized Analysis of Expert Activation Frequency

To demonstrate the efficacy of adaptive expert pruning in our DiEP, we conducted a comparative
analysis of different methods in terms of expert activation frequency. As shown in Figure[5] while
the full MoE utilizes almost all experts, there are significant disparities in activation frequencies
among different experts, leading to substantial resource waste. Previous methods (i.e., Layer-wise
Pruning) apply uniform expert pruning ratios across all layers, overlooking the intra-layer and inter-
layer variations and dependencies among experts in different MoE layers. In contrast, our method
obtains non-uniform and adaptive expert pruning that varies pruning ratios according to expert-
specific characteristics. On Mixtral 8 x7B, we observed an increasing trend in expert pruning rates
from shallow to higher layers. We attribute this phenomenon the fact that shallow layers primarily
process diverse low-level linguistic features, such as part-of-speech tagging and local word ordering,
necessitating a larger number of experts to capture detailed linguistic information. Meanwhile, higher
layers primarily handle global contextual and semantic information, abstract away from fine-grained
details, and thus can operate effectively with fewer experts.

A.2 Efficiency Analysis for Inference on Deepseek-MoE-16B.

We further verify the efficiency of our adaptive skipping strategy on Deepseek-MoE-16B in Table
[] and it can be observed that our method maintains more than 95% performance of the full model
while reducing model size and improving inference efficiency.

Table 5: Inference cost analysis on Deepseek-MoE-16B.

Model r Pruning Skipping Avg. Acc Speedup{ GPU |

0% 56.2 1.00x 1.00 x

0% v 55.7 1.04x 1.00 x

6.25% v 54.8 1.07x 0.95x

Deepseek-MoE-16B ¢ hs v v 54.4 1.08x  0.95x
12.5% v 54.1 1.11x 0.89x

12.5% v v 53.6 1.13x 0.89x

A.3 Efficiency Analysis for GPU Memory Pruning Cost

To investigate the efficiency of DiEP concerning its memory footprint during the pruning process, we
conducted a detailed comparison of GPU memory costs in Table[6] highlighting DiEP’s advantages
in both efficiency and scalability. Computational Efficiency (Time Cost): Compared to NAEE (1.31
hours), DiEP’s pruning process is 5.7 times faster, requiring only 0.23 hours. DiEP also demonstrates
25.8% faster execution (0.23 hours) compared to MC-MoE (0.31 hours). This indicates a significant
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advantage for DiEP in terms of the time required for pruning. Memory Optimization (Peak Memory):
DiEP utilizes 60% less peak memory (139.0GB) than MC-MoE (348.4GB), showcasing superior
memory efficiency. While DiEP’s peak memory (139.0GB) is 46% higher than NAEE’s (95.1GB),
this is offset by its dramatically faster pruning time, a factor reflected in its overall resource efficiency.
Overall Resource Efficiency (Memory-Hour Cost): DiEP’s memory-hour cost (31.97 GB-h) is 70%
lower than that of MC-MoE (108.00 GB-h). Furthermore, DiEP’s memory-hour cost is 74% lower
than that of NAEE (124.58 GB-h). These results clearly demonstrate that DiIEP maintains a lightweight
resource footprint while drastically reducing runtime, positioning it as a more resource-efficient
choice for MoE pruning.

Table 6: GPU memory pruning cost on Mixtral 8 x7B.

Method ‘ Peak Memory(GB) ‘ Time (h) ‘ Memory-hour Cost (GB-h)
NAEE 95.1 ‘ 1.31 124.58
MC-MoE 348.4 0.31 108.00
DIiEP (Ours) 139.0 0.23 31.97

A.4 More calibration data validation on adaptability

To further validate DiEP’s adaptability, we evaluated its performance on the domain-specific GSM8K
dataset using two distinct calibration datasets: the general-purpose C4 dataset and the domain-
relevant Math dataset, comparing DiEP against the NAEE method. As detailed in Table [/| the
experimental results systematically demonstrate DiEP’s advantages across these varied calibration
settings. Specifically, when employing the general-purpose C4 calibration data, DiEP achieved
consistent improvements over NAEE, outperforming it by +3.93 points at a 50% pruning rate and by
+4.96 points at a 25% pruning rate, indicating robust performance gains with common calibration
data. Furthermore, when utilizing the domain-specific MATH calibration data, DIEP maintained its
superior performance, securing a +1.10 point advantage at 50% pruning and extending this lead to
+2.21 points at 25% pruning. These findings collectively underscore DiEP’s enhanced generalization
capabilities and adaptability across calibration datasets with different data distributions.

Table 7: Adaptability validation on GSMS8K using different calibration datasets (C4 and Math).

Method ‘ Pruning Dataset ‘ 1=25% ‘ r=50%
Random 36.39 0.68
NAEE C4 41.02 | 24.87
DiEP (Ours) C4 4598 | 28.80
NAEE MATH 51.25 | 37.07
DiEP (Ours) MATH 53.46 | 38.17

A.5 Merging Strategy

Inspired by S-SMoE [49]], we introduce a merging strategy for DiEP to consolidate redundant experts
while preserving their diversity. Specifically, pruned experts are grouped with their most similar
retained counterparts based on normalized CKA similarity, which is then normalized by the softmax
function as the merging weight. Table [§]demonstrates that the merging strategy further enhances
performance under 25% and 50% expert sparsity, which highlights the strong scalability of our
DiEP. It not only effectively maintains the performance of the full model but also further restores the
diversity of pruned experts by incorporating other orthogonal strategies.

Table 8: Performance analysis when integrating merging strategy.

Samples | Strategy | MMLU | BoolQ | OpenBookQA | RTE | Avg.
»50 DiEP 64.9 86.6 33.1 70.7 | 63.8
° | DiEP+Merging | 66.6 | 86.1 34.1 710 | 64.4
09 DiEP 57.9 84.0 29.6 68.2 | 59.9
| DiEP+Merging | 58.2 84.0 29.8 68.8 | 60.2
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A.6 Impact of Calibration Data Size

To analyze the impact of calibration data size, we randomly sampled 32, 64, 128, 256, 512, and 1024
sequences from C4 dataset [37] to learn DiEP’s intra-layer scores («) and inter-layer scores 3. As
shown in Table[T0] 128 sequences achieve optimal performance when pruning Mixtral 8 x7B from 8
to 6 experts. More importantly, DiEP avoids performance collapse with only 32 samples. We attribute
it to KD regularization enforcing DiEP’s features aligned with the full model.

Table 9: Performances of expert pruning when changing the number of samples in the calibration
dataset.

Samples ‘ MMLU ‘ BoolQ ‘ OpenBookQA ‘ RTE ‘ Avg.

32 62.8 84.3 31.6 65.5 | 61.1
64 63.6 85.3 322 664 | 61.9
128 64.9 86.6 33.1 70.7 | 63.8
256 64.7 85.9 32.6 704 | 63.4
512 64.3 84.5 32.6 67.5 | 62.3
1,024 63.7 83.9 32.8 66.3 | 61.9

A.7 TImpact of Intra-layer o and Inter-layer 3 Update Ratio

The update ratio is an empirical choice aimed at achieving optimization stability. The high-
dimensional « scores learn fine-grained expert rankings, while the low-dimensional 3 scores make
coarse-grained, systemic adjustments. Our hypothesis is that allowing « to update more frequently
helps stabilize the local expert rankings before the more impactful 3 scores are adjusted.

To rigorously justify our choice, we conducted a new ablation study on the «::3 update ratio. The
results, shown below, are for 25% and 50% pruning ratios (formatted as 25%/50%). The experimental
results clearly validate our design choice. The 3:1 update ratio consistently achieves the best or
near-best performance across almost all tasks and pruning ratios, culminating in the highest average
scores for both 25% (63.8) and 50% (59.9) pruning. The data shows that giving more updates to the
intra-layer scores («) generally leads to better performance (e.g., 2:1 and 4:1 outperform 1:1 and
1:2). This supports our hypothesis that stabilizing the local expert rankings is crucial. The 3:1 ratio
strikes an optimal balance, outperforming both less frequent (e.g., 2:1) and more frequent (e.g., 4:1)
« update schedules in terms of average performance. In conclusion, our o/ decomposition provides
a principled way to model multi-scale redundancy, and our chosen 3:1 update ratio is not arbitrary but
is empirically validated to be the most effective schedule for stable and high-performing optimization.
We will incorporate these new results into our revised manuscript.

Table 10: Ablation study on the «:3 update ratio.
a:f | MMLU | BoolQ | OpenBookQA | RTE | Avg

1:1 | 65.1/54.3 | 85.2/81.8 31.8/29.8 67.2/65.4 | 62.3/57.7
1:2 | 64.5/54.8 | 85.5/79.5 31.8/27.6 69.0/64.5 | 62.7/56.6
2:1 | 66.2/56.5 | 85.1/82.5 32.4/28.9 71.2/67.2 | 63.7/58.7
2:2 | 65.3/55.1 | 85.6/83.9 32.0/27.8 67.9/65.1 | 62.7/57.9
3:1 | 64.9/57.9 | 86.6/84.0 33.1/29.6 70.7/68.2 | 63.8/59.9
4:1 | 65.2/56.7 | 85.3/83.7 31.4/29.4 70.8/66.1 | 63.1/58.9

A.8 Complete Visualized Analysis of Expert Similarity

To validate our motivation regarding the necessity of cross-layer pruning, we first visualized the
intra-layer expert similarities in each layer using the CKA similarity metric [22] for Mixtral 8 x7B in
Figure[6] The analysis reveals significant variations in expert similarities, particularly pronounced
in layer 31. Moreover, substantial differences in expert similarities exist between different layers,
with layers 28-29 showing higher similarity compared to layers 8-10. Furthermore, we investigate
expert-pairs similarities in adjacent layers in Figure[/| which demonstrates varying degrees of expert
relationships across layers, exemplified by the strong correlation between expert 6 in layer 30 and
expert 5 in layer 31. These cross-layer expert dependencies have been overlooked by previous
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Figure 6: Visualization for feature similarity of expert-pairs within each MoE layer.
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Figure 7: Visualization for feature similarity of expert-pairs across adjacent MoE layers.

pruning methods. Our approach effectively captures both inter-layer and intra-layer variations
through alternating differentiable optimization of expert weight « and layer weight 5. In addition, we
observed that the learned intra-layer and inter-layer scores do not fully correspond to the visualized
inter-layer similarity between expert pairs. It is plausible because we only provide expert similarity
across adjacent layers for visualized analysis. However, our DiEP can learn expert redundancy and
dependency across all MoE layers.

A.9 Hyperparameters Analysis

There are two key hyperparameters, including the number of epochs during differentiable search
and the value of the weight \ between reconstruction regularization term and cross-entropy loss
of the overall objective function in Eq. [7} We first analyze the impact of \ by varying its value in
{5,10, 15, 20, 30}. Figure demonstrates that optimal performance is achieved with A = 0.01 for
both 25% and 50% expert sparsity. Additionally, we investigate how the number of epochs affects
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Figure 8: Hyperparameters analysis in terms of the number of clients and weight coefficient A on
Mixtral8 x 7B under 25% and 50% expert sparsity.

model performance. As shown in Figure [8b] DiEP achieves optimal results when trained for 10
epochs under both 25% and 50% expert sparsity settings.

A.10 Results on More Datasets.

We provide more experimental results on more datasets including ARC-c, ARC-e[9]], HellaSwag [47]
and WinoGrand [38|] on Mixtral 8 x 7B, and our DiEP is much better than NAEE across all tasks. As
shown in Figure [TT] these results further demonstrate the effectiveness of our proposed method.

Table 11: Zero-shot evaluation result on more datasets, including ARC-c, ARC-e, HellaSwag,
WinoGrande.

Model ‘ Method ARC-c ARC-e HellaSwag ~ WinoGrande

. NAEE 51.62/48.89 81.94/78.16 61.60/57.66  75.37/72.85
Mixtral 8x7B .

DiEP(Ours)  52.54/49.26  83.31/82.52 63.22/58.96  76.03/73.55

B Theoretical Appendices

B.1 Algorithm Pipeline of DiEP

Algorithm 1: DIiEP - Differentiable Expert Pruning

Input: Model inputs «, targets y, initial intra-layer scores o, initial inter-layer scores 3°, regularization
coefficient A.
while not converged do

/* Update intra-layer scores (fix ) */
Update o't by descending:

Va(Leely, F' (250", 5)) + A (a’, 1))
/* Update inter-layer scores (fix a) */

Update 37! by descending:
Vs (Lee(y, F' (20", BY)) + A(a', 8Y))

Sett <+ t+1
Output: Optimized intra-layer importance scores « and inter-layer importance scores 3.

B.2 Convergence Analysis of DIEP

Let © := {(a, 3)} be the parameter space, where o« € RV and 3 € RL. Denote §; =« and 03 = 3.
The overall objective of DIiEP is

L(01,02) = Lee(y, F'(x:01,02)) + X||F'(x;01,02) — F(x)| -
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Assumptions.

Al. Lower-Boundedness. inf L(a,f) > —oc.
(a,8)€0

A2. Lipschitz Smoothness. Vg, L is L;-Lipschitz continuous, i.e. || Vg, L(u) — Vg, L(v)| < L;|lu—
v fori € {1,2}.

A3. Stepsizes. Fixed learning rates satisfy 0 < n; < L% fori € {1,2}.
A4. Level-Set Boundedness. The set {(a, 3) € © : L(a, 8) < L(a?, 3°)} is compact.

Algorithmic update. For¢ =0,1,...
0/ = 0} —ni Ve, £(0],01), iec{1,2}. (13)

K3
Lemma 1 (Descent). Under A2-A3, L(01+1,01+1) < L£(0f,04) — Y22, @l g+t _ g%,

i=1 2n;

Proof. Apply the standard descent lemma to each block update in (T3). O
Corollary 1 (Monotonicity and Bounded Iterates). Assumptions AI-A4 imply {L(0{,04)}

monotonically non-increasing and convergent, and { (01, 04)}+>¢ is bounded.

Lemma 2 (Vanishing Updates). lim [[6;** — 6| =0, i € {1,2}.
—» 00

150 i

Proof. Summing the non-negative terms in Lemma|[T|over ¢ gives a telescoping series dominated by
L(60,62) — inf £; hence the series of squared update norms is finite. O

Theorem 1 (Subsequence Convergence to Critical Points). Under AI-A4, the sequence {(01,04)}:>0
generated by (13) possesses at least one convergent subsequence, and every limit point (0%, 63)
satisfies Vo, L(07,05) = 0 and Vo, L(0F,05) = O, i.e. it is a critical point of L.

Proof. By Corollary [1|and A4, {(6{,04)} lies in a compact set; hence the Bolzano—Weierstrass

theorem guarantees a convergent subsequence (0,*, 04%) — (67, 6%). Lemma gives 0+ 1 —glr —
0. Dividing (T3] by 7; and taking k — oo yields Vy, L(07,05) = 0 fori = 1,2.

Discussion. Theorem [I|aligns with the classical results of block coordinate descent [42] while
instantiating them for our two-block differentiable pruning objective. It guarantees that DIEP
converges (up to subsequences) to first-order stationary points under standard smoothness and
stepsize conditions.
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C Limitations

While our proposed DiEP method achieves strong performance in MoE pruning, several limitations
remain. Due to computational constraints, our main experiments cannot be conducted on some larger-
scale MoE models, like Deepseek V3 [27], and Qwen2.5-Max [44]. Furthermore, our study primarily
focuses on language models, leaving the effectiveness of DiEP in multimodal MoE architectures
unexplored. Investigating whether our approach can achieve competitive performance on Vision-
Language tasks, such as MoE-LLaVA [26]], remains an important direction for future research.

D Broader impacts

The development of DiEP, a method for compressing large Mixture-of-Experts (MoE) models,
carries several potential societal impacts, both positive and negative. Positive impacts: In regions or
scenarios where access to high-performance computing infrastructure is limited, DiEP can enable the
deployment of capable Al models that would otherwise be infeasible. This could support applications
in education, healthcare, and public services in underserved communities. Negative impacts: As Al
models become more capable and efficient, they may automate tasks currently performed by humans,
potentially leading to job displacement in certain sectors. While DiEP aims at efficiency, the broader
trend of Al advancement contributes to this concern.
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