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Abstract
In this study, we explore how data annotated001
with different taxonomies can be used to im-002
prove multi-label emotion classification. We003
propose a novel transfer learning framework004
to model the interaction between emotion cat-005
egories, and introduce an adaptive aggregation006
mechanism to fuse the information from differ-007
ent taxonomies. The cross-taxonomy emotion008
interaction allows the source and target tasks009
to collaborate effectively, resulting in more ac-010
curate predictions. The experimental results011
on the SemEval-2018 dataset show that our ap-012
proach can effectively boost the performance013
gain brought by transfer learning, and signifi-014
cantly outperforms existing methods.015

1 Introduction016

Textual emotion recognition aims to detect the emo-017

tions expressed in text. It has a wide range of ap-018

plications, such as emotional chatbots (Zhou et al.,019

2018; Ghosal et al., 2019) and consumer analysis020

(Herzig et al., 2016; Alaluf and Illouz, 2019). This021

task is typically formalized as a multi-label emo-022

tion classification (MLEC) problem: A sentence is023

assigned one or more labels from a standard emo-024

tion set, such as anger, disgust, fear, happiness,025

sadness, and surprise.026

Previous studies have focused on two approaches027

to improving MLEC, namely emotion association028

and transfer learning. Emotion association is based029

on the observation that emotions are interrelated030

(Xu et al., 2020; Alhuzali and Ananiadou, 2021).031

For example, love usually appears with trust, in-032

stead of anger or disgust. Thus, modeling the de-033

pendencies between emotion categories can help034

identify emotions more accurately. Transfer learn-035

ing uses auxiliary tasks, such as sentiment classi-036

fication (Liu, 2012), to facilitate the learning of037

MLEC (Baziotis et al., 2018; Yu et al., 2018). In038

fact, sentiment classification can be regarded as a039

special MLEC problem that contains three coarse-040

grained emotion categories, i.e., positive, negative,041

and neutral. In emotion analysis, researchers have 042

proposed various taxonomies, such as the wheel of 043

emotions created by Plutchik (Plutchik, 1980) and 044

the six basic emotions defined by Ekman (Ekman, 045

1984). Datasets based on different taxonomies have 046

also been created for different research purposes. 047

Transfer learning makes it possible to use the data 048

annotated with one taxonomy to improve the clas- 049

sification task corresponding to another taxonomy. 050

However, previous studies have ignored the im- 051

portant role of cross-taxonomy emotion interaction 052

in transfer learning. In fact, emotions in different 053

taxonomies are mutually indicative. For example, 054

anger and surprise exist in both the Ekman model 055

and the Plutchik model, and enjoyment in the Ek- 056

man model is closely related to joy and trust in 057

the Plutchik model. Therefore, modeling the cor- 058

respondences between emotion categories across 059

taxonomies is expected to further enhance MLEC. 060

In this study, we propose an adaptive transfer 061

learning (AdaTrans) framework for MLEC. The 062

framework learns the correlations between emotion 063

categories in the source and target taxonomies, and 064

maps the probability distribution from one taxon- 065

omy to the other. Thus, the target task can utilize 066

the output of the source task to improve its predic- 067

tion, and vice versa. Moreover, we introduce an 068

adaptive aggregation mechanism to fuse the pre- 069

dictions from the two taxonomies. Experimental 070

results indicate that the cross-taxonomy emotion 071

interaction can effectively boost the performance 072

gain brought by transfer learning. Further analy- 073

sis demonstrates the effectiveness of our proposed 074

adaptive aggregation mechanism. 075

2 Related Work 076

For textual emotion recognition, early studies uti- 077

lized emotion lexicons to discover affective words 078

and determine their associations with emotions 079

(Tokuhisa et al., 2008; Wen and Wan, 2014). 080

Commonly used lexicons include WordNet-Affect 081
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(Strapparava and Valitutti, 2004), NRC-EmoLex082

(Mohammad and Turney, 2013), and EmoSentic-083

Net (Poria et al., 2014). Other studies used labeled084

datasets to train machine learning models for emo-085

tion classification, such as support vector machines086

(Liew and Turtle, 2016) and logistic regression clas-087

sifiers (Park et al., 2018).088

Recently, deep learning models have been ap-089

plied to MLEC with promising results. Some stud-090

ies have attempted to model the dependencies be-091

tween emotion categories to make more accurate092

predictions. For example, Huang et al. (2021) used093

a sequential decoder to model emotion correlations094

implicitly. Xu et al. (2020) captured the depen-095

dencies among emotions through graph neural net-096

works. Alhuzali and Ananiadou (2021) employed097

Transformers (Vaswani et al., 2017) to achieve emo-098

tion interaction.099

Considering the reliance of deep learning models100

on large-scale labeled datasets, some studies have101

attempted to improve the generalization ability of102

neural networks through transfer learning. Baziotis103

et al. (2018) first pre-trained a deep learning model104

on a sentiment classification dataset, and then fine-105

tuned the model for MLEC. Yu et al. (2018) used a106

long short-term memory (LSTM) (Hochreiter and107

Schmidhuber, 1997) network to extract shared fea-108

tures for sentiment and emotion classification, and109

another LSTM network to capture emotion-specific110

features for MLEC. While most existing transfer111

learning methods focus on optimizing the feature112

extraction process in the encoding stage, this study113

is devoted to modeling the cross-taxonomy emo-114

tion interaction in the decoding stage. This allows115

our framework to maximize the benefits of transfer116

learning.117

3 Approach118

Suppose there are two datasets annotated with dif-119

ferent taxonomies: DS = {x(i),y(i)}NSi=1 for the120

source task andDT = {x(i),y(i)}NTi=1 for the target121

task. x(i) is a sentence consisting of n words, and122

y(i) is its corresponding label set. y(i)
k ∈ {0, 1} de-123

notes whether or not x(i) contains the k-th emotion124

in the taxonomy.125

Encoder. The overall architecture of AdaTrans126

is illustrated in Figure 1. Inspired by Alhuzali and127

Ananiadou (2021), we use BERT (Devlin et al.,128

2019) as an encoder, and its input is the concatena-129

tion of several placeholders and the input sentence:130

[CLS] + [PAD]×CS + [PAD]×CT + [SEP] +x,131

TransferAggregator

Classifier

Encoder

Aggregator

Classifier

Figure 1: Architecture of AdaTrans.

where [CLS], [PAD], and [SEP] are special to- 132

kens; CS and CT denote the number of emotion 133

categories in the source and target taxonomies, re- 134

spectively. The hidden states HS and HT cor- 135

responding to the placeholders are used as task- 136

specific sentence representations.1 137

Since the source and target tasks have the same 138

decoding process, we only introduce the calcula- 139

tion details related to the target task below. 140

Classifier. The sentence representation HT is 141

fed into a two-layer feed-forward network with 142

ELU activation, followed by a sigmoid layer, to 143

obtain the probability distribution over the emotion 144

categories: 145

ỹT = σ(W T
C2ELU(W T

C1H
T + bTC1) + bTC2), (1) 146

where W T
C1, W T

C2, bTC1, and bTC2 are learnable 147

parameters. 148

Transfer. To learn the correlations between emo- 149

tion categories in the source and target taxonomies, 150

we use the probability distribution of the source 151

task to predict the probability distribution of the 152

target task: 153

ỹS→T = σ(W S→T
T ỹS + bS→TT ), (2) 154

where W S→T
T and bS→T

T are learnable parame- 155

ters. 156

Aggregator. In order to fuse the original pre- 157

diction ỹT and the transferred prediction ỹS→T , a 158

weight vector is used to control the contribution of 159

each part to the final probability distribution. The 160

weight vector is determined dynamically during the 161

inference process: 162

αS→T = σ(W S→T
A [ỹT ; ỹS→T ] + bS→TA ), (3) 163

1We have omitted the calculation details here due to space
limitations. Readers can refer to Alhuzali and Ananiadou
(2021) and Devlin et al. (2019) for more information.
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164
ŷT = (1−αS→T )� ỹT +αS→T � ỹS→T , (4)165

where W S→T
A and bS→T

A are learnable parame-166

ters; � denotes element-wise multiplication.167

Training. The predicted probability distribution168

ŷT is compared with the ground-truth label set yT ,169

to obtain the binary cross-entropy (BCE) loss:170

LTBCE = − 1

CT

CT∑
k=1

[yTk log(ŷTk ) + (1− yTk ) log(1− ŷTk )].

(5)171

Following Alhuzali and Ananiadou (2021), we172

also employ the label-correlation aware (LCA) loss173

to maximize the distance between positive and neg-174

ative labels:175

LTLCA =
1

|y1||y0|
∑

(p,q)∈y1×y0

exp(ŷTq − ŷTp ), (6)176

where y1 and y0 denote the set of positive and neg-177

ative labels, respectively. The overall loss function178

is defined as follows:179

LT = (1− λ)LTBCE + λLTLCA + µ||Θ||2, (7)180

where λ is a hyperparameter used to control the181

effect of the BCE loss and the LCA loss; µ denotes182

the coefficient of the L2 regularization term ||Θ||2.183

4 Experiments184

4.1 Experimental Settings185

Datasets. SemEval-2018 (Mohammad et al., 2018)186

was used as the target dataset to evaluate our ap-187

proach. It contains English tweets with 11 emo-188

tion categories (SemEval taxonomy). GoEmotions189

(Demszky et al., 2020) was used as the source190

dataset. It contains English Reddit comments an-191

notated with three different taxonomies: Ekman (6192

emotion categories), GoEmotions (27 emotion cate-193

gories), and Sentiment (3 emotion categories). The194

statistics of the datasets are shown in Appendix A.195

Metrics. Following Mohammad et al. (2018),196

we used Jaccard index, micro-averaged F1-score,197

and macro-averaged F1-score as the evaluation met-198

rics. We repeated each experiment 10 times, and199

reported the average results.200

Compared Methods. PlusEmo2Vec (Park et al.,201

2018), TCS-Research (Meisheri and Dey, 2018),202

and NTUA-SLP (Baziotis et al., 2018) are the203

top-3 systems in the SemEval-2018 competition.204

Seq2Emo (Huang et al., 2021), LEM (Fei et al.,205

2020), BERT-GAT (Xu et al., 2020), BERT-GCN206

(Xu et al., 2020), and SpanEmo (Alhuzali and207

Methods Jaccard Micro-F Macro-F

PlusEmo2Vec\ 57.60 69.20 49.70
TCS-Research\ 58.20 69.30 53.00
NTUA-SLP\ 58.80 70.10 52.80
Seq2Emo\ 58.67 70.02 51.92
LEM\ - 67.50 56.70
DATN\ 58.30 - 54.40
BERT-GAT\ 58.30 69.90 56.90
BERT-GCN\ 58.90 70.70 56.30
SpanEmo† 58.60 70.71 55.58

MultiTask-Ekman† 59.69 71.18 56.73
MultiTask-GoEmotions† 59.01 70.85 55.64
MultiTask-Sentiment† 59.21 70.88 56.27

AdaTrans-Ekman† 60.04 71.62 57.14
AdaTrans-GoEmotions† 59.47 71.14 56.64
AdaTrans-Sentiment† 59.71 71.19 56.46

Table 1: Performance comparison of different methods.
\ denotes the results retrieved from the original papers.
† denotes the results obtained by our implementations.

Ananiadou, 2021) are deep learning methods that 208

model emotion correlations through sequential de- 209

coders, variational autoencoders, graph attention 210

networks, graph convolutional networks, and Trans- 211

formers, respectively. NTUA-SLP (Baziotis et al., 212

2018) and DATN (Yu et al., 2018) are transfer learn- 213

ing methods, based on model pre-training and atten- 214

tion networks, respectively. MultiTask is a variant 215

of AdaTrans that removes the transfer and aggrega- 216

tion modules. 217

4.2 Experimental Results 218

Table 1 shows the experimental results of different 219

methods. SpanEmo and MultiTask have the same 220

structure, but the former is trained only on the target 221

dataset, while the latter also learns from the source 222

dataset. Compared with SpanEmo, MultiTask has 223

an improvement of 0.41% to 1.09% in terms of Jac- 224

card index. This suggests that, although the source 225

and target tasks possess different taxonomies, the 226

knowledge learned from the source task can still 227

improve the performance of the target task. Com- 228

pared with MultiTask, AdaTrans achieves a Jac- 229

card index improvement of 0.35% to 0.50% with 230

the same training datasets. This indicates that the 231

cross-taxonomy emotion interaction can effectively 232

boost the performance gain brought by transfer 233

learning. In addition, we observed that the source 234

dataset annotated with different taxonomies con- 235

tributed differently to the target task. AdaTrans- 236

Ekman achieves the best results, and outperforms 237

AdaTrans-GoEmotions and AdaTrans-Sentiment 238
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(a) Ekman taxonomy
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(b) GoEmotions taxonomy
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Figure 2: Performance comparison of model variants.

by 0.57% and 0.33% respectively in Jaccard index.239

We believe this is because the Ekman taxonomy is240

more similar to the SemEval taxonomy, and there-241

fore it is easier to learn their associations.242

4.3 Analysis and Discussion243

To verify the effectiveness of the adaptive aggrega-244

tion mechanism in AdaTrans, we compared it with245

MultiTask and another variant, namely FixTrans.246

FixTrans uses a fixed weight to fuse the original247

and transferred predictions. That is, the weight248

vector in Equation 4 becomes a pre-defined hyper-249

parameter (transfer coefficient). Figure 2 shows250

the Jaccard index of FixTrans with different trans-251

fer coefficients. We found that FixTrans performs252

Figure 3: Emotion correlations (SemEval–Ekman).

well with a suitable transfer coefficient. However, 253

when the coefficient is too small or too large, its 254

performance decreases significantly. Moreover, the 255

optimal coefficients are different for datasets an- 256

notated with different taxonomies, which makes it 257

more difficult to determine. In contrast, AdaTrans 258

achieves competitive results without the need to set 259

this parameter in advance. This advantage allows 260

AdaTrans to be used flexibly with various datasets. 261

In AdaTrans, the transfer module acts as a bridge 262

between the source taxonomy and the target taxon- 263

omy. The association of the two taxonomies can be 264

reflected by the mapping matrix in Equation 2. Fig- 265

ure 3 shows the correlations between the emotion 266

categories in the SemEval and Ekman taxonomies. 267

We observed high correlations between the emo- 268

tions shared by the two taxonomies, such as disgust, 269

joy, sadness, and surprise. For some unique but 270

highly correlated emotions, such as optimism in 271

SemEval and joy in Ekman, AdaTrans can also find 272

their associations. Thus, our framework can not 273

only be used for MLEC, but also provides an em- 274

pirical method to reveal the intrinsic connections 275

between different emotion taxonomies. 276

5 Conclusion 277

In this study, we propose an adaptive transfer learn- 278

ing framework that uses data annotated with differ- 279

ent taxonomies to improve MLEC. The framework 280

learns the correlations between emotion categories 281

across taxonomies, and fuses the predictions from 282

different taxonomies through an adaptive aggrega- 283

tion mechanism. The experimental results show 284

that our method achieves state-of-the-art results on 285

the SemEval-2018 dataset. Further analysis demon- 286

strates the effectiveness of our approach. 287
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A Dataset Statistics425

Table 2 and Table 3 present the statistics of the426

SemEval-2018 and GoEmotions datasets, respec-427

tively.428

B Implementation Details429

We utilized Ekphrasis2 for data pre-processing. It430

is a text processing tool geared towards text from431

2https://pypi.org/project/ekphrasis/

Training (#) 6,838
Validation (#) 886
Test (#) 3,259
Total (#) 10,983

Categories (#) 11
- Anger (%) 36.06
- Anticipation (%) 13.90
- Disgust (%) 36.60
- Fear (%) 16.83
- Joy (%) 39.32
- Love (%) 12.27
- Optimism (%) 31.27
- Pessimism (%) 11.56
- Sadness (%) 29.44
- Surprise (%) 05.15
- Trust (%) 05.04

Table 2: Statistics of the SemEval-2018 dataset.

Total (#) 38,242

Taxonomy Ekman
Categories (#) 6
- Anger (%) 18.36
- Disgust (%) 02.65
- Fear (%) 02.43
- Joy (%) 56.83
- Sadness (%) 10.54
- Surprise (%) 17.44

Taxonomy GoEmotions
Categories (#) 27
- Admiration (%) 13.39
- Amusement (%) 07.57
- Anger (%) 05.13
- Annoyance (%) 08.09
- Approval (%) 09.64
- Caring (%) 03.60
- Confusion (%) 04.37
- Curiosity (%) 07.12
- Desire (%) 02.09
- Disappointment (%) 04.14
- Disapproval (%) 06.75
- Disgust (%) 02.65
- Embarrassment (%) 00.98
- Excitement (%) 02.75
- Fear (%) 02.00
- Gratitude (%) 08.82
- Grief (%) 00.25
- Joy (%) 04.67
- Love (%) 06.74
- Nervousness (%) 00.54
- Optimism (%) 05.17
- Pride (%) 00.37
- Realization (%) 03.61
- Relief (%) 00.48
- Remorse (%) 01.75
- Sadness (%) 04.25
- Surprise (%) 03.48

Taxonomy Sentiment
Categories (#) 3
- Ambiguous (%) 17.44
- Negative (%) 32.27
- Positive (%) 56.83

Table 3: Statistics of the GoEmotions dataset.
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Methods Jaccard Micro-F Macro-F

MultiTask-Ekman 60.37 71.77 58.36
MultiTask-GoEmotions 60.13 71.67 57.74
MultiTask-Sentiment 60.23 71.78 58.48

AdaTrans-Ekman 60.90 72.19 58.60
AdaTrans-GoEmotions 60.25 71.83 58.65
AdaTrans-Sentiment 60.16 71.62 58.49

Table 4: Results of MultiTask and AdaTrans on the val-
idation datasets.

social networks. We used the tool for tokenization,432

spell correction, and word normalization.433

Our framework was implemented in PyTorch3,434

and trained on NVIDIA GeForce RTX 2080 Ti435

GPUs. We used the uncased version of BERTbase436

model4 as the encoder of AdaTrans. The dimen-437

sion of hidden states was 768. The maximum input438

sequence length was limited to 100. The hidden439

size of the classifiers was set to 768. The hyperpa-440

rameters λ and µ in the loss function were set to441

0.2 and 1e-5, respectively.442

For model training, we sampled the mini-batch443

alternately from DS and DT . The batch size was444

set to 32. We used the BERTAdam optimizer to445

update the model parameters. The initial learning446

rate was set to 2e-5 and 1e-3 for fine-tuning BERT447

and optimizing other modules, respectively. We448

trained the model for 20 epochs, and adopted a449

linear learning rate decay schedule. The best model450

was selected based on the Jaccard index on the451

validation set. To avoid overfitting, we performed452

early stopping with a patience of 5.453

C Results on Validation Datasets454

The experimental results of MultiTask and Ada-455

Trans on the validation datasets are shown in Ta-456

ble 4.457

D More Visualizations458

Figure 4 shows the correlations between the emo-459

tion categories in the SemEval and Sentiment tax-460

onomies. Notably, anger, pessimism, and sadness461

in SemEval are closely related to negative in Sen-462

timent. Meanwhile, joy, love, and optimism in463

SemEval are more related to positive in Sentiment.464

Figure 5 shows the correlations between the emo-465

tion categories in the SemEval and GoEmotions466

taxonomies. It can be found that joy in SemEval467

3https://pytorch.org
4https://huggingface.co/bert-base-uncased

Figure 4: Emotion correlations (SemEval–Sentiment).

is closely related to admiration and amusement in 468

GoEmotions. In addition, optimism in SemEval 469

is highly correlated with approval and caring in 470

GoEmotions. 471
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Figure 5: Emotion correlations (SemEval–GoEmotions).

8


