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Figure 1: Visualization of the searched solver parameters of DDPM/VP and Rectified Flow. We limit the order of solver
coefficients of the last two steps for 5/6 NFE. The left images show the absolute value of searched coefficients {c] }. The right image

shows the searched timesteps of different NFE and the fitted curves.

Abstract

Diffusion models have demonstrated remarkable
generation quality, but at the cost of numer-
ous function evaluations. Advanced ODE-based
solvers have recently been developed to miti-
gate the substantial computational demands of
reverse-diffusion solving under limited sampling
steps. However, these solvers, heavily inspired
by Adams-like multi-step methods, rely solely
on t-related Lagrange interpolation. We show
that t-related Lagrange interpolation is subopti-
mal for diffusion models and define a compact
search space comprised of time steps and solver
coefficients. Based on our analysis, we propose
a new differentiable solver search algorithm to
find a more optimal solver. Equipped with the
searched solver, rectified-flow models, e.g., SiT-
XL/2 and FlowDCN-XL/2, achieve FID scores
of 2.40 and 2.35, respectively, on ImageNet-
256 x 256 with only 10 steps. Meanwhile, DDPM
model of DiT-XL/2 reaches a FID score of 2.33
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with only 10 steps. Notably, our searched solver
significantly outperforms the traditional solvers,
even for some distillation-based methods. More-
over, our searched solver demonstrates generality
across various model architectures, resolutions,
and model sizes.

1. Introduction

Image generation is a fundamental task in computer vision,
which aims at capturing the inherent data distribution of orig-
inal image datasets and generating high-quality synthetic im-
ages through distribution sampling. Diffusion models (Ho
et al., 2020; Song et al., 2020b; Karras et al., 2022; Liu
et al., 2022; Lipman et al., 2022; Wang et al., 2025) have
recently emerged as highly promising solutions to learn
the underlying data distribution in image generation, outper-
forming GAN-based models (Brock et al., 2018; Sauer et al.,
2022) and Auto-Regressive models (Chang et al., 2022) by
a significant margin.

However, diffusion models necessitate numerous denoising
steps during inference, which incur a substantial computa-
tional cost, thereby limiting their widespread deployment.
The existing studies have explored two distinct approaches
to achieve fast diffusion sampling. Training-based tech-
niques by distilling the fast ODE trajectory into the model
parameters, thereby circumventing redundant refinement
steps. In addition, solver-based methods (Lu et al., 2023;
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Zhang & Chen, 2023; Song et al., 2020a) tackle the fast
sampling problem by designing high-order numerical ODE
solvers.

For training-based acceleration, (Salimans & Ho, 2022)
aligns the single-step student denoiser with the multi-step
teacher output, thereby reducing inference burdens. The con-
sistency model concept, introduced by (Song et al., 2023),
directly teaches the model to produce consistent predic-
tions at any arbitrary timesteps. Building upon (Song et al.,
2023), subsequent works (Zheng et al., 2024; Kim et al.,
2023; Wang et al., 2024a; Xu et al., 2024; Song et al., 2025)
propose improved techniques to mitigate discrete errors in
LCM training. Furthermore, (Lin et al., 2024; Kang et al.,
2024; Yin et al., 2024; Zhou et al., 2024; Wang et al., 2023)
leverage adversarial training and distribution matching to en-
hance the quality of generated samples. However, training-
based methods introduce changes to the model parameters,
resulting in an inability to exploit the power of pre-trained
models fully.

Solver-based methods rely heavily on the ODE formula-
tion in the reverse-diffusion dynamics and hand-crafted
multi-step solvers. (Lu et al., 2023; 2022) and (Zhang &
Chen, 2023) point out the semi-linear structure of the diffu-
sion ODE and propose an exponential integrator to tackle
faster sampling in diffusion models. (Zhao et al., 2023)
further enhances the sampling quality by introducing the
predictor-corrector structure. Thanks to the multistep-based
ODE solver methods, high-quality samples can be gener-
ated within as few as 10 steps. To further improve efficiency,
(Gao et al., 2023) tracks the backward error and determines
the adaptive step. Moreover, (Karras et al., 2022; Lu et al.,
2022) propose a handcrafted timesteps scheduler to sample
respaced timesteps. (Xue et al., 2024) argues that timesteps
sampled in (Karras et al., 2022; Lu et al., 2022) are subop-
timal, thus proposing an online optimization algorithm to
find the optimal sampling timesteps for generation. Apart
from timesteps optimization, (Shaul et al., 2023) learns a
specific path transition to improve the sampling efficiency.

In contrast to training-based acceleration methods, solver-
based approaches do not necessitate parameter adjustments
and are able to preserve the original performance of the
pre-trained models. Moreover, solvers can be seamlessly
applied to any arbitrary diffusion model trained with a simi-
lar noise scheduler, offering a high degree of flexibility and
generality. This property enables us to investigate the gen-
erative capabilities of pre-trained diffusion models within
limited steps from a diffusion solver perspective.

Current state-of-the-art diffusion solvers (Lu et al., 2023;
Zhao et al., 2023) adopt Adams-like multi-step methods
that use the Lagrange interpolation function to minimize
integral errors. We argue that an optimal solver should be
tailored to specific pre-trained denoising functions and their

corresponding noise schedulers. In this paper, we present
a new solver-based method for fast diffusion sampling by
using data-driven approaches without destroying the pre-
trained internality in diffusion models. Inspired by (Xue
et al., 2024), we investigate the sources of error in the dif-
fusion ODE and discover that the form of the interpolation
function is inconsequential, which can be reduced to coef-
ficients. Furthermore, we define a compact search space
related to the timesteps and solver coefficients. Therefore,
we propose a differentiable solver search method to identify
the optimal parameters in this compact search space.

Based on our novel differentiable solver search algorithm,
we investigate the upper bound performance of pre-trained
diffusion models under limited steps. Our searched solver
significantly improves the performance of pre-trained dif-
fusion models, and outperforms traditional solvers with
a large gap. On ImageNet-256 x 256, armed with our
solver, rectified-flow models of SiT-XL/2 and FlowDCN-
XL/2 achieve 2.40 and 2.35 FID, respectively, under 10
steps, while DDPM model of DiT-XL/2 achieves 2.33 FID.
Surprisingly, our findings reveal that when equipped with an
optimized high-order solver, the DDPM can perform com-
parably or even surpass the performance of rectified flow
models under similar NFE constraints.

To summarize, our contributions are

* We reveal that the interpolation function choice is not
important and can be reduced to coefficients through
the pre-integral technique. We demonstrate that the
upper bound of discretization error in reverse-diffusion
ODE is related to both timesteps and solver coefficients.
Thus, we define a compact solver search space.

* Based on our analysis, we propose a novel differen-
tiable solver search algorithm to find the optimal solver
parameter for given pre-trained diffusion models.

e For DDPM/VP time scheduling, armed with our
searched solver, DiT-XL/2 achieves 2.33 FID under
10 steps, beating DPMSolver++/UniPC by a signifi-
cant margin.

¢ For Rectified-flow models, armed with our searched
solver, SiT-XL/2 and FlowDCN-XL/2 achieve 2.40
and 2.35 FID respectively under 10 steps on ImageNet-
256 x 256.

* For Text-to-Image diffusion models like FLUX, SD3,
PixArt-3, our solver searched on ImageNet-256 x 256
consistently yields better images compared to tradi-
tional solvers with the same CFG scale.
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2. Related Work

Diffusion Model gradually adds o with Gaussian noise €
to perturb the corresponding known data distribution p(z)
into a simple Gaussian distribution. The discrete perturba-
tion function at each step ¢ satisfies N (x| o, 07 1) as
follows:

Tt = Q4Treql + OE, (D

where oy, 0, > 0. Moreover, as shown in Equation (2),
Equation (1) has a forward continuous-SDE description,

where f(t) = 41%% and g(t) = %ﬁz — dlogae 52 (Ander-
son, 1982) establishes a pivotal theorem that the forward
SDE has an equivalent reverse-time diffusion process as in
Equation (3), so the generating process is equivalent to solv-
ing the diffusion SDE. Typically, diffusion models employ
neural networks and distinct prediction parametrization to
estimate the score function V log,, pe, (z;) along the sam-
pling trajectory (Song et al., 2020b; Karras et al., 2022; Ho
et al., 2020).

de, = f(t)xdt + g(t)dw. 2)
dz = [f()xr — g(t)* Vg log p(z)]dt + g(t)dw.  (3)

(Song et al., 2020b) also shows that there exists a corre-
sponding deterministic process Equation (4) whose trajecto-
ries share the same marginal probability densities of Equa-
tion (3) as follows:

de, = [z, — S9(1)*Ve, logp(@)ldr. (@)
Rectified Flow Model simplifies diffusion model under the
framework of Equation (2) and Equation (3). Different from
(Ho et al., 2020) introduces non-linear transition scheduling,
the rectified-flow model adopts a linear function to transform
data to standard Gaussian noise:

Ty = txrea + (1 — t)e. 5)

Instead of estimating the score function Vg, log pt(x¢),
rectified-flow models directly learn a neural network
vg (x4, t) to predict the velocity field v; = da; = (e — €).

1
amzméuw@mwww%w ©)

Solver-based Fast Sampling Method does not necessitate
parameter adjustments and preserves the optimal perfor-
mance of the pre-trained model. It can be seamlessly ap-
plied to an arbitrary diffusion model trained with a similar
noise scheduler, offering a high degree of flexibility and
adaptability. Solvers heavily rely on the reverse diffusion
ODE in Equation (4). Current solvers are mainly focused on
DDPM/VP noise schedules. (Lu et al., 2022; Zhang & Chen,

2023) discovered the semi-linear structure in DDPM/VP re-
verse ODEs. Furthermore, (Zhao et al., 2023) enhanced the
sampling quality by borrowing the predictor-corrector struc-
ture. Thanks to the multi-step ODE solvers, high-quality
samples can be generated within as few as 10 steps. To
further improve efficiency, (Gao et al., 2023) tracks the
backward error and determines the adaptive step. Moreover,
(Karras et al., 2022; Lu et al., 2022) proposed a handcrafted
timestep scheduler to sample respaced timesteps. However,
(Xue et al., 2024; Sabour et al., 2024; Chen et al., 2024a) ar-
gued that the handcrafted timesteps are suboptimal, and thus
proposed an online optimization algorithm to find the opti-
mal sampling timestep for generation. Apart from timestep
optimization, (Shaul et al., 2023) learned a specific path
transition to improve the sampling efficiency.

3. Problem Definition

As rectified-flow has a simple yet elegant formulation within
the diffusion family, we choose it as the primary subject of
discussion in this paper to enhance readability. Importantly,
our proposed algorithm is not constrained to rectified-flow
models. We explore its applicability to other diffusion mod-
els such as DDPM/VP in Section 6.

Recall the continuous integration of reverse-diffusion in
Equation (7) has the pre-defined interval {tg,t1,...tx}
Given the pre-trained diffusion models and their corre-
sponding ODE defined in Equation (4), before we tackle
the integration of interval [¢;,t;11], we have already ob-
tained the sampled velocity field of previous timestep
{(),tj,v; = vo(x;,t;)}i_y. Here, we directly denote
T+, as x; for presentation clarity:

tita
Tigr = + / v (1, ). ™

ti

As shown in Equation (8), we strive to develop a more
optimal solver that minimizes the integral error while en-
hancing image quality under limited sampling steps (NFE)
without requiring any parameter adjustments for the pre-
trained model:

1
O = argmin E[||®(e, vg) — (€ —I—/ vg(x, t)dt)|]]. (8)
0

4. Analysis of reverse-diffusion ODE Sampling

Initially, we revisit the multi-step methods commonly used
by (Zhao et al., 2023; Zhang & Chen, 2023; Lu et al., 2023)
and identify potential limitations. Specifically, we argue
that the Lagrange interpolation function used in Adams-
Bashforth methods is suboptimal for diffusion models.
Moreover, we show that the specific form of the interpo-
lation function is inconsequential, as pre-integration and
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Figure 2: Generated images from Flux.1-dev with Guidance=2.0 and our solver (searched on SiT-XL/2). Euler-Shift3
is the default solver provided by diffusers and Flux community. Our solver(DS-Solver) achieves better visual quality from 5 to 10

steps(NFE).

expectation estimation ultimately reduce it to a set of co-
efficients. Inspired by (Xue et al., 2024), we prove that
timesteps and these coefficients effectively constitute our
search space.

4.1. Revisit the multi-step methods

As shown in Equation (9), the Euler method employs v; as
an estimate of Equation (9) throughout the interval [¢;, ¢;41].
Higher-order multistep solvers further improve the estima-
tion quality of the integral by incorporating interpolation
functions and leveraging previously sampled values.

XTiy1 = @ + (tiy1 — ti)ve(xs, t;). ©))

The most classic multi-step solver Adams—Bashforth
method (Bashforth & Adams, 1883)(deemed as Adams for
brevity) incorporates the Lagrange polynomial to improve
the estimation accuracy within a given interval.

% g

et t—t
Tip T+ / Z( H - tkk Jvdt.  (10)
t;

J=0 k=0k#j 7

i tit
Tiy1 R T + g 'Uj/ (
j=0 i

11 tt___t:k )t (11)

k=0,k#j 7

As Equation (11) states, fti_’“ (Tho.rz; é,;_tf;)dt of the
Lagrange polynomial can be pre-integrated into a con-
stant coefficient, resulting in only naive summation be-
ing required for ODE solving. Current SoTA multi-step
solvers (Lu et al., 2023; Zhao et al., 2023) are heavily in-
spired by Adams—Bashforth-like multi-step solvers. These

solvers employ the Lagrange interpolation function or dif-
ference formula to estimate the value in the given interval.

However, the Lagrange interpolation function and other
similar methods only take ¢ into account while the v(x, t)
also needs «x as inputs. Using first-order Taylor expansion
of x at x; and higher-order expansion of ¢ at ¢;, we can
readily derive the error bound of the estimation.

4.2. Focus on solver coefficients instead of the
interpolation function

In contrast to typical problems of solving ordinary differ-
ential equations, when considering reverse-diffusion ODEs
along with pretrained models, a compact searching space
is present. We define a universal interpolation function P,
which has no explicit form. P measures the distance of
(#,t) between previous sampled points {(x;,;)}’—, to
determine the interpolation weight for {v; }}_,.

i

tit1
Tit1 R Ti + / E P(xy,t, xj, t]’)’l)jdt. (12)
t %o

i tit1
~x; + Zvj / P(xe, t, @ ,t;)dt. (13)
j=0

Assumption 4.1. We assume that the remainder term of the
universal interpolation function 3-'_, P(x¢, t, x;, t;)v; for
v(x,t) is bound as O(dx™) + O(dt"), where O(dx™) is
the mith-order infinitesimal for da, O(dt™) is the nth-order
infinitesimal for dt.

Equation (13) has a recurrent dependency, as x; also relies
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on Z;‘:o P(xy,t, x;,t;)v;dt. To eliminate the recurrent
dependency, shown in Equation (14), we simply use the first
order Taylor expansion of z(t) at x; to replace the original
form. Recall that v; is already determined by «; and ¢;, thus
the partial integral of Equation (14) can be formulated as
Equation (15). Unlike naive Lagrange interpolation, C;(x;)
is a function of the current x; instead of a constant scalar.
Learning a C;(x;) function will cause the generalization
to be lost. This limits the actual usage in diffusion model
sampling.

i tit1
iyl %wi—kzvj/ P(in+’Ui(t—ti)7ta$jatj)dt'
j=0 i

i

(14)

Tit1 ~ Ty =+ Z 'UjCj (:Bi)(ti+1 — tl) (15)
7=0

Theorem 4.2. Given sampling time interval [t;, t;11]
and suppose Cj(xz;) = g;(x;) + b!, Adams-like lin-
ear multi-step methods have an error expectation of
(tivr — ti)Ea, || D250 vigj(xi)l|. replacing Cj(x) with
Ex,[Cj(x;)] is the optimal choice and owns an error expec-
tation of (tir1 — ti)Ba,[| 325_o v;l9; (i) — Ba,g;(xi)l|
We place the proof in Appendix H.

According to Theorem 4.2, we opt to replace C;(x;)
with its expectation E, [C;(x;)], thus we obtain diffusion-
scheduler-related coefficients while maintaining generaliza-
tion ability.

Finally, given the predefined time intervals, we obtain the
optimization target Equation (16), where ¢] = Eg, [C;(z;)].
The expectation can be deemed as optimized through mas-
sive data and gradient descent.

Tip1 T + Z’UjC‘Z(tiJrl — ﬁi). (16)
=0

4.3. Search optimal solver

Assumption 4.3. As shown in Equation (17), the pre-trained
velocity model vy is not perfect and the error between vy
and ideal velocity field © is L1-bounded, where 7 is a
constant scalar.

1o — vyl < < ||2]]. (17

Previous discussions assume we have a perfect velocity func-
tion. However, the ideal velocity is hard to obtain; we only
have pre-trained velocity models. Following Equation (16),
we can expand Equation (16) from t;—( to ¢;—y to obtain
the error bound caused by non-ideal velocity estimation.

Theorem 4.4. The error caused by the non-ideal veloc-
ity estimation model can be formulated in the following

equation. We can employ triangle inequalities to obtain the
error-bound(L1) of ||xn — Zn||, the proof can be found in

the Appendix 1.
N-1 i
len — @l <n Y Y [l (tipr —t)]-
i=0 j=0

Based on Theorem 4.4, since the error bound is related to
timesteps and solver coefficients, we can define a much
more compact search space consisting of {c/ };VQ j=0,i=1
and {t;}1V,.

Theorem 4.5. Based on Theorem 4.4 and Theorem 4.2. We
can derive the total upper error bound(L1) of our solver
search method and other counterparts.

The total upper error bound of our solver search is:

N —

(tiv1 — tz)(z N|Eq,g;(x:) +b]].
0 =0

[

1=

+}Eml

> wig;(@i) — Ea,gi(2)]).

=0

Compared to Adams-like linear multi-step methods. Our
searched solver has a small upper error bound. The proof
can be found in the Appendix I.

Through Theorem 4.5, our searched solvers own a relatively
small upper error bound. Thus, we can theoretically guaran-
tee optimal compared to Adams-like methods.

5. Differentiable Solver Search

Through previous discussion and analysis, we identify
{c]}i j=0.i=1 and {t;}]L, as the target search items. To
this end, we propose a differentiable data-driven solver
search approach to determine these searchable items.

Timestep Parametrization. As shown in Algorithm 1,
we employ unbounded parameters {r;, }f\i_ol as the opti-
mization subject, as the integral interval is from O to 1, we
convert r; into time-space deltas At; with softmax normal-
ization function to force their summation to 1. We can
access timestep t;41 through ¢; 11 = t; + At;. We initialize
{ri f\;_ol with 1.0 to obtain a uniform timestep distribution.

Coefficients Parametrization. Inspired by (Xue et al.,
2024). Given Equation (16) and Equation (7), when the
velocity field vg(x,t) yields constant value, an implicit
constraint »_, _,ci = 1 emerges. This observation mo-
tivates us to re-parameterize the diagonal value of M as
{1 - Z;;E ) WV GE We initialize {cF,} with zeros to
mimic the behavior of the Euler solver.
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Algorithm 1 Solver Parametrization

Requires: {r;, } and {c], }
TimeDeltas: Ato, Atq, ..., Aty_1.
SolverCoefficients: M € RV XV
{At;, }=Softmax({r; })

1

n—1 k

0 1 7
Cn—1 Cn—1 e 1= k=0 Cn—1

Mono-alignment Supervision. We take the L-step Euler
solver’s ODE trajectory {& }}_, as reference. We minimize
the gap between the target and source trajectories with the
MSE loss. We also adopt Huber loss as auxiliary supervision
for ¢, .

6. Extending to DDPM/VP framework

Applying our differentiable solver search to DDPM is infea-
sible. However, (Song et al., 2020b) suggests that there ex-
ists a continuous SDE process with { f(t) = —£8;; g(t) =
V/Bi} corresponding to discrete DDPM. This motivates
us to transform the search space from the infeasible dis-
crete space to its continuous SDE counterpart. (Lu et al.,
2022) and (Zhang & Chen, 2023) discover the semi-linear
structure of diffusion and propose exponential integral
with e parametrization to tackle the fast sampling prob-
lem of DDPM models, where o; = elo _%Bsd“", o =
V1—els =45 and A, = log 2. (Lu et al., 2023) fur-
ther discovers that = parametrization is more powerful for
diffusion sampling under limited steps, where & = =<,

At
T = ﬁws + at./ e)‘:ig(a:t(A),t()\))d)\. (18)

S s

We opt to follow the & parametrization as DPM-Solver++.
However, we find directly interpolating e*xg(zy,t) as a
whole part is hard for searching, and yields worse results.
To avoid conflating the interpolation coefficients with expo-
nential integral, we employ w; = %Z and transform Equa-
tion (18) into Equation (19) with a similar interpolation
format as Equation (15), where ¢(w) maps w to timestep.

i
op _ _
€T~ J—tms + ot (we — wy) E cfacg(wk,tk)

s k=1

(19)

7. Experiment

We demonstrate the efficiency of our differentiable solver
search by conducting experiments on publicly available dif-
fusion models. Specifically, we utilize DiT-XL/2 (Peebles

Algorithm 2 Differentiable Solver Search

Require: vy model, {At;, }f\’:f)l, M, A buffer Q.
Compute {&;, }{—, = Euler(e, vg) .
fori =0to N — 1do
Q bﬂer Vo (wti, ti)
Compute v = Z;:o Mi;Qj.
tivi =t + Aty
Ty, = Ty, + vAt;
end for
return: &, ,, L@ Mo, {x:} o)

Solver with Different Search Model on SiT-XL/2

FlowDCN-5/2

X

55 FlowDCN-8/2 55
STX2

Solver with various steps of reference Euler on SiTXL/2

7 8
Number of steps

(a) FID of Search Model (b) FID of RefTraj Steps

Figure 3: Ablations studies of Differentiable Solver
Search. We evaluate the searched solver on SiT-XL/2, and report
the FID performance curve of searched solvers.

& Xie, 2023) trained with DDPM scheduling and rectified-
flow models SiT-XL/2 (Ma et al., 2024) and FlowDCN-
XL/2 (Wang et al., 2024b). Our default training setting
employs the Lion optimizer (Chen et al., 2024c) with a
constant learning rate of 0.01 and no weight decay. We
sample 50,000 images for the entire search process. No-
tably, searching with 50,000 samples using FlowDCN-B/2
requires approximately 30 minutes on 8 x H20 computa-
tion cards. During the search, we deliberately avoid using
CFG to construct reference and source trajectories, thereby
preventing misalignment.

7.1. Rectified flow models

We search solvers with FlowDCN-B/2, FlowDCN-S/2 and
SiT-XL/2. We compare the search solver’s performance with
the second-order and fourth-order Adam multistep method
on SiT-XL/2, FlowDCN-XL/2 trained on ImageNet 256 x
256, and FlowDCN-XL/2 trained on ImageNet 512 x 512.

Search Model. We tried different search models among
different sizes and architectures. We report the FID per-
formance of SiT-XL/2 in Figure 3a. Surprisingly, we find
that the FID performance of SiT-XL/2 equipped with the
solver searched using FlowDCN-B/2 outperforms the solver
searched on SiT-XL/2 itself. The reconstruction error(in the
Appendix) between the sampled result produced by Euler-
250 steps is as expected. These findings suggest that there
exists a minor discrepancy between FID and the pursuit of
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Performance of solvers on SiT-XL/2 Performance of sol

vers on FlowDCN-XL/2(256x256) Performance of solvers on FlowDCN-XL/2(512x512)

—— Adam2-Solver
Adam4-Solver
Searched-Solver

FID
FID

—

Eular(50steps) - 2.23 Eular(50steps) - 2.17

—— Adam2-Solver
Adam4-Solver
Searched-Solver

—— Adam2-Solver
Adama-Solver
Searched-Solver

FID

5 6 5 6

7 8
Number of steps.

(a) SiT-XL/2-R256

(b) FlowDCN-XL/2-R256

7 8
Number of steps

(c) FlowDCN-XL/2-R512

Figure 4: The same searched solver on different Rectified-Flow Models. R256 and R512 indicate the generation resolution
of given model. We search solver with FlowDCN-B/2 on ImageNet-256 x 256 and evaluate it with SiT-XL/2 and FlowDCN-XL/2

on different resolution datasets. Our searched solver outperform:
Precision, Recall) are places at Appendix

minimal error in the current solver design.

Step of Reference Trajectory. We provide reference trajec-
tory {&}£_, of different sampling step L for differentiable
solver search. We take FlowDCN-B/2 as the search model
and report the FID measured on SiT-XL/2 in Figure 3b. As
the sampling step of the reference trajectory increases, the
FID of SiT-XL/2 further improves and becomes better. How-
ever, the performance improvement is not significant when
the number of steps is 5 or 6, which suggests that there is
a limit to the improvement achievable with an extremely
small number of steps.

ImageNet 256 x 256. We validate the searched solver on
SiT-XL/2 and FlowDCN-XL/2. We arm the pre-trained
model with CFG of 1.375. As shown in Figure 4a, our
searched solver improves FID performance significantly
and achieves 2.40 FID under 10 steps. As shown in Fig-
ure 4b, our searched solver achieves 2.35 FID under 10
steps, beating traditional solvers by large margins.

We also provide the comparison with recent solver-based
distillation (Zhao et al., 2024) to demonstrate the efficiency
of our searched solver in Table 1. Our searched solver
achieves better metric performance under similar NFE with
fewer parameters.

ImageNet 512 x 512. Since (Ma et al., 2024) has not re-
leased SiT-XL/2 trained on 512 x 512 resolution, we directly
report the performance collected from FlowDCN-XL/2. We
arm FlowDCN-XL/2 with CFG of 1.375 and four chan-
nels. Our searched solver achieves 2.77 FID under 10 steps,
beating traditional solver by a large margin, even slightly
outperforming the Euler solver with 50 steps(2.81FID).

Text to Image. Shown in Figure 2, we apply our solver
search on FlowDCN-B/2 and SiT-XL/2 to the most advanced
Rectified-Flow model Flux.1-dev and SD3 (Esser et al.,
2024). We find Flux.1-Dev would produce grid points in

s traditional solvers by a significant margin. More metrics(sFID, IS,

SiT-XL-R256 | NFE-CFG | Params | FID | IS
Heun 16x2 0 3.68 | /
Heun 22x2 0 279 | /
Heun 30x2 0 242 |/
Adam?2 15x2 / 249 | 236
Adam2 16x2 0 242 | 237
Adam4 15x2 / 233 | 242
Adam4 16x2 0 227 | 243
FlowTurbo (7+3)x2 2.9 x 107 | 3.93 | 224
FlowTurbo (8+2)x2 2.9 %107 | 3.63 | /
FlowTurbo (1242)x2 | 2.9 x 107 | 2.69 | /
FlowTurbo (1743)x2 | 2.9 x 107 | 2.22 | 248
ours 6x2 21 3.57 | 214
ours 7x2 28 2.78 | 229
ours 8x2 36 2.65 | 234
ours 10x2 55 2.40 | 238
ours 15x2 55 224 | 244

Table 1: Comparison with the distillation-based methods.
Our searched solver achieves much better result under the same
NFE with much fewer parameters.

generation. To alleviate the grid pattern, we decouple the
velocity field into mean and direction, only apply our solver
to the direction, and replace the mean with an exponential
decayed mean. The details can be found in the appendix.

We also provide the result of distillation on SD1.5 and SDXL
with solver search in Appendix F.

7.2. DDPM/VP models

We choose the open-source DiT-XL/2(Peebles & Xie, 2023)
model trained on ImageNet 256 x 256 as the search model
to carry out the experiments. We compare the performance
of the searched solver with DPM-Solver++ and UniPC on
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Sampling Steps ———>

DPMSolver++

UniPC  DPMSolver++ DS-Solver UniPC

DS-Solver

A close up of a plate of food containing broccoli A chicken sandwich in a wrapper near a cell phone

Figure 5: The images generated from PixArt-X with CFG=2.0 equipped with Our DS-Solver ( searched on DiT-XL/2-R256
).In comparison to DPM-Solver++ and UniPC, our results consistently exhibit greater clarity and possess more details. Our solver
achieves better quality from 5 to 10 steps(NFE).

Methods \NFEs 5 6 7 8 9 10
DPM-Solver++ with uniform-\ (Lu et al., 2023) 38.04 2096 14.69 11.09 832 6.47
DPM-Solver++ with uniform-¢ (Lu et al., 2023) 31.32 1436 7.62 493 377 3.23

DPM-Solver++ with uniform-A-opt (Xue et al., 2024) 12.53 544 358 754 597 4.12
DPM-Solver++ with uniform-t-opt (Xue et al., 2024) 12.53 5.44 3.89 3.81 3.13 279

UniPC with uniform-A (Zhao et al., 2023) 41.89 3051 19.72 1294 849 6.13
UniPC with uniform-¢ (Zhao et al., 2023) 2348 1031 573 4.06 339 3.04
UniPC with uniform-A-opt (Xue et al., 2024) 8.66 446 357 372 340 3.01
UniPC with uniform-¢-opt (Xue et al., 2024) 8.66 446 374 329 301 274
Searched-Solver 740 394 279 251 237 233

Table 2: FID (]) of different NFEs on DiT-XL/2-R256 . -opr indicates online optimization of the timesteps scheduler.

Methods \NFEs 5 6 7 8 9 10
UniPC with uniform-\ (Zhao et al., 2023) 41.14 19.81 13.01 9.83 8.31 7.01
UniPC with uniform-¢ (Zhao et al., 2023) 20.28 1047 657 5.13 446 4.14

UniPC with uniform-A-opt (Xue et al., 2024) 1140 595 482 468 693 6.01
UniPC with uniform-¢-opt (Xue et al., 2024) 1140 595 464 436 4.05 3.81
Searched-solver(searched on DiT-XL/2-R256) 10.28 6.02 431 3.74 3.54 3.64

Table 3: FID ({) of different NFEs on DiT-XL/2-R512. -opt indicates online optimization of the timesteps scheduler.

ImageNet 256 x 256 and ImageNet 512 x 512. ImageNet 256 x 256. Following (Peebles & Xie, 2023)
and (Xue et al., 2024), We arm pre-trained DiT-XL/2 with



Differentiable Solver Search for Fast Diffusion Sampling

GenEval Metrics

Solver Steps CFG Color.Attr Two.Obj Pos Overall

5 20 650  33.08 4.750.40519
DPMH++ ¢ 90 525 3965 5.75 043074
umpe 5 20 650 3485 525041387

8 20 672  40.66 6.00 0.44134
Ours 5 20 525 3737 475041933
u 8 20 725 4268 7.50 0.45064

Table 4: Results on GenEval Benchmark for PixArt at
512 Resolution.Our searched solver achieves better performance
compared with UniPC/DPM++ on PixArt-512 x 512.

| Steps | FID | sFID | IS | PR | Recall
DPM++ | 5 60.0 | 209 | 25.59 | 0.36 | 0.20
DPM++ | 8 384 | 1169 | 33.0 | 050 | 0.36
DPM++ | 10 | 356 | 114.7 | 337 | 0.53 | 0.37
UniPC | 5 57.9 | 206.4 | 25.88 | 0.38 | 0.20
UniPC | 8 376 | 1153 | 333 | 051 | 036
UniPC | 10 | 353 | 1133 | 33.6 | 0.54 | 0.36
Ours 5 464 | 204 | 280 | 046|023
Ours 8 33.6 | 1152 | 326 | 0.54 | 039
Ours 10 | 334 1147 | 325 | 055 | 039

Table 5: Metrics of different NFEs on PixArt-o (Our Solver
are searched on ImageNet 256x256).

CFG of 1.5 and apply CFG only on the first three channels.
As shown in Table 2, our searched solver improves FID
performance significantly and achieves 2.33 FID under 10
steps.

ImageNet 512 x 512. We directly apply the solver searched
on 256 x 256 resolution to ImageNet 512 x 512. The result
is also great to some extent, DiT-XL/2(512 x 512) achieves
3.64 FID under 10 steps, outperforming DPM-Solver++ and
UniPC with a large gap.

Text to Image. As we search solver with DiT and its
corresponding noise scheduler, so it is infeasible to apply
our solver to other DDPM models with different (3, and
Bmax- Fortunately, we find (Chen et al., 2024b) and (Chen
et al., 2023) also employ the same By, and SBpa.x as DiT.
So we can provide the visualization results of our searched
solver on PixArt-Y and PixArt-a.. Our visualization result
is produced with CFG of 2. We take PixArt-alpha as the
text-to-image model. We follow the evaluation pipeline of
ADM and take COCO17-Val as the reference batch. We
generate 5k images using DPM-Solver++, UniPC and our
solver searched on DiT-XL/2-R256. Also, we provided the
performance results on GenEval Benchmark (Ghosh et al.,
2023) in Section 7.2.

7.3. Visualization of solver parameters

Searched Coefficients are visualized in Figure 1. The
absolute value of searched coefficients corresponding
to DDPM/VP shares a different pattern, coefficients in
DDPM/VP are more concentrated on the diagonal while
rectified-flow demonstrates a more flattened distribution.
This indicates that there exists a more curved sampling path
in DDPM/VP compared to rectified-flow.

Searched Timesteps are visualized in Figure 1. Compared
to DDPM/VP, rectified-flow models focus more on the more
noisy region, exhibiting small time deltas at the beginning.
We fit the searched timestep of different NFE with polyno-
mials and provide the respacing curves as follows:

ReFlow : — 1.96¢* + 3.513 — 0.97¢% + 0.43t, (20)
DDPM/VP : — 2.73t* + 6.30t> — 4.744t% + 2.17t, (21)

t € [0,1], and ¢ = 0 indicates the most noisy timestep.

8. Conclusion

We have found a compact solver search space and proposed
a novel differentiable solver search algorithm to identify the
optimal solver. Our searched solver outperforms traditional
solvers by a significant margin. Equipped with the searched
solver, DDPM/VP and Rectified Flow models significantly
improve under limited sampling steps. However, our pro-
posed solver still has several limitations which we plan to
address in future work.

9. Limitations

We have demonstrated text-to-image visualization with a
small CFG value. However, it is intuitive that using a larger
CFG would result in superior image quality. We attribute
the inferior performance of large CFGs in our solver to the
limitations of current naive solver structures and searching
techniques. We hypothesize that incorporating predictor-
corrector solver structures would enhance numerical sta-
bility and yield better images. Additionally, training with
CFGs may also be beneficial.

Impact Statement

This paper proposes a search-based solver for fast diffusion
sampling. We acknowledge that it could lower the barrier
for creating diffusion-based AIGC contents.
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A. More Metrics of Searched Solver

We adhere to the evaluation guidelines provided by ADM and DM-nonuniform, reporting only the FID as the standard metric in Figure 4a.
To clarity, we do not report selective results on rectified flow models; we present sFID, IS, PR, and Recall metrics for SiT-XL(R256),
FlowDCN-XL/2(R256), and FlowDCN-B/2(R256). Our solver searched on FlowDCN-B/2, consistently outperforms the handcrafted
solvers across FID, sFID, IS, and Recall metrics.

B. Computational complexity compared to other methods.

For sampling. When performing sampling over n time steps, our solver caches all pre-sampled predictions, resulting in a memory
complexity of O(n). The model function evaluation also has a complexity of O(n) (O(2 x n) for CFG enabled). It is important to note
that the memory required for caching predictions is negligible compared to that used by model weights and activations. Besides classic
methods, we have also included a comparison with the latest Flowturbo published on NeurIPS24.

Steps | NFE | NFE-CFG | Cache Pred | Order | search samples

Adam?2 n n 2n 2 2 /

Adam4 n n 2n 4 4 /

heun n 2n 4n 2 2 /

DPM-Solver++ | n n 2n 2 2 /

UniPC n n 2n 3 3 /

FlowTurbo n >n >2n 2 2 540000(Real)

our n n 2n n n 50000(Generated)

For searching. Solver-based algorithms, limited by their searchable parameter sizes, demonstrate significantly lower performance in
few-step settings compared to distillation-based algorithms(5/6steps), making direct comparisons inappropriate. Consequently, we selected
algorithms that are both acceleratable on ImageNet and comparable in performance, including popular methods such as DPM-Solver++,
UniPC, and classic Adams-like linear multi-step methods. Since our experiments primarily utilize SiT, DiT, and FlowDCN that trained on
the ImageNet dataset. We also provide fair comparisons by incorporating the latest acceleration method, FlowTurbo. Additionally, we
have included results from the heun method as reported in FlowTurbo.

C. Ablation on Search Samples

We ablate the number of search samples on the 10-step and 8-step solver settings. Samples means the total training samples the searched
solver has seen. Unique Samples means the total distinct samples the searched solver has seen. Our searched solver converges fast and
gets saturated near 30000 samples.

iters(10-step-solver) | samples | unique samples | FID | IS PR | Recall
313 10000 10000 2.54 | 239 | 0.79 | 0.59
626 20000 10000 238 | 239 | 0.79 | 0.60
939 30000 10000 249 | 240 | 0.79 | 0.59
1252 40000 10000 229 | 239 | 0.80 | 0.60
1565 50000 10000 241 | 240 | 0.80 | 0.59
626 20000 20000 2.47 | 237 | 0.78 | 0.60
939 30000 30000 240 | 238 | 0.79 | 0.60
1252 40000 40000 2.48 | 237 | 0.80 | 0.59
1565 50000 50000 241 | 239 | 0.80 | 0.59

D. Solver Across different variance schedules

Since our solvers are searched on a specific noise scheduler and its corresponding pre-trained models, applying the searched coefficients
and timesteps to other noise schedulers yields meaningless results. We have tried applied searched solver on SiT(Rectified flow) and
DiT(DDPM with B,in = 0.1, Bimaz = 20) to SD1.5(DDPM with SBnin, = 0.085, Bmaz = 12), but the results were inconclusive.
Notably, despite sharing the DDPM name, DiT and SD1.5 employ distinct Spin, Bmaz Values, thereby featuring different noise schedulers.
A more in-depth discussion of these experiments can be found in Section(Extend to DDPM/VP).
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Performance of solvers on SiT-XL/2

Performance of solvers on FlowDCN-XL/2(256x256)

Performance of solvers on FlowDCN-XL/2(512x512)
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Figure 6: The same searched solver on different Rectified-Flow Models. R256 and R512 indicate the generation resolution
of given model. We search solver with FlowDCN-B/2 on ImageNet-256 x 256 and evaluate it with SiT-XL/2 and FlowDCN-XL/2 on
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5 6 7 8 9 10
Number of steps

(1) FlowDCN-XL/2-R512

different resolution datasets. Our searched solver outperforms traditional solvers by a significant margin.
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iters(8-step-solver) | samples | unique samples | FID | IS PR | Recall
313 10000 10000 299 | 228 | 0.78 | 0.59
626 20000 10000 278 1229 | 0.79 | 0.60
939 30000 10000 272 | 235 | 0.79 | 0.60
1252 40000 10000 2.67 | 228 | 0.79 | 0.60
1565 50000 10000 2.69 | 235 | 0.79 | 0.59
626 20000 20000 270 | 231 | 0.79 | 0.59
939 30000 30000 2.82 | 232 | 0.79 | 0.59
1252 40000 40000 2.79 | 231 | 0.79 | 0.60
1565 50000 50000 2.65 | 234 | 0.79 | 0.60

E. Solver for different variance schedules

As every DDPM has a corresponding continuous VP scheduler, so we can transform the discreet DDPM into continuous VP, thus
we successfully searched better solver compared to DPM-Solvers. The details can be found in Section 6. To put it simply, under the
empowerment of our high-order solver, the performance of DDPM and FM does not differ significantly (8, 9, 10 steps), which contradicts
the common belief that FM is stronger at limited sampling steps.

F. Text to image Distillation Experiments

We unify distillation and solver search to obtain high-quality multi-step generative models. We adopt adversarial training and trajectory
supervision. We will open source the training code of unified training techniques.

Table 6: Performance comparison on validation set of COCO-2017.

Method Res. Time(|) #Steps #Param. FID (})
SDv1-5+DPMSolver (Upper-Bound) (Lu et al., 2022) 512 0.88s 25 0.9B 20.1
Rectified Flow 512 0.88s 25 0.9B 21.65
Rectified Diffusion 512 0.88s 25 0.9B 21.28
Rectified Flow 512 0.21s 4 0.9B 103.48
PeRFlow 512 0.21s 4 0.9B 22.97
Rectified Diffusion 512 0.21s 4 0.9B 20.64
Ours(Distillation+solver search) 512 0.21s 4 0.9B 18.99
PeRFlow-SDXL 1024 0.71s 4 3B 27.06
Rectified Diffusion-SDXL 1024 0.71s 4 3B 25.81
Ours(LORA+Distillation+solver search) 1024 0.71s 4 3B 21.3
Table 7: Performance comparison on COCO-2014.
Method Res. Time () #Steps #Param. FID (])
Stable Diffusion XL (3B) and its accelerated or distilled versions
SDXL-Turbo 512 0.34s 4 3B 23.19
SDXL-Lightning 1024 0.71s 4 3B 24.56
DMDv2 1024 0.71s 4 3B 19.32
LCM 1024 0.71s 4 3B 22.16
Phased Consistency Model 1024 0.71s 4 3B 21.04
PeRFlow-XL 1024 0.71s 4 3B 20.99
Rectified Diffusion-XL (Phased) 1024 0.71s 4 3B 19.71
Ours(LORA+Distillation+solver search) 1024 0.71s 4 3B 114
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G. Limitations.

We place the limitation at the appendix, in order to provide more discussion space and obtain more insights from reviews. We copy the
original limitation content and add more.

Misalignd Reconstrucion loss and Performance. Our proposed methods are specifically designed to minimize integral error within a
limited number of steps. However, ablation studies reveal a mismatch between FID performance and Reconstruction error. To address this
issue, we plan to enhance our searched solver by incorporating distribution matching supervision, thereby better aligning sampling quality.

Larger CFG Inference. In the main paper, we demonstrate text-to-image visualization with a small CFG value. However, it is intuitive
that utilizing a larger CFG would result in superior image quality. We attribute the inferior performance of large CFGs on our solver to
the limitations of current naive solver structures and searching techniques. We hypothesize that incorporating predictor-corrector solver
structures would enhance numerical stability and yield better images. Additionally, training with CFGs may also be beneficial.

Resource Consumption We can hard code the searched coefficients and timesteps into the program files. However, Compared to
hand-crafted solvers, our solver still needs a searching process.
H. Proof of pre-integral error expectation

Theorem H.1. Given sampling time interval [t;, t;+1] and suppose Cj(x) = g;(x) + bz Adams-like linear multi-step methods will
introduce an upper error bound of (ti+1 — ti)Ea, || >25_o vig;(®i)]|.

Our solver search(replacing Cj(x) with E,[C;(x:)]) owns an upper error bound of (t;11 — t;)Ea, || Z;:O vjlgj (i) — Bz, 9;(x:)]|

Proof. Suppose Cj(x;) = g;(x:)+ bg . Adams-like linear multi-step methods would not consider x-related interpolation. thus pre-integral
coefficients of Adams-like linear multi-step methods will only reduce into b.

We obtain the error expectation of the pre-integral of Adams-like linear multi-step methods:

Ea, || > 05[C(@:)] (tisr — t) — > w;b (tir — t1)]| (22)
Jj=0 j=0
=Eo, || Y vi(tivs — t:)[C; (i) — 0] | (23)
j=0
=(tiv1 — t:)Ba, || Y v;g;(a:)|] (24)
3=0

‘We obtain the error expectation of the pre-integral of our solver search methods:

Ba: || Y 05[C;(@)](tixr — ) — Y vEa, [Ci(@:)] (g — t)] (25
=0 i=0
=B, || > vj(tir1 — 1:)[C; (@) — Ea, Cs(@i)| (26)
j=0
=(tiy1 — ti)Ewi H Z vj [gj (wl) - Ewlga(wz)u 27
=0

Next, define the optimization problem:
E =Eq,|| Y vslgs(m:) — asllf3-
j=0

We suppose different v; are orthogonal and ||v;]|3 = 1. As we leave c§ as the expectation of C; (z;), we will demonstrate this choice is
optimal.

OFE
02 = o, (s Bl (1) — 1)) e8)
a;
. (@) 1vs 112 ,
Let gTEj = 0, we obtain: a; = % =Ez,9;(xi) = E,C;(x;) — bl

So our searched solver has a lower and optimal error expectation:

(tivr — t)Ea, || > 05[g5 (@) = Eaygs(@)]|| < (tivr — t:)Ea, || > vig; ()| 29
i=0 i=0
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Recall Assumption 4.1, the integral upper error bound of universal interpolation P will be:

tit1 i tig1
||/ v(mt7t)dt—Zvj/ P(@,t, @, t;)dt||.
t; =0 t;
tit1 tit1 i
1 [ vt v [T S Pt vl
t; t; j=0

i

tit1
"y / (e t) = S Plae t, @5, )51
t; 3=0
tit1 i
< / lo(@et) = S P, t, ;. ;)5 |de.
t; =0

<(tiyr — ) [O(dx™) + O(dt™)]

Combining Equation (34) and the error expectation of the pre-integral part, we will get the total error bound of the solver search.

I / v(xy, t)dt — Z'UJ Ci ()] (tivr — ta)]]-
tit1 i1
:|| / U(Zlih t)dt — Z'Uj / P(él?t, t7 a:J?t])dt—'_
t; =0 t;
i tit1 i
Zvj/ Plae,t,y,t;)dt — Y viEa, [C(a:)](tirr — t)]].
j=0 t; j=0
tit1 i tit1
<||/ v(mt,t)dtfzvj/ Plae, s, )t +
t; =0 ti
i tit1 ¢
1S / Pl@esty @y, )t — 3 03, [0 (@) (ti1 — )
j=0 ty j=0
i+1
_||/ (@, t Zv]/ P, t, @, t;)dt]|+
||Zv][c )] (i1 — t:) —ZvﬂEmi [Cj ()] (tisr — ta)]].
j:

<(titr = :)[O(da™) + O(dt™)] + (tit1 — ti)Ea IIng 9j(®i) — Ea,; g5 (2i)][|

<(tigr — t:)([O(da™) + O(dt")] + Ea, || Z ;g (®i) — Ba, gj(2:)][)

J=0

(30)

(3N

(32)

(33)

(34

(35)

(36)

(37

(38%)

(39

(40)

(41

(42)

43)

Since ((O(dx™) + O(dt™)) is much smaller than E, || Z;:o v;j[gj(xi) — Ee, gj(x:)]||. We can omit the ((O(dx™) + O(dt™)) term.

L. Proof of total upper error bound
Theorem L.1. Compared to Adams-like linear multi-step methods. Our Solver search has a small upper error bound.

The total upper error bound of Adams-like linear multi-step methods is:

N-1 i

Zmbﬂuﬁmnzvj g5@lll)

1=0 7=0
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The total upper error bound of Our solver search is:

N-1 7 i
D (i =) Y nlBa,gs(@i) +b]| + Bayll Y v95(®:) — Ea,g;(a:)])
i=0 =0 =0

Proof. We donate the continuous integral result of the ideal velocity field © as &, the solved integral result of the ideal velocity field © as

& N, the continuous integral result of the pre-trained velocity model vy as &, the solved integral result of the pre-trained velocity model vg
as Ty.

meeJrZZvj (tit1 — ts) (44)

1=0 j=0

The error caused by the non-ideal velocity estimation model can be formulated in the following equation. we can employ triangular
inequalities to obtain the error-bound ||y — Z ||, which is related to solver coefficients and timestep choices.

lon —avll =1 3 > (s - 8t — 1)

1=0 7=0
N—-1 1
< (5 — B5)el (tos1 — )]
i=0 j=0
N—-1 1 ]
< [vj = 0;)] X |¢] (titr — ti)]
i=0 j=0
N—-1 1 )
<n |cj (titr — ti)|
i=0 j=0

The total error of our searched solver is:
llen — @]
=lleny — &N + TN — &
<lleny — &n|| + |[|&~ — 2]

N—-1 1
<0 Y0 D lel(tin — )|+

i=0 j=0

z

(ti+1 — £)(O(da™) + O(dt") + Ba, || > ;g5 (1) — B, g5(2)]|])

Jj=0

1

i

m, el (tigr — t0)] + (tix1 — ti)Ea, || Z'Uj[gj(mi) — Bz, g5(2:)]l])

Q

S
Il
<}

z

(tisr — i) Y nlBa,g;(@:) + bl| + B, || Y v5]g5(®:) — Bayg; (2)]])

=0 j=0

s
I
<}

The total error of Adams-like linear multi-step method is:

LSS D DUICTRE M ) e PHES [}
i=0 j=0 j=0

Obviously, as (Z;:o nlb!| + Ea, || Z;:o v;[g;(x:)]||) is not equal between different timestep intervals, Optimized timesteps owns
smaller upper error bound than uniform timesteps.

Recall that n < ||v;]|, the error is mainly determined by Eg, || Z;:o v;ilg; ()]l

Recall that E, || 22‘:0 vj|gj (i) — Bz, 95 (x:)]]| < Ez,|| Zj.:o v;[g;j(x:)]||, thus our solver search has a minimal upper error bound
because we search coefficients and timesteps simultaneously.

O
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J. Searched Parameters

We provide the searched parameters A¢ and cf Note c{ needs to be converted into M follwing Algorithm 1.

J.1. Solver Searched on SiT-XL/2

NFE TimeDeltas At Coeffcients ¢!
[0.0424] 0.0 0.0 0.0 0.0 0.0
0.1225 —-1.17 0.0 0.0 0.0 0.0
5 0.2144 1.07 -1.83 0.0 0.0 0.0
0.3073 0.0 0.0 —0.93 0.0 0.0
10.3135 0.0 0.0 0.0 —-0.71 0.0
[0.0389] 0.0 0.0 0.0 0.0 0.0 0.0
0.0976 —1.04 0.0 0.0 0.0 0.0 0.0
6 0.161 1.62 —2.98 0.0 0.0 0.0 0.0
0.2046 —1.32 252 —-2.04 0.0 0.0 0.0
0.2762 0.0 0.0 0.0 —0.76 0.0 0.0
10.2217 | 0.0 0.0 0.0 0.0 —0.66 0.0
[0.02997] 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0735 —0.93 0.0 0.0 0.0 0.0 0.0 0.0
0.1119 123 -231 0.0 0.0 0.0 0.0 0.0
7 0.1451 —-0.59 153 —-2.09 0.0 0.0 0.0 0.0
0.1959 -0.09 -0.07 099 -1.91 0.0 0.0 0.0
0.2698 0.05 —-0.21 0.09 0.55 —1.47 0.0 0.0
10.1738 | -0.05 019 -0.31 0.37 0.67 —-1.79 0.0
r0.03037 r 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07
0.0702 —0.92 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0716 0.78 —-1.7 0.0 0.0 0.0 0.0 0.0 0.0
8 0.1112 0.06 0.52 —1.76 0.0 0.0 0.0 0.0 0.0
0.1501 —-0.02 -0.16 0.98 —-1.8 0.0 0.0 0.0 0.0
0.1833 -0.02 -0.12 0.22 024 —-136 0.0 0.0 0.0
0.2475 -0.1 0.06 —-0.02 0.18 0.12 -1.1 0.0 0.0
L0.1358 .-0.16 0.14 -0.02 -0.02 038 032 -1.72 0.0l
r0.028 7 r 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07
0.0624 —0.93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0717 0.63 —1.29 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0894 0.39 —-0.11 -1.41 0.0 0.0 0.0 0.0 0.0 0.0
9 0.1092 -0.07 —-0.05 0.83 —1.59 0.0 0.0 0.0 0.0 0.0
0.1307 0.07 —-0.11 0.27 0.27 —1.53 0.0 0.0 0.0 0.0
0.1729 —-0.05 0.03 0.01 0.15 0.17 —-1.15 0.0 0.0 0.0
0.2198 -0.21 027 -0.07 -0.03 0.19 0.09 -0.99 0.0 0.0
10.1159] 1—-0.15 0.15 0.03 —-0.09 0.25 0.25 0.21 -1.71 0.0]
[0.02797 r 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07
0.0479 —0.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0646 0.59 —-1.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0659 035 —0.11 —-1.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.1045 —-0.13  0.01 0.75 —1.49 0.0 0.0 0.0 0.0 0.0 0.0
0.1066 0.05 —-0.05 0.31 0.29 —-1.59 0.0 0.0 0.0 0.0 0.0
0.1355 0.06 —-0.03 —-0.09 0.23 0.17 —-1.19 0.0 0.0 0.0 0.0
0.1622 -0.03 0.0r -0.09 -0.03 027 -0.03 -0.91 0.0 0.0 0.0
0.1942 -0.15 0.17 0.03 —-0.09 0.05 0.09 0.06 —0.79 0.0 0.0
10.0908] 1—-0.17 0.11 0.15 0.03 0.05 0.25 0.05 —-0.07 -1.49 0.0]
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J.2. Solver Searched on FlowDCN-B/2

NFE TimeDeltas A¢ Coeffcients c]
[0.05217 0.0 0.0 0.0 0.0 0.0
0.1475 —-1.26 0.0 0.0 0.0 0.0

5 0.2114 1.38 —2.26 0.0 0.0 0.0
0.2797 0.0 0.0 -0.92 0.0 0.0
10.3092 | 0.0 0.0 0.0 -0.7 0.0
[0.03917 0.0 0.0 0.0 0.0 0.0 0.0
0.0924 —-1.22 0.0 0.0 0.0 0.0 0.0

6 0.165 112 -2.0 0.0 0.0 0.0 0.0
0.2015 -03 09 -156 0.0 0.0 0.0
0.2511 0.0 0.0 0.0 -074 0.0 0.0
10.2511 | 0.0 0.0 0.0 0.0 —-0.62 0.0
[0.0387] 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0748 —1.11 0.0 0.0 0.0 0.0 0.0 0.0
0.103 1.03 -199 0.0 0.0 0.0 0.0 0.0

7 0.1537 0.07 0.43 —1.57 0.0 0.0 0.0 0.0
0.184 -0.21 -0.15 1.53 —2.29 0.0 0.0 0.0
0.234 -0.05 007 -0.23 061 —-133 00 0.0
10.2117 | -0.17 031 =041 0.17 0.59 —-1.31 0.0
r0.00717 r 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.07
0.0613 —2.43 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.078 0.61 —-1.55 0.0 0.0 0.0 0.0 0.0 0.0

3 0.1163 099 -0.11 -2.07 0.0 0.0 0.0 0.0 0.0
0.1421 0.06 —-049 133 -193 0.0 0.0 0.0 0.0
0.188 0.05 —-0.33 0.23 0.73 -1.71 0.0 0.0 0.0
0.2077 —-0.09 025 —0.29 0.05 0.61 —-145 00 0.0
L0.1996] .-0.23 021 -0.01 -0.25 0.25 041 —-1.25 0.04
r0.00177 r 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.07
0.051 —6.19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0636 -0.11 -0.81 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0911 0.73 —-0.17 —-1.37 0.0 0.0 0.0 0.0 0.0 0.0

9 0.1007 031 —-0.05 019 -145 0.0 0.0 0.0 0.0 0.0
0.1443 0.03 —-0.23 0.29 0.35 —1.35 0.0 0.0 0.0 0.0
0.1694 —-0.19  0.05 0.01 0.21 025 —-123 0.0 0.0 0.0
0.191 -0.23 021 -0.13 0.17 0.09 0.09 -1.09 0.0 0.0
L0.1872] L-0.17  0.15 0.11  -0.19 0.03 0.23 0.17 —1.21 0.04
[0.00167 [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.07
0.0538 —7.8801 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0347 —-0.4 —-0.74 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0853 0.48 —-0.18 —-0.86 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0853 0.26 —-0.04 -0.04 -—-1.28 0.0 0.0 0.0 0.0 0.0 0.0
0.1198 0.0 —-0.06 0.26 026 —-1.42 0.0 0.0 0.0 0.0 0.0
0.1351 -0.1 —-0.06 0.08 0.2 022 —-1.24 0.0 0.0 0.0 0.0
0.165 —0.18 0.14 —-0.08 0.1 0.08 0.14 —-1.06 0.0 0.0 0.0
0.1788 —-0.12 0.16 -0.1 0.04 0.08 0.06 0.08 —1.02 0.0 0.0
10.1406 | L —0.16 0.02 0.14 0.0 —0.14  0.08 0.14 0.34 —1.38 0.04
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J.3. Solver Searched on DiT-XL/2

NFE TimeDeltas A¢ Coeffcients c]
[0.2582] 0.0 0.0 0.0 0.0 0.0
0.1766 —-1.43 0.0 0.0 0.0 0.0
5 0.1766 093 —1.55 0.0 0.0 0.0
0.2156 0.0 00 =069 0.0 0.0
10.1731] 0.0 0.0 0.0 -0.59 0.0
[0.2483] 0.0 0.0 0.0 0.0 0.0 0.0
0.1506 —1.36 0.0 0.0 0.0 0.0 0.0
6 0.1476 0.9 —-1.84 0.0 0.0 0.0 0.0
0.1568 —-0.08 0.5 —-1.08 0.0 0.0 0.0
0.1733 0.0 0.0 0.0 -0.56 0.0 0.0
10.1233 ] 0.0 0.0 0.0 0.0 —-0.56 0.0
[0.22417] 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1415 —1.38 0.0 0.0 0.0 0.0 0.0 0.0
0.1205 1.08 —-2.02 0.0 0.0 0.0 0.0 0.0
7 0.1158 —0.28 0.78 —-1.52 0.0 0.0 0.0 0.0
0.1443 —1.4901e — 08 —0.1 0.64 —-15 0.0 0.0 0.0
0.1627 0.06 -0.06 -0.06 026 -—-1.0 00 0.0
10.0911 | 0.0 —0.1 0.02 02 026 -112 0.0
r0.20337 r 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.07
0.1476 —-1.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1094 0.8 -1.76 0.0 0.0 0.0 0.0 0.0 0.0
8 0.099 0.02 0.48 —1.62 0.0 0.0 0.0 0.0 0.0
0.1116 —-0.12  0.06 0.62 —1.42 0.0 0.0 0.0 0.0
0.1233 0.04 —-0.1 0.12 0.16 —1.04 0.0 0.0 0.0
0.131 0.06 —-0.04 -0.06 0.08 —-0.08 —-0.56 0.0 0.0
[0.0748] —0.02 —-0.04 —-0.04 0.12 0.14 0.04 —-0.9 0.0
[0.19597 r 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.07
0.1313 —1.28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1142 0.78 —=1.62 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0863 —-0.02 044 —-148 0.0 0.0 0.0 0.0 0.0 0.0
9 0.0898 -0.1  0.16 0.36 -1.3 0.0 0.0 0.0 0.0 0.0
0.0916 —-0.06 —-0.04 0.22 0.12 —-1.08 0.0 0.0 0.0 0.0
0.1119 0.08 -0.1 -0.04 024 -0.06 -0.86 0.0 0.0 0.0
0.1054 0.04 —-0.04 -0.04 0.0 0.06 —0.08 -0.5 0.0 0.0
L0.0735] L-0.04 0.0 0.0 —=0.02 0.14 0.02 0.0 —-0.74 0.0
[0.21747 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07
0.1123 -1.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1037 0.35 —0.99 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0724 0.25 -0.11 -0.99 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.0681 0.03 0.06 —-0.07 -0.85 0.0 0.0 0.0 0.0 0.0 0.0
0.0816 —-0.03 0.03 025 -0.09 -093 0.0 0.0 0.0 0.0 0.0
0.0938 -0.01 -0.03 -0.01 021 -0.11 -0.67 0.0 0.0 0.0 0.0
0.0977 0.01 -0.03 -0.03 0.07 0.09 —-0.03 -0.81 0.0 0.0 0.0
0.0849 0.03 -0.03 -0.03 -0.03 0.05 0.01 -0.11 -0.27 0.0 0.0
10.0681 1-0.01 -0.01 -0.01 -0.01 0.03 0.0  —-0.01 -0.05 —-0.57 0.0]
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