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ABSTRACT

While recent advances in reinforcement learning have significantly enhanced rea-
soning capabilities in large language models (LLMs), these techniques remain
underexplored in multi-modal LLMs for video captioning. This paper presents the
first systematic investigation of GRPO-based RL post-training for video MLLMs,
with the goal of enhancing video MLLMs’ capability of describing actions in
videos. Specifically, we develop the VideoCap-R1, which is prompted to first
perform structured thinking that analyzes video subjects with their attributes and
actions before generating complete captions, supported by two specialized reward
mechanisms: a LLM-free think scorer evaluating the structured thinking quality
and a LLM-assisted caption scorer assessing the output quality. The RL training
framework effectively establishes the connection between structured reasoning and
comprehensive description generation, enabling the model to produce captions with
more accurate actions. Our experiments demonstrate that VideoCap-R1 achieves
substantial improvements over the Qwen2VL-7B baseline using limited samples
(1.5k) across multiple video caption benchmarks (DREAM-1K: +4.4 event F1,
VDC: +4.2 Acc, CAREBENCH: +3.1 action F1, +6.9 object F1) while consistently
outperforming the SFT-trained counterparts, confirming GRPO’s superiority in
enhancing MLLMs’ captioning capabilities.

1 INTRODUCTION

Test-time scaling has been proven to effectively enhance the reasoning capabilities of large language
models (LLMs), as demonstrated by OpenAI’s o1 (Jaech et al., 2024), Deepseek-R1 (Guo et al.,
2025), and Kimi-1.5 (Team et al., 2025), which exhibit strong performance in complex logical tasks
such as mathematics(Lightman et al., 2023) and coding(Jain et al., 2024). Notably, Deepseek-R1
showcases the potential of LLMs to develop reasoning abilities without any supervised data, relying
solely on pure reinforcement learning with rule-based verifiable rewards.

Many researchers(Meng et al., 2025; Liu et al., 2025; Shen et al., 2025; Feng et al., 2025; Li et al.,
2025; Zhou et al., 2025) have devoted significant efforts to extending Deepseek-R1’s paradigm to the
multimodal large language models (MLLMs), aiming to improve visual reasoning capabilities. These
works collectively validate the superiority of the GRPO(Shao et al., 2024) algorithm over supervised
fine-tuning (SFT) in specific visual tasks, such as visual question answering(Zhao et al., 2025b; Yang
et al., 2024c), spatial grounding(Yu et al., 2016), and temporal grounding(Gao et al., 2017). However,
they primarily focus on verifiable problems (e.g., math(Lu et al., 2023; Zhang et al., 2024a; He et al.,
2024), multiple-choice questions(Zhao et al., 2025b; Yang et al., 2024c; Hu et al., 2025)), leaving
open-ended problems like video captioning(Chai et al., 2025; Xu et al., 2024b; Wang et al., 2024a;
Caba Heilbron et al., 2015) underexplored.

In video captioning, most existing approaches rely on manually annotated or commercial model-
generated (e.g., GPT-4o(Hurst et al., 2024), Gemini-2.0(Pichai et al., 2024)) high-quality video
description datasets for instruction tuning, which is both time-consuming and costly. Inspired by
the Chain-of-Thought (CoT) paradigm(Xu et al., 2024a), we decompose the captioning task into
two sequential steps: first prompting the model to perform structured reasoning that analyzes video
subjects, their attributes and actions, then requiring it to synthesize these elements into a complete
caption.
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VideoCap-R1:
<think>

#Subject 1: Man [wearing a black jacket, white hoodie, black pants, black sneakers],

[stand, cross arms, turn around, dance, high-five]

#Subject 2: Woman [wearing a gray tank top, black skirt, gray socks, white

sneakers], [stand, dance, turn around, dance, high-five]

</think>

<answer>

The video captures a man and a woman standing in front of a gray garage door. The

man is wearing a black jacket over a white hoodie, black pants, and black sneakers.

He is standing with his arms crossed and then starts dancing. The woman is wearing

a gray tank top, a black skirt, gray socks, and white sneakers. She is standing behind

the man and starts dancing as well. They both perform a dance routine together, with

the man leading and the woman following. They then high-five each other and

continue dancing. The video ends with them standing together and looking towards

the camera.

</answer>

Large training 
samples

Imitating

SFT

RL

Step1:
Structured 

thinking

Step2:
Full caption
generation

Few training 
samples

Self-
exploring

Figure 1: Motivation of VideoCap-R1. SFT requires costly high-quality data and the trained model
merely imitates training distributions. VideoCap-R1 instead decomposes captioning into structured
thinking and answering phases, optimized via GRPO with dual rewards for thinking and caption. By
effectively establishing the connection between structured reasoning and comprehensive description
generation, VideoCap-R1 can generate captions with more accurate actions.

We initially constructed an instruction-tuning dataset incorporating this structured reasoning process
and performed supervised fine-tuning (SFT) on the baseline model. However, we observed that the
model only learned superficial reasoning patterns - it acquired the output format without establishing
meaningful connections between the structured reasoning process and final descriptions. We attribute
this limitation to the train-inference discrepancy in SFT: during training, the model generates tokens
conditioned on ground-truth prefixes, whereas during inference it must rely on its own predictions,
resulting in poorer performance when generating captions with structured thinking process compared
to direct generation.

To address these limitations, we leverage the recent success of GRPO-based RL post-training
strategies, which can provide online rewards for correct reasoning paths. This enables the model to
genuinely learn the two-step process of first solving simpler subproblems before generating complete
captions. The primary difficulty in applying GRPO to video captioning lies in effectively rewarding
free-form textual outputs. To overcome this, we designed two specialized reward mechanisms: a
LLM-free think scorer that evaluates reasoning quality, and a LLM-assisted caption scorer that
assesses output quality. Based on this framework, we developed VideoCap-R1, which first identifies
key visual elements before generating detailed descriptions, significantly enhancing the baseline
model’s captioning capability even with limited training samples(1.5k).

Our main contributions are summarized as follows:

• We propose a novel structured reasoning process specifically designed for caption gener-
ation, where the model first identifies key visual subjects along with their attributes and
actions before generating comprehensive descriptions. Under GRPO training, this structured
approach demonstrates substantial gains in caption quality.

• We present the first successful application of GRPO to open-ended video captioning tasks.
Our work introduces two meticulously designed reward mechanisms that jointly assess both
the reasoning process and the final caption quality. Based on this framework, we develop
VideoCap-R1, which demonstrates consistent performance improvements over baseline
model Qwen2-VL-7B(Wang et al., 2024b) even with limited training samples(1.5k) across
three challenging benchmarks: DREAM-1K(+4.4 event F1), VDC(+4.2 accuracy), and
CAREBENCH(+3.1 action F1, +6.9 object F1).

• Our analysis reveals that SFT only enables models to learn superficial reasoning patterns.
This is evidenced by models fine-tuned with structured thinking augmented data under-
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performing those trained on standard captioning data. In contrast, our GRPO-based RL
approach enables the model to develop genuinely beneficial reasoning patterns, outperform-
ing SFT-based counterparts when using identical training datasets, regardless of structured
thinking augmentation.

2 RELATED WORK

Video caption models. Video captioning is one of the most fundamental tasks in video understanding.
Since video captioning datasets are commonly used in the pre-training phase of multimodal large
language models (MLLMs) to align linguistic and visual space, general video MLLMs(Zhang et al.,
2024c; Wang et al., 2024b; Chen et al., 2024c) typically possess basic video captioning capabilities.
The prevailing approach to enhancing MLLMs’ video captioning performance involves constructing
high-quality video description datasets for instruction tuning. For instance, ShareGPT4Video(Chen
et al., 2024b) designs a differential video captioning strategy, leveraging GPT-4V(Achiam et al.,
2023) to annotate videos and develop ShareCaptioner-Video. Similarly, Shot2Story (Han et al., 2023)
and Vript(Yang et al., 2024b) employ GPT-4V for video captioning. LLaVA-video (Zhang et al.,
2024c) introduces a recurrent detailed caption generation pipeline powered by GPT-4o, enabling
fine-grained descriptions for videos of arbitrary length. Tarsier2(Yuan et al., 2025) further advances
this direction by curating 40 million large-scale video-text pairs for pretraining and 150K human-
annotated video descriptions with temporal grounding for instruction tuning. While these specialized
video description models (VDCs)(Chen et al., 2024b; Zhang et al., 2024c; Yuan et al., 2025; Han
et al., 2023) excel at generating detailed captions, they predominantly rely on large-scale, manually
annotated instruction-tuning datasets, which are costly and time-consuming to produce. In contrast,
our work explores training efficiency by leveraging reinforcement learning (RL) to guide the model
in reasoning before generating captions. Under the same data budget, our approach outperforms
supervised fine-tuning (SFT), demonstrating superior data efficiency.

Reinforcement learning for MLLMs. Reinforcement learning (RL) is typically applied during
the post-training phase of LLMs and has been proven to be critical for mitigating hallucination or
enhancing reasoning capabilities. The OpenAI’s o1 model(Jaech et al., 2024) first demonstrated the
significant potential of test-time scaling in improving model reasoning. Subsequently, Deepseek-
R1(Guo et al., 2025) showed that reinforcement learning with rule-based verifiable rewards could
effectively enhance LLMs’ performance in mathematical and coding tasks. This approach inspired
numerous efforts to extend the R1’s paradigm to multimodal domains to improve MLLMs’ reasoning
abilities. For instance, MM-EUREKA(Meng et al., 2025) focuses on multimodal mathematical
tasks with visual inputs, revealing a "visual aha moment" where the model reaffirms its answer
by re-perceiving the image. Furthermore, Visual-RFT(Liu et al., 2025) and VLM-R1(Shen et al.,
2025) enhance MLLMs’ performance in fundamental visual perception tasks, including detection
and grounding. In the video domain, prior work(Wang et al., 2025; Zhao et al., 2025a; Li et al., 2025)
has explored the effectiveness of GRPO in tasks such as temporal grounding, sentiment analysis,
object tracking, and general visual question answering. However, open-ended tasks like video
captioning remain understudied. For instance, VideoChat-R1 (Li et al., 2025)attempted to improve
video description quality using event recall as a reward function, but the generated captions remained
far from satisfactory. Our work addresses this gap by systematically designing and evaluating reward
functions tailored for captioning, successfully adapting GRPO to this task and significantly improving
description quality.

3 METHODOLOGY

3.1 PRELIMINARY

3.1.1 GROUP RELATIVE POLICY OPTIMIZATION

Group Relative Policy Optimization (GRPO)(Shao et al., 2024) is an enhanced variant of Proximal
Policy Optimization (PPO)(Schulman et al., 2017). GRPO obviates the need for additional value
function and uses the average reward of multiple sampled outputs for the same question to estimate
the advantage. To be specific, for each question-answer pair (q, a), the old policy πθold samples a
group of outputs {o1, o2, . . . , oG} and a predefined reward function is used to evaluate these outputs
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to get their corresponding rewards {r1, r2, . . . , rG}. Then the advantage of the i-th response relative
to other sampled responses is calculated by normalizing the group-level rewards {r1, r2, . . . , rG}:
Âi =

ri−mean({r1,r2,...,rG})
std({r1,r2,...,rG}) . GRPO encourages the model to prioritize the responses with higher

advantages within the group by updating the policy πθ using the following clipped surrogate objective:

JGRPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold

(·|q) 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
Âi, clip

(
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, 1− ε, 1 + ε

)
Âi

)
− βDKL(πθ||πref)

) ,
(1)

where ε and β are hyper-parameters. ε is the clipping range of importance sampling ratio and
KL divergence is adopted to regularize the policy model, preventing excessive deviation from the
reference model.

3.2 CAPTION REWARD MODELING

The reward function plays a pivotal role in determining the optimization direction of reinforcement
learning. Deepseek-R1 adopts a rule-based reward system comprising two primary components:
format reward and accuracy reward. Building upon Deepseek-R1’s framework, we introduce novel
caption-specific reward functions to guide policy optimization, whose components and implementa-
tion details are elaborated as follows.

3.2.1 TWO-STEP CAPTION GENERATION STRATEGY

While video captioning is fundamentally a perceptual task requiring comprehensive description of
visual elements, it presents unique challenges compared to visual question answering. Unlike VQA
tasks(Li et al., 2024b; Fu et al., 2024) that focus only on question-relevant content, video captioning
demands complete coverage of all significant elements within potentially complex video sequences.

Inspired by the Chain-of-Thought (CoT) paradigm(Xu et al., 2024a; Zhang et al., 2024b; Thawakar
et al., 2025; Yao et al., 2024) that decomposes complex tasks into manageable sub-problems, we
propose a two-step caption generation strategy. Our approach first requires the model to perform
structured reasoning that analyzes and identifies key video subjects along with their attributes and
actions in the thinking process and then synthesize these elements into coherent captions in the
final outputs, as illustrated in Figure 1. The training prompt is detailed in the Appendix F. We
employ format reward as Deepseek-R1 to ensure the model adheres to this format. The two-step
caption generation strategy mirrors compositional writing, where one first outlines key points before
developing complete paragraphs. Our experimental results confirm that this explicit reasoning
framework significantly enhances the model’s capability to describe actions and events in videos.

3.2.2 LLM-FREE THINK SCORER

To effectively reward accurate identification of key elements, we implement a LLM-free think scorer
for the intermediate thinking stage. We extract subject names, attribute lists, and action lists through
regular expression matching and compute corresponding precision and recall metrics against ground
truth annotations.

Formally, let the model predict N entities, each containing a name namepI , an attribute list attrpI , and
an action list actpI (1 ≤ I ≤ N ), while the ground truth contains M entities with corresponding
namegJ , attrgJ , and actgJ (1 ≤ J ≤ M ). For each predicted action list actpI = {pi}ni=1 and its
corresponding ground truth action list actgJ = {gj}mj=1, we formulate a bipartite graph matching
problem where nodes represent predicted and ground truth actions respectively, with edge weights
sim(pi, gj) computed as the dot product of their word embeddings encoded by M3-Embedding (Chen
et al., 2024a). By computing the dot product between each action embedding from actpI and those
from actgJ , we obtain their similarity matrix SIM(actpI , actgJ) ∈ Rn×m. To avoid matching dissimilar
actions, we apply a similarity threshold δ, setting edge weights below it to 0. Our goal is to find the
optimal one-to-one assignment Â that maximizes total similarity:

Â = argmax
A∈Ω

∑
(i,j)∈A

SIM(actpI , actgJ)i,j , (2)
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where Ω represents the set of all valid assignments between predictions and ground truths. We
solve this matching problem using the Jonker-Volgenant algorithm (Jonker & Volgenant, 1988) and
subsequently define the precision and recall score for the action sequence as follows:

P (actpI , actgJ) =
1

n

∑
(i,j)∈Â

SIM(actpI , actgJ)i,j , R(actpI , actgJ) =
1

m

∑
(i,j)∈Â

SIM(actpI , actgJ)i,j . (3)

The F1 score can be calculated as F1(actpI , actgJ) =
2PR
P+R . The precision, recall, and F1 score for

attribute lists are calculated in the same manner.

Since videos may contain multiple objects, we first establish one-to-one correspondences at the entity
level between predicted and ground truth objects before computing attribute and action F1 scores.
We define the similarity between the I-th predicted entity and J-th ground truth entity as:

sim(pI , gJ) = F1(attrpI , attrgJ) + F1(actpI , actgJ) + sim(namepI , namegJ). (4)

Using the same matching algorithm, we obtain the optimal entity-level assignment Â. The overall
metrics for action sequences are then calculated as:

Poverall_act =
1

N

∑
(I,J)∈Â

P (actpI , actgJ), Roverall_act =
1

M

∑
(I,J)∈Â

R(actpI , actgJ). (5)

The F1 score can be calculated as F1overall_act =
2Poverall_actRoverall_act
Poverall_act+Roverall_act

. The overall precision, recall, and
F1 score for attribute lists are computed in the same manner. The final thinking score(Tscore) for the
reasoning process combines these metrics with weighted coefficients:

Tscore = 0.6× F1overall_act + 0.4× F1overall_attr. (6)

3.2.3 LLM-ASSISTANT CAPTION SCORER

As the saying goes, "a picture is worth a thousand words", and a video can be described in numerous
valid ways. This makes direct comparison between predicted and ground truth captions challenging
for scoring. We therefore design multiple scoring dimensions for caption evaluation, ultimately
combining them into an overall score. We employ Qwen2.5-72B(Yang et al., 2024a) as our judge
model due to its exceptional language understanding capabilities. Our investigation explores two
distinct caption scoring approaches: (1) direct rule-based scoring by the LLM, and (2) event coverage
computation through LLM-assisted event extraction, detailed as follows:

COMPLETENESS-NATURALNESS SCORE (CNSCORE)

Since the model first identifies key entities and their attributes/actions during reasoning, the final
caption should naturally organize these elements. We evaluate this through two metrics:

CNscore =
Completenessscore + Naturalnessscore

20
, (7)

where Completenessscore ∈ [0, 10] measures coverage of reasoned elements, and Naturalnessscore
∈ [0, 10] assesses linguistic fluency and human-like description quality. The scoring prompt for
Qwen2.5-72B is provided in Appendix E.

EVENT SCORE (ESCORE)

Naturalness scoring exhibits significant subjectivity and is susceptible to the inherent biases of the
judge model, potentially leading to reward hacking(Gao et al., 2023) where the model optimizes for
generating captions that artificially inflate judge scores while substantially deviating from the desired

5
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caption quality objectives. To mitigate this, we avoid direct scoring by the judge model. Considering
video descriptions comprise sequences of events (who did what), we evaluate the predicted caption
based on event coverage:

Escore =


0 if event_coverage < δ1,

0.5 if δ1 ≤ event_coverage < δ2,

1 if event_coverage ≥ δ2.

(8)

Here, event coverage represents the proportion of ground truth events entailed by the predicted
caption, and we employ Qwen2.5-72B as the judge model to determine these entailment relationships.
The prompt for Qwen2.5-72B is the same as Tarsier(Wang et al., 2024a).

3.3 ENHANCING VIDEO DESCRIPTION CAPABILITIES OF VIDEO MLLMS VIA GRPO

Reward Function. The final reward function for GRPO-based training combines multiple scoring
components:Reward = Format_score + Tscore + Escore.

Training Data Construction. To effectively reward the model’s reasoning process, we construct
specialized training data containing explicit structured reasoning annotations. Rather than randomly
sampling from existing video captioning datasets, we developed a systematic data selection and
annotation pipeline to curate videos exhibiting dynamic motions while ensuring the final training
set maintains: (1) diverse action categories with balanced distribution across the dataset, and (2)
comprehensive annotations that include both final captions and corresponding reasoning process. The
complete data curation pipeline is detailed in the Appendix C. Through this process, we established a
carefully annotated dataset comprising 1.5k training samples for our experiments. Surprisingly, our
model demonstrates substantial performance gains in video captioning despite the limited training
set size, validating both the efficacy of our data curation strategy and the robustness of the proposed
algorithm. In future work, we plan to scale up training with more data to further boost performance.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Implementation Details. We employ Qwen2-VL-7B-Instruct (Wang et al., 2024b) as our baseline
model. For both supervised fine-tuning (SFT) and reinforcement learning (RL) training, we utilize
the Swift framework(Zhao et al., 2024), and we uniformly sample up to 32 frames for each video and
resize each frame to a maximum of 460,800 pixels. All experiments are conducted on 8 H800-80GB
GPUs. More implementation details are provided in Appendix B.

Evaluation Benchmarks. We evaluate our model on three video captioning benchmarks: DREAM-
1K (Wang et al., 2024a), VDC (Chai et al., 2025), and CAREBENCH (Xu et al., 2024b). DREAM-1K
is specifically designed to assess fine-grained action and event description capabilities, featuring
dynamic and diverse video content with human-written reference captions. The VDC benchmark
comprises over 1,000 videos with exceptionally detailed captions, enabling rigorous evaluation of
detailed video description quality. For this benchmark, we employ the official VDCSCORE metric to
assess the detailed captioning subtask. CAREBENCH provides comprehensive evaluation of both
static objects(spatial elements) and dynamic actions(temporal elements) in captions. To ensure fair
comparison, we strictly adhere to the experimental settings specified in each benchmark.

4.2 MAIN RESULTS AND ANALYSIS

We conduct comprehensive evaluations of VideoCap-R1 across three established benchmarks, com-
paring against both general video MLLMs and specialized captioning models (Table 1). VideoCap-R1
demonstrates substantial improvements over the Qwen2-VL-7B baseline even with limited training
samples(1.5k), achieving gains of +4.4 event F1 on DREAM-1K, +4.2 accuracy on VDC, +3.1 action
F1 and +6.9 object F1 on CAREBENCH. Furthermore, our model outperforms all general MLLMs
and specialized captioning models by significant margins on both VDC and CAREBENCH. While
showing marginally lower event F1 (-0.4%) than Tarsier-7B on DREAM-1K, VideoCap-R1 exhibits
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Table 1: Evaluation results on DREAM-1K,VDC and CAREBENCH. Cells with * are reproduced
using the official code. The remaining are reported numbers from literature. We highlight the best
results in bold and second-best results with underlining.

Model DREAM-1K VDC CAREBENCH

Event F1/P/R Acc. Score Action F1/P/R Object F1/P/R

Proprietary models
Gemini-1.5-Pro(Team et al., 2024) 36.2/37.6/34.8 43.1 2.2 - -
GPT-4o(Hurst et al., 2024) 39.2/43.4/35.7 - - - -
GPT-4o mini(Hurst et al., 2024) - - - 36.8/50.2/29.1 33.8/49.1/25.8

Open-source models (>10B)
LLaVA-OV-72B(Li et al., 2024a) 33.2/35.9/30.9 - - - -
LLaVA-Video-72B(Zhang et al., 2024c) 34.0/37.3/31.3 - - - -
InternVL2.5-78B(Chen et al., 2024c) 28.6/35.7/23.9 - - 28.2/46.4/20.3 30.5/39.5/24.8
Qwen2-VL-72B(Wang et al., 2024b) 33.2/37.3/29.9 - - 30.5/47.1/22.6 24.2/51.9/15.8

Open-source general MLLMs (<10B)
LLaVA-OV-7B(Li et al., 2024a) 31.7/34.3/29.4 41.2 2.1 - -
LLaVA-Video-7B(Zhang et al., 2024c) 32.5/37.9/28.4 35.0 1.8 - -
InternVL2.5-8B(Chen et al., 2024c) 27.6/34.7/22.9 43.0 2.2 26.0/43.2/18.6 29.1/38.2/23.5

Open-source specialized captioning MLLMs (<10B)
Tarsier-7B(Wang et al., 2024a) 34.6/40.3/30.2 38.3* 2.1* 27.1/51.1/18.4 31.1/46.5/23.4
ShareGPT4Video-8B(Chen et al., 2024b) 20.4/27.6/16.1* 35.6 1.8 16.5/32.6/11.0* 20.4/42.1/13.4*
Vriptor(Yang et al., 2024b) 24.4/23.6/25.1* 38.5 2.0 23.6/48.7/15.6* 25.3/38.1/18.9*
AuroraCap-7B(Chai et al., 2025) 20.8/24.4/18.1* 41.3 2.1 21.5/40.3/14.7* 26.6/34.4/21.6*

Qwen2-VL-7B(Wang et al., 2024b) 29.8/33.6/26.8* 39.6* 2.1* 31.3/49.5/22.9* 27.4/50.7/18.8*
VideoCap-R1(Ours) 34.2(+4.4)/33.6/34.7 43.8(+4.2) 2.4(+0.3) 34.4(+3.1)/48.2/26.8 34.3(+6.9)/50.6/25.9

Table 2: Comparison between SFT and RL. Our GRPO-based two-stage generation strategy
demonstrates consistent advantages over SFT across all benchmarks.

Model DREAM-1K(F1) VDC(Acc.) CARE-Action(F1) CARE-Object(F1) AVG

Baseline 29.8 39.6 31.3 27.4 32.0
+SFT 32.8 39.8 32.6 31.5 34.2
+SFT with structured thinking 32.2 40.5 31.4 26.8 32.7

VideoCap-R1(Ours) 34.2 43.8 34.4 34.3 36.7

superior performance on the other two benchmarks, indicating stronger generalization capabilities.
Notably, VideoCap-R1 achieves a state-of-the-art object F1 score of 34.3% on CAREBENCH, sur-
passing even the proprietary GPT-4o-mini (33.8%), and outperforms Gemini-1.5-Pro by 0.7% on
VDC. These results validate that our structured reasoning approach significantly enhances both
precision and recall in describing subjects and actions, ultimately improving overall caption quality.

4.2.1 SUPERIORITY OF RL TO SFT

Both supervised fine-tuning (SFT) and reinforcement learning (RL) are widely adopted post-training
techniques for MLLMs. We investigate their respective impacts on model generalization and reasoning
capabilities using identical training data (Table 2).

The SFT-trained model shows notable gains on DREAM-1K and CAREBENCH, indicating improved
action/object description capabilities. However, its generated captions lack detailed attributes and
contextual information, resulting in no improvement on the more demanding VDC benchmark.
When we introduce structured thinking into the SFT data (Row 3), the model exhibits degraded
average performance compared to standard SFT. This suggests SFT’s teacher-forcing paradigm
merely encourages pattern imitation without establishing genuine reasoning-caption relationships,
thereby failing to benefit from the structured thinking process.

In contrast, our GRPO-based two-stage generation strategy demonstrates consistent advantages over
SFT across all benchmarks, as the RL framework’s inherent self-exploration mechanism coupled
with dual think-and-answer rewards enables authentic task decomposition through structured rea-
soning, ultimately yielding higher-quality descriptions. These experimental results demonstrate that
reinforcement learning achieves superior efficacy over supervised fine-tuning for open-ended video
captioning tasks, significantly enhancing both model generalization and reasoning capabilities.

4.3 ABLATION STUDY

To validate our caption reward framework, we conduct an ablation study by systematically disabling
individual reward components (Table 3). Using either think score or caption score alone improves
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Table 3: Ablation Study on Caption Reward Modeling. A combination of think score and caption
score yields significant boost in performance.

Model Think Score Caption Score DREAM-1K VDC CAREBENCH CAREBENCH AVG
Tscore CNscore Escore Event F1 Acc. Action F1 Object F1

Baseline 29.8 39.6 31.3 27.4 32.0

w/o Caption Score 34.3 40.3 31.4 28.3 33.6
w/o Think Score 30.6 43.4 33.1 33.2 35.1

32.5 46.8 35.2 31.6 36.5Two Score 34.2 43.8 34.4 34.3 36.7

(a) Think Score (b) Total Reward (c) Response Length

Figure 2: The metric curves of think score, total reward and response length of VideoCap-R1, which
show the dynamics of RL training.

model performance, while their combination yields optimal results, confirming our reward design’s
effectiveness. We provide further discussion on the structured thinking process in Appendix A. The
bottom two rows compare our two caption scoring variants: CNscore achieves the highest performance
on VDC, whereas Escore delivers the best overall performance across all three benchmarks. Notably,
while CNscore leverages LLM-based direct assessment, it suffers from reward hacking - the model
tends to generate psychologically nuanced descriptions that appeal to the judge (Qwen2.5-72B) but
lack objective video content relevance. This phenomenon explains its suboptimal generalization.
We therefore adopt Escore as our default configuration, as its event-based discriminative evaluation
provides more objective scoring of factual video descriptions, ultimately producing models with
superior overall capability.

4.4 TRAINING DYNAMICS

We primarily monitor the reinforcement learning process using three metrics: think score, total
reward, and response length, as illustrated in Figure 2. The think score and total reward exhibit
stable increasing trends, demonstrating that the model successfully learns to first perform structured
reasoning before generating complete video descriptions, which validates the effectiveness of our
carefully designed reward signals.

The response length of VideoCap-R1 initially decreases, then increases before relatively stabilizing -
the early-phase pattern aligns with observations from prior work (Zeng et al., 2025). This trajectory
indicates that the RL training progressively replaces the model’s original reasoning patterns with
the new reasoning style. Notably, the response length does not grow indefinitely but shows slight
fluctuations, which we attribute to varying information density across videos. This length variation
suggests the model learns to adapt its description length according to the actual video content.

4.5 QUALITATIVE RESULTS

Figure 3 presents qualitative comparisons between VideoCap-R1 and baseline models. Both the
baseline Qwen2-VL and its SFT-finetuned version erroneously hallucinate the "stick" held by the
woman as an "umbrella". In contrast, our VideoCap-R1 correctly identifies the stick while additionally
providing: (1) more detailed attributes, (2) finer-grained action descriptions, and (3) even capturing
subtle motions (e.g., "spins around") missed by GPT-4o. Notably, VideoCap-R1’s structured reasoning

8
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Qualitative Case Study

GPT-4o: A woman is walking along a path in a wooded area. She is holding a walking stick and occasionally adjusts 
her hair or sunglasses. At one point, she starts to jog or run along the path. The background consists of dense trees and 
foliage with sunlight filtering through.

Qwen2-VL-7B: The video features a woman walking down a path in a lush, green forest. She is wearing a black dress 
and carrying a black umbrella. As she walks, she turns around and smiles at the camera. The path is surrounded by tall 
trees with green leaves, creating a serene and peaceful atmosphere. The woman appears to be enjoying her walk and 
seems to be in a happy mood. The lighting in the video is natural, with sunlight filtering through the trees and casting 
shadows on the ground. Overall, the video captures a moment of tranquility and beauty in nature.

Qwen2-VL-7B-SFT: The video features a woman walking on a wooden path surrounded by lush greenery. She is 
wearing a black sleeveless top and a long black skirt, and she is holding a black umbrella in her right hand. As she 
walks, she turns around and smiles at the camera, then continues walking forward. The path is lined with wooden 
railings on both sides, and the background is filled with trees and foliage. The woman's hair is long and dark, and she 
appears to be enjoying her surroundings.

VideoCap-R1: 
<think>
#Subject 1: Woman [long black hair, wearing a black sleeveless dress, sunglasses], [turn around, put on sunglasses, 
walk forward, spin around, adjust hair, hold walking stick, pose for the camera]
</think>
<answer>
The video captures a woman walking on a wooden path surrounded by lush greenery. She is wearing a black sleeveless 
dress and has long black hair. She is holding a walking stick in her right hand. The woman turns around and puts on 
her sunglasses, then spins around. She adjusts her hair and continues walking forward. She then spins around again and 
poses for the camera. The path is lined with trees and has a wooden railing on one side. The sunlight filters through the 
leaves, creating a dappled effect on the path. The woman appears to be enjoying her walk in the park, and the scenery 
is serene and peaceful. 
</answer>

Figure 3: Qualitative comparison between VideoCap-R1 and baseline models. We annotate exam-
ples with: red underlines for hallucinated content, green underlines for accurate descriptions, and
highlighting for correct details uniquely captured by VideoCap-R1 or Qwen2-VL-7B-SFT (vs.

Qwen2-VL-7B). Our model demonstrates superior fine-grained content description capabilities.

content demonstrates strong alignment with final descriptions, evidencing that it genuinely establishes
and benefits from the reasoning-description relationship, ultimately enhancing overall caption quality
through this cognitive process. See Appendix D for more comparisons.

5 CONCLUSION AND FUTURE WORK

In this work, we have investigated GRPO-based reinforcement learning for post-training video
MLLMs to enhance their capability in describing actions and events. Our VideoCap-R1 incorporates
three key designs: (1) a two-stage generation strategy with structured thinking, (2) Tscore for
rewarding the thinking process, and (3) caption score for evaluating the final descriptions. The
proposed model demonstrates significant improvements over baseline approaches, achieving superior
performance even with limited training samples (1.5k) and outperforming SFT-trained counterparts
across all benchmarks. Future work will focus on scaling up the training data to further enhance
video description capabilities through reinforcement learning. We hope VideoCap-R1 can serve as a
strong foundation for future research on developing more advanced video captioning systems through
reinforcement learning techniques.
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Reproducibility statement. We provide all the necessary details to reproduce our experiments in the
Section 4 and Appendix B, C, E, F.
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APPENDIX

This supplementary material includes the following sections:

• In Section A, we provide more discussions on structured thinking.

• In Section B, we provide more implementation details.

• In Section C, we provide the details of training data curation.

• In Section D, we provide more qualitative comparisons between VideoCap-R1 and baseline
models.

• In Section E, we provide the scoring prompt for Qwen2.5-72B.

• In Section F, we provide the training prompt for Qwen2-VL-7B.

• In Section G, we describe how we use LLMs.

A MORE DISCUSSIONS ON STRUCTURED THINKING

Advantages of structured thinking. The structured approach enables regex-based extraction of key
elements for Tscore evaluation, simplifying the design of the LLM-Free Think Scorer. Our ablation
study(Table 4) demonstrates that relying solely on the VLM’s inherent reasoning pathways yields
limited performance gains. For video captioning, the model primarily needs to perceive and identify
core content without engaging in self-reflection to overturn previous recognitions. By rewarding
correct structured thinking through Tscore, we effectively promote learning, with experimental results
validating this approach.

Table 4: Ablation study on the thinking process. Our structured thinking consistently outperforms
free-form alternatives.

Thinking Method DREAM-1K (F1) VDC (Acc./Score) CAREBENCH (Action F1/Object F1)
Baseline 29.8 39.6 / 2.1 31.3 / 27.4
a. Free-form thinking 30.6 43.4 / 2.3 33.1 / 33.2
b. Guided free-form thinking 31.4 42.5 / 2.3 32.6 / 33.5
c. Structured thinking (Ours) 34.2 43.8 / 2.4 34.4 / 34.3

Ablation study on the thinking process. Table 4 shows structured thinking consistently out-
performs free-form alternatives. Experimental variations: a. Free-form thinking: Unstructured
output without guidance b. Guided free-form thinking: Prompted to consider key elements (sub-
jects/attributes/actions) but unstructured output c. Structured thinking (our method): Formalized
output with dedicated thinking reward.
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B MORE IMPLEMENTATION DETAILS

Table 5 shows the training hyper-parameters in SFT and GRPO. For GRPO optimization, we perform
7 rollouts per prompt(G = 7) and set the sampling temperature to 1.0. We adopt β = 0.001 for KL
penalization and set the thresholds of event coverage δ1 = 0.28, δ2 = 0.35. All experiments are
conducted on 8 H800-80GB GPUs. For GRPO, we allocate 7 GPUs for training and reserve 1 GPU
exclusively for rollouts, while SFT utilizes all 8 GPUs for training.

Table 5: Training hyper-parameters of VideoCap-R1.
Configuration SFT GRPO

Baseline Qwen2-VL-7B
Optimizer name AdamW
Optimizer β1 0.9
Optimizer β2 0.999
Optimizer eps 1e-6 1e-8
Learning rate 1e-6
Learning rate schedule cosine
Training epoch 1
Warm-up ratio 0.05 0.01
Weight decay 0.01 0.1
Global batch size 64 56

C TRAINING DATA CURATION

Dynamic Video Selection. We construct our training set by sampling from the Tarsier2-Recap-585K
dataset Yuan et al. (2025), as it provides exceptionally accurate and detailed video descriptions with
comprehensive action annotations. To ensure the selected videos exhibit sufficient dynamic content
for improving action/event description capabilities, we implement an optical-flow-based filtering
pipeline that: (1) computes frame-to-frame optical flow intensity as a dynamicity metric, and (2)
retains only videos with both high dynamicity scores and appropriate durations (10-30 seconds).

The Format of structured thinking process and final answer

<think>
#Subject 1: sub1_name [attribute1, attribute2, ...],[action1, action2, ...]
#Subject 2: sub2_name [attribute1, attribute2, ...],[action1, action2, ...]
...
</think>
<answer>
Complete video description
</answer>

Figure 4: The Format of structured thinking process and final answer.

Structured Thinking Annotation. To effectively reward the model’s reasoning process(as shown in
Figure 4), we construct specialized training data containing explicit structured thinking annotations.
We design a carefully engineered prompt template (Figure 5) to guide Qwen2.5-72B Yang et al.
(2024a) in producing structured reasoning content. Each annotation must satisfy: (i) maximal
coverage of main subjects while maintaining attribute/action consistency, and (ii) strict temporal
alignment between described actions and actual video progression.

Action-Based Video Filtering. To ensure balanced action distribution in our training set, we
implement an incremental filtering mechanism that maintains a running inventory of covered actions.
Videos are selectively added only when they introduce new action types not already represented in
our dataset. Through this process, we construct a curated dataset of 1.5K video samples characterized
by: (1) high dynamicity, (2) diverse action types, and (3) paired structured reasoning annotations with
detailed descriptions.
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Prompt Template for Structured Thinking Generation
Below is a caption of a video:  [{caption}] 

Extract the main subjects and their corresponding attributes and actions in sequence from the above video description. 

Requirements: 
- "Action" is a verb or phrase.
- All verbs should be in their base form. 
- Subject is a single noun that refers to a person or an object.
- Attributes of all subjects cannot be a verb or verb phrase. 
- Attributes can be clothes, shoes, hairstyle, belongings for person.
- The main subjects must be clearly defined individuals. 
- Each main subject must include at least one action.
- Do not repeat actions. 
- Each action must be atomic, meaning it cannot be further divided into multiple actions. 
- Changes in subjects due to scene transitions and camera movements are not considered actions. 
- Extract the main subjects and their corresponding key actions from the video description, ensuring that each action is 
listed in order. 

Please generate the response in the form of a Python List. DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR 
EXPLANATION. Only provide the Python List. 

For example, your response should look like this: 
[ {{ "subject": "subject 1", "attributes": ["attribute1", "attribute2", ...], "actions": [ "action1", "action2", ... ] }}, 
{{ "subject": "subject 2", "attributes": ["attribute1", "attribute2", ...], "actions": [ "action1", "action2", ... ] }} ] 

Example:

caption: [In a green field under a clear blue sky, a woman with long hair, wearing a red dress, lifts a smiling child 
dressed in red and gray above her head. She repeatedly throws the child up and catches her, while the child laughs and 
enjoys the moment. The woman continues to lift the child high into the air and then brings her back down, repeating 
this action several times. The child appears joyful and engaged throughout the activity, and the woman maintains a 
gentle and playful demeanor.] 

output:[{{"subject": "Woman", "attributes": ["long hair", "wearing a red dress", "gentle and playful demeanor"], 
"actions": ["lift a child", "throw up a child", "catch a child", "bring a child back down"]}, {"subject": "Child", 
"attributes": ["dressed in red and gray"], "actions": ["smile"]}}]

Figure 5: Prompt Template for Structured Thinking Generation.

D QUALITATIVE RESULTS

Figures 6–10 present additional qualitative comparisons between VideoCap-R1 and baseline models
on representative samples from the DREAM-1K, VDC, and CAREBENCH benchmarks. These
examples consistently demonstrate our model’s advantages in: (i) fine-grained action characterization,
(ii) precise object attribute description, and (iii) comprehensive event coverage across diverse video
content.
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Qualitative Case Study

GPT-4o: A person is seen working with bamboo poles. They are cutting and splitting the bamboo with an axe. After

cutting, they tie the bamboo poles together using rope. The person then lifts the tied bamboo bundle onto their

shoulder and carries it away. There are two dogs present in the scene, one black and one brown, which follow the

person. The setting is an outdoor area with stone walls and a dry, rocky ground, surrounded by vegetation and fields.

Qwen2-VL-7B: The video depicts a woman working in a field, carrying a bundle of bamboo poles on her back. She

is seen cutting the poles with an ax and then using them to build a structure. The woman is wearing a blue shirt and

black pants, and she appears to be focused on her task. The field is surrounded by trees and other vegetation, and

there is a small dog walking around in the background. The woman seems to be skilled at handling the bamboo poles,

as she cuts them with ease and uses them to construct a sturdy structure. Overall, the video shows a woman working

diligently in a natural setting, using simple tools to create something useful.

Qwen2-VL-7B-SFT: The video depicts a rural scene where a woman is engaged in manual labor. She is seen cutting

bamboo with a tool, likely an axe or a similar implement, as she works on the ground. The woman is dressed in a

traditional outfit, which includes a headscarf and a long-sleeved shirt. She is focused on her task, carefully handling

the bamboo to ensure it is cut to the desired length and shape. After finishing her work, the woman carries the cut

bamboo on her back, using a traditional method of transporting heavy loads. She is seen walking through a field, with

a dog following her closely. The field is surrounded by a stone wall, and there are trees and other vegetation in the

background, indicating a rural or agricultural setting.

VideoCap-R1:

<think>

#Subject 1: Woman [wearing a colorful shirt, carrying a basket, carrying a bundle of bamboo poles, working in a rural

area], [split bamboo poles, carry bamboo poles, carry a basket, jump over a small ditch]

</think>

<answer>

The video captures a rural scene where a woman is working in a field. She is seen using an ax to split bamboo poles

on a stone platform. The woman is wearing a colorful shirt and carrying a basket on her back. She is also carrying a

bundle of bamboo poles on her shoulders. In the background, there is a stone wall and a field with green crops. The

woman is working diligently, splitting the bamboo poles and carrying them to a pile. She then jumps over a small

ditch. The video also shows a black dog running around the area, adding a sense of liveliness to the scene. The

landscape is surrounded by trees and hills, creating a picturesque rural environment.

</answer>

Figure 6: The first qualitative comparison between VideoCap-R1 and baseline models. The video
is from DREAM-1K. We annotate examples with: red underlines for hallucinated content, green
underlines for accurate descriptions, and highlighting for correct details uniquely captured by
VideoCap-R1 or Qwen2-VL-7B-SFT (vs. Qwen2-VL-7B). Our model demonstrates superior fine-
grained content description capabilities.
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Qualitative Case Study

GPT-4o: A man is processing freshly picked green tea leaves outdoors. He holds a large basket filled with tea leaves

and pours them into a large wok. He then uses a large spatula to stir and toss the leaves in the wok. Afterward, he

pours a large bowl of water into the wok, causing the water to splash and mix with the leaves.

Qwen2-VL-7B: The video depicts a man in a white tank top and black shorts standing in front of a large metal pot

filled with water. He is holding a large metal basket filled with green tea leaves. The man pours the tea leaves into the

pot, and then he uses a large metal spoon to stir the leaves and water together. The scene appears to be taking place

outdoors, with a wooden deck and a fence visible in the background. The man seems to be engaged in the process of

making tea, and the video captures the moment of the tea leaves being added to the pot. The video is shot in a vertical

orientation, and the man is wearing a white tank top and black shorts.

Qwen2-VL-7B-SFT: The video depicts a man in a gray tank top and black shorts standing outdoors, holding a large

wicker basket filled with green tea leaves. He pours the leaves into a large metal pot, which is then stirred vigorously

with a metal shovel. The man continues to stir the pot, and at one point, he adds a bucket of water to the pot, causing

the tea leaves to float and swirl. The background shows a wooden deck with a railing and a forested area. The man

appears to be engaged in the process of processing the tea leaves, possibly for tea-making purposes

VideoCap-R1:

<think>

#Subject 1: Man [wearing a gray tank top, holding a basket of tea leaves], [lift basket, pour tea leaves into a large pot,

stir tea leaves with a shovel, add water to the pot]

</think>

<answer>

The video captures a man preparing tea in an outdoor setting. He starts by lifting a large basket filled with fresh tea

leaves and pouring them into a large pot. The man then uses a shovel to stir the tea leaves, ensuring they are evenly

distributed. After that, he adds a bucket of water to the pot, creating a steaming effect. The background features a

wooden deck and a forested area, adding a natural and serene atmosphere to the scene. The man appears to be skilled

in the tea-making process, demonstrating his expertise in handling the tea leaves and preparing the pot for further

processing.

</answer>

Figure 7: The second qualitative comparison between VideoCap-R1 and baseline models. The
video is from DREAM-1K. We annotate examples with: red underlines for hallucinated content,
green underlines for accurate descriptions, and highlighting for correct details uniquely captured
by VideoCap-R1 or Qwen2-VL-7B-SFT (vs. Qwen2-VL-7B). Our model demonstrates superior
fine-grained content description capabilities.
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Qualitative Case Study

GPT-4o: The video captures a playful interaction between a small dog and a crawling baby. The dog closely observes

the baby's movements, mimicking the crawling motion and lying down next to the baby. As the baby moves forward,

the dog playfully adjusts its position, shifting between lying down and stretching on the carpet. The dog seems curious

and highly engaged, creating a heartwarming and entertaining moment of companionship and imitation. The setting is

indoors with a calm and comfortable atmosphere, enhancing the cute dynamic between the two.

Qwen2-VL-7B: The video shows a baby and a dog playing together on a carpeted floor. The baby is wearing a striped

shirt and is lying on the floor on their stomach. The dog is also lying on the floor next to the baby. The baby then

begins to crawl towards the dog, and the dog moves closer to the baby. The baby then reaches out and grabs the dog's

tail, and the dog rolls over onto its back. The baby then sits up and looks at the camera. The video captures the playful

interaction between the baby and the dog, with the baby showing curiosity and the dog responding with playfulness.

The carpeted floor provides a comfortable surface for the baby and the dog to play on, and the striped shirt of the baby

adds a touch of color to the scene. Overall, the video is a heartwarming display of the bond between humans and

animals.

Qwen2-VL-7B-SFT: In the video, a baby is seen crawling on the floor, wearing a striped shirt. The baby is positioned

in front of a dog, which is also on the floor. The dog appears to be a small breed with a white and brown coat. The

baby reaches out to the dog, and the dog moves closer to the baby. The baby then grabs the dog's tail and pulls it,

causing the dog to react by moving away. The baby continues to play with the dog, and the dog seems to be enjoying

the interaction. The background of the video shows a room with a stone fireplace and a white chair.

VideoCap-R1:

<think>

#Subject 1: Baby [wearing striped pajamas, lying on the floor], [crawling, reaching out to the dog, lying down on the

floor] #Subject 2: Dog [white and brown, lying on the floor], [sitting on the floor, moving towards the baby, lying

down on the floor]

</think>

<answer>

The video captures a heartwarming moment between a baby and a dog in a cozy indoor setting. The baby is lying on

the floor, wearing striped pajamas, and appears to be crawling towards the dog. The dog, which is white with brown

spots, is sitting on the floor and then moves towards the baby. The baby reaches out to the dog and lies down on the

floor, facing the dog. The dog then lies down next to the baby, and the baby looks up at the camera with a smile. The

background includes a stone fireplace, a white lamp, and some cables on the floor. The video is a cute depiction of the

bond between the baby and the dog, showing their playful interaction.

</answer>

Figure 8: The third qualitative comparison between VideoCap-R1 and baseline models. The video
is from CAREBENCH. We annotate examples with: red underlines for hallucinated content, green
underlines for accurate descriptions, and highlighting for correct details uniquely captured by
VideoCap-R1 or Qwen2-VL-7B-SFT (vs. Qwen2-VL-7B). Our model demonstrates superior fine-
grained content description capabilities.
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Qualitative Case Study

GPT-4o: The video showcases a makeup tutorial focused on applying eyeliner. The individual demonstrates a step-by-

step process for creating a precise winged eyeliner look, using a liquid eyeliner pen. Throughout the tutorial, they

emphasize techniques for achieving symmetry and sharp lines, while adjusting their grip and positioning for optimal

control. The background features a soft, pastel color, creating a calming atmosphere as they share tips and tricks to

help viewers replicate the eyeliner style easily.

Qwen2-VL-7B: The video shows a woman applying eyeliner to her eyelids. She is seen holding a black eyeliner

pencil and carefully lining her eyelids. The woman has a light complexion and is wearing a light-colored top. Her hair

is pulled back, and she has a small earring in her ear. The background is a light blue color, and there is a watermark in

the bottom right corner of the video that reads "Laura Lee Los Angeles." The woman appears to be applying the

eyeliner with precision and care, taking her time to ensure that the lines are straight and even. The video is likely a

tutorial or demonstration of how to apply eyeliner, as the woman is shown in close-up shots of her face and hands.

Overall, the video provides a detailed and informative guide on how to apply eyeliner to achieve a professional and

polished look.

Qwen2-VL-7B-SFT: In the video, a woman is seen applying eyeliner to her eyelids. She starts by holding a black

eyeliner pencil in her right hand and carefully applying it to the inner corner of her eyelid. She then moves the pencil

to the outer corner of her eyelid, continuing to apply the eyeliner in a smooth, even line. The woman's nails are painted

with a light blue nail polish, and she is wearing a ring on her left hand. The background is a solid light blue color, and

the woman is wearing a light-colored top.

VideoCap-R1:

<think>

#Subject 1: Woman [with brown hair, wearing a light-colored top, applying eyeliner], [open her eye, hold her eyelid,

draw a line with eyeliner, move her head slightly, continue drawing the line, adjust the line]

</think>

<answer>

The video captures a woman applying eyeliner to her eyelids. She is holding her eyelid open with one hand while

using a black eyeliner to draw a line along the upper lash line. She is wearing a light-colored top and has brown hair.

The background is a solid light blue color. The woman is focused on applying the eyeliner, carefully drawing a straight

line from the inner corner of her eye to the outer corner. She adjusts the line slightly to ensure it is even and smooth.

Her nails are painted with light blue nail polish, and she is wearing a ring on her finger. The video is a tutorial on how

to apply eyeliner, demonstrating the correct technique and providing a close-up view of the process.

</answer>

Figure 9: The fourth qualitative comparison between VideoCap-R1 and baseline models. The
video is from CAREBENCH. We annotate examples with: red underlines for hallucinated content,
green underlines for accurate descriptions, and highlighting for correct details uniquely captured
by VideoCap-R1 or Qwen2-VL-7B-SFT (vs. Qwen2-VL-7B). Our model demonstrates superior
fine-grained content description capabilities.
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Qualitative Case Study

GPT-4o: The video shows a person working on a metal grid or frame in a workshop environment. The individual is

seen kneeling on the ground while using a welding tool to attach metal pieces together. Throughout the video, various

angles focus on the person's hands, feet, and the grid, showcasing the detailed process of welding and assembling.

The surroundings include tools and materials typical of a fabrication or metalworking shop. The person wears a

yellow plaid shirt and sandals, and there's visible sparks during the welding process.

Qwen2-VL-7B: The video shows a man working on a metal grate with a welding tool. He is wearing a yellow shirt

and blue jeans, and he appears to be using a welding machine to join the metal pieces together. The man is standing

on a wooden floor, and there are various tools and equipment scattered around him, including a hammer, a

screwdriver, and a wrench. The scene seems to take place in an industrial or workshop setting, as evidenced by the

presence of metal objects and machinery in the background. Overall, the video depicts a skilled craftsman at work,

carefully assembling a metal structure using traditional hand tools and modern welding techniques.

Qwen2-VL-7B-SFT: The video shows a person working on a metal grid or frame, using a welding tool to join the

pieces together. The individual is wearing a yellow shirt and blue jeans, and their feet are visible as they stand on the

grid. Various tools and equipment, such as a hammer and a circular saw, are scattered around the work area. The

person appears to be focused on the task at hand, carefully manipulating the metal pieces with the welding tool. The

overall scene suggests a workshop or construction environment where metalworking is taking place.

VideoCap-R1:

<think>

#Subject 1: Worker [wearing a yellow shirt, blue jeans, sandals, holding a welding tool], [adjust metal grid, weld

metal grid, move around]

</think>

<answer>

The video captures a worker in a workshop environment, working on a metal grid. The worker is wearing a yellow

shirt, blue jeans, and sandals. He is using a welding tool to weld the metal grid, which is placed on a wooden surface.

The worker is seen adjusting the grid and welding it in various positions. The workshop is cluttered with tools and

equipment, including a grinder and a hose. The worker's movements are focused and deliberate, indicating a skilled

and experienced individual. The video provides a close-up view of the welding process, highlighting the worker's

attention to detail and the precision required for this task. The overall atmosphere is one of industriousness and

craftsmanship, with the worker's hands and the welding tool being the main focus of the scene.

</answer>

Figure 10: The fifth qualitative comparison between VideoCap-R1 and baseline models. The video is
from VDC. We annotate examples with: red underlines for hallucinated content, green underlines
for accurate descriptions, and highlighting for correct details uniquely captured by VideoCap-R1
or Qwen2-VL-7B-SFT (vs. Qwen2-VL-7B). Our model demonstrates superior fine-grained content
description capabilities.
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E THE SCORING PROMPT FOR QWEN2.5-72B

Figures 11 and 12 present the prompt templates for Qwen2.5-72B to assess caption completeness and
naturalness scores, respectively.

Please play the role of a professional video description model evaluation expert. You will be given a video description

output by the model, along with the subjects, their attributes, and actions that appear in the video. You will need to rate

the completeness and fluency of the video description output by the model on a scale of 1 to 10.

Video description completeness and fluency rating criteria (1-10 points)

9-10 points: The description is very complete and fluent, with all subjects (people/animals/objects, etc.) mentioned in

the video. The key attributes of the subjects (such as color, size, posture, etc.) are basically covered, and the main

actions or interactions of the subjects are accurately described without obvious omissions of important content. The

language is clear and logical.

7-8 points: The description is relatively complete but slightly missing. Most of the subjects are mentioned, but some

minor subjects may be omitted. The main actions of the subjects are described, but some detailed actions or attributes

may be missing; The overall meaning is clear, but there are some vague or incomplete points. Language expression

may have flaws or repetitions, but overall it does not affect understanding.

5-6 points: The description is average, with obvious omissions or unclear descriptions of one or more main subjects.

The actions or interactions of the subjects are incomplete or inaccurate, and the description is ambiguous or vague,

which affects understanding.

3-4 points: The description is severely lacking, only mentioning a small part of the content in the video. The main body

and actions are highly summarized or incorrect, and the description cannot help understand the main content of the

video.

1-2 points: Almost no descriptive information, description content that is almost unrelated to the video, or completely

incorrect, unable to identify the subject, action, or context;

Video elements

[{think}]

Video description

[{caption}]

Output Format

DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string.

For example, your response should look like this: {{"score": 5}}.

Prompt Template for Completeness Score

Figure 11: Prompt Template for Completeness Score.

F THE TRAINING PROMPT FOR QWEN2-VL-7B USED IN GRPO

Figure 13 presents the prompt template employed for both GRPO-based reinforcement learning
training and supervised fine-tuning (SFT) on our structured-thinking-augmented instruction dataset.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

We leverage LLMs for data filtering to assist in constructing our training dataset(See Appendix C) and
calculating caption score(See Section 3). Beyond these uses, we only employed LLMs for grammar
checking during the writing process. The core method development in this research does not involve
LLMs as important components.
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Requirement

Please play the role of a professional video description model evaluation expert. Please rate the naturalness of the

language described in each video based on the following criteria and your own intuitive experience. The rating range is

from 1 to 10 points, with higher scores indicating more natural and fluent language.

9-10 points: Extremely natural, logical description, fluent and barrier free language expression, appropriate word

choice, natural sentence structure, close to or equivalent to human daily oral or written expression.

7-8 points: relatively natural, overall clear expression, basic logical flow, with a few words or sentence structures that

are slightly unnatural, but do not affect understanding.

5-6 points: Generally, there is a certain degree of stiffness in the language, and during the reading process, one can feel

that it is not written by humans.

3-4 points: unnatural, with multiple awkward sentences, inappropriate wording, or unclear logic.

1-2 points: Extremely unnatural, clearly perceived as machine language, lacking the fluency and coherence of human

language.

Example

An example with 9 points: "The video shows a person standing in a doorway, possibly in a house. The person opens the

door and steps outside, looking out for a moment before closing the door. The setting appears to be a small, cozy

entryway with a doormat in front of the door. The person is wearing a white shirt and is seen moving in and out of the

doorway, indicating that they are likely entering or exiting the house. The lighting is warm, suggesting that the video

might have been taken in a dimly lit environment, possibly in the evening or at night."

An example with 1 points: "#Subject 1: Person [wearing a sweater], [open the door, step outside, close the door]"

Video Description

[{caption}]

Output Format

DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string.

For example, your response should look like this: {{"score": 5}}.

Prompt Template for Naturalness Score

Figure 12: Prompt Template for Naturalness Score.

Describe the video in detail using the following process.

Think about the details in the video:

Firstly, think how many subjects there are in the video, what attributes each subject has, and then provide the 

actions/motions sequence for each subject's done. You should put your thoughts into the <think></think> tag in the 

following json format:

<think>

#Subject 1: sub1_name [attribute1, attribute2, ...], [action1, action2, ...]

#Subject 2: sub2_name [attribute1, attribute2, ...], [action1, action2, ...]

...

</think>

For example:

<think>

#Subject 1: Woman [long hair, wearing a red dress, gentle and playful demeanor], [lift a child, throw up a child, catch a 

child, bring a child back down]

#Subject 2: Child [dressed in red and gray], [smile]

</think>

Describe the video:

Next, you need to use your thoughts to output a complete video description in the <answer></answer> tags. Your 

description needs to include all the details in think and be organized smoothly and completely.

Prompt Template for Training

Figure 13: Prompt Template for Training.
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