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ABSTRACT

Prompt-based learning has emerged as a successful paradigm in natural language
processing, where a single general-purpose language model can be instructed to
perform any task specified by input prompts. Yet task specification in robotics
comes in various forms, such as imitating one-shot demonstrations, following lan-
guage instructions, and reaching visual goals. They are often considered different
tasks and tackled by specialized models. This work shows that we can express a
wide spectrum of robot manipulation tasks with multimodal prompts, interleaving
textual and visual tokens. We design a transformer-based generalist robot agent,
VIMA, that processes these prompts and outputs motor actions autoregressively.
To train and evaluate VIMA, we develop a new simulation benchmark with thou-
sands of procedurally-generated tabletop tasks with multimodal prompts, 600K+
expert trajectories for imitation learning, and four levels of evaluation protocol
for systematic generalization. VIMA achieves strong scalability in both model
capacity and data size. It outperforms prior SOTA methods in the hardest zero-shot
generalization setting by up to 2.9× task success rate given the same training
data. With 10× less training data, VIMA still performs 2.7× better than the top
competing approach. We open-source all code, pretrained models, dataset, and
simulation benchmark at https://vimalabs.github.io.

1 INTRODUCTION

Transformers have given rise to remarkable multi-task consolidation across many AI domains. For
example, users can describe a task using natural language prompt to GPT-3 (Brown et al., 2020),
allowing the same model to perform question answering, machine translation, text summarization,
etc. Prompt-based learning provides an accessible and flexible interface to communicate a natural
language understanding task to a general-purpose model.

We envision that a generalist robot agent should have a similarly intuitive and expressive interface
for task specification. What does such an interface for robot learning look like? As a motivating
example, consider a personal robot tasked with household activities. We can ask the robot to bring us
a cup of water by a simple natural language instruction. If we require more specificity, we can instead
instruct the robot to “bring me <image of the cup>”. For tasks requiring new skills, the robot
should be able to adapt preferably from a few video demonstrations (Duan et al., 2017). Tasks that
need interaction with unfamiliar objects can be easily explained via a few image examples for novel
concept grounding (Hermann et al., 2017). Finally, to ensure safe deployment, we can further specify
visual constraints like “do not enter <image> room”.

To enable a single agent with all these capabilities, we make three key contributions in this work:
1) a novel multimodal prompting formulation that converts a wide spectrum of robot manipulation
tasks into one sequence modeling problem; 2) a new robot agent model capable of multi-tasking
and zero-shot generalization; and 3) a large-scale benchmark with diverse tasks to systematically
evaluate the scalability and generalization of our agents.

∗Work done during NVIDIA internship.

Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.
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Figure 1: Multimodal prompts for task specification. We observe that many robot manipulation
tasks can be expressed as multimodal prompts that interleave language and image/video frames. We
propose VIMA, an embodied agent model capable of processing mulitimodal prompts (left) and
controlling a robot arm to solve the task (right).

We start with the observation that many robot manipulation tasks can be formulated by multimodal
prompts that interleave language and images or video frames. For example, Rearrangement (Ba-
tra et al., 2020), a type of Visual Goal, can be formulated as “Please rearrange objects to match
this {scene image}”; Novel Concept Grounding looks like “This is a dax {new object}1 and
this is a blicket {new object}2. Put two metal dax on the marble blicket.”; Few-shot Imita-
tion can embed video snippet in the prompt “Follow this motion trajectory for the wooden cube:
{frame1}, {frame2}, {frame3}, {frame4}”; and expressing Visual Constraint is as simple as
adding the clause “without touching {safety boundary}”.

Multimodal prompts not only have more expressive power than individual modalities, but also enable
a uniform sequence IO interface for training generalist robot agents. Previously, different robot
manipulation tasks require distinct policy architectures, objective functions, data pipelines, and
training procedures (Aceituno et al., 2021; Stengel-Eskin et al., 2022; Lynch & Sermanet, 2021),
leading to siloed robot systems that cannot be easily combined for a rich set of use cases. Instead, our
multimodal prompt interface allows us to harness the latest advances in large transformer models (Lin
et al., 2021; Tay et al., 2020; Khan et al., 2021) for developing scalable multi-task robot learners.

To this end, we design a novel VisuoMotor Attention model (VIMA, reads “v-eye-ma”). The
architecture follows the encoder-decoder transformer design proven to be effective and scalable
in NLP (Raffel et al., 2020). VIMA encodes an input sequence of interleaving textual and visual
prompt tokens with a pretrained language model (Tsimpoukelli et al., 2021), and decodes robot
control actions autoregressively for each environment interaction step. The transformer decoder is
conditioned on the prompt via cross-attention layers that alternate with the usual causal self-attention.
Instead of operating on raw pixels, VIMA adopts an object-centric approach. We parse all images in
the prompt or observation into objects by off-the-shelf detectors (He et al., 2017), and flatten them
into sequences of object tokens. All these design choices combined deliver a conceptually simple
architecture with strong model and data scaling properties.

To systematically evaluate our proposed algorithm, we introduce a new benchmark (VIMA-BENCH)
built on the Ravens simulator (Zeng et al., 2020; Shridhar et al., 2021). We provide 17 representative
meta-tasks with multimodal prompt templates, which can be procedurally instantiated into thou-
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Figure 2: Evaluation Protocol in VIMA-BENCH. We design 4 levels of evaluation settings to
measure the zero-shot generalization capability of an agent systematically. Each level deviates more
from the training distribution, and thus is strictly more challenging than the previous level.

sands of individual tasks by various combinations of textures and tabletop objects. VIMA-BENCH
establishes a 4-level protocol to evaluate progressively stronger generalization capabilities, from ran-
domized object placement to novel tasks altogether (Fig. 2). To demonstrate the scalability of VIMA,
we train a spectrum of 7 models ranging from 2M to 200M parameters. Our approach outperforms
strong prior SOTA methods such as Gato (Reed et al., 2022), Decision Transformer (Chen et al.,
2021), and Flamingo (Alayrac et al., 2022) across all 4 levels of zero-shot generalization and all
model capacities, sometimes by a large margin (up to 2.9× task success rate given the same amount of
training data, and 2.7× better even with 10× less data). We open-source the simulation suite, training
dataset, algorithm implementation, and pretrained model checkpoints to ensure reproducibility and
facilitate future works from the community.

2 MULTIMODAL PROMPTS FOR TASK SPECIFICATION

A central and open problem in robot learning is task specification (Agrawal, 2022). Our key insight is
that various task specification paradigms (such as goal conditioning, video demonstration, natural
language instruction) can all be instantiated as multimodal prompts (Fig. 1). Concretely, a multimodal
prompt P of length l is defined as an ordered sequence of arbitrarily interleaved texts and images
P := [x0, x1, . . . , xl], where each element xi ∈ {text, image}.

Task Suite. The flexibility afforded by multimodal prompts allows us to specify and build models
for a huge variety of task specification formats. Here we consider the following six task categories:

1. Simple object manipulation: simple tasks like “put <object> into <container>”,
where each image in the prompt corresponds to a single object;

2. Visual goal reaching: manipulating objects to reach a goal configuration, e.g., Rearrange-
ment (Batra et al., 2020);

3. Novel concept grounding: the prompt contains unfamiliar words like “dax” and “blicket”,
which are explained by in-prompt images and then immediately used in an instruction. This
tests the agent’s ability to rapidly internalize new concepts;

4. One-shot video imitation: watching a video demonstration and learning to reproduce the
same motion trajectory for a particular object;

5. Visual constraint satisfaction: the robot must manipulate the objects carefully and avoid
violating the (safety) constraints;

6. Visual reasoning: tasks that require reasoning skills, such as appearance matching “move
all objects with same textures as <object> into a container”, and visual memory, “put
<object> in container and then restore to their original position”.

Note that these six categories are not mutually exclusive. For example, a task may introduce a
previously unseen verb (Novel Concept) by showing a video demonstration, or combine goal reaching
with visual reasoning. More details about the task suite are discussed in Appendix, Sec. B.
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3 VIMA-BENCH: BENCHMARK FOR MULTIMODAL ROBOT LEARNING

Simulation Environment. Existing benchmarks are generally geared toward a particular task
specification. To our knowledge, there is no benchmark that provides a rich suite of multimodal
tasks and a comprehensive testbed for targeted probing of agent capabilities. To this end, we
introduce a new benchmark suite for multimodal robot learning that we call VIMA-BENCH. We
built our benchmark by extending the Ravens robot simulator (Zeng et al., 2020; Shridhar et al.,
2021). VIMA-BENCH supports extensible collections of objects and textures to compose multimodal
prompts and procedurally generate a large number of tasks. Specifically, we provide 17 meta-tasks
with multimodal prompt templates, which can be instantiated into 1000s of individual tasks. Each
meta-task belongs to one or more of 6 task specification methods mentioned above. VIMA-BENCH
can generate large quantities of imitation learning data via scripted oracle agents. More details are
elaborated in Appendix, Sec. A.

Observation and Actions. The observation space of our simulator includes RGB images rendered
from both frontal view and top-down view. Groundtruth object segmentations and bounding boxes are
also provided for training object-centric models (Sec. 4). We inherit the high-level action space from
Zeng et al. (2020), which consists of primitive motor skills like “pick and place” and “wipe”. These
are parameterized by poses of the end effector. Our simulator also features scripted oracle programs
that can generate expert demonstrations by using privileged simulator state information, such as the
precise location of all objects, and the groundtruth interpretation of the multimodal instruction.

Training Dataset. We leverage the pre-programmed oracles to generate a large offline dataset of
expert trajectories for imitation learning. Our dataset includes 50K trajectories per meta-task, and
650K successful trajectories in total. We hold out a subset of object geometries and textures for
evaluation, and designate 4 out of 17 meta-tasks as a testbed for zero-shot generalization.

Evaluating Zero-Shot Generalization. Each task in VIMA-BENCH has a binary success criterion
and does not provide partial reward signals. During test time, we execute the agent policies in the
physics simulator for multiple episodes to compute a success rate in percentage. The average success
rate over all evaluated meta-tasks will be the final reported metric.

We design a 4-level evaluation protocol (Fig. 2) to systematically probe the generalization capabilities
of learned agents. Each level deviates more from the training distribution, and is thus strictly harder
than the previous one:

1. Placement generalization: all prompts are seen verbatim during training, but only the
placement of objects on the tabletop is randomized at testing.

2. Combinatorial generalization: all materials (adjectives) and 3D objects (nouns) are seen
during training, but new combinations of them appear in testing.

3. Novel object generalization: test prompts and the simulated workspace include novel
adjectives and objects.

4. Novel task generalization: new meta-tasks with novel prompt templates at test time.

4 VIMA: VISUOMOTOR ATTENTION MODEL

Our goal is to build a robot agent which can perform any task specified by multimodal prompts.
To learn an effective multi-task robot policy, we propose VIMA, a minimalistic multi-task
encoder-decoder architecture with object-centric design (Fig. 3). Concretely, we learn a robot
policy π(at|P,H), where H := [o1, a1, o2, a2, . . . , ot] denotes the past interaction history, and
ot ∈ O, at ∈ A are observations and actions at each interaction step. We encode the prompt via a
frozen pre-trained langauge model and decode the robot motor commands conditioned on the encoded
prompt via cross-attention layers.

Tokenization. There are 3 formats of raw input in the prompt — text, image of a single object, and
image of a full tabletop scene (e.g., for Rearrangement or imitation from video frames). For text
inputs, we use pre-trained T5 tokenizer and word embedding to obtain word tokens. For images
of full scenes, we first extract individual objects using off-the-shelf Mask R-CNN (He et al., 2017).
Each object is represented as a bounding box and a cropped image. We then compute object tokens
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Figure 3: VIMA. We encode the multimodal prompts with a pre-trained T5 model, and condition the
robot controller on the prompt through cross-attention layers. The controller is a causal transformer
decoder consisting of alternating self and cross attention layers that predicts motor commands
conditioned on prompts and interaction history.

by encoding them with a bounding box encoder and a ViT, respectively. For images of single objects,
we obtain tokens in the same way except with a dummy bounding box. We then follow Tsimpoukelli
et al. (2021) to produce prompt encoding by passing the resulted token sequence to a pre-trained T5
encoder model. Our positional embedding is learnable and absolute.

Robot Controller. A challenging aspect of designing multi-modal multi-task policy is to select a
suitable conditioning mechanism. In our schema (Fig. 3), the robot controller (decoder) is conditioned
on the prompt sequence P by a series of cross-attention layers between P and the trajectory history
sequence H. Each cross-attention layer generates an output sequence H′ = softmax

(
QHK⊺

P√
d

)
VP ,

where d is the embedding dimension. This design choice enjoys three advantages, including
1) strengthened connection to prompt, 2) intact and deep flow of the original prompt tokens, and
3) better computational efficiency. VIMA decoder consists of L alternating cross-attention and
self-attention layers. Finally, for ease of learning and optimization, we follow common practice
(Baker et al., 2022) to map predicted action tokens to discretized poses of the robot arm.

Training. We follow the standard behavioral cloning to train our models by minimizing the neg-
ative log-likelihood of predicted actions. Concretely, for a trajectory with T steps, we minimize
minθ

∑T
t=1 − log πθ(at|P,H). The entire training is conducted on an offline dataset with no access

to the physics simulator. To make VIMA robust to detection inaccuracies and failures, we apply
object augmentation by randomly injecting false-positive detection outputs. After training, we select
model checkpoints for evaluation based on the aggregated accuracy on a held-out validation set.
The evaluation involves interacting with the physics simulator. We follow the best practices to train
Transformer models using the AdamW optimizer (Loshchilov & Hutter, 2019), learning rate warm-up,
cosine annealing (Loshchilov & Hutter, 2016), etc. See Appendix Sec. C & D for a comprehensive
listing of our model and training hyperparameters.
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Figure 4: Scaling model and data. Top: We compare performance of different methods with model
sizes ranging from 2M to 200M parameters. Across all model sizes and generalization levels VIMA
outperforms prior works. Bottom: For a fixed model size of 92M parameters we compare the effect of
imitation learning dataset size of 0.1%, 1%, 10%, and full imitation data. VIMA is extremely sample
efficient and can achieve performance comparable to other methods with 10× less data.

5 EXPERIMENTS

In this section, we aim to answer three main questions:

1. How does VIMA compare with prior SOTA transformer-based agents on a diverse collection
of multimodal-prompted tasks?

2. What are the scaling properties of our approach in model capacity and data size?

3. How do different visual tokenizers, prompt conditioning, and prompt encoding affect
decision making?

5.1 BASELINES

Gato (Reed et al., 2022) introduces a decoder-only model that solves tasks from multiple domains
where tasks are specified by prompting the model with the observation and action subsequence. For
fair comparison, we provide the same conditioning as VIMA, i.e., our multimodal embedded prompt.
Input images are divided into patches and encoded by a ViT (Dosovitskiy et al., 2020) model to
produce observation tokens.

Flamingo (Alayrac et al., 2022) is a vision-language model that learns to generate textual completion
in response to multimodal prompts. It embeds a variable number of prompt images into a fixed
number of tokens via the Perceiver Resampler module, and conditions the language decoder on the
encoded prompt by cross-attention. Flamingo does not work with embodied agents out of the box.
We adapt it to support decision-masking by replacing the output layer with robot action heads.

Decision Transformer (DT) (Chen et al., 2021; Janner et al., 2021) is among the first works to
reinterpret the RL problem as transformer sequence modeling. In visual RL domains like Atari games,
DT is prompted on the desired reward value and outputs actions autoregressively given the RGB
observation embedding. We replace DT’s initial reward prompt with our multimodal task prompt
embeddings, and remove all subsequent reward tokens.
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Figure 5: Ablation on visual tokenizers. We compare the performance of VIMA-200M model
across different visual tokenizers. Our proposed object tokens outperform all methods that learn
directly from raw pixels, and Object Perceiver that downsamples the object sequence to a fixed
number of tokens.

5.2 EVALUATION RESULTS

We compare VIMA against other SOTA methods on the four levels of generalization provided in our
benchmark for different model and training dataset sizes.

Model scaling. We train all methods for a spectrum of model capacities from 2M to 200M
parameters, evenly spaced on the log scale. The encoder size is kept constant (pretrained T5-Base)
for all methods and excluded from the parameter count. Across all levels of zero-shot generalization,
we find that VIMA strongly outperforms prior work. Although models like Gato and Flamingo show
improved performance with bigger model sizes, VIMA consistently achieves superior performance
over all model sizes. We note that this can only be achieved with both cross-attention and object
token sequence representation — altering any component will degrade the performance significantly,
especially in the low model capacity regime (ablations in Sec. 5.3).

Data scaling. Next we investigate how different methods scale with varying dataset sizes. We
compare model performance at 0.1%, 1%, 10% and full imitation learning dataset provided in
VIMA-BENCH (Fig. 4). VIMA is extremely sample efficient and with just 1% of the data can
achieve performance similar to baseline methods trained with 10× more data for L1 and L2 levels of
generalization. In fact, for L4 we find that with just 1% of training data, VIMA already outperforms
prior work trained with entire dataset. Finally, across all levels with just 10% of the data, VIMA
can outperform prior work trained with the full dataset by a significant margin. We hypothesize that
the data efficiency can be attributed to VIMA’s object-centric representation, which is less prone to
overfitting than learning directly from pixels in the low-data regime. This is consistent with findings
from Sax et al. (2018), which demonstrates that embodied agents conditioned on mid-level visual
representations tend to be significantly more sample-efficient than end-to-end control from raw pixels.

Progressive Generalization. Finally, we compare the relative degradation in performance as we
test the models on progressively challenging zero-shot evaluation levels without further finetuning
(Fig. 6). Our method exhibits a minimal performance regression, especially between L1 → L2 and
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Figure 7: Ablation: Prompt conditioning. We compare our method (xattn: cross-attention prompt
conditioning) with a vanilla transformer decoder (gpt-decoder) across different model sizes. Cross-
attention is especially helpful in low-parameter regime and for harder generalization tasks.

L1 → L3. In contrast, other methods can degrade as much as 20%, particularly in the more difficult
generalization testing scenarios. Although all methods degrade significantly when evaluated on L4
(Novel Tasks), the drop in performance for VIMA is only half as severe as all other baselines. This
results suggest that VIMA has developed more generalizable policy and robust representations than
the competing approaches.

5.3 ABLATION STUDIES
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Figure 6: VIMA incurs much less per-
formance drop than baselines as we eval-
uate on progressively harder zero-shot
generalization.

Through extensive experiments, we ablate different design
choices in VIMA and study their impact on robot decision
making. We focus on the following 3 aspects: visual
tokenization, prompt encoding, and prompt conditioning
variants.

Visual tokenization. As explained in Sec. 4, VIMA
processes the prompt and observation images into a vari-
able number of object tokens with an off-the-shelf Mask
R-CNN implementation. How important is this particular
choice of visual tokenizer? We study 5 different variants
and empirically evaluate their 4 levels of generalization
performance on VIMA-BENCH. (1) Ours (Oracle):
instead of using Mask R-CNN, we directly read out the
groundtruth bounding box from the simulator. In other
words, we use a perfect object detector to estimate the
upper bound on the performance of this study; (2) Object
Perceiver: we apply a Perceiver module (Jaegle et al., 2021b;a) to convert the variable number
of objects detected in each frame to a fixed number of tokens. Perceiver is more computationally
efficient because it reduces the average sequence length; (3) Image Perceiver: the same architecture
as the Perceiver Resampler in Flamingo, which converts an image to a small, fixed number of tokens;
(4) Image patches: following Gato, we divide an RGB frame into square patches, and extract ViT
embedding tokens. The number of patches is more than the output of Image Perceiver; (5) Single
image: Decision Transformer’s tokenizer, which encodes one image into a single token.

Fig. 5 shows the ablation results. We highlight a few findings. First, we note that our Mask R-CNN
detection pipeline (Appendix, Sec. A.20) incurs a minimal performance loss compared to the oracle
bounding boxes, thanks to the object augmentation (Sec. 4) that boosts robustness during training.
Second, tokenizing from raw pixels (Image Perceiver, patches, or single embedding) consistently
underperforms our object-centric format. We hypothesize that these tokenizers have to allocate extra
internal capacity to parse the objects from low-level pixels, which likely impedes learning. Sax
et al. (2018) echoes our finding that using mid-level vision can greatly improve agent generalization
compared to an end-to-end pipeline. Third, even though Ours and Object Perceiver both use the same
object bounding box inputs, the latter is significantly worse in decision making. We conclude that
it is important to pass the variable sequence of objects directly to the robot controller rather than
downsampling to a fixed number of tokens.
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Prompt Conditioning. VIMA conditions the robot controller (decoder) on the encoded prompt by
cross-attention. A simple alternative is to concatenate the prompt P and interaction history H into one
big sequence, and then apply a decoder-only transformer like GPT (Radford et al., 2018) to predict
actions. In this ablation, we keep the object tokenizer constant, and only switch the conditioning
mechanism to causal sequence modeling. Fig. 7 shows the comparison of VIMA (xattn) and the
gpt-decoder variant across 4 generalization levels. While GPT achieves comparable performance
in larger models, cross-attention still dominates in the small-capacity range and generalizes better
in the most challenging L4 (Novel Task) setting. Our hypothesis is that cross-attention helps
the controller stay better focused on the prompt instruction at each interaction step. This bears
resemblance to the empirical results in Sanh et al. (2021); Wang et al. (2022b), which show that
well-tuned encoder-decoder architectures can outperform GPT-3 in zero-shot generalization.

Prompt Encoding. We vary the size of the pre-trained T5 encoder (Raffel et al., 2020) to study
the effect of prompt encoding. We experiment with three T5 model capacities: t5-small (30M),
t5-base (111M), to t5-large (368M). For all T5 variants, we fine-tune the last two layers and
freeze all other layers. We find no significant difference among the variants (Appendix, Sec. E.2),
thus we set t5-base as default for all our models.

6 RELATED WORK

Multi-task Learning by Sequence Modeling. Transformers have enabled task unification across
many AI domains (Raffel et al., 2020; Radford et al., 2019; Brown et al., 2020; Chen et al., 2022a;b;
Lu et al., 2022; Wang et al., 2022c; Alayrac et al., 2022; Reed et al., 2022). For example, in NLP,
T5 (Raffel et al., 2020) unifies all language problems into the same text-to-text format. GPT-3 (Brown
et al., 2020), PaLM (Chowdhery et al., 2022), and Megatron-Turing NLG (Shoeybi et al., 2019)
demonstrate emergent behaviours of intuitive task specifications by zero-shot prompting without
any finetuning. In computer vision, Florence (Yuan et al., 2021), BiT (Kolesnikov et al., 2020),
and MuST (Ghiasi et al., 2021) pre-train a shared backbone model at scale for general visual
representations and transfer it across downstream vision tasks. Pix2Seq (Chen et al., 2022b) casts
many vision problems into a unified sequence format. In multimodal learning, Flamingo (Alayrac
et al., 2022), Frozen (Tsimpoukelli et al., 2021), and VL-T5 (Cho et al., 2021) design a universal API
that ingests an interleaving sequence of images and text and generates free-form text. Gato (Reed
et al., 2022) and HighMMT (Liang et al., 2022) are massively multi-task models across NLP, vision,
and embodied agents. Our work is most similar in spirit to Gato, but we focus primarily on enabling
an intuitive, multimodal prompting interface for a generalist robot agent.

Foundation Models for Embodied Agents. Foundation models (Bommasani et al., 2021; Brown
et al., 2020; Raffel et al., 2020; Ramesh et al., 2022; Wei et al., 2022) have demonstrated strong
emergent properties like zero-shot prompting and complex reasoning. There are many ongoing
efforts to replicate this success for embodied agents, focusing on 3 aspects: 1) Transformer
agent architecture: Decision Transformer (Chen et al., 2021; Janner et al., 2021; Zheng et al.,
2022; Xu et al., 2022) and Gato (Reed et al., 2022) leverage the powerful self-attention models
for sequential decision making. CLIPort (Shridhar et al., 2021) and Perceiver-Actor (Shridhar
et al., 2022) apply large transformers to robot manipulation tasks. Less is More (Wang et al., 2021)
generates navigation instructions from a mixture of visual landmarks and text. 2) Pre-training for
better representations: MVP (Xiao et al., 2022), R3M (Nair et al., 2022), and Parisi et al. (2022)
pre-train general visual representations for robotic perception. Li et al. (2022); Reid et al. (2022)
finetune from LLM checkpoints to accelerate policy learning. MineDojo (Fan et al., 2022) and
Ego4D (Grauman et al., 2021) provide large-scale multimodal databases to facilitate scalable policy
training. 3) Large language models for robot learning: SayCan (Ahn et al., 2022) leverages the
500B PaLM (Chowdhery et al., 2022) for zero-shot concept grounding. Socratic Models (Zeng et al.,
2022) composes multiple vision and language foundation models (VLMs) for multimodal reasoning
in videos. Huang et al. (2022a), Inner Monologue (Huang et al., 2022b) and LM-Nav (Shah et al.,
2022) successfully apply LLMs to long-horizon robot planning. VIMA differs from these works in
our novel multimodal prompting formulation, which existing LLMs and VLMs do not easily support.

Robot Manipulation and Benchmarks. There are a wide range of robot manipulation tasks that
require different skills and task specification formats, such as instruction following (Stepputtis et al.,
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2020; Shridhar et al., 2021; Lynch & Sermanet, 2021), one-shot imitation (Finn et al., 2017; Dasari
& Gupta, 2020; Duan et al., 2017), rearrangement (Batra et al., 2020; Weihs et al., 2021; Szot et al.,
2021), constraint satisfaction (Brunke et al., 2021; Srinivasan et al., 2020; Thananjeyan et al., 2021),
and reasoning (Shridhar et al., 2020; Gupta et al., 2019; Ahmed et al., 2021; Toyer et al., 2020; Lim
et al., 2021). Multiple physics simulation benchmarks are introduced to study the above tasks. For
example, iGibson (Shen et al., 2020; Li et al., 2021; Srivastava et al., 2021) simulates interactive
household scenarios. Ravens (Zeng et al., 2020) and Robosuite (Zhu et al., 2020; Fan et al., 2021)
design various tabletop manipulation tasks with realistic robot arms. Our VIMA-BENCH is the first
robot learning benchmark to support multimodal-prompted tasks. We also standardize the evaluation
protocol to systematically measure an agent’s generalization capabilities.

A more extended literature review can be found in Appendix, Sec. F.

7 CONCLUSION

Similar to GPT-3, a generalist robot agent should have an intuitive and expressive interface for human
users to convey their intent. In this work, we introduce a novel multimodal prompting formulation that
converts diverse robot manipulation tasks into a uniform sequence modeling problem. We propose
VIMA, a conceptually simple transformer-based agent capable of solving tasks like visual goal,
one-shot video imitation, and novel concept grounding with a single model. VIMA exhibits superior
model and data scaling properties, and provides a strong starting point for future work.
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A SIMULATOR DETAILS

We build our VIMA-BENCH simulation suite upon the Ravens physics simulator (Zeng et al., 2020;
Shridhar et al., 2021). Specifically, it is supported by PyBullet (Coumans & Bai, 2016–2021) with a
Universal Robot UR5 arm. The size of the tabletop workspace is 0.5× 1m. Our benchmark contains
extensible sets of object geometries and textures. Instantiated from an object-texture combination,
all object instances can be rendered as RGB images appeared in multimodal prompts. Figure A.1
displays all object geometries. Figure A.2 displays all textures.

The observation space of VIMA-BENCH includes RGB images from both frontal and top-
down views. It also includes a one-hot vector ∈ {0, 1}2 to indicate type of the end-effector
∈ {suction cup, spatula}. While a suction cup is equipped in most manipulation tasks, a spat-
ula is used in particular for visual constraint tasks, where an agent is asked to “wipe” objects.
VIMA-BENCH inherits the same action space from Zeng et al. (2020) and Shridhar et al. (2021),
which consists of primitive actions of “pick and place” for tasks with a suction cup as the end effector,
or “push” for tasks with a spatula. Both primitive actions contain two poses ∈ SE(2) specifying
target poses of the end effector. For the “pick and place” primitive, they represent the pick pose and
the place pose. Fir the “push” primitive, they represent the push starting pose and push ending pose.

Similar to prior work (Zeng et al., 2020; Shridhar et al., 2021), VIMA-BENCH provides scripted
oracles to generate successful demonstrations for all tasks. We leverage them to construct an offline
imitation dataset for behavioral cloning. Given a prompt, these pre-programmed bots can access
privileged information such as the correct object to pick and target location to place.

B TASK SUITE

We develop 17 meta tasks that belong to 6 diverse categories. Thousands of individual tasks and their
corresponding multimodal prompts can be procedually generated from these meta-task templates. We
use PyBullet (Coumans & Bai, 2016–2021) as our backend and the default renderer to produce the
RGB frames for training data and interactive test environments. For demonstration purpose, we apply
the NVISII (Morrical et al., 2020) raytracing renderer to enhance the visual quality. We elaborate
each meta task in the following subsections.

B.1 SIMPLE OBJECT MANIPULATION

This task category asks agents to follow basic instructions specified by multimodal prompts.

Task 01: Pick the specified object(s) and place it into the specified object.

• Prompt: Put the {object}1 into the {object}2.
• Description: The image placeholder {object}1 is the object to be picked and

the {object}2 is the container object. The agent requires to recognize the ob-
jects with the correct color-shape combinations. To extend the difficulties, it sup-
ports more than one object to be picked or placed. For example, the prompt
Put the {object}1 and {object}2 into the {object}3. asks to pick two
different objects and place into a target container. We uniformly sample different color-shape
combos for objects to be picked and containers.

• Success Criteria: All specified object(s) to pick are within the bounds of the container
object(s), with specified shapes and textures provided in the prompt.

• Oracle Trajectory: Shown in Fig. A.3 with its multimodal prompt.

Task 02: In the workspace, put the objects with a specified texture shown in the scene image in the
prompt into container object(s) with a specified color. This task requires the agent to find the correct
object to manipulate by grounding the textural attributes from both natural language descriptions and
the visual scene images.

• Prompt: Put the {texture}1 object in {scene} into the {texture}2
object.

22



L-shaped block block bowl container cross diamond

flower frame heart hexagon letter A letter E

letter G letter M letter R letter T letter V line

pallet pan pentagon ring round shorter block

small block square star three-sided
 rectangle

triangle

Figure A.1: Object Gallery in VIMA-BENCH textured with random textures. Bowl and pan are
from Google Scanned Objects (Downs et al., 2022) while others are from Ravens (Zeng et al., 2020)
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Figure A.2: Texture Gallery in VIMA-BENCH. The first row of image-based textures are from
Blender Cloud Libraries (Weikert et al., 2022), while others are generated by ourselves.
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Put the             into the                      .

Figure A.3: Simple Object Manipulation: Task 01

• Description: The text placeholder {texture}1 and {texture}2 are sampled textures for
objects to be picked and the container objects, respectively. The number of dragged objects
with the same texture can be varied. {scene} is the workspace-like image placeholder.
There is a designated number of distractors with different textures (and potentially different
shapes) in the scene. For each distractor in the workspace, it has 50% chance to be either
dragged or container distractor object with different textures from those specified in the
prompt.

• Success Criteria: All objects in the workspace with {texture}1 are within the bounds of
the container object with {texture}2.

• Oracle Trajectory: Shown in Fig. A.4 with its multimodal prompt.

Put the green and blue stripe object in into the yellow paisley object.

Figure A.4: Simple Object Manipulation: Task 02

Task 03: Rotate objects clockwise by certain degrees along z-axis. Only rotationally asymmetric
objects are considered in this task.

• Prompt: Rotate the {object}1 {angles} degrees.

• Description: The agent is required to rotate all objects in the workspace specified by
the image placeholder {object}1. There are also objects with different color-shape
combinations in the workspace as distractors. {angles} is the sampled degree that the
dragged object needs to be rotated. A target angle is sampled from 30◦, 60◦, 90◦, 120◦, and
150◦.

• Success Criteria: The position of the specified object matches its original position, and the
orientation matches the orientation after rotating specific angles.

• Oracle Trajectory: Shown in Fig. A.5 with its multimodal prompt.

B.2 VISUAL GOAL REACHING

This task category requires agents to manipulate objects in the workspace to reach goal states
represented as images shown in prompts.
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Rotate the             120 degrees.

Figure A.5: Simple Object Manipulation: Task 03

Task 04: Rearrange target objects in the workspace to match goal configuration shown in prompts.
Note that to achieve the goal configuration, distractors may need to be moved away first.

• Prompt: Rearrange to this {scene}.
• Description: Objects in the scene placeholder {scene} are target objects to be manipulated

and rearranged. In the workspace, the same target objects are spawned randomly, potentially
with distractors randomly spawned as well. With a defined distractor conflict rate, the
position of each distractor has this probability to occupy the position of any target object
such that the rearrangement can only succeed if moving away that distractor first.

• Success Criteria: The configuration of target objects in the workspace matches that specified
in the prompt.

• Oracle Trajectory: Shown in Fig. A.6 with its multimodal prompt. .

Rearrange to this                                                .

Figure A.6: Visual Goal Reaching: Task 04

Task 05: Extend the task 04 by requiring the agent to restore rearranged objects to the initial setup
after the “rearranging” phase.

• Prompt: Rearrange objects to this setup {scene} and then restore.

• Description: Same as the task 04, except introducing the instruction ”restore”.

• Success Criteria: Meet the success criteria of the task 04, and then within the allowed max
steps restore all target objects to their initial configurations.

• Oracle Trajectory: Shown in Fig. A.7 with its multimodal prompt.
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Rearrange objects to this setup                                                   and then restore.

Figure A.7: Visual Goal Reaching: Task 05

B.3 NOVEL CONCEPT GROUNDING

This task category requires agents to ground new concepts of adjectives, nouns, or verbs via visual
perception and language understanding. Prompts consist of two parts: a definition part followed by
an instruction part. In the definition part, novel conceptions are defined by multimodal illustrations
with multiple support examples. In the instruction part, agents are asked to achieve the goal by
properly applying concepts from the definition part. The assignment of unique nonsense words is
varied and independent for each task instance such that tasks can only be solved if the agent applies
the reasoning correctly. This ability is also referred to as fast-mapping (Heibeck & Markman, 1987).

Task 06: Ground comparative adjectives by comparing the size or the textural saturation of objects
and manipulating the correct object(s) instructed in the prompt.

• Prompt:{demo object}1 is {novel adj} than {demo object}2. Put the
{adv} {novel adj} {object}1 into the {object}2.

• Description: The sampled adjective {novel adj} is a dummy adjective placeholder
for agent to ground. By default, the novel adjective set is {daxer, blicker,
modier, kobar}. The real meaning can be related to size (smaller/larger) or textu-
ral saturation (lighter/darker texture). The image placeholders {demo object}1 and
{demo object}2 illustrate how the novel adjective is defined. For example, if the
real comparison is ”taller”, then the sampled object in {demo object}1 is taller than
{demo object}2. The choices of the novel adjective and the real meaning are indepen-
dently sampled for different task instances. For the instruction part, this task is similar to
task 01, where the agent is required to pick the specified dragged object(s) with the novel
adjective attribute and then place it into the specified container object. To avoid revealing the
correct object to manipulate, we use a neutral texture for objects appeared in the instruction
part.

• Success Criteria: All target objects with the specified adjective attribute are within the
bounds of the specified container object.

• Oracle Trajectory: Shown in Fig. A.8 with its multimodal prompt.

Task 07: Orthogonal to task 06 by requiring to learn mappings of novel nouns.

• Prompt: This is a {novel name}1 {object}1. This is a {novel name}2
{object}2. Put {novel name}1 into a {novel name}2.

• Description: Novel noun words are defined with the text placeholders {novel name}1
and {novel name}2, following their image placeholders {object}1 and {object}2,
for the target object and container object, respectively. Novel nouns are sampled from {dax,
blicket, wug, zup}. In the instruction part, objects are expressed as novel nouns
defined in the previous definition part. Distractors are defined the same as task 01.
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            is kobar than              .               is kobar than          .                is kobar than               .   Put the kobar             into the                      .

Figure A.8: Novel Concept Grounding: Task 06

• Success Criteria: All target object(s) are within the bounds of the container object(s).

• Oracle Trajectory: Shown in Fig. A.8 with its multimodal prompt.

This is a blicket                  . This is a zup               . Put a zup into a blicket.

Figure A.9: Novel Concept Grounding: Task 07

Task 08: Combination of tasks 06 and 07.

• Prompt: This is a {novel name}1 {object}1. This is a {novel name}2
{object}2. {demo object}1 is {adj} than {demo object}2. Put the

{adv} {novel adj} {novel name}1 into the {novel name}2.

• Description: see task description for task 06 and task 07.

• Success Criteria: Similar as tasks 06 and 07.

• Oracle Trajectory: Shown in Fig. A.10 with its multimodal prompt.

This is a wug              . This is a zup            .             is blicker than            .             is blicker than           .

              is blicker than            . Put the blicker zup into the wug.

Figure A.10: Novel Concept Grounding: Task 08
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Task 09: A novel verb ”twist” is defined as rotating a specific angle conveyed by several examples.
This task is similar to task 03, but it requires the agent to infer what is the exact angle to rotate from
the prompt and to ground novel verbs that are semantically similar but different in exact definitions.

• Prompt: "Twist" is defined as rotating object a specific angle.
For examples: From {before twist}i to {after twist}i. Now twist
all {texture} objects.

• Description: Both {before twist}i and {after twist}i are scene placehold-
ers where {before twist}i shows a randomly sampled object before ”twist” and
{after twist}i shows the same object pose after ”twist”. All examples illustrate the
same sampled angle of the rotation. In the workspace, the target objects have the texture
specified by {texture} and randomly sampled shapes.

• Success Criteria: Same as the task 03.
• Oracle Trajectory: Shown in Fig. A.11 with its multimodal prompt.
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Figure A.11: Novel Concept Grounding: Task 09

B.4 ONE-SHOT VIDEO IMITATION

This task category requires agents to imitate motions demonstrated through videos shown in prompts.

Task 10: Follow motions for specific objects.

• Prompt: Follow this motion for {object}: {frame}1...{frame}i...
{frame}n.

• Description: Image placeholder {object} is the target object to be manipulated and
{{frame}i} is set of workspace-like scene placeholders to represent a video trajectory,
where n is the trajectory length. There is an object spawned at the center in both the
workspace and the prompt video but with different textures as a distractor. The initial
position of the target object matches that in {frame}1.

• Success Criteria: In each step, the pose of the target object matches the pose in the
corresponding video frame. Incorrect manipulation sequences are considered as failures.

• Oracle Trajectory: Shown in Fig. A.12 with its multimodal prompt.

Task 11: Stack objects with the order illustrated in the prompt video.

• Prompt: Stack objects in this order {frame}1...{frame}i...{frame}n.
• Description: There are multiple objects with the same shape but different textures spawned

in the workspace without any stacking initially. Distractor objects with different shapes are
spawned in the workspace but not in the prompt video. At each step of the prompt video,
one of the top objects is stacked over another object or put at an empty position.
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Follow this motion for                      :                                                                                                                           .

Figure A.12: One-shot video imitation: Task 10

• Success Criteria: Similar as task 10.
• Oracle Trajectory: Shown in Fig. A.13 with its multimodal prompt.

Stack objects in this order                                                                                                                                        ..

Figure A.13: One-shot video imitation: Task 11

B.5 VISUAL CONSTRAINT SATISFACTION

This task category requires agents to wipe a specific number of objects in the workspace to a goal
region while also satisfy the given visual constraint.

Task 12: Sweep the designated number of objects into a specified region without exceeding the
boundary.

• Prompt: Sweep {quantifier} {object} into {bounds} without
exceeding {constraint}.

• Description: {object} is the image placeholder of the target object to be swept spawned
with a random amount in the workspace. Distractors have the same amount, same shape, but
different color from target objects. {quantifier} is the text placeholder to determine
the target quantity of objects to be wiped, sampled from any, one, two, three, and
all. {bounds} is the image placeholder for a three-sided rectangle as the goal region. {
constraint} is the constraint line.

• Success Criteria: The exact number of target objects to be swept are all inside the specified
region. Failure reasons include 1) any distractor being wiped into the region, 2) target object
exceeding the constraint, or 3) incorrect number of target objects being swept into the goal
region.

• Oracle Trajectory: Shown in Fig. A.14 with its multimodal prompt.

Task 13: Sweep the designated number of objects into a specified region without touching the
constraint.

• Prompt: Sweep {quantifier} {object} into {bounds} without
touching {constraint}.

• Description: Similar as task 12 but requiring different way to satisfy the constraint. The
agent has to learn to avoid ”touching” the constraint line in this case.
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Sweep any             into                           without exceeding                       .

Figure A.14: Visual Constraint Satisfaction: Task 12

• Success Criteria: Similar as task 12 except that the constraint is to not touch the red line.

• Oracle Trajectory: Shown in Fig. A.15 with its multimodal prompt.

Sweep two             into                           without touching                       .

Figure A.15: Visual Constraint Satisfaction: Task 13

B.6 VISUAL REASONING

This task category requires agents to make decisions by reasoning over or memorizing information
conveyed through multimodal prompts.

Task 14: By reasoning the ”same texture”, the agent is required to pick all objects in the workspace
with the same texture as the container objects specified in the prompt and place them into it.

• Prompt: Put all objects with the same texture as {object} into
it.

• Description: {object} is the sampled goal container object. In the workspace, there are
objects with the same texture as the container but potentially different shapes. Distractors
with different textures are spawned.

• Success Criteria: All objects with the same texture as the goal container are within the
bounds of the container.

• Oracle Trajectory: Shown in Fig. A.16 with its multimodal prompt.

Task 15: By reasoning the ”same shape”, the agent is required to pick all objects in the workspace
with the same top-down shape as the goal container specified in the prompt and place them into it.
For example, blocks and boxes have the same rectangular shape.

• Prompt: Put all objects with the same profile as {object} into
it.
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Put all objects with the same texture as                          into it.

Figure A.16: Visual Reasoning: Task 14

• Description: Similar to the task 14 except the objects to be picked and placed are with
the same shape. There are three different shapes: rectangular-like (e.g. block and pallet),
circle-like (e.g. ring and bowl), and undetermined for the rest.

• Success Criteria: All objects with the same shape as the container are within the container.

• Oracle Trajectory: Shown in Fig. A.17 with its multimodal prompt.

Put all objects with the same profile as                      into it.

Figure A.17: Visual Reasoning: Task 15

Task 16: Put the target object into the container, and then put one of its old neighbors into the same
container.

• Prompt: First put {object}1 into {object}2 then put the object
that was previously at its {direction} into the same {object}2.

• Description: Objects in image placeholders {object}1 and {object}2 are the target
object to be picked and the container, respectively. We then ask the agent to put one of old
neighbors of the previous target object into the same container. The old neighboring object
is specified through cardinal directions {north, south, west, east}.

• Success Criteria: The target object and the correct neighboring object are inside the
container.

• Oracle Trajectory: Shown in Fig. A.18 with its multimodal prompt.

First put into then put the object that was previously at its west into the same .

Figure A.18: Visual Reasoning: Task 16
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Task 17: Pick and place the target object specified in the prompt into different containers in order
then restore to the initial container.

• Prompt: Put {object}1 into {object}2. Finally restore it into
its original container.

• Description: The object in the image placeholder {object}1 is the target ob-
ject to be manipulated across the task. There are more than one target containers (e.g.
Put {object}1 into {object}2 then {object}3.Finally restore it
into its original container. for two target base objects to be placed in order).
The rest of spawned containers naturally becomes distractors.

• Success Criteria: The target object are first put into multiple containers following the
specific order. Finally it should be restored into its original container.

• Oracle Trajectory: Shown in Fig.A.19 with its multimodal prompt.

Put              into                       then                    .  Finally restore it into its original container.

Figure A.19: Visual Reasoning: Task 17

C MODEL ARCHITECTURE

In this section, we provide comprehensive details about VIMA model architecture as well as other
adapted baseline methods. We implement all models in PyTorch (Paszke et al., 2019) and adapt
Transformer-related implementation from Wolf et al. (2019).

C.1 VIMA ARCHITECTURE

C.1.1 MULTIMODAL PROMPT TOKENIZATIONS

As introduced in Section 4, there are 3 types of input formats in multimodal prompts, namely (1) text
inputs, (2) images of full scenes, and (3) images of single objects.

For text inputs, we follow the standard pipeline in NLP to first tokenize raw languages to discrete
indices through pre-trained t5-base tokenizer. We then obtain corresponding word tokens from the
embedding look-up of the pre-trained t5-base model. For images of full scenes, we first parse the
scene through a fine-tuned mask R-CNN detection model (He et al., 2017; Wu et al., 2019) to extract
individual objects. Each object representation contains a bounding box and a cropped image. The
bounding box is in the format of [xcenter, ycenter, height,width]. We normalize it to be within [0, 1] by
dividing each dimension with corresponding upper-bound value. We then pass it through a bounding
box encoder MLP and obtain a feature vector. To process the cropped image, we first pad non-square
image to a square by padding along the shorter dimension. We then resize it to a pre-configured size
and pass it through a ViT (trained from scratch) to obtain the image feature. Finally, an object token
is obtained by concatenating the bounding box feature and the image feature and mapping to the
embedding dimension. For images of single objects, we obtain tokens in the same way except with a
dummy bounding box. Detailed model hyperparameters about tokenizations are listed in Table 1.

After obtaining a sequence of prompt tokens, we follow Tsimpoukelli et al. (2021) to pass it through
a pre-trained t5-base encoder to obtain encoded prompt. Note that we add adapter MLP be-
tween object tokens and the T5 encoder. We adopt learned absolute positional embedding. Model
hyperparameters are listed in Table 1 as well.
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Table 1: Model hyperparameters for multimodal prompt tokenization.

Hyperparameter Value

Text Tokenization

Tokenizer t5-base tokenizer
Embedding Dimension 768

Image Tokenization

ViT Input Image Size 32 × 32
ViT Patch Size 16
ViT Width 768
ViT Layer 4
ViT Number of Heads 24

Bounding Box MLP

Hidden Dimension 768
Hidden Depth 2

Prompt Encoding

Pre-trained LM t5-base
Unfreeze Last N Layers 2
Positional Embedding Absolute
Token Adapter MLP Depth 2

C.1.2 OBSERVATION ENCODING

Since all RGB observations are images of full scenes, we follow the same procedure discussed
above to obtain flattened object tokens. Because we provide RGBs from two views (frontal and
top-down), we order object tokens by following the order of [frontal, top-down]. We one-hot encode
the state of the end effector. We then concatenate object tokens with the end-effector state and
transform to observation tokens. We adopt learned absolute positional embedding. Detailed model
hyperparameters about observation encoding is provided in Table 2.

Table 2: Model hyperparameters for observation encoding.

Hyperparameter Value

Observation Token Dimension 768
End Effector Embedding Dimension 2
Positional Embedding Absolute

C.1.3 ACTION ENCODING

Since our model is conditioned on observation-action interleaved history, we also tokenize past
actions. We follow common practice in Chen et al. (2021); Zheng et al. (2022) to encode past actions
with a two-layer MLP. It has a hidden dimension of 256. We then map outputs to token dimension
and obtain action tokens.

C.1.4 SEQUENCE MODELING

The robot controller in VIMA is a causal decoder that autoregressively predicts actions. To condition
the decoder on prompt tokens, we perform cross-attention between history tokens and prompt tokens
(Figure 3). Concretely, we pass history tokens as the query sequence and prompt tokens as the
key-value sequence into cross-attention blocks. The output prompt-aware trajectory tokens then go
through causal self-attention blocks. We alternate cross-attention and self-attention L times. This
procedure is technically described in Pseudocode 1.
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def xattn_sequence_modeling(
prompt_tokens, # the [L, d] prompt tokens (L=prompt length)
obs_tokens, # the [T, d] obs tokens (T=time step)
act_tokens, # the [T-1, d] action tokens
traj_pos_embd, # learned positional embedding for trajectory
prompt_pos_embd, # learned positional embedding for prompt

):
# interleave obs and action tokens
traj_tokens = interleave(obs_tokens, act_tokens) # [2T-1, d]
# add positional embedding to trajectory tokens
x = traj_tokens + traj_pos_embd
# add positional embedding to prompt tokens
prompt_tokens = prompt_tokens + prompt_pos_embd

# apply xattn and causal self-attn
for i in range(num_layers):

# cross-attention
x = x + attn_i(q=x, kv=prompt_tokens)
# feed forward
x = x + ffw_xattn_i(x)
# self-attention
x = x + causal_attn_i(q=x, kv=x)
# feed forward
x = x + ffw_i(x)

# the last token is the predicted action token
predicted_act_token = x[-1]
return predicted_act_token

Pseudocode 1: Cross-attention operation that conditions the history on prompt. We repetitively
alternate cross-attention and self-attention to model the trajectory given a specific task.

C.1.5 ACTION DECODING

After obtaining the predicted action token, we map it to the action space A and obtain the predicted
action. This is achieved though a group of action heads. Since the action space consists of two
SE(2) poses, for each pose we use six independent heads to decode discrete actions (two for xy
coordinate and four for rotation represented in quaternion). These discrete actions are then de-
discretized and mapped to continuous actions through affine transformation. The two poses are
modeled independently. Early ablations show that this independent modeling is equally good as
alternatives techniques like autoregressive decoding (Vinyals et al., 2019; OpenAI et al., 2019).
Detailed model hyperparameters are listed in Table 3.

Table 3: Model hyperparameters for action decoders.

Hyperparameter Value

Hidden Dimension 512
Hidden Depth 2
Activation ReLU
X-axis Discrete Bins 50
Y-axis Discrete Bins 100
Rotation Discrete Bins 50

C.2 BASELINES ARCHITECTURES

In this section, we elaborate model architectures for baseline methods. Some components such as the
action decoder are same across all baseline methods and ours. Therefore, we only discuss unique
model components.
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Table 4: Model hyperparameters for ViT used in baseline methods.

Hyperparameter Value

Image Size 64 x 128
Patch Size 32
ViT Width 768
ViT Layers 4
ViT Heads 24

C.2.1 GATO

Gato (Reed et al., 2022) introduces a decoder-only model that solves tasks from multiple domains
where tasks are specified by prompting the model with the observation and action subsequence.
There are two differences between Gato and our method. (1) Different visual tokenizers. In Gato,
observation tokens are represented as sequence of image patches instead of object tokens as in our
method. In other words, Gato is not object-centric. (2) Different prompt conditioning. In Gato,
prompt tokens are directly prepended to history tokens. This sequence of temporally concatenated
tokens are then passed through a decoder-only model. In contrast, VIMA adopts cross-attention to
condition the robot controller on the prompt (Fig. 3). Hyperparameters of Gato’s ViT is listed in
Table 4. The decoder-style sequence modling is technically illustrated in Pseudocode 2.

def causal_sequence_modeling(
prompt_tokens, # the [L, d] prompt tokens (L=prompt length)
sep_token, # the [1, d] learned separator token
obs_tokens, # the [T, d] obs tokens (T=time step)
act_tokens, # the [T-1, d] action tokens
pos_embd, # learned positional embedding

):
# interleave obs and action tokens
traj_tokens = interleave(obs_tokens, act_tokens) # [2T-1, d]
# assemble input tokens
x = concat([prompt_tokens, sep_token, traj_tokens])
x = x + pos_embd

# apply GPT layers with causal mask
for i in range(num_layers):

# self-attention
x = x + causal_attn_i(q=x, kv=x)
# feed forward
x = x + ffw_i(x)

# the last token is the predicted action token
predicted_act_token = x[-1]
return predicted_act_token

Pseudocode 2: Plain sequence modeling that temporally concatenates prompt and trajectory history
and repetitively perform causal self-attention operation.

C.2.2 FLAMINGO

Flamingo (Alayrac et al., 2022) is a vision-language model that learns to generate textual completion
in response to multimodal prompts. It embeds a variable number of prompt images into a fixed
number of tokens via the Perceiver Resampler module (Jaegle et al., 2021b), and conditions the
language decoder on the encoded prompt by cross-attention. Because the original Flamingo does
not support embodied agents altogether, we have made major changes to adapt the architecture to
robot learning. First, we swap the LLM component of Flamingo with our robot controller, which is
a transformer decoder that outputs robot arm actions at every environment step (hyperparameters
listed in Table 3). Second, VIMA uses an object-centric tokenizer instead of Perceiver Resampler
that operates directly on raw RGB. We refer interested readers to Section 3.1 in Alayrac et al. (2022)
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for a more detailed technical discussion on Flamingo’s architecture design. Model hyperparameters
for our reimplementation of the Perceiver Resampler is listed in Table 5.

Table 5: Model hyperparameters for Perceiver Resampler used in Flamingo method.

Hyperparameter Value

Number of Latent Queries 4
Number of Blocks 4
Self-attn per Block 4
Self-attn Heads 24
Cross-attn Heads 24

C.2.3 DECISION TRANSFORMER

Decision Transformer (DT) (Chen et al., 2021; Janner et al., 2021) is among the first works to
reinterpret the RL problem as transformer sequence modeling. In visual RL domains like Atari games,
DT is prompted on the desired reward value and outputs actions autoregressively given the RGB
observation embedding. We replace DT’s initial reward prompt with our multimodal task prompt
embeddings, and remove all subsequent reward tokens. For visual tokenizer, we employ a learned
ViT with hyperparameters listed in Table 4 to map an observed image to a single “state” token.

C.3 MASK R-CNN DETECTION MODEL

Finally, we elaborate the mask R-CNN model (He et al., 2017) for scene parsing and object extraction.
We fine-tuned a pre-trained lightweight mask R-CNN (mask rcnn R 50 FPN 3x) from Wu et al.
(2019) to adapt to scenes and images in our tabletop environment. A visualization of its output is
provided in Figure A.20. We do not use the predicted object names in our models.

Figure A.20: Visualization of fine-tuned mask R-CNN. Left: Prediction from the detection model.
Right: Ground-truth scene parsing. The detection model agrees well with ground-truth objects.

D VIMA TRAINING DETAILS

We follow the best practices to train Transformer models using the AdamW optimizer (Loshchilov
& Hutter, 2019), learning rate warm-up, cosine annealing (Loshchilov & Hutter, 2017), etc. Train-
ing hyperparameters are provided in Table 6. We use GEGLU activation (Shazeer, 2020) inside
Transformer models across all methods.

To make trained models robust to detection inaccuracies and failures, we apply object augmentation
by randomly injecting false-positive detection outputs. Concretely, for observation at each time step,
we sample number of augmented objects i.i.d. naugmented objects ∼ Cat(K,p), where Cat(·) denotes a
multi-categorical distribution with K supports parameterized by p. For each augmented object, we
then randomly sample a bounding box and corresponding cropped image to add to object tokens. In
our experiments, we set p = {0 : 0.95, 1 : 0.05} with K = 2.
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Table 6: Hyperparameters used during training.

Hyperparameter Value

Learning Rate 0.0001
Warmup Steps 7K
LR Cosine Annealing Steps 17K
Weight Decay 0
Dropout 0.1
Gradient Clip Threshold 1.0

D.1 VARY MODEL CAPACITY

We train a spectrum of 7 models ranging from 2M to 200M parameters. To vary the model capacity,
we follow prior work (Chowdhery et al., 2022) to change embedding dimension and number of layers.
We list configurations for methods with cross-attention prompt conditioning (i.e., ours and Flamingo)
in Table 7, and configurations for methods only with causal self-attention (i.e., Gato and DT) in
Table 8.

Table 7: Configurations for different sized models with cross-attention prompt conditioning.

Model Size (M) Embedding Dimension Num Blocks X-attn Heads Self-attn Heads

2 256 1 8 8
4 256 2 8 8
9 320 3 10 10
20 384 4 12 12
43 512 5 16 16
92 640 7 20 20

200 768 11 24 24

Table 8: Configurations for different sized models with causal self-attention prompt conditioning.

Model Size (M) Embedding Dimension Num Blocks Self-attn Heads

2 64 1 2
4 96 2 3
9 192 3 6

20 320 4 10
43 512 5 16
92 768 7 24

200 768 18 24

E MORE EXPERIMENT RESULTS

E.1 BREAKDOWN RESULTS

We show breakdown results for Figure 4 in Tables 9, 10, 11, and 12, respectively.

E.2 VARY T5 ENCODER SIZES

We vary the size of the pre-trained T5 encoder (Raffel et al., 2020) to study the effect of prompt
encoding. We experiment with three T5 model capacities: t5-small (30M), t5-base (111M), to
t5-large (368M). For all T5 variants, we fine-tune the last two layers and freeze all other layers.
We fix the parameter count of the decision-making part to be 200M. As shown in Table 13, we find
no significant difference among the variants. Thus we set the standard t5-base as default for all
our models.
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Table 9: L1 level generalization results. Model indicates robot controller parameter count.

Model Method Task 01 Task 02 Task 03 Task 04 Task 05 Task 06 Task 07 Task 09 Task 11 Task 12 Task 15 Task 16 Task 17

2M

Ours 100.0 100.0 100.0 96.0 37.0 100.0 100.0 9.5 87.0 64.0 93.5 45.0 63.0
Gato 62.0 61.0 22.5 13.5 7.0 44.5 54.0 4.0 48.0 85.0 44.5 43.0 0.0

Flamingo 56.0 56.0 53.5 36.5 37.5 45.0 55.5 3.5 54.0 83.5 40.5 28.5 2.0
DT 59.5 50.5 7.5 7.0 0.5 43.5 49.5 2.0 61.5 76.5 27.5 5.0 0.0

20M

Ours 100.0 100.0 100.0 99.5 59.5 100.0 100.0 13.5 74.0 72.5 96.5 39.5 47.5
Gato 61.5 62.0 32.5 49.0 38.0 46.0 60.0 5.0 68.0 83.0 47.0 46.5 2.0

Flamingo 63.0 61.5 55.0 50.0 42.5 41.5 58.0 6.0 62.0 83.0 44.0 38.5 1.0
DT 60.5 64.0 50.5 44.0 41.0 48.0 61.5 7.0 85.0 84.0 44.5 39.0 2.5

200M

Ours 100.0 100.0 99.5 100.0 56.5 100.0 100.0 18.0 77.0 93.0 97.0 76.5 43.0
Gato 79.0 68.0 91.5 57.0 44.5 54.0 74.0 18.0 61.0 88.5 83.5 33.5 2.5

Flamingo 56.0 58.5 63.0 48.5 38.0 48.5 62.5 3.5 66.5 86.0 40.0 43.5 2.5
DT 62.0 57.5 41.0 55.5 45.5 47.5 54.5 8.5 77.0 81.5 41.0 38.0 0.5

Table 10: L2 level generalization results. Model indicates robot controller parameter count.

Model Method Task 01 Task 02 Task 03 Task 04 Task 05 Task 06 Task 07 Task 09 Task 11 Task 12 Task 15 Task 16 Task 17

2M

Ours 100.0 100.0 100.0 95.5 37.5 100.0 100.0 17.5 87.5 67.0 97.5 46.0 54.5
Gato 49.5 49.0 23.0 17.5 0.5 47.5 46.5 5.5 50.0 82.5 49.0 42.0 0.5

Flamingo 45.5 46.0 56.0 39.5 35.5 49.0 47.0 9.0 53.0 80.0 43.0 29.5 1.0
DT 51.0 45.5 9.5 7.0 0.5 45.5 45.0 0.0 65.0 81.5 32.0 5.0 0.0

20M

Ours 100.0 100.0 100.0 100.0 61.0 100.0 100.0 16.5 75.5 75.0 96.0 37.5 47.5
Gato 44.0 51.5 39.0 51.0 38.5 47.5 52.5 6.0 65.5 84.0 52.5 40.5 1.0

Flamingo 48.5 49.0 55.5 48.0 42.5 46.5 52.0 6.0 66.0 82.0 47.5 37.0 0.5
DT 50.5 49.5 53.0 44.5 43.5 47.0 46.0 8.0 83.5 80.0 46.5 41.0 2.5

200M

Ours 100.0 100.0 99.5 100.0 54.5 100.0 100.0 17.5 77.0 93.0 98.5 75.0 45.0
Gato 56.5 53.5 88.0 55.5 43.5 55.5 53.0 14.0 63.0 90.5 81.5 33.0 4.0

Flamingo 51.0 52.5 61.5 49.5 38.5 47.5 55.5 5.5 70.5 82.0 42.0 39.0 3.0
DT 52.0 52.0 49.5 54.5 45.5 52.5 51.0 11.0 76.5 84.0 43.0 38.0 0.5

Table 11: L3 level generalization results. Model indicates robot controller parameter count.

Model Method Task 01 Task 02 Task 03 Task 04 Task 05 Task 06 Task 07 Task 09 Task 11 Task 15 Task 16 Task 17

2M

Ours 100.0 100.0 100 98.0 34.5 100.0 99.5 17.0 97.5 94.0 48.5 39.0
Gato 45.5 48 28.0 23.0 3.0 45.5 45.0 2.5 40.5 29.5 37.0 1

Flamingo 41.5 54.5 50.5 39.5 29 45.0 49.5 5.5 57.5 22.5 25.0 0.0
DT 48.5 50.0 5.0 7.0 2.5 47 45.5 2.0 69.5 22.5 5.0 0.0

20M

Ours 98.0 100.0 100 98.5 55.5 100.0 99.5 15.0 88.5 99.5 44.0 29.5
Gato 46.5 55 44.5 57.0 31.5 47.5 51.5 2.5 72.5 30.5 44.0 0

Flamingo 47.0 54.5 53.0 55.0 36 42.5 48.0 6.5 70.0 33.0 41.5 0.0
DT 50.0 60.5 56.5 48.0 33.5 51 46.0 6.5 92.5 32.5 43.5 1.5

200M

Ours 99.0 100.0 100 97.0 54.5 100.0 99.0 17.5 90.5 97.5 46.0 43.5
Gato 51.0 58 84.5 56.5 35.5 53.5 49.0 15.0 65.0 52.0 33.0 0

Flamingo 49.0 50.0 66.5 47.0 35 47.5 50.0 4.0 66.0 30.5 43.5 0.5
DT 52.0 51.0 55.0 49.5 40.0 46 50.5 5.0 82.0 37.0 38.0 1.5

Table 12: L4 level generalization results. Model indicates robot controller parameter count.

Model Method Task 08 Task 10 Task 13 Task 14

2M

Ours 6.5 0 0 96.5
Gato 21.0 0.5 0 32

Flamingo 22.0 0 0 27.5
DT 22.5 0.0 0 22.0

20M

Ours 100.0 0 0 95.5
Gato 20.5 0.0 0 29

Flamingo 21.0 0 0 27.5
DT 20.5 0.5 0 36.0

200M

Ours 100.0 0 0 94.5
Gato 30.5 0.0 0 37

Flamingo 24.5 0 0 24.0
DT 20.0 0.0 0 28.5

F EXTENDED RELATED WORK

In this section, we provide an extended review of related work as complementary to Section 6.
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Table 13: Performances of our method with different sized pre-trained T5 prompt encoder. We fix the
parameter count of the decision-making part to be 200M.

t5-small (30M) t5-base (111M) t5-large (368M)

L1 78.8 81.5 80.8
L2 79.0 81.5 81.0
L3 80.3 78.7 81.0
L4 49.1 48.6 49.3

Multi-task Learning by Sequence Modeling. In NLP domain, the Natural Language De-
cathlon (McCann et al., 2018) adopts a consistent question-answering format for a suite of 10
NLP tasks. In computer vision, Mask R-CNN (He et al., 2017), UberNet (Kokkinos, 2016), and
12-in-1 (Lu et al., 2020) leverage a single backbone model with multiple independent heads for
different tasks. UVim (Kolesnikov et al., 2022) is another unified approach for vision that uses a
language model to generate the guiding code for a second model to predict raw vision outputs. In
multimodal learning, numerous works (Lu et al., 2022; Wang et al., 2022a; Zellers et al., 2021; 2022;
Buch et al., 2022; Fu et al., 2021; Yang et al., 2022) investigate the unification of image, video, audio,
and/or language modalities to deliver multi-purpose foundation models, though most of which are not
equipped with decision-making facilities. Perceivers (Jaegle et al., 2021b;a) propose an efficient archi-
tecture to handle general-purpose inputs and outputs. BEiT-3 (Wang et al., 2022c) performs masked
data modeling on images, texts and image-text pairs to pre-train a backbone for various downstream
tasks. MetaMorph (Gupta et al., 2022) learns a universal controller over a modular robot design space.

Foundation Models for Embodied Agents. Embodied agent research (Duan et al., 2022; Batra
et al., 2020; Ravichandar et al., 2020; Collins et al., 2021) is adopting the large-scale pre-training
paradigm, powered by a collection of learning environments (Abramson et al., 2020; Shridhar
et al., 2020; Savva et al., 2019; Puig et al., 2018; Team et al., 2021; Toyama et al., 2021; Shi et al.,
2017). From the aspect of pre-training for better representations, LaTTe (Bucker et al., 2022)
and Embodied-CLIP (Khandelwal et al., 2021) leverage the frozen visual and textual representations
of CLIP (Radford et al., 2021) for robotic manipulation.

Robot Manipulation and Benchmarks. There are many prior works that are not mentioned in the
main paper that study different robotic manipulation tasks, such as constraint satisfaction (Bharadhwaj
et al., 2021), one-shot imitation (Paine et al., 2018; Huang et al., 2019; Aceituno et al., 2021;
Zhao et al., 2022), and rearrangement (Liu et al., 2021; Ehsani et al., 2021; Gan et al., 2021;
Stengel-Eskin et al., 2022). Multiple simulation benchmarks are introduced to study the above tasks:
1) Indoor simulation environments: Habitat (Savva et al., 2019; Szot et al., 2021) is equipped
with a high-performance 3D simulator for fast rendering and proposes a suite of common tasks for
assistive robots. AI2-THOR (Ehsani et al., 2021; Deitke et al., 2022) is a framework that supports
visual object manipulation and procedural generation of environments. 2) Tabletop environments:
Meta-World (Yu et al., 2019), RLBench (James et al., 2019), and SURREAL (Fan et al., 2018; 2019)
are widely used simulator benchmarks studying robotics manipulation with tabletop settings. Causal-
World (Ahmed et al., 2021) is a benchmark for causal structure and transfer learning in manipulation,
requiring long-horizon planning and precise low-level motor control. However, these simulators
and benchmarks do not natively support task specification and prompting with multiple modalities.
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