
Learning Cuts via Enumeration Oracles

Daniel Thuerck
Quantagonia

Bad Homburg, Germany
daniel.thuerck@quantagonia.com

Boro Sofranac
Quantagonia

Bad Homburg, Germany
boro.sofranac@quantagonia.com

Marc E. Pfetsch
Department of Mathematics, TU Darmstadt

Darmstadt, Germany
pfetsch@mathematik.tu-darmstadt.de

Sebastian Pokutta
Zuse Institute Berlin and TU Berlin

Berlin, Germnany
pokutta@zib.de

Abstract

Cutting-planes are one of the most important building blocks for solving large-
scale integer programming (IP) problems to (near) optimality. The majority of
cutting plane approaches rely on explicit rules to derive valid inequalities that can
separate the target point from the feasible set. Local cuts, on the other hand, seek
to directly derive the facets of the underlying polyhedron and use them as cutting
planes. However, current approaches rely on solving Linear Programming (LP)
problems in order to derive such a hyperplane. In this paper, we present a novel
generic approach for learning the facets of the underlying polyhedron by accessing
it implicitly via an enumeration oracle in a reduced dimension. This is achieved by
embedding the oracle in a variant of the Frank-Wolfe algorithm which is capable
of generating strong cutting planes, effectively turning the enumeration oracle into
a separation oracle. We demonstrate the effectiveness of our approach with a case
study targeting the multidimensional knapsack problem (MKP).

1 Introduction

In this paper, we deal with integer programs (IP)

max {⟨c, x⟩ : Ax ≤ b, x ∈ Zn}, (IP)

where A ∈ Qm×n, b ∈ Qm, and c ∈ Qn. Let P := {x ∈ Rn : Ax ≤ b} be the underlying
polyhedron and its integer hull PI := conv(P ∩Zn). We restrict attention to the case in which all
variables are required to be integral, as the methods we will propose are more readily applicable to
this case, but the general idea works for mixed-integer programs (MIP) as well.

Solving IPs is NP-hard in general, however, surprisingly fast algorithms exist in practice [1, 50].
The most successful approach to solving IPs is based on the branch-and-bound algorithm and its
extensions. This algorithm involves breaking down the original problem into smaller subproblems that
are easier to solve through a process known as branching. By repeatedly branching on subproblems,
a search tree is obtained. The bounding step involves computing upper bounds for subproblems and
pruning suboptimal nodes of the tree in order to avoid enumerating exponentially many subproblems.
Upper bounds are generally computed with the help of Linear Programming (LP) relaxations

max {⟨c, x⟩ : x ∈ P}. (LP)

Because the integrality constraints are relaxed, optimal solutions of (LP) provide an upper bound for
the original problem (IP).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Alternatively, cutting plane procedures iteratively solve LP-relaxations as long as the solution x∗ is
not integral (and thus x∗ /∈ PI ). To remove these solutions x∗ from the relaxation’s polyhedron, one
adds cutting planes (or cuts) ⟨α, x⟩ ≤ β with a ∈ Qn, β ∈ Q, and ⟨α, x∗⟩ > β. The search for such
cutting planes or to determine that none exists is called the separation problem. The strongest cuts
are those that define a facet, i.e., the face PI ∩ {x : ⟨α, x⟩ = β} has co-dimension 1 with respect
to PI . When the cutting plane method is combined with branch-and-bound, the resulting algorithm
is often called branch-and-cut. Gomory conducted foundational work in this field, demonstrating
that pure cutting plane approaches can solve integer programs with rational data in a finite number of
steps without the need for branching [32, 33, 34].

Gomory’s initial approach to cutting planes suffered from numerical difficulties at that time, prevent-
ing pure cutting plane methods from being effective in practical applications. However, his proposed
(Gomory) mixed integer (GMI) cuts are very efficient if combined with branch-and-bound (see the
computational study in [11]) and still are one of the most important types of cutting planes used by
contemporary solvers. As more GMI cuts are added to a problem, their incremental value tends to
diminish. To address this issue, modern MIP and IP solvers use a range of techniques to generate cuts,
e.g., mixed-integer-rounding (MIR) inequalities [55], knapsack covers [26, 38], flow covers [39],
lift-and-project cuts [5], {0, 1

2}-Chvátal-Gomory cuts [22], and others.

Most cutting plane separation algorithms rely on fixed formulas to derive valid inequalities that
separate the target point x∗ from the polyhedron PI . An alternative approach is to directly seek to
derive the facets of PI that separate the point x∗. Notice that while the facets of the polyhedron P
are explicitly known from the problem definition, the facets of its integer hull PI are unknown in
general. While the facet-defining inequalities are intuitively the strongest cuts, they can be relatively
expensive to explicitly compute, limiting their applicability in practice. Local cuts, a type of cutting
planes that try to derive facets of PI , approach this problem by deriving facets of PI in a reduced
dimension, and then lifting those cuts to obtain facets in the original dimension. In this paper, we will
propose a new variant of the Frank-Wolfe algorithm with the goal of learning the (unknown) facets
of PI (or at least valid inequalities) in a reduced dimension, which can then be lifted to the original
dimension and be used as strong cutting planes. In our learning approach, the underlying polyhedron
will only be accessed via an algorithmically simple linear optimization oracle, in contrast to existing
approaches, which also need to solve LPs.

1.1 Related Work

Local cuts have first been introduced as “Fenchel cuts” in Boyd [13, 14], who developed an algorithm
to exactly separate inequalities for the knapsack polytope via the equivalence of separation and
optimization. They were subsequently investigated extensively by Applegate et al. [3] for solving the
traveling salesman problem (TSP). Buchheim et al. [20, 21] and Althaus et al. [2] adopted local cuts
into their approaches for solving constrained quadratic 0-1 optimization problems and Steiner-tree
problems, respectively. In [25], Chvátal et al. generalize the local cuts method to general MIP
problems.

In the context of knapsack problems, after the aforementioned work of Boyd [13, 14], Boccia [12]
introduced an approach based on local cuts, as stated by Kaparis and Letchford [47]1, who further
refined the algorithm. Vasilyev presented an alternative approach with application to the generalized
assignment problem in [63], see also the comprehensive computational study conducted by Avella et
al. in [4]. In [64], Vasilyev et al. propose a new implementation of this approach, with the goal of
making it more efficient. In [37], Gu presents an extension of the algorithm of Vasilyev et al. [64].

Existing works on the application of learning methods in solving IP (and more generally MIP)
problems can in general be divided into two categories: learning decision strategies within the solvers,
and learning heurisitcs to obtain feasible (primal) solutions. Examples of the former would be
learning to select branching variables [6, 31, 48], learning to select branching nodes [41], learning to
select cutting planes [61], learning to optimize the usage of primal heuristics [23, 42, 49]. A typical
example of the latter case would be learning methods to develop large neighborhood search (LNS)
heuristics [28, 60, 59]. Additionally, a number of works in the literature have focused on learning
algorithms for solving specific IP problems [8, 44, 27, 51, 54, 56]. For a more detailed overview of
using learning methods in IP, we refer the interested reader to [9].

1We could not independently verify the claim as we could not access Boccia’s paper online.

2



1.2 Contribution

The contributions of this paper can be summarized as follows:

1. We present an efficient, LP-free separation framework that aims to learn local cuts for IPs through
the solution of subproblems. We propose to use a variant of the Frank-Wolfe [29] algorithm to
solve the associated separation problem. The resulting framework is general and – given the
availability of a suitable lifting method – applicable to any IP.

2. We propose a new, dynamic stopping criterion for the application of Frank-Wolfe to the separation
problem at hand. This new criterion, derived by exploiting duality information, directly evaluates
the strength of the resulting cut and thus dramatically decreases the number of iterations.

3. We illustrate the benefit of our approach in a case study for the multidimensional knapsack (MKP)
problem, demonstrating its effectiveness. Our computational results show that embedding our
method in the academic solver SCIP leads to 31% faster solving times on the instances solved to
optimality, on average.

The rest of this paper is organized as follows: In Section 2, the fundamental framework of local cuts
and required notation are introduced. Section 3 presents our approach for the LP-less generation
procedure for local cuts. Section 4 demonstrates how the aforementioned framework can be applied to
solve the multidimensional knapsack problem. Computational experiments are presented in Section 5.
Finally, Section 6 summarizes conclusions and future work.

2 Local Cuts

To describe the idea of local cuts, assume that P ⊂ Rn, n > 0, is a polytope, i.e., bounded, and
full-dimensional. Then one considers a small subproblem with underlying polytope P̃ , which is
usually an orthogonal projection of P onto a lower-dimensional space. The polytope P̃ is restricted to
being non-empty and its dimension 0 < k ≤ n is chosen small enough such that integer optimization
problems over P̃ can be solved efficiently in practice, for example, by enumeration. Consider a
projection x̃ of the point to be separated x∗ on Rk. The procedure tries to generate a valid cut
⟨α̃, x⟩ ≤ β̃ with α̃ ∈ Qk, β̃ ∈ Q, such that ⟨α̃, x̃⟩ > β̃, i.e., it cuts off x̃ from P̃ . This cut can be
“lifted” to the original space, which yields a cut ⟨α, x⟩ ≤ β that hopefully cuts off x∗.2

The approach to generate ⟨α̃, x⟩ ≤ β̃, in the literature mentioned above, relies on the equivalence
between optimization and separation [36] and can be very briefly explained as follows. By the
Minkowski-Weyl Theorem, we can express P̃ as the convex hull of its vertex set V . Let x̃0 ∈ P̃ be
an interior point. Then consider the LP

min
λ,γ
{γ :

∑
v∈V

v λv + (x̃− x̃0)γ = x̃,
∑
v∈V

λv = 1, λ ≥ 0}.

The dual problem (D) is

max
α,β
{⟨x̃, α⟩ − β : ⟨v, α⟩ ≤ β ∀v ∈ V, ⟨x̃− x̃0, α⟩ ≤ 1}.

Let α̃, β̃ be an optimal solution of (D). Then ⟨α̃, x⟩ ≤ β̃ is a valid inequality for P̃ , since by
construction ⟨v, α̃⟩ ≤ β̃ holds for all v ∈ V and thus by convexity for all points in P̃ . The objective
enforces that this cut is maximally violated by x̃ if the optimal value is positive.

Since P̃ may have an exponential number of vertices, problem (D) can be solved by a column
generation algorithm (or cutting plane algorithm in the primal). In each iteration, one needs to solve
the following pricing problem for the current point (α̂, β̂): Decide whether there exists v ∈ V with
⟨v, α̂⟩ > β̂. This can be done by maximizing α̂ over the subproblem P̃ , i.e., one can use a linear
optimization oracle for the subproblem. This subproblem can contain integrality constraints, thereby
requiring, again, IP techniques. Note that the most interesting case is where we operate on integer

2The idea of local cuts is often confused with lift-and-project cuts, as the two methods share some high-level
ideas, such as exploring solutions in a different space and using projection. However, they are quite different.
Lift-and- project methods first lift, then generate a cut and project it back, while local cuts first project and then
lift the cut. Moreover, the subproblems to generate cuts are signficiantly different.

3



hulls, i.e. P̃ = P̃I to generate cuts for P = PI . In this way, local cuts can help solving an integer
optimization problem over P . Hence, in the following sections, any reference to P , P̃ holds for the
integer case as well and our case study illustrates exactly that.

As mentioned above, the strongest cutting planes are those that define facets. The tilting method by
Applegate et al. [3] produces such a facet. Buchheim et al. [20] introduced a different formulation
that automatically produces a facet. Chvátal et al. [25] developed a formulation for general MIPs
using linear optimization oracles. All three approaches use a sequence LPs at their heart; either for
tilting a plane or through a column-generation procedure.

3 Learning Strong Cuts from Enumeration

The local cuts framework, applicable to general IPs, relies on a sequence of three operators: SEP,
FACET and LIFT. SEP refers to a separation oracle separating the projected point x̃ from P̃ that
returns a separating cut ⟨α̃, x⟩ ≤ β̃ (or certifies that x̃ ∈ P̃ ). FACET further refines the cut until it
represents a facet of P̃ and lastly, LIFT transforms the resulting facet into the space of P such that
it separates x∗ from P with high probability. In some variants of local cuts, SEP and FACET may
be combined into one step similar to [20], whereas in [25], the tilting process is a separate, concrete
embodiment of FACET. Note that that facets of the subproblem, when lifted, result in the strongest
cuts. In practice, it is often sufficient to find good valid inequalities of P̃ . As mentioned before, the
original approach for local cuts through duality requires an expensive column-generation method
which is based on LPs. In this section, we derive an alternative and LP-less approach.

The general idea of our new approach is sketched in Figure 1: Given a point x̃ ∈ Rn that we intend
to separate from P , we solve the following optimization problem:

y∗ = argmin
y∈P̃

f(y), (Separation)

with f(y) := 1
2∥y − x̃∥2. Observe that this is effectively the projection of x̃ onto P̃ under the ℓ2-norm

and that∇f(y) = (y − x̃).

We solve (Separation) with a suitable variant of the Frank-Wolfe algorithm. The Frank-Wolfe
algorithm [29] (also called: Conditional Gradients [53]) is a method to minimize a smooth convex
function f over a compact convex domain P by only relying on a First-order Oracle (FO) for f , i.e.,
given a point x the oracle returns ∇f(x) (and potentially f(x)) as well as a Linear Minimization
Oracle (LMO) (“oracle” for the remainder of this paper), i.e., given an objective vector c, the oracle
returns v ∈ argminx∈P̃ ⟨c, x⟩. The original Frank-Wolfe algorithm, provided with step sizes γt > 0,
iteratively calls the LMO to determine vt ← argminv∈C⟨∇f(yt), v⟩ and updates the iterate to
yt+1 ← yt + γt(vt − yt). There are various step-size strategies for γt, but the actual choice is
irrelevant for the discussion here; a common choice is γt = 2

t+2 .

The main advantages of using Frank-Wolfe are (1) if there is a LP-less oracle, valid inequalities can
be generated without solving LPs, (2) the computational overhead of the Frank-Wolfe steps compared
to calls to the LMO are very light and, finally, (3) as we will show, for the case of (Separation), we
can derive a new dynamic stopping criterion that can dramatically reduce the number of iterations.
Note that we are not guaranteed to end up with facets, especially when the method is stopped early,
however, valid inequalities that are “close” to being a facet can still serve as strong cutting planes.

For our problem minimizing f , the Frank-Wolfe algorithm iteratively calls the oracle and updates its
current iterate through a convex combination of the previous iterate and oracle’s solution vertex. Step
by step, the solution is thus expressed through a convex combination of vertices in P̃ as shown in
Figures 1a – 1c. At convergence, the hyperplane ⟨∇f(y∗), x⟩ ≥ ⟨∇f(y∗), y∗⟩ forms the desired cut.

3.1 Separation via Conditional Gradients

Let y∗ ∈ P̃ be an optimal solution to (Separation) and let x ∈ P̃ be arbitrary. By convexity, it
follows that 0 ≤ f(x)− f(y∗) ≤ ⟨∇f(x), x− y∗⟩ ≤ maxv∈P̃ ⟨∇f(x), x− v⟩ and the last quantity
is referred to as Frank-Wolfe gap (at x). Moreover, the following lemma holds, which is a direct
consequence of the first-order optimality condition.

4



v1

v0

v2

x̃

f(y) = ∥y − x̃∥2

P̃

(a)

v1

v0

v2

x̃

f(y) = ∥y − x̃∥2

P̃

yk

∇f(yk)

(b)

v1

v0

v2

x̃

f(y) = ∥y − x̃∥2

P̃

yk+i

∇f(yk+i)

(c)

Figure 1: We propose the following approach to separate a fractional point x̃ from a full-dimensional
polytope P̃ : We solve miny∈P̃ f(y) := 1

2∥y − x̃∥2, i.e., the L2 projection of x̃ onto P̃ , through a
variant of the Frank-Wolfe algorithm. Starting from a random vertex (a), the algorithm iteratively
computes the gradient of f at the current iterate yk and uses an oracle to solve a linear integer
optimization problem over P̃ , building up an active set of vertices that form iterates through a convex
combination (b). At convergence (c) the optimal solution y∗ = yk+i together with its gradient forms
a cut that induces a facet of P̃ : ∇f(yk+i)

⊤x ≥ f(yk+i)
⊤yk+i (except for degenerate cases).

Lemma 1 (First-order Optimality Condition). Let y∗ ∈ P̃ . Then y∗ is an optimal solu-
tion to miny∈P̃ f(y) if and only if ⟨∇f(y∗), y∗ − v⟩ ≤ 0 for all v ∈ P̃ (and in particular
maxv∈P̃ ⟨∇f(y∗), y∗ − v⟩ = 0).

Note that in the constrained case, it does not necessarily hold that∇f(y∗) = 0, if y∗ is an optimal
solution. In fact, if the x̃ that we want to separate is not contained in P̃ , then f(y∗) > 0 and
∇f(y∗) ̸= 0 since y∗ will lie on the boundary of P̃ .

It turns out that we can naturally use an optimal solution y∗ ∈ P̃ to (Separation) to derive a separating
hyperplane. By Lemma 1:

⟨∇f(y∗), y∗⟩ ≤ ⟨∇f(y∗), v⟩, (Cut)

which holds for all v ∈ P̃ . Moreover, if x̃ ̸∈ P̃ , then (Cut) is violated by x̃, i.e., ⟨∇f(y∗), y∗⟩ >
⟨∇f(y∗), x̃⟩, since ⟨∇f(y∗), y∗ − x̃⟩ ≥ f(y∗)− f(x̃) = f(y∗) > 0.

Usually, however, we do not solve Problem (Separation) exactly, but rather up to some accuracy. In
fact, the Frank-Wolfe algorithm often uses the Frank-Wolfe gap as a stopping criterion, minimizing
the function until for some iterate yt it holds maxv∈P̃ ⟨∇f(yt), yt−v⟩ ≤ ε for some target accuracy ε;
note that the Frank-Wolfe gap converges with the same rate (up to small constant factors) as the
primal gap (see e.g., [46]). Given an accuracy ε > 0, we obtain the valid inequality

⟨∇f(yt), yt⟩ − ε ≤ ⟨∇f(yt), v⟩, (approxCut)

for all v ∈ P̃ , which also separates x̃ from P̃ if it is
√
ε-far from P̃ , i.e., ∥y∗ − x̃∥ >

√
ε:

⟨∇f(yt), yt − x̃⟩ − ε ≥ f(yt)− f(x̃)− ε ≥ f(y∗)− ε > 0.

The accuracy ε is chosen depending on the application; see also [17] for a sensitivity analysis for
conditional gradients.

3.1.1 A dynamic stopping criterion

It turns out, however, that in our case of interest, the above can be significantly improved by exploiting
duality information. This allows us not only to stop the algorithm much earlier, but we also obtain a
separating inequality directly from the associated stopping criterion and duality information.

The stopping criterion is derived from a few simple observations, which provide a new characterization
of a point x̃ that can be separated from P̃ . Our starting point is the following standard expansion. Let
v ∈ P̃ be arbitrary and let yt be an iterate from above. Then,

∥x̃− v∥2 = ∥x̃− yt∥2 + ∥yt − v∥2 − 2⟨yt − x̃, yt − v⟩,

5



which is equivalent to

⟨yt − x̃, yt − v⟩ = 1
2∥x̃− yt∥2 + 1

2∥yt − v∥2 − 1
2∥x̃− v∥2. (1)

Observe that the left hand-side is the Frank-Wolfe gap expression at iterate yt (except for the
maximization over v ∈ P̃ ) since∇f(yt) = yt − x̃.

Necessary Condition. Let us first assume ∥yt − v∥ < ∥x̃− v∥ for all vertices v ∈ P̃ in some
iteration t. Then (1) yields

⟨yt − x̃, yt − v⟩ < 1
2∥x̃− yt∥2. (altTest)

If vt is the Frank-Wolfe vertex in iteration t, we obtain:
1
2∥yt − x̃∥2 − 1

2∥y
∗ − x̃∥2 = f(yt)− f(y∗)

≤ max
v∈P
⟨∇f(yt), yt − v⟩ = ⟨∇f(yt), yt − vt⟩ = ⟨yt − x̃, yt − vt⟩ < 1

2∥x̃− yt∥2.

Subtracting 1
2∥x̃− yt∥2 on both sides and re-arranging yields: 0 < 1

2∥y
∗ − x̃∥2, which proves that

x̃ ̸∈ P̃ . Moreover, (1) also immediately provides a separating hyperplane: observe that (altTest) is
actually a linear inequality in v and it holds for all v ∈ P̃ since the maximum is achieved at a vertex.
However, for the choice v = x̃ the inequality is violated.

Sufficient Condition. Suppose that in each iteration t there exists a vertex v̄t ∈ P̃ (not to be
confused with the Frank-Wolfe vertex), so that ∥yt − v̄t∥ ≥ ∥x̃− v̄t∥. In this case (1) ensures:

⟨yt − x̃, yt − v̄t⟩ = 1
2∥x̃− yt∥2 + 1

2∥yt − v̄t∥2 − 1
2∥x̃− v̄t∥2 ≥ 1

2∥x̃− yt∥2.
Thus, the Frank-Wolfe gap satisfies in each iteration t that

max
v∈P̃
⟨∇f(yt), yt − v⟩ ≥ ⟨yt − x̃, yt − v̄t⟩ ≥ 1

2∥x̃− yt∥2,

i.e., the Frank-Wolfe gap upper bounds the distance between the current iterate yt and point x̃ in each
iteration. Now, the Frank-Wolfe gap converges to 0 as the algorithm progresses, with iterates yt ∈ P̃ ,
so that with the usual arguments (compactness and limits etc.) it follows that x̃ ∈ P̃ . In total, we
obtain the following result.
Characterization 2. The following are equivalent:

1. (Non-Membership) x̃ ̸∈ P̃ .

2. (Distance) There exists an iteration t, so that ∥yt − v∥ < ∥x̃− v∥ for all vertices v ∈ P̃ .

3. (FW Gap) For some iteration t, maxv∈P̃ ⟨yt − x̃, yt − v⟩ < 1
2∥x̃− yt∥2.

In particular, Characterization 2.3 can be easily tested within the algorithm, since the Frank-Wolfe gap
is computed anyways. Using this criterion significantly improves the performance of the algorithm.
Moreover, the characterization above can also be combined with standard convergence guarantees to
estimate the number of iterations required to either certify non-membership or membership (up to an
ε-error): If we use the vanilla Frank-Wolfe algorithm, then by standard guarantees (see e.g., [16]) it
is known that the Frank-Wolfe gap gt = maxv∈P̃ ⟨yt − x̃, yt − v⟩ satisfies min0≤τ≤t gτ ≤ 4LD2

t+3 for
appropriate positive constants L and D. Suppose that maxv∈P̃ ⟨yt − x̃, yt − v⟩ ≥ 1

2∥x̃− yt∥2 holds
for all iterations 0 ≤ t ≤ T . We want to estimate how long this can hold. If x̃ ̸∈ P̃ , then using the
convergence guarantee yields:

0 < 1
2 dist(x̃, P̃ )2 ≤ min

0≤τ≤t

1
2∥x̃− yτ∥2 ≤

4LD2

t+ 3
.

Using L = 1 as f(y) = 1
2∥x̃− y∥2 and rearranging we obtain

t ≤ T :=
8D2

dist(x̃, P̃ )2
− 3,

i.e., after at most T iterations we have certified that x̃ is not in P̃ . Guarantees for more advanced
Frank-Wolfe variants can be obtained similarly.

6



Algorithm 1 Lazy Away-Step Frank-Wolfe [18, 19] with explicit active set and early termination

Input: Point y0 ∈ P̃ , function f(y) = 1
2∥y − x̃∥2, step-sizes γt > 0, tolerance ϵ > 0, oracle Ω

Output: Valid cut ⟨α̃, x⟩ ≤ β̃ for P̃ with ⟨α̃, x̃⟩ > β̃ or false if x̃ ∈ P̃ .
1: v0 ← Ω(∇f(y0))
2: S ← {{γ0, v0}(1− γ0, y0)}, ϕ = ⟨∇f(y0), y0 − v0⟩
3: for t = 0 to tmax do
4: if ∥f(yt)∥ < ϵ then
5: return false
6: end if
7: (λL, vL)← min(λ,v)∈S⟨∇f(yt), v⟩, (λA, vA)← max(λ,v)∈S⟨∇f(yt), v⟩
8: if ⟨∇f(yt), yt − vL⟩ ≥ max{⟨∇f(yt), vA − yt⟩, ϕ

2 } then
9: vt+1 ← vL, γmax ← 1 {lazy step}

10: else if ⟨∇f(yt), vA − yt⟩ ≤ max{⟨∇f(yt), x− vL⟩, ϕ
2 } then

11: vt+1 ← vA, γmax ← λA

1−λA
{away step}

12: else
13: vt+1 ← Ω(∇f(yt)), γmax ← 1

14: if ⟨∇f(yt), yt − vt+1⟩ < ϕ
2 then

15: ϕ← min{⟨∇f(yt), yt − vt+1⟩, ϕ
2 }, γmax ← 0 {dual step}

16: end if
17: end if
18: if ⟨yt − x̃, yt − vt+1⟩ < 1

2∥x̃− yt∥2 then
19: return cut ⟨−∇f(yt), x⟩ ≤ ⟨−∇f(yt), vt+1⟩ {see Charac. 2.3}
20: end if
21: α← min{γt, γmax}
22: S ← {(λ(1− α), v) : (λ, v) ∈ S} ∪ {(α, vt+1)}
23: yt+1 ←

∑
(λ,v)∈S λv

24: end for

3.2 Computational Aspects

A common trait of the local cuts framework is that P̃ is accessed implicitly via an oracle returning
vertices. By far the simplest black-box oracle for any bounded IP is enumeration, which simply
evaluates all possible solutions x and picks the best one. If the IP is unbounded, then pure enumeration
does not suffice any more and the oracle needs to take the unboundedness into account. For some
problems, we can find problem-specific algorithms that only enumerate over feasible solutions or
otherwise exploit the structure of the problem at hand to reduce the complexity of enumeration.
Examples are the dynamic programming approach for knapsack problems, see Section 4.1, or directly
enumerating n! possible permutations of n items for the linear ordering problem (LOP).

Similarly to the enumeration oracle, the lifting routine can also avail of problem-specific structure
in some cases. In the case of LOPs, the so-called trivial lifting lemma holds, that is, facet-defining
inequalities of the LOP polytope in dimension n also define facets in dimension r > n [35], meaning
that no lifting is needed at all in this case. For knapsack problems, we can again use a dynamic
programming approach, see Section 4.2.

In general, to apply our method to a given class of IP probems, one needs three components: i) a
projection P → P̃ . ii) An oracle solving linear optimization problems over P̃ to optimality; in order
to be practical, the selected P̃ should be such that the oracle runs reasonably fast. iii) A lifting method
to lift cuts from P̃ up to P .

In our implementation, we use the Lazy Away-Step Frank-Wolfe algorithm of [18, 19], which
converges linearly for (Separation). We integrate the novel termination criterion from Characteriza-
tion 2.3, leading to Algorithm 1. This algorithm should be thought of as a more advanced version
of the vanilla Frank-Wolfe algorithm. This variant is motivated by the fact that Frank-Wolfe trends
towards sparse solutions and hence the oracle will often return previously-seen vertices. Hence,
instead of querying the expensive oracle, one stores all previous vertices in a active set whose size is
controlled through so-called away steps. It provides superior convergence speed both in iterations and

7



wall-clock time, exploiting the strong convexity of our objective function of the separation problem;
we refer the interested reader to [46, 52, 16] for an overview. Lazification, to be thought of as an
advanced caching technique, further reduces the per-iteration cost by reusing previously computed
LMO solutions. Lastly, we note that in our setting and case study presented in Section 4, the LMO
always returns a vertex. Even though this is not a theoretical requirement for the results presented in
this paper, we do not consider the alternative case for brevity.

4 Case Study: The Multidimensional Knapsack Problem

The multidimensional knapsack problem (MKP) is a well-known problem in combinatorial opti-
mization and is strongly NP-hard. It has been used to address various practical resource allocation
problems [30]. The problem involves maximizing the total profits of selected items, taking into
account m resource capacity (knapsack) constraints. There are n items that contribute profits given
by c ∈ Zn. The resource consumption of item j for the ith knapsack is given by aij ∈ Z+; this
defines a matrix A = (aij) ∈ Zm×n

+ . The capacities of the knapsacks are given by b ∈ Zm. We
define binary variables x ∈ {0, 1}n such that xj is equal to 1 if item j is selected and 0 otherwise.
Then MKP can be expressed as an IP:

max {⟨c, x⟩ : Ax ≤ b, x ∈ {0, 1}n}. (MKP)

There exists abundant literature on the knapsack problems; we refer the interested reader to the recent
survey by Hojny et al. [43].

We will also test our approach on the instances of the generalized assignment problem (GAP), see
Section 5. GAP is a variant of MKP with applications in scheduling [43]. In addition to the constraints
from the MKP problem, it is required that each of the n items be assigned to exactly one knapsack.
The interested reader can find a survey, more details, and a comprehensive reference list in [4, 58].

In order for our approach to work, we need to provide two things: the oracle, presented in Section 4.1,
and the lifting routine, presented in Section 4.2, cf. Section 2 and Section 3.

We consider each knapsack problem in turn and try to generate inequalities that are valid for each
individual knapsack. This has the advantage that there are practically efficient oracles and more
importantly efficient lifting processes. The disadvantage is that the cuts might be weaker, since
they are valid for all integer solutions for all knapsack constraint instead of their intersection. An
alternative would be to consider optimization oracles for the complete set of knapsack constraints
as done by Gu [37]. However, then either lifting becomes more computationally demanding or one
cannot use lifting.

4.1 The Linear Minimization Oracle

The process begins with a solution x⋆ of the LP relaxation of the MKP. We create a reduced knapsack
problem of dimension k ∈ Z+, k ≤ n by removing variables of each knapsack that have integral
values (0/1) in the LP relaxation. The oracles now solve the knapsack problems (KP) for each
constraint of the form max {⟨c, x⟩ : ⟨w, x⟩ ≤ C, x ∈ {0, 1}n}, with c ∈ Rk, w ∈ Zk

+, C ∈ Z+. In
practice, the dimension k is rather small (in our test sets, see Section 5, we observe an average k value
of 9.6 with a maximal size of 26), allowing for efficient solution approaches. In our implementation,
we use a LMO based on dynamic programming. We note that we also apply the preprocessing
improvements described by Vasilyev et al. [64], before we run the oracle on the reduced problem.

Dynamic programming, as presented by Bellman in 1957 [7], was one of the earliest exact algorithms
for solving KPs. Toth [62] presents additional improvements to the algorithm. More recently, Boyer et
al. present massively-parallel implementations running on GPUs [15]. The space and time complexity
of the dynamic programming algorithm for KP is O(kC) [15], where k is the number of items and C
is the knapsack capacity. For this work, we reuse the single-threaded, CPU-based implementation
of dynamic programming available in the open-source solver SCIP [10]. As we rely on existing
implementations, we refer the interested reader to the above references for more details on this
algorithm.

8



Table 1: Statistics for a branch-and-cut run with separation of local cuts for 45 generalized assignment
problem instances (left) and 21 instances that were solved to optimization by all variants (right).
variant # solved time sep. time #cuts

default 29 98.2 – –
lc0-nc-downlift 21 411.7 54.0 10858.6
lc0-nc-lifting 26 113.7 9.8 4933.6
lc1-nc-lifting 29 86.8 31.8 160244.4

variant # solved # nodes time

default 21 614 6.0
lc0-nc-downlift 21 1522 33.7
lc0-nc-lifting 21 657 5.3
lc1-nc-lifting 21 185 4.2

4.2 The Lifting Routine

Lifting knapsack constraints has been extensively studied in literature, see [43] for a short survey
with comprehensive references. Therefore, we only briefly summarize the implemented methods here
and refer the interested reader to [43] and references therein for more details.

Let {x ∈ {0, 1}n :
∑n

j=1 ajxj ≤ a0} be one of the original knapsack constraints (corresponding
to a single row in Ax ≤ b in (MKP)). Define [n] := {1, . . . , n}, F0 := {j ∈ [n] : x⋆

j = 0}, and
F1 := {j ∈ [n] : x⋆

j = 1}. Then S := [n] \ (F0 ∪ F1) are the variable indices in the reduced
knapsack. The lifting procedure then lifts a given inequality

∑
j∈S αjxj ≤ α0 valid for the reduced

knapsack polytope {x ∈ {0, 1}S :
∑

j∈S ajxj ≤ a0 −
∑

j∈F1
aj} to a valid inequality for the

original knapsack by computing new coefficients βj , j ∈ F0 ∪ F1:∑
j∈S

αjxj +
∑
j∈F1

βjxj +
∑
j∈F0

βjxj ≤ α0 +
∑
j∈F1

βj . (2)

We implemented algorithms known as sequential up-lifting and sequential down-lifting, respectively.
The implementation is based on dynamic programming as described by Vasilyev et al. [64].

5 Computational Experiments

We implemented the described methods in C/C++, using a developer version of SCIP 8.0.4 (githash
3dbcb38) and CPLEX 12.10 as LP-solver. All tests were performed on a Linux cluster with 3.5
GHz Intel Xeon E5-1620 Quad-Core CPUs, having 32 GB main memory and 10 MB cache. All
computations were run single-threaded and with a time limit of one hour. To concentrate on the
improvement of local cuts on the dual bound, we initialize all runs with the optimal value. We used
ϵ = 1× 10−9 in Algorithm 1.

To demonstrate the advantage of using local cuts with the Frank-Wolfe approach, we run our
implementation on the generalized assignment instances from the OR-Library available at http://
people.brunel.ac.uk/~mastjjb/jeb/orlib/gapinfo.html. These instances have also been
used by Avella et al. [4].

The results are presented in Table 1. Here, “default” are the default, factory settings of SCIP. The
other settings are lcX-nc-Y, where X = 0 means that we only separate local cuts in the root node
and X = 1 means that we separate local cuts in the whole tree; Y refers to whether we perform down
lifting (Y = downlift) or up- and down lifting (Y = lifting). Note that for these settings, where local
cuts are enabled, we turn the generation of all other cuts off, because this (somewhat surprisingly)
showed better performance. The CPU time in seconds (“time”) and separation time (“sep. time”) as
well as number of nodes (“#nodes”) are given as shifted geometric means3. The numbers of generated
cuts (“#cuts”) are arithmetic means. Note that the iteration limit for the Frank-Wolfe algorithm is
10 000 in the root node and 1000 in the subtree. We also reduce the effect of cut filtering allowing for
more cuts to enter the main LP. Moreover, we initialize the runs with the best know solution values as
in [4].

The results show that the best version is lc1-nc-lifting, i.e., it helps to separate local cuts in every
node and perform up- and down lifting. This version is roughly 31% faster than the default settings
on the instances solved to optimality. Using only down lifting performs badly. In any case, on these

3The shifted geometric mean of values t1, . . . , tr is defined as
(∏

(ti + s)
)1/r − s with shift s = 1 for time

and s = 100 for nodes in order to decrease the influence of easy instances in the mean values.

9

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/gapinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/gapinfo.html


instances, using our local cuts method is a big advantage. Additional results are given in the appendix.
In addition, we also ran an experiment in which we applied complemented mixed-integer rounding
(CMIR) on the produced cut, which turned out to not be helpful and is therefore not reported in detail.

Some additional observations over all 45 instances in the test set are as follows: Variant
lc1-nc-lifting called local cuts separation 16 870.6 times on average. The total time for Frank-
Wolfe separation is about one third of the total time. The time spent in the oracle is 17.3 seconds on
average compared to a total of 87.9 seconds for the complete Frank-Wolfe algorithm. On average
69 968.8 calls ended running into the iteration limit, 81.2 detected optimality with a zero gradient,
8652.9 stopped because the primal gap is small enough, and 143 155.9 stopped because of the
termination criterion of Section 3.1.1. This demonstrates the effect of this criterion.

6 Conclusion and Future Work

In this paper, we presented a novel method to learn local cuts without relying on solutions of LPs in
the process. To show the effectiveness of our approach, we selected the multidimensional knapsack
problem as a case study and presented computational results to support our claims.

Solving LPs has proved to be notoriously hard to parallelize, with only minor performance im-
provements reported in literature to date [40, 45]. Thus, existing methods for deriving local cuts,
which rely on solving LPs, typically run single-threaded, on CPUs. Our approach is quite fast, as
demonstrated in the computational experiments for our target problem class, but also paves the way
for exploring highly parallel implementations on heterogeneous hardware and compute accelerators.
This is made possible by eliminating the dependence on LPs and instead relying on the Frank-Wolfe
algorithm. One such option we would like to explore in the future is to derive a vectorized version
of our Frank-Wolfe algorithm that could work on multiple separation problems at the same time,
increasing the computational density of the operations performed and availing of massively parallel
compute accelerators like GPUs in the process.

The presented method is generic and can be applied to any (M)IP. We have chosen one important
problem class in this paper to demonstrate the method. A natural extension of this work would be
to consider other important problem classes and evaluate the benefits of using our method on those
problems - especially those with beneficial properties as outlined in Section 3.2.

References
[1] T. Achterberg and R. Wunderling. Mixed integer programming: Analyzing 12 years of progress.

In M. Jünger and G. Reinelt, editors, Facets of Combinatorial Optimization: Festschrift for
Martin Grötschel, pages 449–481. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[2] E. Althaus, T. Polzin, and S. V. Daneshmand. Improving linear programming approaches for
the Steiner tree problem. In K. Jansen, M. Margraf, M. Mastrolilli, and J. D. P. Rolim, editors,
Experimental and Efficient Algorithms, pages 1–14, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[3] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. TSP Cuts Which Do Not Conform to
the Template Paradigm. In M. Jünger and D. Naddef, editors, Computational Combinatorial
Optimization, volume 2241 of Lecture Notes in Computer Science, pages 261–303. Springer
Berlin Heidelberg, 2001.

[4] P. Avella, M. Boccia, and I. Vasilyev. A computational study of exact knapsack separation for the
generalized assignment problem. Computational Optimization and Applications, 45(3):543–555,
2010.

[5] E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for mixed 0–1
programs. Mathematical Programming, 58(1):295–324, 1993.

[6] M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik. Learning to branch. In J. Dy and A. Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 344–353. PMLR, 10–15 Jul 2018.

[7] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1957.

10



[8] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization
with reinforcement learning, 2017.

[9] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: A
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
Apr. 2021.

[10] K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doornmalen,
L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig, A. Hoen,
C. Hojny, R. van der Hulst, T. Koch, M. Lübbecke, S. Maher, F. Matter, E. Mühmer, B. Müller,
M. E. Pfetsch, D. Rehfeldt, S. Schlein, F. Schlösser, F. Serrano, Y. Shinano, B. Sofranac,
M. Turner, S. Vigerske, F. Wegscheider, P. Wellner, D. Weninger, and J. Witzig. Enabling
research through the SCIP Optimization Suite 8.0. ACM Transactions on Mathematical Software,
2023. accepted for publication.

[11] R. Bixby and E. Rothberg. Progress in computational mixed integer programming—a look back
from the other side of the tipping point. Annals of Operations Research, 149(1):37–41, 2007.

[12] M. Boccia. Using exact knapsack separation for the single-source capacitated facility location
problem. tech. rep., Department of Engineering, University of Sannio, 2006.

[13] A. E. Boyd. A pseudopolynomial network flow formulation for exact knapsack separation.
Networks, 22(5):503–514, 1992.

[14] E. A. Boyd. Generating Fenchel cutting planes for knapsack polyhedra. SIAM Journal on
Optimization, 3(4):734–750, 1993.

[15] V. Boyer, D. El Baz, and M. Elkihel. Solving knapsack problems on GPU. Computers &
Operations Research, 39(1):42–47, 2012.

[16] G. Braun, A. Carderera, C. W. Combettes, H. Hassani, A. Karbasi, A. Mokthari, and S. Pokutta.
Conditional gradient methods. Preprint, arXiv, 2022. https://arxiv.org/abs/2211.
14103.

[17] G. Braun and S. Pokutta. Dual Prices for Frank-Wolfe Algorithms. Preprint, arXiv, 2021.
https://arxiv.org/abs/2101.02087.

[18] G. Braun, S. Pokutta, and D. Zink. Lazifying conditional gradient algorithms. In Proceedings
of the 34th International Conference on Machine Learning, pages 566–575, 2017.

[19] G. Braun, S. Pokutta, and D. Zink. Lazifying conditional gradient algorithms. Journal of
Machine Learning Research (JMLR), 20(71):1–42, 2019.

[20] C. Buchheim, F. Liers, and M. Oswald. Local cuts revisited. Operations Research Letters,
36(4):430–433, 2008.

[21] C. Buchheim, F. Liers, and M. Oswald. Speeding up IP-based algorithms for constrained
quadratic 0–1 optimization. Mathematical Programming, 124(1):513–535, 2010.

[22] A. Caprara and M. Fischetti. {0, 1/2}-Chvátal-Gomory cuts. Mathematical Programming,
74(3):221–235, 1996.

[23] A. Chmiela, E. B. Khalil, A. Gleixner, A. Lodi, and S. Pokutta. Learning to schedule heuristics
in branch and bound. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors,
Advances in Neural Information Processing Systems, 2021.

[24] P. Chu and J. E. Beasley. A genetic algorithm for the multidimensional knapsack problem.
Journal of Heuristics, 4:63–86, 1998.

[25] V. Chvátal, W. Cook, and D. Espinoza. Local cuts for mixed-integer programming. Mathemati-
cal Programming Computation, 5(2):171–200, 2013.

[26] H. P. Crowder, E. L. Johnson, and M. W. Padberg. Solving large-scale zero-one linear program-
ming problems. Oper. Res., 31:803–834, 1983.

11

https://arxiv.org/abs/2211.14103
https://arxiv.org/abs/2211.14103
https://arxiv.org/abs/2101.02087


[27] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization
algorithms over graphs. In Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems, NIPS’17, page 6351–6361, Red Hook, NY, USA, 2017. Curran
Associates Inc.

[28] J.-Y. Ding, C. Zhang, L. Shen, S. Li, B. Wang, Y. Xu, and L. Song. Accelerating primal solution
findings for mixed integer programs based on solution prediction. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(02):1452–1459, Apr. 2020.

[29] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics
Quarterly, 3(1–2):95–110, 1956.

[30] A. Fréville. The multidimensional 0–1 knapsack problem: An overview. European Journal of
Operational Research, 155(1):1–21, 2004.

[31] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact Combinatorial Optimization
with Graph Convolutional Neural Networks. Curran Associates Inc., Red Hook, NY, USA,
2019.

[32] R. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the
American Society, 64:275–278, 1958.

[33] R. Gomory. An algorithm for the mixed integer problem. Technical Report RM-2597, The
RAND Cooperation, 1960.

[34] R. Gomory. Solving linear programming problems in integers. Combinatorial Analysis, R.
Bellman and J. M. Hall, eds., Symposia in Applied Mathematics X, Providence, RI, 1960,
American Mathematical Society, 10:211––215, 1960.

[35] M. Grötschel, M. Jünger, and G. Reinelt. Facets of the linear ordering polytope. Mathematical
Programming, 33:43–60, 1985.

[36] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimiza-
tion. Springer, 1988.

[37] H. Gu. Local cuts for 0–1 multidimensional knapsack problems. In R. Sarker, H. A. Abbass,
S. Dunstall, P. Kilby, R. Davis, and L. Young, editors, Data and Decision Sciences in Action,
pages 81–89, Cham, 2018. Springer.

[38] Z. Gu, G. L. Nemhauser, and M. W. Savelsbergh. Sequence Independent Lifting in Mixed
Integer Programming. Journal of Combinatorial Optimization, 4(1):109–129, 2000.

[39] Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. Lifted flow cover inequalities for mixed 0-1
integer programs. Mathematical Programming, 85(3):439–467, 1999.

[40] J. A. J. Hall. Towards a practical parallelisation of the simplex method. Computational
Management Science, 7(2):139–170, 2010.

[41] H. He, H. Daume III, and J. M. Eisner. Learning to search in branch and bound algorithms. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

[42] G. Hendel. Adaptive large neighborhood search for mixed integer programming. Mathematical
Programming Computation, 14(2):185–221, Nov. 2021.

[43] C. Hojny, T. Gally, O. Habeck, H. Lüthen, F. Matter, M. E. Pfetsch, and A. Schmitt. Knapsack
polytopes: a survey. Annals of Operations Research, 292(1):469–517, 2020.

[44] A. Hottung and K. Tierney. Neural large neighborhood search for routing problems. Artificial
Intelligence, 313:103786, 2022.

[45] Q. Huangfu and J. A. J. Hall. Parallelizing the dual revised simplex method. Mathematical
Programming Computation, 10(1):119–142, 2018.

12



[46] M. Jaggi. Revisiting Frank-Wolfe: projection-free sparse convex optimization. In Proceedings
of the 30th International Conference on Machine Learning, pages 427–435, 2013.

[47] K. Kaparis and A. N. Letchford. Separation algorithms for 0-1 knapsack polytopes. Mathemati-
cal Programming, 124(1):69–91, 2010.

[48] E. Khalil, P. L. Bodic, L. Song, G. Nemhauser, and B. Dilkina. Learning to branch in mixed
integer programming. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1),
Feb. 2016.

[49] E. B. Khalil, B. Dilkina, G. L. Nemhauser, S. Ahmed, and Y. Shao. Learning to run heuristics
in tree search. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence. International Joint Conferences on Artificial Intelligence Organization, Aug. 2017.

[50] T. Koch, A. Martin, and M. E. Pfetsch. Progress in academic computational integer programming.
In M. Jünger and G. Reinelt, editors, Facets of Combinatorial Optimization: Festschrift for
Martin Grötschel, pages 483–506. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[51] W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing problems! In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019.

[52] S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization
variants. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28, pages 496–504. Curran Associates,
2015.

[53] E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Computational
Mathematics and Mathematical Physics, 6(5):1–50, 1966.

[54] D. Liu, A. Lodi, and M. Tanneau. Learning chordal extensions. Journal of Global Optimization,
81(1):3–22, Jan. 2021.

[55] H. Marchand and L. A. Wolsey. Aggregation and Mixed Integer Rounding to Solve MIPs.
Operations Research, 49(3):363–371, June 2001.

[56] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takac. Reinforcement learning for solving the
vehicle routing problem. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[57] M. E. Pfetsch, G. Rinaldi, and P. Ventura. Optimal patchings for consecutive ones matrices.
Mathematical Programming Computation, 14(1):43–84, 2022.

[58] M. Posta, J. A. Ferland, and P. Michelon. An exact method with variable fixing for solving the
generalized assignment problem. Computational Optimization and Applications, 52(3):629–644,
2012.

[59] J. Song, r. lanka, Y. Yue, and B. Dilkina. A general large neighborhood search framework
for solving integer linear programs. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
20012–20023. Curran Associates, Inc., 2020.

[60] N. Sonnerat, P. Wang, I. Ktena, S. Bartunov, and V. Nair. Learning a large neighborhood search
algorithm for mixed integer programs, 2021.

[61] Y. Tang, S. Agrawal, and Y. Faenza. Reinforcement learning for integer programming: Learning
to cut. In H. D. III and A. Singh, editors, Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
9367–9376. PMLR, 13–18 Jul 2020.

[62] P. Toth. Dynamic programming algorithms for the zero-one knapsack problem. Computing,
25(1):29–45, 1980.

13



[63] I. L. Vasil’ev. A cutting plane method for knapsack polytope. Journal of Computer and Systems
Sciences International, 48(1):70–77, 2009.

[64] I. Vasilyev, M. Boccia, and S. Hanafi. An implementation of exact knapsack separation. Journal
of Global Optimization, 66(1):127–150, 2016.

14



Appendix A

We ran two additional experiments. In the first, we try to repeat the experiments about the strength of
local cuts in the root node from [47]. As a comparison, we use the implementation of the local cuts
with the LP-based approach of [57] (see the beginning of Section 3 for an overview of the method).
In the second experiment, we demonstrate what happens if we use local cuts in a branch-and-cut
framework to solve multi-dimensional knapsack problems to optimality.

We start with a comparison of the gap-closed, which is defined as 100− 100 p−dr

p−dlp
, where p is the

optimal primal value, dr is the dual bound at the end of the root node, and dlp is the dual bound
of the first LP at the root node. Table 2 shows the results. We use the same multi-dimensional
knapsack instances as Kaparis and Letchford: they were originally generated randomly by Chu
and Beasley [24] and are available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/
mknapinfo.html. The instances are organized in blocks of 10, using n variables, m knapsack
constraints, and a parameter α. Column “KL” shows the gap-closed from [47]. Then the results of
using the implementation of the LP-based approach (which is also used in [47]) and our Frank-Wolfe
approach are presented. For each approach, we show the average of gap-closed, total running time
in seconds, as well as separation time, number of calls, and generated violated cuts by the local cut
separation over each instance block (of 10 instances). For both approaches, we turn off all other
cuts and strong branching. Moreover, we use settings that allow 1000 rounds of local cuts, 10 000
iterations of the Frank-Wolfe algorithm in the root node, and reduce the effect of cut filtering, i.e.,
more cuts are added to the LP. In each round we separate local cuts for all knapsack constraints
that are available. We also initialize the runs with the optimal value to remove the effects of primal
heuristics.

The results show that the LP-based approach achieves similar gap-closed values as Kaparis and
Letchford. One explanation for the differences is that the final gap depends on the particular points
to be separated (but note that we do not generate rank-2 cuts). In comparison, the Frank-Wolfe
approach is much faster, but also produces a smaller gap-closed. There are again several reasons for
the differences: We limit the number of Frank-Wolfe iterations to 10 000 in the root node, which
will leave some separation problems to be undecided and the Frank-Wolfe algorithm might fail to
converge (for instance, for n = 500, m = 5, α = 75, on average 34.8 Frank-Wolfe runs terminated
in the iteration limit and 75.4 with the termination criterion explained in Section 2). Moreover, the
Frank-Wolfe approach does not necessarily produce a facet, which can weaken the bounds.

Table 3 shows results for running a complete branch-and-cut with variants lc0-nc-lifting and
lc1-nc-lifting. As a comparison, we use the default settings of SCIP, but reduce cut filtering
(this produces slightly better results for these instances). The results show that for smaller instances,

Table 2: Gap closed and running times after the root node for the multi-dimensional knapsack
instances; each line represents the average over 10 instances.

LP FW

gap sepa gap sepa
m n α KL closed time time #calls #cuts closed time time #calls #cuts

100 5 25 17.96 18.88 1.60 1.60 26.1 113.0 12.54 0.77 0.76 21.3 78.4
100 5 50 21.65 22.36 2.13 2.12 29.3 124.5 15.55 0.88 0.87 20.8 77.7
100 5 75 22.88 23.19 2.18 2.17 28.8 122.9 16.91 0.96 0.95 21.3 85.8
100 10 25 5.55 5.75 2.69 2.68 14.5 105.7 2.73 0.80 0.79 8.0 43.0
100 10 50 7.33 7.63 3.62 3.62 16.5 120.1 4.30 1.50 1.49 11.4 59.2
100 10 75 7.23 7.44 2.71 2.71 14.0 100.6 4.37 1.29 1.29 10.7 51.5
100 30 25 0.16 0.14 2.89 2.87 2.4 12.0 0.00 1.05 1.05 0.2 0.1
100 30 50 0.49 0.47 4.45 4.44 4.9 38.2 0.02 0.84 0.83 0.6 0.7
100 30 75 0.52 0.53 4.30 4.29 4.8 35.9 0.07 1.02 1.01 0.8 0.7
250 5 25 14.56 15.44 4.03 4.00 36.3 161.0 8.03 1.08 1.06 20.4 77.6
250 5 50 15.68 14.83 6.57 6.54 38.7 172.1 7.87 1.74 1.73 20.3 78.0
250 5 75 17.48 16.98 7.42 7.39 36.6 165.3 10.45 2.58 2.56 22.5 87.5
250 10 25 4.53 3.98 6.17 6.15 17.5 128.7 1.83 1.51 1.50 10.4 49.7
250 10 50 4.48 4.11 6.52 6.48 17.4 130.8 1.60 1.49 1.48 8.4 46.2
250 10 75 5.03 4.73 8.54 8.51 18.5 141.3 2.10 2.12 2.11 9.5 51.4
500 5 25 13.80 11.75 10.37 10.31 42.0 182.9 5.96 2.84 2.81 20.9 78.4
500 5 50 11.91 11.17 17.41 17.35 45.2 199.2 5.02 5.21 5.19 21.5 84.0
500 5 75 13.70 11.75 22.53 22.48 41.5 190.0 5.62 7.63 7.60 22.4 85.4

15

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html


Table 3: Detailed statistics for a branch-and-cut run with three different algorithm variants for
the multi-dimensional knapsack instances; each line represents shifted geometric means over 10
instances.

default lc0-nc-lifting lc1-nc-uplift

n m α #solved time sep time #solved time sep time #solved time sep time

100 5 25 10 11.76 5.11 10 5.89 1.45 10 24.41 18.95
100 5 50 10 7.61 3.32 10 5.27 1.57 10 19.62 16.00
100 5 75 10 4.88 2.39 10 3.67 1.70 10 9.62 7.74
100 10 25 10 47.49 10.83 10 32.67 2.27 10 347.27 308.99
100 10 50 10 44.48 11.49 10 30.04 2.77 10 360.69 325.67
100 10 75 10 16.44 5.20 10 11.33 2.80 10 112.23 102.36
100 30 25 10 558.98 18.90 10 458.22 2.07 3 3288.89 3095.03
100 30 50 10 497.33 20.35 10 413.70 1.63 1 3057.23 2870.52
100 30 75 10 118.77 12.38 10 92.87 1.91 7 1986.30 1892.20
250 5 25 10 83.72 12.55 10 63.59 2.50 10 267.26 195.77
250 5 50 10 125.84 10.07 10 104.14 3.54 10 636.25 493.87
250 5 75 10 53.20 7.89 10 42.53 4.08 10 231.73 188.66
250 10 25 0 3600.01 906.72 2 3419.56 4.13 0 3600.01 2992.23
250 10 50 1 3528.15 1033.57 1 3483.90 4.03 0 3600.00 3326.01
250 10 75 6 2062.86 346.76 7 1645.50 5.10 1 3482.48 3138.87
500 5 25 8 1883.73 218.06 10 1539.94 5.07 3 3056.45 1962.73
500 5 50 7 1422.77 206.38 10 1083.33 7.73 5 2963.75 2068.72
500 5 75 9 676.14 70.40 10 548.03 9.43 7 2039.17 1368.61

there is no clear advantage of the Frank-Wolfe approach, but for larger sizes, it solves more instances
and is faster.

16


	Introduction
	Related Work
	Contribution

	Local Cuts
	Learning Strong Cuts from Enumeration
	Separation via Conditional Gradients
	A dynamic stopping criterion

	Computational Aspects

	Case Study: The Multidimensional Knapsack Problem
	The Linear Minimization Oracle
	The Lifting Routine

	Computational Experiments
	Conclusion and Future Work
	

