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Abstract

Concept-based learning, a promising approach in machine learning, emphasizes
the value of high-level representations called concepts. However, despite growing
interest in concept-bottleneck models (CBMs), there is a lack of clear understand-
ing regarding the properties of concept sets and their impact on model performance.
In this work, we define concepts within the machine learning context, highlight-
ing their core properties: expressiveness and model-aware inductive bias, and
we make explicit the underlying assumption of CBMs. We establish theoretical
results for concept-bottleneck models (CBMs), revealing how these properties
guide the design of concept sets that optimize model performance. Specifically,
we demonstrate that well-chosen concept sets can improve sample efficiency and
out-of-distribution robustness in the appropriate regimes. Based on these insights,
we propose a method to effectively identify informative and non-redundant con-
cepts. We validate our approach with experiments on CIFAR-10 and MetaShift,
showing that concept-bottleneck models outperform the foundational embedding
counterpart, particularly in low-data regimes and under distribution shifts. We also
examine failure modes and discuss how they can be tackled.

1 Introduction

Concept Bottleneck Models (CBMs) [23] offer a compelling trifecta of interpretability [19], interven-
ability, and predictability [28]. They are inspired by the power of concepts: the fundamental building
blocks of human thought that guide our learning, decision-making, inference, and communication
[13]. In a nutshell, CBMs force these high-level representations to inform model predictions. For
example, rather than directly predicting a car’s action from raw images, a CBM first identifies key
concepts such as the presence of a semaphore or a pedestrian crossing the road (C : X → C), and
learns ĝ : C → Y to act based on them (ĝ ◦ C)(x). Indeed, despite never having seen a Tesla Model
X, one could reasonably classify them provided they can identify an SUV, a T logo, gull-wing doors,
and the absence of exhaust pipes. This paradigm has found applications across various domains,
including automated driving [12], fine segmentation [31], and clinical imaging [39, 22].

Despite their promise, the predictability of CBMs, particularly in relation to the properties of the
concept set C, remains poorly understood. A deeper understanding of how the composition and
characteristics of concept sets affect CBM performance is essential to enhance their practical utility
and robustness in real-world applications.

In this paper, we address this gap by systematically investigating the properties of concept sets
C = {c1, . . . , cm} and their influence on model performance. We answer the following key questions:
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1. How do characteristics of the concept set impact the performance of the CBM? We
identify the size of the concept set |C| and the degree of misspecification ε as primary drivers
of the performance of the CBM, where ε := ||arg minf∈Hℓ(f) − arg ming∈HC

ℓ(g ◦ C)||,
with H ⊆ {f : X → C},HC ⊆ {g : C → Y} the hypotheses spaces.

2. What are the optimal conditions for the effectiveness of CBMs? We find that CBMs are
particularly effective in small data regimes and under distribution shifts.

To address these questions, we introduce in Section 3 a theoretical framework that links the properties
of concept sets to CBM performance metrics. This framework identifies two core desiderata for
concept sets: expressiveness and model-aware inductive bias. Expressiveness ensures each concept
captures valuable information from inputs, benefiting the expected loss R(ĝ ◦ C) as the sample size
n → ∞. Model-aware inductive bias implies a beneficial inductive bias, improving performance in
low-sample regimes (n ≈ 0). These properties highlight an implicit assumption in CBMs about the
alignment between model outputs and human inductive biases.

In Section 4, we dive into a theoretical analysis of CBMs. Our setting aligns with the recent trend
of concept bottleneck models built on multimodal foundational models such as CLIP [30, 39, 41].
We derive a key theorem (Theorem 1) that compares the expected loss of concept-based models
(R(ĝ ◦ C), ĝ ∈ arg ming∈HC

ℓ(g ◦ C)) with the baseline counterpart (R(f̂), f̂ ∈ arg minf∈Hℓ(f)).
The theorem demonstrates that concept-based models can outperform baseline models if the concept
set is well chosen by minimizing the size of the concept set |C| while controlling the misspecification
term ε. This theoretical insight highlights the importance of selecting informative and non-redundant
concepts, as proper concept selection can significantly affect sample efficiency and generalization
performance.

Based on these insights, we propose a method in Section 5 to generate informative and non-redundant
concept sets. We also discuss potential failure modes of CBMs and how existing approaches can
mitigate them. Finally, we empirically validate our framework in Section 6 with experiments on
CIFAR-10 and MetaShift datasets, showing that appropriately designed CBMs outperform traditional
models, particularly in low data and distribution shift scenarios.

Contributions.

1. Theoretical Framework for Concept Sets: We introduce a novel theoretical frame-
work for CBMs that elucidates the properties of concept sets, specifically focusing
on expressiveness and model-aware inductive bias. This framework formalizes how
these properties influence model performance, offering new insights into the design of
effective concept sets.

2. Theoretical Analysis and Insights: We derive theoretical results that compare the
expected loss of CBMs with their non-bottleneck counterparts. Our analysis reveals
the conditions under which CBMs are most effective, particularly in low-data regimes
and under distribution shifts. These results provide a clear understanding of the design
choices that enhance CBM performance.

3. Empirical validation: We validate our results through experiments on CIFAR-10 and
MetaShift datasets, designed to assess different aspects of concept sets and CBMs,
and we affirm that appropriately designed concept sets can lead to increased model
predictability and efficiency.

2 Related Work

Incorporation of human concepts into machine learning algorithms has been considered for a long
time as a strategy to improve the explainability of the model through improved representation
interpretability [21, 27, 20, 38]. Concept Bottleneck Models (CBMs) [23] are one of the most
promising approaches to concept-based methods and have been adopted in various applications such
as fine classification [31] and medical image analysis [39, 22].
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Advances in concept identification Recent work has focused on increasing the flexibility of CBMs.
For example, [30, 41, 40] explore the use of multimodal and large language models for concept
identification to eliminate the need for predefined labels. These methods enhance the adaptability of
CBMs to various tasks and domains, improving their practical utility.

Performance Enhancement Strategies Recent works consider relaxing the bottleneck by post
hoc concept discernment [41] or fitting the CBMs’ residuals [36] to improve model accuracy while
preserving the other properties of CBMs.

Gaps and Our Contribution Despite the mixed successes of these efforts, there remains a gap in
understanding concept bottleneck models and, in particular, how the properties of concept sets affect
their performance.

In summary, our contribution is orthogonal to previous work, providing a deeper theoretical under-
standing of the relationship between concept set properties and model performance.

3 What are concepts?

Although the notion of concept has been repeatedly used in the ML literature [23, 30, 10], there is
still a lack of a precise definition and delineation of their properties. To make them theoretically
tractable entities, we begin by addressing what concepts are.

According to cognition theory, concepts are mental representations that constitute a fundamental key
building block in all aspects of cognition [15]. More specifically, they allow us to draw appropriate
inferences about the type of entities we encounter in our everyday lives and are necessary for
cognitive processes such as categorization, memory, decision-making, learning, and inference. Thus,
the formalism should reflect that (1) concepts are representations and (2) concepts empower inferences
for everyday tasks.

Concepts are representations Let’s denote a hypothetical set of concepts as C and a particular
concept as c. As representations of some inputs X , concepts can be regarded as mappings from this
space. To define the range of these mappings, we emphasize that concept representations indicate
‘membership’ in a class. In modern theories (e.g., Prototype Theory), concepts consist of fuzzy
memberships instead of binary ones. For example [16], humans consider “sink” as borderline a
“kitchen utensil”, or “octopuses” are just excluded from the concept of “fish”. As such, concepts
lend themselves to the fuzzy mathematical formulation of membership functions, a generalization
of characteristic functions. Thus, the concept can be unequivocally represented as a mapping
c : X → [0, 1].

Concepts aid in everyday-task inference Not all membership functions qualify as concepts; the
missing component is their usefulness in task-specific inference. For a new concept to be valuable,
it must improve predictability for a subset of tasks relevant to humans. This can happen either by
capturing new nuances of inputs (for example, new color tones) or integrating different concepts into
a more comprehensive entity (e.g., grouping animals into families).

Consider a task T , defined as a tuple1 (D, ℓ), where D = {(xi, yi) ∼iid P(X ,Y)} is a dataset
drawn from the data generation process P(X ,Y) and ℓ is a loss function. Define the n-risk of
a model class fΘ on a task T as the expected loss of a model trained on n samples, Rn(fΘ) =

ED,x,y

[
ℓ(f̂(x; θ(D)), y)

]
. Consider the output hypothesis spaces HC ⊆ {g : C → Y} complete

under permutation symmetry and the learning algorithm invariant under feature permutations. We
refer to Appendix B.1 for a technical discussion of this assumption.

1We assume static tasks for simplicity, but we could admit the superclass of multi-step tasks, arguably more
typical for humans. Also, for simplicity, we consider the effect of a new concept on a single task. Still, one might
want to consider the distribution of human tasks and compute the expected improvement in risk across all tasks.
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Definition 1. [Concept set] Let f̂(·, θ(D)) : X → Y be a model trained on the task T = (D, ℓ), and
C a preexisting concept set, potentially void, of size m − 1. Given a membership function cm, we
denote the conceptualized model f̂C∪{cm} = ĝm(·, θc) ◦ [c1, . . . , cm], such that ĝm : C ∪ {cm} → Y
is trained on the conceptualized input {(cj(xi))j∈[m]}i∈[n].

Then, C ∪ {cm} is a concept set if there exists N0 ≤ N1 ∈ N such that

Rn(f̂C) > Rn(f̂C∪{cm}) for N0 ≤ n (expressiveness)

Rn(f̂) > Rn(f̂C∪{cm}) for n ≤ N1 (model-aware inductive-bias)

This implies that the output model trained on the concept set generalizes better than the vanilla one
in the low-sample domain (model-aware inductive bias) and better than the smaller concept set in
the large-sample domain (expressiveness)2. We further examine the role of these properties in the
Appendix B.2.

Note that for human concept sets, the hypothesis space for the learned functions f̂ , ĝm corresponds to
the human model. This definition can be regarded not only as a qualifying condition for a membership
function to be considered a concept, but also as a measure of its quality, e.g., through the ratio of
risks. From this we could discover iteratively new concepts by greedily maximizing the decrease in
risk for a new concept or even take a hierarchical approach by unveiling the most relevant concepts to
identify a given set of already established concepts.

The CBM Assumption An implicit assumption behind concept-based models that we make explicit
is that such human concepts will also have predictive power for a given ML output model. The output
model is conventionally linear for interpretability.

Although expressiveness and model-aware inductive bias may not always transfer across different
models, it is reasonable to assume that a representation providing valuable inductive bias for one
model can be beneficial for others. Additionally, given ML tasks are by design relevant to humans,
and on many ML tasks, humans show a non-trivial performance (e.g., image classification), it is
reasonable to expect that human Concept Sets can benefit ML models too in these cases. However, an
empirical validation (section 6) is required to check that the CBM assumption holds.

Furthermore, since humans have been exposed to a highly varied distribution, concepts are unlikely
to be entangled with spurious features, which we also test in our insight experiments.

Model agnostic concepts In some cases, it may be useful to evaluate the quality of a con-
cept set without knowing the output model. We propose using an information-theory metric:
DKL[P(Y |C ∪ {cm}(X))∥P(Y |C(X))] ≫ 0. A new concept should provide significant information
on the output.

In the subsequent sections, we will dive into the theoretical insights derived from this formalism and
explore empirical validations through various experiments.

Natural benefits of concepts Using a concept representation rather than a typical pre-trained model
representation provides direct benefits. One notable advantage is that human concepts allow us to
decouple the representation model from the output model. This flexibility means that we can replace
the underlying concept identification model with a more advanced version in the future while keeping
the output model unchanged. The concept set serves as a stable communication interface with fixed
dimensionality and functionality. In addition, concepts can act as common representations across
different feature sets, potentially harmonizing datasets and modalities. We expand on this discussion
in the appendix B.3.

2Interestingly, if we accept these properties for concepts, we could investigate what the ML models that most
align with the human predictive model are, and thus provide plausible hypotheses for the potential architecture
of the human brain.
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4 Theoretical results

We now dive into the effect of concept-based representations and their theoretical advantages. This
includes the potential for improved data efficiency, as the concept-based representation space is
inherently more structured and informative, thereby reducing the amount of data required to achieve
comparable performance. Additionally, we will delve into the mechanisms by which concept-based
representations enhance model robustness to distribution shifts. In the process, it will also become
apparent in what regimes it is undesirable to bottleneck a model on concepts and potential solutions.

In our analysis, we focus on a recently popular approach to concept-based models, that is, concept
bottleneck models based on multi-modal foundational models, such as CLIP [30, 39, 41].

To that end, we consider the input space X̄ as the joint embedding space of inputs and concepts from
a foundational model, where it is assumed [21, 41, 6] that concepts can be related to directions, and it
is typical to use a linear output layer on top of such representation.

Definition 2 (Risk). Let x, x(i) i.i.d.∼ P(X ) for i ∈ [n], and let y(i) = f∗(x(i)). Given a loss
L : Y × Y → R, the risk of a predictor f̂ trained on the n samples (X, y) is given by

R(f̂) = Ex,X

{
L
[
f∗(x), f̂(x)

]}
. (1)

Now, since the output layer is conventionally linear, we may write f∗(x) = ω∗x and f̂(x) = ω̂x. We
further consider the l2 loss, where the predictor takes the analytical form ω̂ = Y X†, X† representing
the Moore-Penrose pseudoinverse of X .

Given concepts are represented by directions in this space, we can write a set of concepts C as a set
of dual vectors {c(1), . . . , c(k)} ∈ X̄ ∗, we can consequently consider our conceptual representation
as CX with C = [c(1), . . . , c(k)]T, and our overall concept model as f̂C = ĝc ◦ C.

We now turn to the Model-aware inductive bias condition and assess whether there are more explicit
conditions that imply it in practice, and thus compute the risk for the concept embedding model and
the baseline.
Theorem 1. Under the above setting and assuming that P is an isotropic distribution on the
d−dimensional input, then the risk of the concept-based model R(f̂C) is given by

R(f̂C) =

(
1− n

d− |C|
(d+ 2)(d− 1)

)
R(f̂b) + n

(
1

d
+

d− n

(d+ 2)(d− 1)

)
ε,

where ε = ||ω∗C⊥∥|2F , and C⊥ stands the orthogonal projection operator onto the orthogonal
complement of the concept vector’s span.

We note that this result aligns with our intuition. Indeed, even without spurious features or distribution
shifts, concepts yield a practical advantage over the baseline foundational embedding (first term), but
only if concepts are adequately chosen (second term). Let’s dive deeper into each of these two terms.

Let us start with the ε term that corresponds to the misspecification of the concept set. Certainly,
the larger the component of the actual predictor that does not belong to the subspace captured by
the concepts, the lesser the quality of our concept model. Note how the ε coefficient grows with the
number of examples n, which means that the misspecification term is more influential when more
examples are available. Nonetheless, with a proper choice of the concept set, the ε can be nullified.

When ε ≈ 0, the remaining terms directly compare the concept and the baseline risks R(f̂C),R(f̂b).
In fact, in this situation, we have a strict benefit for using the concept model, that is, R(f̂C) < R(f̂b).
Interestingly, provided ε ≈ 0, the remaining term suggests we should aim for the minimal set of
concepts |C|, and we obtain a better scaling with the number of examples (i.e., increased sample
efficiency).

Now, let us focus on the setting of spurious features due to confounders. As a motivating example,
imagine the image classification setting, in which the classes are confounded with an environment
property (e.g., outdoor dogs vs indoor cats). In this case, the image setting acts as a confounder Z,
manifesting as a spurious feature in the images. We note that such confounders are human concepts,
which, per our previous discussion, are embodied by directions in the CLIP embedding z ∈ X̄ ∗.
Then,
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Theorem 2. In the presence of confounders {z1, z2, . . . , zk} ∈ X̄ ∗, given a concept c ∈ X̄ ∗, the
bias in the ordinary least squares estimator satisfies

||Bias(f̂C |X)||2 ∝ ||(⟨c, z1⟩, . . . , (⟨c, zk⟩)||2

In particular, the classifier f̂{c} remains unbiased if and only if c ∈ span(z1, z2, . . . , zk)⊥.

Therefore, if the concept set consists only of a handful of non-spurious concepts, that is, semantically
distinct from the confounders (which in the CLIP embedding metric translates into a small cosine
similarity), we can expect the bias injected by the spurious feature to be significantly reduced.

4.1 Effect of Errors-in-variable

We must admit that our concept identifier can be imperfect, implying our foundational embedding
consists of noisy covariates, requiring an errors-in-variables analysis [14].

Although the effect of noise on multiple covariates is complex, significant noise in any covariate
influences the coefficients of all other covariates (see Appendix A.2), degrading the accuracy of the
estimator.

In the case of a single noisy feature xK = x∗
K + u, where xi represents the observed covariate with

noise u, and y = x∗ω∗+ϵ is the actual model, the least-squares estimator ω̂ is biased. Specifically, the
estimated coefficient for this variable is attenuated by ωK =

(
σ∗
K

σ∗
K+σ2

u

)
ω∗K . Not only the estimated

coefficient ωK is increasingly shrunk by the noise towards zero, but all the other coefficients ω̂i for
noiseless features are also biased proportionally to the bias in the coefficient of the noisy regressor.
This interdependence means that significant noise in any covariate distorts all coefficients.

5 Concept sets generation and identification

While Theorem 1 refers to the properties that a concept set must satisfy, to use such a concept set, it
is required that we have the concept mappings c : X → [0, 1]|C|. This can be achieved by collecting
a dataset X × C and training a model in a supervised fashion, but this is a costly procedure. Instead,
the appearance of foundational multimodal models in which one of the domains is natural language,
such as CLIP [32], provides a cheap and flexible approach to concept identification [30]. We will
focus on the latter approach because of its increased versatility.

From the concept set desiderata in Theorem 1, although powerful, direct foundational model em-
beddings encode information in a high-dimensional space that likely contains irrelevant information
(which can act as spurious features) and noise. For example, CLIP embeddings capture syntactic and
semantic nuances and may not necessarily accentuate the conceptual understandings that underpin
human reasoning and decision-making processes for a given task. This hinders not only generalization
but also the interpretability of the model.

5.1 Concept Identification

First, suppose that we already have a concept set C. Let us explicitly describe how to obtain the
concept representation using a multimodal model.

Through the model, concepts (language) and input (e.g., images or language in the case of serialized
tabular data) can be embedded into a shared space. We can then use the appropriate metric (or
similarity measure) in this space to compute the degree of presence of a concept for each given input.

In the most common scenario, the distance consists of the cosine similarity, so if the textual concepts
C = {t1, . . . , tM} and the dataset is D = {x1, . . . , xN}, the concept representation c(x) can be
computed as

cj(x) =
⟨EX (x), ET (tj)⟩

||EX (x)||2||ET (tj)||2
,

with EX and ET being the input and text encoders respectively. This is the approach that we use in
our experiment section.
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5.2 Concept-set Generation

LLMs, especially if endowed with external sources of knowledge (such as ConceptNet [35] or
Wikipedia articles), can be used to sample concepts that are commonly associated with a given task,
thereby alleviating the burden of collecting domain expertise for the concept set generation, and
potentially keeping the human out of the loop if necessary. See Appendix B.4 for a discussion on the
choice of LLMs as base-concept samplers.

As shown in Theorem 1, the properties of the set of concepts are crucial for the effectiveness of the
embedding. In particular, we should aim to balance the following objectives: (1) achieve minimal
misspecification ε, which amounts to choosing a complete enough set of concepts to capture as much
valuable information in the inputs as possible while also aiming for (2) a set of concepts as small as
possible. Additionally, there is an additional practical requirement for the chosen concepts: that the
model we use is good enough to identify them to minimize the error-in-variable effect.

Motivated by our theoretical desiderata, we propose a multistep approach.

1. Initial generation of a complete concept set that satisfies (1). To achieve that, we propose
employing a language model L to sample a sufficiently expressive set to achieve a sufficiently
low misspecification ε. This can be promoted by conditioning the generation on the context
task CT so that concepts are more relevant, which could include external knowledge such as
ConceptNet and Wikipedia to promote further quality and diversity CK ⊂ CT . That is,

c̃i ∼ L(c|CT )

2. For each concept, we must ensure it can be properly identified and its presence is informative
for T . That is, c̃i should be discarded if the entropy of the concept for that task Ω(ci(X)) is
below a given threshold Ωm.

3. Finally, we should remove redundant concepts3. The approach for this step can vary
depending on the output model we use. The conceptually most straightforward approach,
based on Theorem 1 consists of empirically estimating the risk R̂(f̂C) by averaging the
mean square error 1

N

∑N
p=1 MSE[f̂C(·; θ(Dp))] on cross-validation samples {Dp}Np=1.

All in all, the concept generation procedure can be summarized as follows. Starting from C0 = ∅,
while ε(Ci) > εm we increase our concept set by4

Ci = Ci−1 ∪ ci, where ci ∼ L(c | CT ) conditioned on
{

Ω(ci(X)) > Ωm

R̂(f̂Ci)− R̂(f̂Ci−1) > Rm

There are settings where we cannot reach values of ε below our chosen threshold through any human
concept set. For example, this can happen when there is a subset of relevant features for the task
about which humans lack expertise.

In such cases, concepts can be leveraged beyond a bottleneck, which might help in any case where the
misspecification term dominates. An option is to employ concepts as additional features. Another is
to fit the residuals of the CBM by a black box model on the original features to enhance performance
[41]. In both cases, one could use concepts that should not influence predictions by including a
mutual information penalty to the models trained on the raw input.

3As per Theorem 1, a concept that does not decrease ε (e.g., if it is spanned by the other concepts or
orthogonal to the target function) will be detrimental to the risk since it increases the first term. In practice, when
the effect on ε is small, keeping such a concept should depend on the number of samples we have. In low sample
regimes, we should be more aggressive in discarding it than when n grows, and the term ε starts to dominate.

4In our experiments, we keep a concept if it improves the estimated risk, i.e., Rm = 0, or R̂(f̂Ci) −
R̂(f̂Ci−1) > 0, and we set the entropy threshold proportionally to the number of buckets nb used to estimate Ω

to ensure not all samples fall into the same bucket (i.e. Ωm = 1
nb

).
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6 Empirical Validation

To empirically validate our insights about concept-based representations, we designed a series of
experiments to validate our analysis5. We aim to explore the key insights from our theoretical
results, including the ability to effectively leverage scarce datasets and the impact of concept-based
representations on robustness to distribution shifts.

Datasets Our experiments utilize CIFAR-10 [25] to test the effect of concept representations on
data efficiency. This dataset is used because of its extensive use in research: its familiarity enables
us to gather insights more effectively. MetaShift [26] is a dataset to evaluate distribution shifts
in machine learning models. It comprises 12,868 subsets across 410 classes, each representing
unique contexts such as “cat with sink” or “cat with fence”, using data from Visual Genome [24].
The dataset’s graph structure connects subsets by similarity, enabling the quantification shifts and
visualization of data conflicts. Thus, we use MetaShift to evaluate model robustness across diverse
shifts.

In Appendix D we discuss additional experiments, where we utilized three diverse datasets: CUB-
200-2011 [37], Food-101 [7], and the Describable Textures Dataset (DTD) [9] for data efficiency
analysis, CINIC-10 [11] for out-of-distribution generalization, and CIFAR-10 [25] to compare with
label-free concept bottleneck models.

Models We use VIT-B-32 for the multimodal CLIP [32] and GPT-4 [2] as the human concept
sampler. We refer to the VIT-B-32 embedding as the vanilla embedding, which acts as the natural
baseline. We primarily use a linear output layer on top of either the vanilla or the concept embedding.
Still, we also assess a variety of output layers to understand which concept-based inductive bias is
helpful.

For all experiments, we provide a complete description, including the concept sets, in Appendix C.2.

The effects of the concept and sample sizes. We start by assessing the agreement between theory
and practice regarding the effect of the number of training examples and the concept set size on the
model’s generalization to examples from the same distribution in CIFAR10, as we plot in figure 1.

Figure 1: Scaling laws for the number of examples across different concept set sizes. As predicted by
Theorem 1, smaller concept sizes n < 100 benefit the small sample regime, whereas larger concept
sizes n > 200 are superior in the larger sample regime. We plot the mean and 1− σ bars over ten
seeds.

5Code can be found at https://github.com/maxruizluyten/theoretical-concepts or https://
github.com/vanderschaarlab/theoretical-concepts.
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As we concluded from our interpretation of Theorem 1, we expect the first term,(
1− n d−|C|

(d+2)(d−1)

)
R(f̂b) to dominate the risk in the low data regime n → 0, since in that case, the

ε coefficient n
(

1
d + d−n

(d+2)(d−1)

)
renders the second term negligible.6 In this domain, an increase in

the sample efficiency from the first term directly depends on the concept set size |C|, favoring smaller
concept sets, which is in total agreement with the empirical results shown in figures 1 and 4.

Then, as the number of samples increases substantially n → ∞, the risks start to plateau, and the
misspecification, embodied by ε, becomes the dominant term. Thus, we expect larger concept sizes
to outperform smaller ones due to a smaller ε. This is particularly the case given our concept set
generation procedure, where smaller concept sets are subsets of the larger ones. Again, this behavior
is clearly represented in figures 1 and 4.

Robustness of Concept-embeddings to distribution shifts We now evaluate the concept’s ro-
bustness to distribution shifts. In particular, we follow the approach of [26] in their evaluation of
subpopulation shift in Section 4.2., controlling the degree of imbalance in the dataset to probe its
effect on CBMs.

That is, we train and test distributions on mixtures of the same domain but where mixture weights
differ between train and test. The domain comprises dog and cat images segregated by indoor and
outdoor environments. In this case, pictures of outdoor cats and indoor dogs make up the minority
groups, and we control the proportion of such samples while keeping |X| fixed at 1700.

To align with the insights of Theorem 2, we manually verify that the concept set excludes environment-
related concepts to reduce the expected confounder bias induced by the shift. Indeed, we observe that
the norm of the min-max scaled projection of the concepts “indoor” and “outdoor” in our concept
set ||(⟨ci, z1⟩, . . . , (⟨ci, zk⟩)||2 has an average norm of 0.80, small compared to the interconcept
similarity, with an average of 1.65.

Our results in figure 2 show that the concept representation yields a substantial increase in perfor-
mance7, with bigger improvements for more pronounced distribution shifts. This effect is also seen
for other output models, such as k-nearest neighbors and decision trees, suggesting the concept
representation effectively reduces the presence of spurious features and thus confirming that concept
representations are more robust to spurious correlations.

Figure 2: Concept representations reduce the effect of distribution shift over using the CLIP embed-
ding directly, as seen by a more pronounced increase in accuracy on more imbalanced datasets. We
plot the mean and 1− σ bars over 10 seeds.

6Plus, if the concept set is appropriately chosen, the ε itself should be small.
7Even in this sample regime, where ε is the dominating term.
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Figure 3: Concept representations consistently improve the out-of-distribution accuracy compared to
directly using the CLIP embedding across different classes and distribution shifts. For three of the
horse datasets, the CBM correctly identifies the presence of a horse.

Out-of-distribution generalization of concept embeddings Finally, we assess the robustness of
operating with the concept embedding in terms of out-of-distribution generalization. To that end, we
use domain generalization datasets from Section 4.1. in MetaShift.

The datasets we use consist of three tasks: dog vs. cat, bus vs. truck, and elephant vs. horse. Each
of these tasks is tested on instances from one of the two classes, in particular, on images of dogs
with shelves, trucks with airplanes, and horses with barns. However, for each task, we have four
different training datasets, differing by the domain in which the tested class appears. For example, in
the dog vs. cat dataset, we have training sets of dogs with bags or boxes, dogs with benches or bikes,
dogs with boats or surfboards, and dogs with cabinets or beds (see figure 3 for details on the other
three tasks). Importantly, each of the four datasets for each class corresponds to a different degree of
out-of-distribution generalization challenge, comprising a varied test bed for robustness (we refer to
[26] for further details).

Figure 3 shows that for all the 12 OOD tasks, the CBM significantly outperforms the non-bottleneck
baseline, typically by an accuracy gap above 10% and even surpassing a 50% increase in accuracy.
We further verify the robustness of the OOD predictions of CBMs in CINIC-10 in Table 1.

7 Conclusion

In this work, we introduced a novel theoretical framework for understanding the properties of concept
sets in Concept Bottleneck Models (CBMs). We demonstrated how these properties affect model
performance, particularly in low-data regimes and under distribution shifts. Our empirical results
validated these theoretical insights, showing that well-chosen concept sets improve sample efficiency
and robustness in real-world scenarios. Our findings not only deepen the understanding of CBMs but
also pave the way for designing more effective models. We extend the limitations and open avenues
for future work discussed throughout the paper in the Appendices E and F, respectively.
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A Proofs for the theoretical results

This section is divided into the lemmas we require for our proof. We start with the tools that will
enable us to properly handle the spurious variables’ effect in our data.

A.1 Effects of a confounding spurious feature

We start by recovering a very recent lemma on the effect of confounding on the risk of an ordinary
least squares estimator from [29]. We present it here for completeness and adapt it to our notation.

A.1.1 Data Generating Process with a confounder

Consider a standard confounding setting in which the directed acyclic graph involves the covariates
X, the targets Y, and the confounder covariates Z. In this setting, Z is a parent of both X and Y,
and Y is a child of both X and Z. In addition, we assume a Gaussian distribution and a linear setting,
that is:

Y|X,Z ∼ Nm(βy·x(z)X+ βy·z(x)Z,Σy|x,z)

We use ΣT for any random variable T to denote its covariance matrix. The subscripts of the
regression coefficients, as in [29], indicate the relationship between the response (before the dot) and
the covariate (after the dot), considering the presence of another variable (within brackets) in the
conditional mean.

A.1.2 Effect of the confounder on the risk

Of course, the confounder is not observed, so we aim to fit the following model, where the underscore
con stands for confounded.

Y = ωconX+ η η ∼ Nn(0, In),

with the least-squares estimator:

ω̂con = X†Y.

However, in practice, due to the confounder,

Y|X ∼ Nn(Ay·xX,B2
y·z(x)Σz|x +Σy|x,z),

where A stand for the regression matrices:

Ay·x = ΣyxΣ
−1
x = By·x(z)In + By·z(x)Az·x

Lemma 1. In the above setting, the bias and variance of the least squares estimator ω̂ can be
expressed as:

BiasY [ω̂con|X] = By·z(x)
X⊤MAz·xX

X⊤MX
,

VarY [ω̂con|X] =
X⊤MΣy|xMX

(X⊤MX)2
,

where M = In − 1n1
⊤
n

n is the centering matrix.

Proof. See Proposition 2 in [29].
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Lemma 1 implies that when both By·z(x) ̸= 0 and Az·x ̸= 0, the estimator β̂x is biased. Note that the
expectation of the bias is proportional to both the effects of Z on X and Y. We defer its computation
to Theorem 2 in [29], but the above observation allows us to state Theorem 2.

Theorem 3. In the presence of confounders {z1, z2, . . . , zk} ∈ X̄ ∗, given a concept c ∈ X̄ ∗, the
bias in the ordinary least squares estimator satisfies

||Bias(f̂C |X)||2 ∝ ||(⟨c, z1⟩, . . . , (⟨c, zk⟩)||2

In particular, the classifier f̂{c} remains unbiased if and only if c ∈ span(z1, z2, . . . , zk)⊥.

Proof. We can rewrite the lemma 1 by denoting ṽ = v
||v||2 as follows:

||BiasY [ω̂con|X]||2 = ||Az·x||2||By·z(x)
X⊤MÃz·xX

X⊤MX
||2,

But ||Az·x||2 corresponds, in fact, to the regression coefficient of x(z). In our case, Az·x =
(⟨c, zi⟩)ki=1, which completes the proof.

A.2 Effect of Errors-in-variable

Note that our concept identifier will not be perfect in practice, leading us to treat our foundational
embedding as noisy covariates. This aligns with the errors-in-variables model [14]. Although the
effect of noise across multiple covariates is complex, we can qualitatively conclude that significant
noise in any covariate influences the coefficients of all other covariates, resulting in substantial
degradation of the overall estimator’s accuracy.

Mathematically, if xi = x∗
i + ui represents the observed covariates with noise ui, and y = x∗α∗ + ϵ

is the true model, the least-squares estimator α̂ is biased. Specifically, for a single noisy covariate
xK , the attenuation effect on the estimated coefficient αK is given by αK =

(
σ∗
K

σ∗
K+σ2

u

)
α∗
K . This

indicates that the estimated coefficient αK is shrunk towards zero, with the degree of attenuation
increasing with the noise variance σ2

u.

Furthermore, the bias in the estimated coefficient α̂i of a correctly measured regressor xi is propor-
tional to the bias in the coefficient of the noisy regressor. This is expressed as α̂i = α∗

i +βi(α
∗
K−αK).

This interdependence means that noise in any covariate can propagate, affecting all other coefficients
(cf.[14]). Thus, significant noise in any covariate leads to a complex distortion of the entire regression
model.

A.3 Risk of the conceptual representation

The proof of Theorem 1 follows the same backbone as [33] and also relies on the following lemma,
the proof of which we reproduce here for completeness.

Lemma 2. Let D,Λ ∈ {0, 1}d×d be two diagonal matrices of rank p and q, respectively. Let
V ∈ Rd×d be an orthogonal matrix and W ∈ Rd×d a Haar distributed random matrix. If P =
WDWT , Q = V ΛV T , then

EW [PQP ] =
p

d(d− 1)(d+ 2)
[q(d− p)Id×d + [d(p+ 1)− 2]Q] .

Proof. Since V is an arbitrary orthogonal matrix and W is Haar distributed, without loss of generality,
we can assume Λ = diag(1q,0d−q), and D = diag(1p,0d−p). By definition of the Haar distribution,
we can denote U = V TW , also Haar distributed. Therefore,

EW [PQP ] = EW∼Haar

[
WDWTV ΛV TWDWT

]
= V EU∼Haar

[
UDUTΛUDUT

]
V T

= V EU∼Haar

[
ATA

]
V T ,
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where we have defined A = ΛUDUT . Looking closely at the entries of A a quick computation
yields, denoting ũi = (ui1, . . . , uip):

A =



⟨ũ1, ũ1⟩ · · · ⟨ũ1, ũd⟩
...

. . .
...

⟨ũq, ũ1⟩ · · · ⟨ũq, ũd⟩
0 · · · 0
...

. . .
...

0 · · · 0


.

Thus, (ATA)i,r =
∑q

k=1⟨ũi, ũk⟩⟨ũr, ũk⟩, and so, EU [A
TA] can be readily computed if we have the

fourth moments of the entries in U . Indeed,

EU

[
(ATA)i,r

]
=

q∑
α=1

p∑
j,s=1

EU [uijursuαjuαs] .

Lemma 9 from [8] provides such 4th moments: if i ̸= r, then EU [(A
TA)i,r = 0, and if i = r, then

EU [uijuisuαjuαs] =
1

d(d− 1)(d+ 2)
[dδjs + dδiα + (d− 2)δiαδjs − 1] .

Consequently, the expectation yields a diagonal matrix with two blocks of eigenvalues:

EU

[
(ATA)i,i

]
=

p

d(d− 1)(d+ 2)
[(d− p)Id×d + [d(p+ 1)− 2] Λ] .

Since EW [PQP ] = V EU

[
(ATA)

]
V T , V V T = Id×d, and V ΛV T = Q, the result follows.

Next, we follow the steps of [33] to arrive to Theorem 1

Theorem 4. Let X̄ = Rd, C = R|C|,Y = Rl And assuming that P is an isotropic distribution, where
X = {xi}ni=1 ∼iid P is full rank, and our labels are linear on the covariates, i.e., yi = ω∗xi then
the risk of the concept-based model R(f̂C) is given by

R(f̂C) =

(
1− n

d− |C|
(d+ 2)(d− 1)

)
R(f̂b) + n

(
1

d
+

d− n

(d+ 2)(d− 1)

)
ε,

where ε = ||ω∗C
⊥∥|2F , and C⊥ stands the orthogonal projection operator onto the orthogonal

complement of the concept vector’s span.

Proof. Given a matrix M ∈ Rk×p full rank p, we denote M || := M†M the projection onto its
column space, and M⊥ = Id×d −X || the projection into the corresponding orthogonal space.

Then, denoting ω̂C the ordinary mean square estimator of the weights we have:

ω̂CC = Y (CX)†C = ω∗XX†C†C = ω∗X
||C ||.

Therefore,

ω̂CC − ω∗ = ω∗

(
X ||C || − Id×d

)
= ω∗

[(
X || − Id×d

)
C || + C || − Id×d

]
= −ω∗

[
X⊥C || + C⊥

]
.

Using the cyclic property of the trace, the risk is given by

R(ω̂CC) = EX,x

[
||ω̂CCx− ω∗x||2

]
= Tr

(
EX,x

[
ω∗

(
X⊥C || + C⊥

)
xxT

(
X⊥C || + C⊥

)T

ωT
∗

])
= Tr

(
EX

[
ω∗

(
X⊥C || + C⊥

)(
X⊥C || + C⊥

)T

ωT
∗

])
.
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Since projections are idempotent and C⊥C || = C ||C⊥ = 0,(
X⊥C || + C⊥

)(
X⊥C || + C⊥

)T

= X⊥C ||C ||X⊥ +X⊥C ||C⊥ + C⊥C ||X⊥ + C⊥C⊥

= X⊥C ||X⊥ + C⊥,

and as a consequence, that

R(ω̂CC) = Tr
(
EX

[
ω∗

(
X⊥C ||X⊥ + C⊥

)
ωT
∗

])
= Tr

(
ω∗

(
EX

[
X⊥C ||X⊥

]
+ C⊥

)
ωT
∗

)
.

X⊥, C|| are both projections and since X follows an isotropic distribution according to our assump-
tions, its right singular vectors, which coincide with the eigenvectors of X⊥ are Haar distributed.
Therefore, we can apply the lemma 2 with p = d− n, q = |C| we obtain that

EX

[
X⊥C ||X⊥

]
=

(
1− n

d

)[
|C|n

(d− 1)(d+ 2)
Id×d +

(
1− dn

(d− 1)(d+ 2)

)
C ||

]
.

Recalling C∥ = Id×d − C⊥ and rearranging the terms we obtain

EX

[
X⊥C ||X⊥

]
+ C⊥ =

(
1− n

d

)(
1− n(d− |C|)

(d+ 2)(d− 1)

)
Id×d

+

(
n

d
+

n(d− n)

(d+ 2)(d− 1)

)
C⊥.

Lastly, we use R(ω̂t) =
(
1− n

d

)
(see [5]) and our definition of ε := Tr

(
ω∗C

⊥ωT
∗
)

to conclude that

R(ω̂CC) =

(
1− n

d− |C|
(d+ 2)(d− 1)

)
R(ω̂t) + n

(
1

d
+

d− n

(d+ 2)(d− 1)

)
ε,
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B Extended Discussions

In this section, we expand on specific details of the paper that, albeit non-essential for the main text,
might be of interest to specific readers.

B.1 Further details on the Concept Set definition

To ensure that the composition is well defined, we need to impose one of the following two conditions:
either for the output probe or for the concept set. Either (1) if concept sets are unordered, then HC
must be a complete set of maps under permutation symmetry, that is, for any map g ∈ HC and any
permutation σ of C, g ◦ σ ∈ HC , and the learning method is also invariant under feature permutations,
which holds for the output methods considered in the paper; alternatively, (2) C is a concept sequence,
not a set. In the first case, the composition is well defined since it is equivalent across all orderings of
the elements; in the second, ∪ should be substituted by ×.

We note that the natural models used as probes—such as linear regression, kernel regression, fully
connected neural networks, decision trees, and k-nearest neighbors, among others—constitute parame-
terized hypothesis spaces that form a complete set of maps under permutation symmetry. Additionally,
the learning methods employed are invariant under feature permutations, provided that isotropic
initialization is used and mild assumptions regarding the optimization algorithm and loss function
are met. Consequently, these models and their associated learning procedures maintain structural
integrity and invariance when input features are permuted, ensuring that the composition remains
well-defined across different concept orderings.

B.2 Non-Concept characteristic functions

To elucidate the relevance of the properties in Definition 1 that distinguish Concept sets from other
sets of characteristic functions, it is helpful to consider non-concept characteristic functions. We
begin with a specific example before advancing to a more formal characterization.

Humans tend to develop concepts that are relevant to their areas of interest, which are indicative
of their underlying task T . Despite being exposed to a wide range of occurrences, individuals do
not cultivate concepts outside their domain of interest. For instance, consider filmography-related
concepts such as a "Jump Cut," where two sequential shots of the same subject are captured from
slightly varying camera positions, or a "Dutch Tilt," involving the intentional tilting of the camera
to create a sense of disorientation. According to Definition 1, people not interested in filmography
would not incorporate these characteristic functions into their concept set. This omission occurs
because such characteristics add negligible expressiveness to their existing concept set, meaning that
the parameter N0 approaches infinity without significantly enhancing model-aware inductive bias.
Consequently, N1 becomes less than N0, which does not satisfy the definition.

In more abstract terms, a characteristic function c that does not contribute additional valuable
information beyond the existing concept set C for the task T exhibits low expressiveness, indicated by
a large N0, without a corresponding increase in N1. This scenario arises when the target variables are
conditionally independent of c given C. Examples include concepts that are irrelevant to the task at
hand (e.g., the presence of tinted glass when predicting attributes of a Model X vehicle) or concepts
that are entirely redundant with those already present in C.

Moreover, low expressiveness can result when the output model is incapable of capturing the
correlation introduced by c. For example, a characteristic function c could aid in clustering the
input distribution into two concentric spheres, but a linear model would fail to take advantage of this
structure effectively. Furthermore, even if c provides information that is theoretically representable,
the inductive bias of the learning method may disfavor the optimal hypothesis corresponding to this
representation. In such cases, despite the presence of informative characteristic functions, N0 remains
large, indicating low expressiveness.

B.3 Concepts as a stable communication interface

We expand on the flexibility of Concept-Based Models (CBMs), highlighting properties that can
facilitate future advancements.
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Consider the objective of learning a target function f∗ : X → Y . In a CBM framework, this
involves a concept representation C∗ : X → RC followed by a mapping f∗

C : RC → Y from
concepts to targets. By maintaining a fixed concept set C and its associated representation RC , we
allow the replacement of the concept mapping estimator Ĉ with an alternative C̃ without altering the
probe f̂C . This substitution is viable as long as the concept representation RC remains consistent
in dimensionality and semantic meaning. For example, upgrading from a CLIP-based concept
representation to a more advanced CLIP2 preserves the probe’s applicability.

However, probes are not interchangeable between fundamentally different concept representations
(e.g., raw CLIP vs. CLIP2) due to potential discrepancies in metrics or dimensionality. This
emphasizes the role of RC as a stable interface with fixed characteristics.

Furthermore, CBMs facilitate the harmonization of datasets with varying features or modalities
X1, . . . ,Xk (such as images from different sensors). By projecting each input Xi into the common
concept space RC through mappings C∗

i : Xi → RC , CBMs ensure semantic consistency across
diverse datasets. This unified representation simplifies the integration and analysis of multi-modal
data, leveraging the fixed semantic meaning of the concept set.

B.4 Use of Large Language Models for Concept Generation

The primary objective of our method and experiments is to illustrate and validate our theoretical
insights, which remain agnostic to the concept sampling method. Although large language models
(LLMs) are utilized for concept generation in our experiments, this choice does not compromise the
validity or generality of our theoretical contributions. Our theoretical insights are independent of
the concept generation method, which emphasizes the versatility and applicability of our insights
regardless of concepts being derived from LLMs, human experts, structured knowledge bases, or a
combination thereof.

B.4.1 Alternative Concept Sampling

We employ LLMs to streamline the process by reducing the need for extensive human expertise and
to provide task-specific concepts flexibly. LLMs have been shown to be valuable samplers/generators,
especially as part of a more complex system designed to be robust against potential lower-quality
samples (e.g., [4, 17, 34]), but alternative methods are equally viable. These alternatives include:

• Human-Generated Concepts: Concepts manually curated, tailored to specific tasks.
• Concept Graphs: Using structured knowledge bases such as ConceptNet [35] to derive

relevant concepts.
• Correlated Text Corpora: Leveraging patterns and correlations within large text datasets

like Wikipedia to identify meaningful concepts.
• Hybrid Approaches: Enhancing LLM-generated concepts by conditioning their context on

external knowledge sources, such as Concept Graphs or Text Corpora, thus improving their
relevance and quality, as mentioned in the main text.

B.4.2 Quality Control through Rejection Sampling

We also note that our method can be regarded as a rejection-sampling loop that ensures the quality
of the concepts generated and mitigates the potential limitations associated with the reliance on
LLMs for concept sampling. It does so by rejecting concepts that do not meet predefined theoretical
standards and selecting only those concepts that significantly contribute to the model-aware inductive
bias, thereby maintaining the integrity of the concept set.

This approach thus fosters the inclusion of only relevant and high-quality concepts, regardless of the
base generation method.
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C Experiment details

C.1 Assets used

Datasets For CIFAR10 we use CIFAR-10 python version [25], and for MetaShift (MIT License)
we follow the scripts provided by the MetaShift Repo [26].

Models For generating concept sets, we use GPT 4-turbo-2024-04-09 [2] through the ChatGPT
web app. For jointly embedding images and text, we use CLIP ViT-B/32 [32].

C.2 Compute Resources Used for the Experiments

The computational resources used are consistent across all experiments and are detailed below to
facilitate reproducibility. Specifically, an Azure Machine NC96ads A100 v4 was used with the
following specifications:

GPU Details:

• Type of Compute Workers: A single NVIDIA V100 GPU was used.
• Memory: Each NVIDIA V100 GPU is equipped with 80 GiB of memory.
• Time of Execution: Each experiment runs in less than 5 hours on a single GPU.

The total computing time between experiments was approximately 20 hours. No further computing
was required for the project, except for dummy runs intended to verify the code’s correct functioning
on an M2 Pro MacBook Pro with 32 GiB of memory.

Additional System Information:

• CPU: AMD EPYC 7V13 64-Core Processor with 96 CPUs at 3.09 GHz.
• RAM: 866 GiB total, 23 GiB used, 832 GiB free, 61 GiB swap memory.

C.3 Concept set generation before filtering

For the generation of concept sets, instead of keeping or discarding a concept before generating a
new one, we first generated a pool of concepts, which we then sampled sequentially and filtered the
subset of interest. To generate the initial pool, we started by providing the following prompt to GPT
4-turbo-2024-04-09:

I am building a classifier between {Class_Names} on the {Dataset_Name}
dataset. I want to use a concept-bottleneck model to predict these classes.

To that end, I want you to propose a set of {N} concepts for each
class that can help me differentiate between {Class_Names} for the
concept-bottleneck model.

Propose only concepts that can be identified from an image without sound
or video.

From the result of this prompt, we trimmed the concepts (e.g., “animal with floppy ears” → “floppy
ears”) to make them more suitable for CLIP embedding. The resulting initial pool of concepts for
each experiment is provided below in the detailed description.

C.4 Detailed description: Effects of concept and sample sizes

Dataset information

The dataset used in this experiment is CIFAR-10, which consists of 10 classes: Airplane, Automobile,
Bird, Cat, Deer, Dog, Frog, Horse, Ship, and Truck.

The train sizes evaluated are [40, 80, 160, 320, 640, 1280, 2560, 5120, 10000] samples, and the test
size is fixed at the full 10,000 test samples.
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Configuration

The embedding model used is CLIP ViT-B/32. The preprocessing pipeline utilizes torchvi-
sion.transforms in several steps. It begins by resizing the image to 224x224 pixels with bicubic
interpolation, ensuring smooth resizing. It then performs a center crop to retain the central 224x224
pixels, focusing on the most significant part of the image. The image is then converted to a tensor,
scaling the pixel values from [0, 255] to [0.0, 1.0]. Finally, the tensor is normalized using specific
mean and standard deviation values for each RGB channel, standardizing the input data.

The output models evaluated are based on linear regression on the one-hot encoded labels, with
coefficients determined using an exact solver.

The random seeds used for this evaluation are [42, 43, 44, 45, 46, 47, 48, 49, 50, 51].

Unfiltered Concept Set

The initial pool of concepts generated by GPT-4 from which we sample as described in Section 5 is:

• Airplane: Fixed wings, Jet engines, Propellers, Cockpit windows, Landing gear, Tail fin,
Airplane fuselage, Winglets, Long, narrow wings, Round windows, Brightly colored livery,
Nose cone, Smooth metallic body, Horizontal stabilizers, Underwing pods, Delta wings,
Commercial airline logos, Contrails, Navigation lights, Turbofan engines.

• Automobile: Four wheels, Headlights, Tail lights, Rearview mirrors, Grille, Doors, Win-
dows, Bumpers, Roof rack, Alloy wheels, License plate, Windshield wipers, Exhaust pipe,
Hood, Trunk, Side mirrors, Car brand logos, Spoiler, Roof antenna, Fog lights.

• Bird: Feathers, Beak, Wings, Tail feathers, Claws, Perching behavior, Colorful plumage,
Small size, Sharp eyesight, Nesting, Beady eyes, Flight patterns, Hollow bones, Singing or
chirping, Flapping wings, Broad wingspan, Crest or crown, Scaly legs, Bird nest, Smooth
beak.

• Cat: Sharp, pointy ears, Rounded eyes, Fine, soft fur, Short, pointed snout, Fine whiskers,
Slender and agile body, Compact paws, Grooming behavior, Arching back stretch, Re-
tractable claws, Slit pupils, Purring, Curved claws, Lithe movement, Long tail, Flexible
spine, Night vision, Whisker pads, Silent movement, Playful behavior.

• Deer: Antlers, Slender legs, Hooves, Brown fur, White tail, Large ears, Doe eyes, Grazing
behavior, Spotted coat, Small tail, Rounded snout, White underbelly, Graceful movement,
Herd behavior, Muzzle, Alert posture, Small antlered males, Thin, long legs, Winter coat,
Sleek body.

• Dog: Floppy ears, Bushy tail, Curly tail, Almond-shaped eyes, Smooth short fur, Curly
fur, Wiry fur, Long, narrow snout, Thick whiskers, Large body, Large paws, Wagging tail,
Barking, Droopy ears, Loyal posture, Collar, Panting, Playful behavior, Sniffing, Guarding
behavior.

• Frog: Smooth, moist skin, Webbed feet, Bulging eyes, Long hind legs, Jumping, Sitting
posture, Wide mouth, Green color, Camouflaged skin, Sticky tongue, Croaking, Slender
fingers, Tadpole stage, Water habitat, Streamlined body, Short front legs, Bug catching,
Wide head, Swimming ability, Amphibious nature.

• Horse: Mane, Tail, Hooves, Long legs, Galloping, Large eyes, Long snout, Strong build,
Grazing behavior, Smooth coat, Upright ears, Bridle, Saddle, Neighing, Herd behavior,
Muscular body, White blaze, Erect posture, Speed, Stirrup.

• Ship: Hull, Deck, Sails, Masts, Bow, Stern, Portholes, Lifeboats, Anchor, Smokestacks,
Rigging, Cabins, Cargo containers, Radar, Funnels, Bridge, Naval flag, Propeller, Sailors,
Lifebuoys.

• Truck: Large wheels, Cargo bed, Cab, Grille, Headlights, Side mirrors, Exhaust pipe, Large
size, Rearview mirrors, Mud flaps, Trailer hitch, Step-up rails, Heavy-duty tires, Flatbed,
Bull bars, Utility lights, Roof lights, Storage compartments, Ladder racks, Commercial
decals.
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Filtered Concept Sets

Three concept set sizes are evaluated: 20 concepts, 30 concepts, and 50 concepts.

The filtering method described in Section 5 is used, which iteratively draws one concept for each
class, the one that minimizes the empirical risk in five seeds over a 50/50 CIFAR-10 training set
split. The entropy is estimated through 100 bins, and a lower threshold of 0.02 ensures that not all
activations are essentially equivalent.

C.5 Detailed description: Robustness to distribution shifts

Dataset Information

The dataset used in this experiment is MetaShift, focusing on the “Cat vs. Dog” setting, as described
in [26]. The percentages of minority classes evaluated are [0, 0.01, 0.07, 0.13]. The random seeds
used for this evaluation are [42, 43, 44, 45, 46, 47, 48, 49, 50, 51].

Configuration

The embedding model used is CLIP ViT-B/32. The preprocessing pipeline is the same as in the above
experiment.

The evaluated output models include a linear regressor, a decision tree, and nearest neighbors, all
with the standard hyperparameters from sklearn and trained on one hot encoded label.

Unfiltered Concept Set

The initial set of concepts generated by GPT-4 from which we sample is: Sharp, pointy ears; Floppy
ears; Rounded ears; Pointy ears; Thin tail with a tapering end; Bushy tail; Curly tail; Almond-shaped
eyes; Round eyes; Fine, soft fur; Smooth short fur; Curly fur; Wiry fur; Short, pointed snout; Long,
narrow snout; Flat snout; Fine whiskers; Thick whiskers; Slender and agile body; Large body;
Compact paws; Large paws; Grooming behavior; Arching back stretch; Wagging tail.

Filtered Concept Sets

The filtering method described in Section 5 is used, which iteratively draws a concept and keeps it if
it decreases the empirical risk in five seeds (threshold of 0). We used a 70/30 split for empirical risk
estimation. The entropy is estimated through 10 bins, and a lower threshold of 0.1 ensures that not all
activations fall into the same bucket.

C.6 Detailed description: Out-of-distribution generalization

Dataset information

The datasets used in this experiment are the MetaShift domain generalization datasets; see [26]. That
is,

Cat vs. Dog The "Cat vs. Dog" dataset has the following four different training configurations, all
evaluated on the same test set that contains images of dogs on a shelf.

• Configuration 1: Cat on a sofa or bed, and Dog in a cabinet or bed.

• Configuration 2: Cat on a sofa or bed, and Dog in a bag or box.

• Configuration 3: Cat on a sofa or bed, and Dog on a bench or with a bike.

• Configuration 4: Cat on a sofa or bed, and Dog on a boat or with a surfboard.

Bus vs. Truck The "Bus vs. Truck" dataset has the following four different training configurations,
all evaluated on the same test set containing images of trucks with airplanes.

• Configuration 1: Bus with clock or traffic light, and Truck with cone or fence.

• Configuration 2: Bus with clock or traffic light, and Truck with bike or mirror.
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• Configuration 3: Bus with clock or traffic light, and Truck with flag or tower.
• Configuration 4: Bus with clock or traffic light, and Truck with traffic light or dog.

Elephant vs. Horse The "Elephant vs. Horse" dataset has the following four different training
configurations, all evaluated on the same test set containing images of horses in a barn.

• Configuration 1: Elephant with fence or rock, and Horse in dirt or with trees.
• Configuration 2: Elephant with fence or rock, and Horse with fence or helmet.
• Configuration 3: Elephant with fence or rock, and Horse with car or wagon.
• Configuration 4: Elephant with fence or rock, and Horse with statue or cart.

Configuration

The embedding model used is CLIP ViT-B/32. The preprocessing pipeline is the same as in the two
previously described experiments.

The output model consists of linear regression on the one-hot encoded labels, with coefficients
determined using an exact solver.

Unfiltered Concept Set

The initial pool of concepts generated by GPT-4 from which we sample as described in Section 5 is:

• Cat vs. Dog: sharp, pointy ears; floppy ears; rounded ears; pointy ears; thin tail with a
tapering end; bushy tail; curly tail; almond-shaped eyes; round eyes; fine, soft fur; smooth
short fur; curly fur; wiry fur; short, pointed snout; long, narrow snout; flat snout; fine
whiskers; thick whiskers; slender and agile body; large body; compact paws; large paws;
grooming behavior; arching back stretch; wagging tail.

• Bus vs. Truck: Long and tall; Multiple axles; Trailer; Large, continuous rows of windows;
Passenger seating; Cargo space; Grille and large headlights; Cargo doors; Passenger doors
and emergency exits; Commercial text and logos; Public transit text and logos; Uniform
vehicle color scheme; Varied vehicle color scheme; Air conditioning units; Visible cargo.

• Elephant vs. Horse: large overall size; thick skin texture; large and fan-shaped ears; tusks;
trunk; wispy tail with sparse hair; bulky and robust body build; mane; small eyes relative to
body size, placed more to the side of the head; large, round feet with visible toenails; short
and thick neck; thick legs; uniform color without markings.

Filtered Concept Sets

We used the same approach as in the distribution shift experiments described above.
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D Additional Experiments

In this appendix, we discuss additional experiments to illustrate our theoretical insights further by
evaluating concept bottleneck models (CBMs) on additional datasets and baselines. Specifically, we
discuss:

1. Data-Efficiency Experiments on three datasets: CUB-200-2011 [37], Food-101 [7], and
the Describable Textures Dataset (DTD) [9], to evaluate the performance of CBMs across
varying sample sizes.

2. Out-of-Distribution Generalization on the CINIC-10 dataset [11], to assess the robustness
of CBMs to distribution shifts.

3. Comparison with Label-Free Concept Bottleneck Models [30] on CIFAR-10, bench-
marking our method against a relevant baseline from the literature.

D.1 Data-Efficiency Experiments

(a) Performance comparison of a linear probe on
the CLIP representation vs. our CBM across dif-
ferent training sizes on the CUB-200-2011 dataset.

(b) Performance comparison of a linear probe on
the CLIP representation vs. our CBM across dif-
ferent training sizes on the Food-101 dataset.

(c) Performance comparison of a linear probe on
the CLIP representation vs. our CBM across dif-
ferent training sizes on the DTD dataset.

Figure 4: Comparison of a linear probe on the CLIP [32] representation against our CBM across
different training sizes for three datasets: CUB-200-2011 [37] in Figure 4a, Food-101 [7] in Figure 4c,
and DTD [9] in Figure 4b. This figure illustrates the performance of both models across varying data
availability, highlighting the increased data efficiency of CBMs in the low sample regime and the
effect of misspecification in the large sample regime (see Theorem 1).

D.1.1 Experimental Setup

To evaluate the data efficiency of our CBM approach, we conducted experiments on three diverse
datasets.

• CUB-200-2011 [37]: A fine-grained dataset containing 200 classes of bird species, with
11,788 images annotated with 312 binary attributes (concepts).

• Food-101 [7]: A dataset with 101 food categories comprising 101,000 images.
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• Describable Textures Dataset (DTD) [9]: A texture database with 47 classes and 5,640
images, annotated with attributes describing the textures.

For each dataset, we compared the performance of:

• Baseline: A linear classifier trained directly on the CLIP [32] image embeddings.

• Our CBM: A concept bottleneck model where we first predict concepts from the image
embeddings and then use these predicted concepts to classify the images.

We varied the number of training samples to assess performance in different sample size regimes.
For each training size, we randomly sampled the corresponding number of examples (with balanced
classes) and trained the models five times with different random seeds to obtain averaged results.

D.1.2 Results and Discussion

The results are summarized in Figure 4. We observe the following trends:

• Small Sample Regime: In the low-data regime (< 10 samples per class), our CBM
outperforms the baseline in all three datasets. This supports our theoretical insight from
Theorem 1, which predicts that in the small sample regime, the first term of the risk
dominates, and the structured approach of the CBM leads to increased sample efficiency.

• Large Sample Regime: In the larger-data regime, the baseline begins to outperform the
CBM. This reversal is explained by the increasing influence of the approximation error term,
encapsulated in the ε coefficient in our theoretical analysis. As the sample size grows, the
information loss due to the bottleneck becomes more significant, determining the asymptotic
performance gap between the CBM and the baseline.

These results reaffirm the insights of Theorem 1, demonstrating how the trade-off between sample
efficiency and misspecification manifests itself in practice across different data sets. The CBM’s
advantage in low-data settings highlights its potential for applications where labeled data are very
scarce (e.g., rare diseases).

D.2 Out-of-Distribution Generalization on CINIC-10

D.2.1 Experimental Setup

To evaluate the robustness of CBMs to distribution shifts, we conducted an out-of-distribution
(OOD) generalization experiment using the CINIC-10 dataset [11]. CINIC-10 is derived from both
CIFAR-10 [25] and ImageNet [18], providing a testbed for OOD evaluation.

• Training Data: We trained models on a subset of the CIFAR-10 training set, with 750
images across 10 classes.

• Test Data: We evaluated the models in ImageNet images that belong to subclasses of the
original CIFAR-10 classes to introduce a distribution shift between the training and test data.

We compared the performance of the baseline linear classifier trained on CLIP image embeddings
against our CBM, using predicted concepts for classification.

D.2.2 Results and Discussion

The results are presented in Table 1. Our CBM demonstrates superior OOD generalization perfor-
mance compared to the baseline. This improved OOD performance aligns with our previous results
on the 12 datasets from the MetaShift collection, as discussed in Figure 3. The CBM’s reliance on
intermediate concepts, which can be more stable under distribution shifts and potentially remove
spurious features and confounders, as suggested by Theorem 2, contributes to its robustness.
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Model Accuracy (%)
Vanilla 70.4± 1.2
CBM 78.8± 0.7

Table 1: Out-of-distribution generalization comparison on CINIC-10 [11] between a linear probe on
the CLIP [32] embedding and our CBM method.

D.3 Comparison with Label-Free Concept Bottleneck Models

D.3.1 Experimental Setup

We compared our curation of concept sets with the Label-Free Concept Bottleneck Model [30]
(LF-CBM) method on the CIFAR-10 dataset.

For a fair comparison of the effect of the concept set selection, we made the following modifications.

• Concept Set Selection: We used the same sampling mechanism for concept selection,
sampling concepts ci ∼ L(c | CT ) using a fixed language model L and context CT (i.e.,
prompt).

• Image Embeddings: Both methods used the CLIP ViT-B/32 model to obtain image
embeddings.

• Classifier Architecture: A linear classifier (probe) was trained on top of the concept
embeddings.

We varied the training sample sizes and averaged the results over five random seeds.

D.3.2 Results and Discussion

Figure 5 illustrates the performance comparison between these two approaches, which highlights the
critical role of concept set curation through the consistent performance gap of more than 7.3% across
all training set sizes and up to 17.7%.

These results highlight the relevance of considering the properties of concept sets when using CBMs,
reinforcing the value of our theoretical contributions.

Figure 5: Performance comparison between our concept set curation method and the Label-Free
Concept Bottleneck Model (LF-CBM) [30] on CIFAR-10 [25]. The results demonstrate a consistent
performance gap, with our method outperforming LF-CBM by more than 7.3% across all training
set sizes and reaching up to 17.7%. This comparison underscores the impact of effective concept set
selection in concept bottleneck models, validating the importance of our theoretical insights.
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E Extended Limitations

E.1 Notable assumptions

The CBM Assumption We make the implicit assumption that human concepts have predictive
power for ML models, as discussed in Section 3.

Concepts as a linear space Although the assumption that concepts correspond to directions in a
high-dimensional space holds empirically (e.g., for the CLIP embedding [21, 41, 6]), it may break
when inspected closely. For example, this assumption cannot capture hierarchical relationships
between concepts. Investigating alternative representations and methods to identify and utilize
hierarchical concepts would enhance the robustness and interpretability of CBMs.

Input distribution for Theorem 1 We assume that the inputs are distributed isotropically for
analytical tractability. Although it might not hold in some real-world distributions, this assumption
includes all distributions whose density depends only on the distance to the origin, thereby being
quite flexible. Additionally, we observe in section 6 that the qualitative behavior in real-world tasks
aligns with the results from the theorem derived under these assumptions.

E.2 Other limitations

Interaction of effects The proposed theory addresses the analysis of in-domain generalization,
the impact of confounding, and error-in-variables separately. Still, one could explore considering
all of them simultaneously and their interactions. Integrating these aspects into a unified theoretical
framework remains an open challenge and could provide a more comprehensive understanding of
CBMs.

Scalability to massive datasets The method for estimating the impact on the risk of adding a new
concept can become computationally expensive for large-scale datasets. For such cases, numerical
methods for solving linear equations, such as EigenPro [1], or other risk estimation methods, should
be considered to improve efficiency without compromising accuracy.

Inheritance of the identifier’s bias CBMs may inherit biases present in the training data or external
knowledge sources, as discussed in Appendix G. More research is needed to mitigate potential biases
and guarantee equitable outcomes.

F Extended Future Work

Transference of Concept Properties Future work could further explore the CBM assumption
that beneficial inductive biases for humans extend to specific output models. This could involve
investigating how different model architectures and training paradigms impact the transferability of
these biases.

Operationalizing Concepts Considering concepts through the lens of our characterization provides
a principled approach to operationalizing them. Methods to generate concept sets based on their
ability to decrease entropy or enhance separability could be developed for unsupervised settings,
potentially leveraging statistical measures and techniques like the finite neural tangent kernel for
deeper analysis.

Derivation from Models Concepts can be extracted from trained models during a ‘model sleeping’
phase, where latent representations are analyzed and ranked according to their efficacy in reducing
complexity and enhancing task performance. This approach could provide insight into the most
informative concepts learned by the model.

Meta-Learning and Transfer Learning Conventional meta-learning and transfer learning methods
often integrate datasets with shared input features and targets. A concept-based representation could
facilitate data transfer across diverse input spaces and enhance the interpretability, generalizability,
and robustness of the model to data shifts. Leveraging large-language models (LLMs) to identify
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relevant concepts for a target task from a pool of knowledge datasets offers a novel pathway for
knowledge transfer.

Hierarchical Concept Structures Introducing a hierarchical structure of concepts as initially
explored by [31, 36] could provide a more nuanced understanding and representation of the data,
mirroring human cognitive processes. Although challenging to achieve with foundational models,
this approach could be explored by recursively distilling the most valuable concepts from successive
layers, enhancing the model’s ability to capture complex relationships.

Broader Implications and Ethical Considerations Future research should also consider the
broader implications and ethical considerations of using concept-based models. This includes
addressing potential biases, ensuring fairness, and evaluating the impact of these models in various
real-world applications.

G Broader Impacts

Although our main contributions can be considered foundational research and raise no immediate
fairness concerns, discussing the presence of biases in concept identification models for practical
use cases is relevant. These models have been shown to inherit and propagate societal biases [3],
potentially leading to unfair or discriminatory representations that will affect the resulting concept
representations.

Several strategies exist to mitigate these risks. First, we should ensure that we use models whose
training datasets are diverse and representative, thoroughly evaluated for bias, and employ techniques
to detect and correct biases. In particular, we can focus on models that stress transparency by
providing comprehensive documentation of datasets and detailing bias detection and correction
efforts.

However, provided that we used a model with solid guarantees of fairness, our conclusions suggest
that concept representations arising from such models can help reduce the bias inherited by trained
models on potentially biased datasets.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims, which we tried to sum-
marize neatly in the “Contributions” box. The contributions are well-delimited, emphasizing
the theoretical framework, theoretical results and insights, and method for concept set
generation. The corresponding proof and empirical validation of the theoretical results on
CIFAR-10 and various MetaShift datasets experiments supports the claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In addition to the assumptions discussed in the main text throughout sections
3, 4, 5, we discuss the main assumptions and further limitations in section E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The specific claims are stated in the main text statement of the results, and
both the statements and full proofs are provided in the Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the required details for reproducibility can be found either in the main text
or in appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code included as supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main setting is introduced for each experiment in the paper’s core, and the
full details are described in appendix C or in the code in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Figures 1 and 2 include 1 − σ bars over 10 seeds, and we detail this in the
corresponding captions. For figure 3, we use the full training data, and the regressor is
computed exactly, so we plot the obtained accuracies without uncertainty estimations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the compute resources used are detailed in appendix C.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not involve human subjects. We use publicly available
datasets, CIFAR-10 and MetaShift, which do not include issues with privacy, consent,
and deprecated datasets to the best of our knowledge. Furthermore, our methodology is
thoroughly documented in appendix C.2, promoting reproducibility and transparency, and
we provide the code to ensure access to research artifacts. We discuss societal impacts and,
in particular, potential biases in appendix G.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: See appendix G for a discussion of Broader Impacts. In this section, we discuss
potential fairness concerns due to biases in concept identification models, which can lead
to unfair outcomes. Mitigation strategies include diverse training datasets, bias detection
and correction, and comprehensive documentation. On the other hand, we also discuss how
concept representations derived from a fair model could help reduce the bias in models
trained on biased data.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve releasing data or models that pose a high risk for
misuse. Therefore, no specific safeguards are necessary for the responsible release of data
or models in this context.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide the suggested details for the assets we use in Appendix C.1.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets. Instead, it builds on existing datasets
(CIFAR-10 and MetaShift) and focuses on theoretical and empirical improvements in
concept bottleneck models (CBMs) without introducing new datasets or models.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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