
ISSN 2824-7795

Efficient simulation of individual-
based population models
The R package IBMPopSim

Daphné Giorgi1 Laboratoire de Probabilités, Statistique et Modélisation, Sorbonne Université,
CNRS

Sarah Kaakai2 Laboratoire Manceau de Mathématiques, Le Mans Université
Centre de Mathématiques Appliquées, Ecole Polytechnique, CNRS

Vincent Lemaire 3 Laboratoire de Probabilités, Statistique et Modélisation, Sorbonne Université,
CNRS

Date published: 2024-10-11 Last modified: 2024-10-11

Abstract

The R Package IBMPopSim facilitates the simulation of the random evolution of heterogeneous
populations using stochastic Individual-Based Models (IBMs). The package enables users to
simulate population evolution, in which individuals are characterized by their age and some char-
acteristics, and the population is modified by different types of events, including births/arrivals,
death/exit events, or changes of characteristics. The frequency at which an event can occur to
an individual can depend on their age and characteristics, but also on the characteristics of other
individuals (interactions). Such models have a wide range of applications in fields including
actuarial science, biology, ecology or epidemiology. IBMPopSim overcomes the limitations of
time-consuming IBMs simulations by implementing new efficient algorithms based on thinning
methods, which are compiled using the Rcpp package while providing a user-friendly interface.

Keywords: Individual-based models, stochastic simulation, population dynamics, Poisson measures,
thinning method, actuarial science, insurance portfolio simulation

Contents1

1 Introduction 22

2 Brief overview of IBMPopSim 33

2.1 Model creation . 44

2.2 Simulation . 55

3 Mathematical framework 56

3.1 Population . 67

3.1.1 Individuals . 68

3.1.2 Population process . 69

3.2 Events . 710

3.3 Events intensity . 811

Events intensity bounds . 1012

3.4 Pathwise representation of stochastic IBM . 1113

Non-explosion criterion . 1114

1Corresponding author: daphne.giorgi@sorbonne-universite.fr
2Corresponding author: sarah.kaakai@univ-lemans.fr
3Corresponding author: vincent.lemaire@sorbonne-universite.fr

1

https://orcid.org/0000-0002-0433-7722
mailto:daphne.giorgi@sorbonne-universite.fr
mailto:sarah.kaakai@univ-lemans.fr
mailto:vincent.lemaire@sorbonne-universite.fr

4 Population simulation 1215

4.1 Thinning of Poisson measure . 1316

4.1.1 Multivariate Poisson process . 1417

4.2 Simulation algorithm . 1518

First event simulation . 1619

4.3 Simulation algorithm with randomization . 1820

5 Model creation and simulation with IBMPopSim 1921

5.1 Population . 2022

5.2 Events . 2123

5.2.1 Intensities . 2124

5.2.2 Event kernel code . 2325

5.3 Model creation . 2426

5.4 Simulation . 2527

6 Insurance portfolio 2628

6.1 Population . 2729

6.2 Events . 2730

6.3 Model creation and simulation . 2831

6.4 Outputs . 2932

7 Population with genetically variable traits 3033

7.1 Population . 3134

7.2 Events . 3235

7.2.1 Birth events . 3236

7.2.2 Death events . 3237

7.3 Model creation and simulation . 3238

8 Appendix 3439

8.1 Recall on Poisson random measures . 3440

8.1.1 Link with Poisson processes . 3541

8.1.2 Marked Poisson measures on 𝐸 = ℝ+ × 𝐹 . 3542

8.2 Pathwise representation of IBMs . 3643

8.2.1 Proof of Theorem 3.1 . 3744

8.2.2 Proof of Lemma 3.1 . 3745

8.2.3 Alternative pathwise representation . 3946

8.3 Proof of Theorem 4.1 . 3947

8.4 Acknowledgements . 4148

References 4149

Session information 4250

1 Introduction51

In various fields, advances in probability have contributed to the development of a new mathematical52

framework for so-called individual-based stochastic population dynamics, also called stochastic53

Individual-Based Models (IBMs). Stochastic IBMs allow the modeling in continuous time of popula-54

tions dynamics structured by age and/or characteristics. In the field of mathematical biology and55

ecology, a large community has used this formalism for the study of the evolution of structured56

populations (see e.g. Ferrière and Tran (2009); Collet, Méléard, and Metz (2013); Bansaye and Méléard57

2

(2015); Costa et al. (2016); Billiard et al. (2016); Lavallée et al. (2019); Méléard, Rera, and Roget (2019);58

Calvez et al. (2020)), after the pioneer works (Fournier and Méléard 2004; Tran 2008; Méléard and59

Tran 2009). IBMs are also useful in demography and actuarial sciences, for the modeling of human60

populations dynamics (see e.g. Bensusan (2010); Boumezoued (2016); El Karoui, Hadji, and Kaakai61

(2021)).62

Indeed, they allow the modeling of heterogeneous and complex population dynamics, which can be63

used to compute demographic indicators or simulate the evolution of insurance portfolios in order64

to study the basis risk, compute cash flows for annuity products or pension schemes, or for a fine65

assessment of mortality models (Barrieu et al. 2012). There are other domains in which stochastic66

IBMs can be used, for example in epidemiology with stochastic compartmental models, neurosciences,67

cyber risk, or Agent-Based Models (ABMs) in economy and social sciences, which can be seen as68

IBMs. Many mathematical results have been obtained in the literature cited above, for quantifying69

the limit behaviors of IBMs over long time scales or in large population. In particular, pathwise70

representations of IBMs have been introduced in Fournier and Méléard (2004) (and extended to71

age-structured populations in Tran (2008); Méléard and Tran (2009)), as measure-valued pure jumps72

Markov processes, solutions of SDEs driven by Poisson measures. These pathwise representations73

are based on the thinning and projection of Poisson random measures defined on extended spaces.74

However, the simulation of large and interacting populations is often computationally expensive.75

The aim of the R package IBMPopSim is to meet the needs of the various communities for efficient76

tools in order to simulate the evolution of stochastic IBMs. IBMPopSim provides a general framework77

for the simulation of a wide class of IBMs, where individuals are characterized by their age and/or a78

set of characteristics. Different types of events can be included in the modeling by users, depending79

on their needs: births, deaths, entry or exit in/to the population and changes of characteristics80

(swap events). Furthermore, the various events that can happen to individuals in the population can81

occur at a non-stationary frequency, depending on the individuals’ characteristics and time, and also82

including potential interactions between individuals.83

We introduce a unifiedmathematical and simulation framework for this class of IBMs, generalizing the84

pathwise representation of IBMs by thinning of Poisson measures, as well as the associated population85

simulation algorithm, based on an acceptance/rejection procedure. In particular, we provide general86

sufficient conditions on the event intensities under which the simulation of a particular model is87

possible.88

We opted to implement the algorithms of the IBMPopSim package using the Rcpp package, a tool89

facilitating the seamless integration of high-performance C++ code into easily callable R functions90

(Eddelbuettel and Francois 2011). IBMPopSim offers user-friendly R functions for defining and sim-91

ulating IBMs. Once events and their associated intensities are specified, an automated procedure92

creates the model. This involves integrating the user’s source code into the primary C++ code using93

a template mechanism. Subsequently, Rcpp is invoked to compile the model so that the model is94

integrated into the R session and callable with varying parameters, enabling the generation of diverse95

population evolution scenarios. Combined with the design of the simulation algorithms, the package96

structure yields very competitive simulation runtimes for IBMs, while staying user-friendly for R97

users. Several outputs function are also implemented in IBMPopSim. For instance the package allows98

the construction and visualization of age pyramids, as well as the construction of death and expo-99

sures table from the censored individual data, compatible with R packages concerned with mortality100

modelling, such as Hyndman et al. (2023) or A. Villegas, Millossovich, and Kaishev Hyndman (2018).101

Several examples are provided in the form of R vignettes on the website, and in recent works of El102

Karoui, Hadji, and Kaakai (2021) and Roget et al. (2024).103

To the best of our knowledge, there are no other R packages currently available addressing the issue104

3

https://daphnegiorgi.github.io/IBMPopSim/

of stochastic IBMs efficient simulation. Another approach for simulating populations is continuous105

time microsimulation in social sciences, which is implemented in the R package MicSim (Zinn 2014).106

In this framework, individual life-courses are specified by sequences of state transitions (events) and107

the time spans between these transitions. The state space is usually discrete and finite, which is108

not necessarily the case in IBMPopSim, where individuals can have continuous characteristics. But109

most importantly, microsimulation does not allow for interactions between individuals. Indeed,110

microsimulation produces separately the life courses of all individuals in the populations, based111

on the computation of the distribution functions of the waiting times in the distinct states of the112

state space, for each individual (Zinn 2014). This can be slow in comparison to the simulation by113

thinning of event times occurring in the population, which is based on selecting event times among114

some competing proposed event times. Finally, MicSim simplifies the Mic-Core microsimulation tool115

implemented in Java (Zinn et al. 2009). However, the implementation in R of simulation algorithms116

yields longer simulation run times than when using Rcpp.117

In Section 2, we give a short description of Stochastic Individual-Based Models (IBMs) and a quick118

example of model implementation with the IBMPopSim package. In Section 3, we introduce the math-119

ematical framework that characterizes the class of IBMs that can be implemented in the IBMPopSim120

package. In particular, a general pathwise representation of IBMs is presented. The population121

dynamics is obtained as the solution of an SDE driven by Poisson measures, for which we obtain122

existence and uniqueness results in Theorem 3.1. In Section 4 the two main algorithms for simulating123

the population evolution of an IBM across the interval [0, 𝑇] are detailed. In Section 5 we present124

the main functions of the IBMPopSim package, which allow for the definition of events and their125

intensities, the creation of a model, and the simulation of scenarios. Two examples are detailed126

in Section 6 and Section 7, featuring applications involving an heterogeneous insurance portfolio127

characterized by entry and exit events, and an age and size-structured population with intricate128

interactions.129

2 Brief overview of IBMPopSim130

Stochastic Individual-Based Models (IBMs) represent a broad class of random population dynamics131

models, allowing the description of population evolution on an individual scale. Informally, an IBM132

can be summarized by the description of the individuals constituting the population, the various133

types of events that can occur to these individuals, along with their respective frequencies. In134

IBMPopSim, individuals can be characterized by their age and/or a collection of discrete or continuous135

characteristics. Moreover, the package enables users to simulate efficiently populations in which one136

or more of the following event types may occur:137

• Birth event: addition of an individual of age 0 to the population.138

• Death event: removal of an individual from the population.139

• Entry event: arrival of an individual in the population.140

• Exit (emigration) event: exit from the population (other than death).141

• Swap event: an individual changes characteristics.142

Each event type is linked to an associated event kernel, describing how the population is modified143

following the occurrence of the event. For some event types, the event kernel requires explicit144

specification. This is the case for entry events when a new individual joins the population, which145

requires to specify the age and characteristics of this new individual. For instance, the characteristics146

of a new individual in the population can be chosen uniformly in the space of all characteristics,147

or can depend on the distribution of his parents or those of the other individuals composing the148

population.149

The last component of an IBM are the event intensities. Informally, an event intensity is a function150

4

𝜆𝑒𝑡 (𝐼 , 𝑍) describing the frequency at which an event 𝑒 can occur to an individual 𝐼 in a population 𝑍 at151

a time 𝑡. Given a history of the population (ℱ𝑡), the probability of event 𝑒 occurring to individual 𝐼152

during a small interval of time (𝑡, 𝑡 + 𝑑𝑡] is proportional to 𝜆𝑒(𝐼 , 𝑡):153

ℙ(event 𝑒 occurring to 𝐼 during (𝑡, 𝑡 + 𝑑𝑡]|ℱ𝑡) ≃ 𝜆𝑒𝑡 (𝐼 , 𝑍)𝑑𝑡.

The intensity function 𝜆𝑒 can include various dependencies:154

• individual intensity: 𝜆𝑒 depends only on the individual’s 𝐼 age and characteristics, and time 𝑡,155

• interaction intensity: in addition 𝜆𝑒 depends on the population composition 𝑍.156

Prior to providing a detailed description of an Individual-Based Model (IBM), we present a simple157

model of birth and death in an age-structured human population. We assume no interactions158

between individuals, and individuals are characterized by their gender, in addition to their age. In159

this simple model, all individuals, regardless of gender, can give birth when their age falls between160

15 and 40 years, with a constant birth rate of 0.05. The death intensity is assumed to follow a161

Gompertz-type intensity depending on age. The birth and death intensities are then given by162

163

𝜆𝑏(𝑡, 𝐼) = 0.05 × 1[15,40](𝑎(𝐼 , 𝑡)), 𝜆𝑑(𝑡, 𝐼) = 𝛼 exp(𝛽𝑎(𝐼 , 𝑡)),

with 𝑎(𝐼 , 𝑡) the age of individual 𝐼 at time 𝑡. Birth events are also characterized with a kernel164

determining the gender of the newborn, who is male with probability 𝑝𝑚𝑎𝑙𝑒.165

2.1 Model creation166

All models in IBMPopSim are created with a call to the mk_model function, which takes the list of167

events as an argument. In this example, the events are created with the mk_event_individual168

function, involving a few lines of cpp instructions defining the intensity and, if applicable, the kernel169

of the event. For a more in depth description of the event creation step and its parameters, we refer170

to Section 5.2.171

The events of this simple model are for example defined through the following calls.172

birth_event <- mk_event_individual(
type = "birth",
intensity_code = "result = birth_rate(I.age(t));",
kernel_code = "newI.male = CUnif(0,1) < p_male;")

death_event <- mk_event_individual(
type = "death",
intensity_code = "result = alpha * exp(beta * I.age(t));")

In the cpp codes, the names birth_rate, p_male, alpha and beta refer to the model parameters173

defined in the following list.174

params <- list(
"alpha" = 0.008, "beta" = 0.02,
"p_male" = 0.51,
"birth_rate" = stepfun(c(15, 40), c(0, 0.05, 0)))

In a second step, the model is created by calling the function mk_model. A cpp source code is auto-175

matically created through a template mechanism based on the events and parameters, subsequently176

compiled using the sourceCpp function from the Rcpp package.177

5

birth_death_model <- mk_model(
characteristics = c("male" = "bool"),
events = list(death_event, birth_event),
parameters = params)

2.2 Simulation178

Once the model is created and compiled, the popsim function is called to simulate the evolution179

of a population according to this model. To achieve this, an initial population must be defined. In180

this example, we extract a population from a dataset specified in the package (a sample of 100 000181

individuals based on the population of England and Wales in 2014). It is also necessary to set bounds182

for the events intensities. In this example, they are obtained by assuming that the maximum age for183

an individual is 115 years.184

a_max <- 115
events_bounds = c(
"death" = params$alpha * exp(params$beta * a_max),
"birth" = max(params$birth_rate))

The function popsim can now be called to simulate the population starting from the initial population185

population(EW_pop_14$sample) up to time 𝑇 = 30.186

sim_out <- popsim(
birth_death_model,
population(EW_pop_14$sample),
events_bounds,
parameters = params, age_max = a_max,
time = 30)

The data frame sim_out$population contains the information (birth, death, gender) on individuals187

who lived in the population over the period [0, 30]. Functions of the package allows to provide188

aggregated information on the population.189

3 Mathematical framework190

In this section, we define rigorously the class of IBMs that can be simulated in IBMPopSim, along with191

the assumptions that are required in order for the population to be simulatable. The representation of192

age-structured IBMs based on measure-valued processes, as introduced in Tran (2008), is generalized193

to a wider class of abstract population dynamics. The modeling differs slightly here, since individuals194

are kept in the population after their death (or exit), by including the death/exit date as an individual195

trait.196

In the remainder of the paper, the filtered probability space is denoted by (Ω, {ℱ𝑡}, ℙ), under the197

usual assumptions. All processes are assumed to be càdlàg and adapted to the filtration {ℱ𝑡} (for198

instance the history of the population) on a time interval [0, 𝑇]. For a càdlàg process 𝑋, we denote199

𝑋𝑡− ∶= lim 𝑠→𝑡
𝑠<𝑡

𝑋𝑠.200

3.1 Population201

As mentioned in Section 2 a population is a collection of individuals whose evolution defines the202

population process.203

6

3.1.1 Individuals204

An individual is represented by a triplet 𝐼 = (𝜏 𝑏, 𝜏 𝑑, 𝑥) ∈ ℐ = ℝ × ℝ̄ × 𝒳 with:205

• 𝜏 𝑏 ∈ ℝ the date of birth,206

• 𝜏 𝑑 ∈ ℝ̄ the death date, with 𝜏 𝑑 = ∞ if the individual is still alive,207

• a collection 𝑥 ∈ 𝒳 of characteristics where 𝒳 is the space of characteristics.208

Note that in IBMs, individuals are usually characterized by their age 𝑎(𝑡) = 𝑡 − 𝜏 𝑏 instead of their209

date of birth 𝜏 𝑏. However, using the latter is actually easier for the simulation, as it remains constant210

over time.211

3.1.2 Population process212

The population at a given time 𝑡 is a random set213

𝑍𝑡 = {𝐼𝑘 ∈ ℐ ; 𝑘 = 1, … , 𝑁𝑡},

composed of all individuals (alive or dead) who have lived in the population before time 𝑡. As a214

random set, 𝑍𝑡 can be represented by a random counting measure on ℐ , that is an integer-valued215

measure 𝑍 ∶ Ω × ℐ → ℕ̄ where for 𝐴 ∈ ℐ, 𝑍(𝐴) is the (random) number of individuals 𝐼 in the216

subset 𝐴. With this representation:217

𝑍𝑡(d𝜏 𝑏, d𝜏 𝑑, d𝑥) =
𝑁𝑡

∑
𝑘=1

𝛿𝐼𝑘(𝜏
𝑏, 𝜏 𝑑, 𝑥),

with ∫
ℐ
𝑓 (𝜏 𝑏, 𝜏 𝑑, 𝑥)𝑍𝑡(d𝜏 𝑏, d𝜏 𝑑, d𝑥) =

𝑁𝑡

∑
𝑘=1

𝑓 (𝐼𝑘).

(1)

The number of individuals present in the population before time 𝑡 is obtained by taking 𝑓 ≡ 1:218

𝑁𝑡 = ∫
ℐ
𝑍𝑡(d𝜏 𝑏, d𝜏 𝑑, d𝑥) =

𝑁𝑡

∑
𝑘=1

1ℐ(𝐼𝑘).

Note that (𝑁𝑡)𝑡≥0 is an increasing process since dead/exited individuals are kept in the population 𝑍.219

The number of alive individuals in the population at time 𝑡 is:220

𝑁 𝑎
𝑡 = ∫

ℐ
1{𝜏 𝑑>𝑡}𝑍𝑡(d𝜏

𝑏, d𝜏 𝑑, d𝑥) =
𝑁𝑡

∑
𝑘=1

1{𝜏 𝑑𝑘>𝑡}. (2)

Another example is the number of alive individuals of age over 𝑎 is221

𝑁𝑡([𝑎, +∞)) ∶= ∫
ℐ
1[𝑎,+∞)(𝑡 − 𝜏 𝑏)1]𝑡,∞](𝜏 𝑑)𝑍𝑡(d𝜏 𝑏, d𝜏 𝑑, d𝑥) =

𝑁𝑡

∑
𝑘=1

1{𝑡−𝜏 𝑏𝑘≥𝑎}1{𝜏 𝑑𝑘≥𝑡}.

3.2 Events222

The population composition changes at random dates following different types of events. IBMPopSim223

allows the simulation of IBMs with the following events types:224

• A birth event at time 𝑡 is the addition of a new individual 𝐼 ′ = (𝑡, ∞, 𝑋) of age 0 to the population.225

Their date of birth is 𝜏 𝑏 = 𝑡, and characteristics is 𝑋, a random variable of distribution defined226

by the birth kernel 𝑘𝑏(𝑡, 𝐼 , d𝑥) on 𝒳, depending on 𝑡 and its parent 𝐼. The population size227

becomes 𝑁𝑡 = 𝑁𝑡− + 1, and the population composition after the event is228

𝑍𝑡 = 𝑍𝑡− + 𝛿(𝑡,∞,𝑋).

7

• An entry event at time 𝑡 is also the addition of an individual 𝐼 ′ in the population. However,229

this individual is not of age 0. The date of birth and characteristics of the new individual230

𝐼 ′ = (𝜏 𝑏, ∞, 𝑋) are random variables of probability distribution defined by the entry kernel231

𝑘𝑒𝑛(𝑡, d𝑠, d𝑥) onℝ×𝒳. The population size becomes𝑁𝑡 = 𝑁𝑡−+1, and the population composition232

after the event is:233

𝑍𝑡 = 𝑍𝑡− + 𝛿(𝜏 𝑏,∞,𝑋).

• A death or exit event of an individual 𝐼 = (𝜏 𝑏, ∞, 𝑥) ∈ 𝑍𝑡− at time 𝑡 is the modification of its234

death date 𝜏 𝑑 from +∞ to 𝑡. This event results in the simultaneous addition of the individual235

(𝜏 𝑏, 𝑡 , 𝑥) and removal of the individual 𝐼 from the population. The population size is not236

modified, and the population composition after the event is237

𝑍𝑡 = 𝑍𝑡− + 𝛿(𝜏 𝑏,𝑡 ,𝑥) − 𝛿𝐼.

• A swap event (change of characteristics) results in the simultaneous addition and removal of238

an individual. If an individual 𝐼 = (𝜏 𝑏, ∞, 𝑥) ∈ 𝑍𝑡− changes of characteristics at time 𝑡, then it is239

removed from the population and replaced by 𝐼 ′ = (𝜏 𝑏, ∞, 𝑋). The new characteristics 𝑋 is a240

random variable of distribution 𝑘𝑠(𝑡, 𝐼 , d𝑥) on 𝒳, depending on time, the individual’s age and241

previous characteristics 𝑥. In this case, the population size is not modified and the population242

becomes:243

𝑍𝑡 = 𝑍𝑡− + 𝛿(𝜏 𝑏,∞,𝑋) − 𝛿(𝜏 𝑏,∞,𝑥).

To summarize, the space of event types is 𝐸 = {𝑏, 𝑒𝑛, 𝑑, 𝑠}, and the jump Δ𝑍𝑡 = 𝑍𝑡 − 𝑍𝑡− (change in the244

population composition) generated by an event of type 𝑒 ∈ {𝑏, 𝑒𝑛, 𝑑, 𝑠} is denoted by 𝜙𝑒(𝑡, 𝐼). We thus245

have the following rules summarized in Table 1.246

Table 1: Action in the population for a given event type

Event Type 𝜙𝑒(𝑡, 𝐼) New individual

Birth 𝑏 𝛿(𝑡,∞,𝑋) 𝜏 𝑏 = 𝑡, 𝑋 ∼ 𝑘𝑏(𝑡, 𝐼 , d𝑥)
Entry 𝑒𝑛 𝛿(𝜏 𝑏,∞,𝑋) (𝜏 𝑏, 𝑋) ∼ 𝑘𝑒𝑛(𝑡, d𝑠, d𝑥)
Death/Exit 𝑑 𝛿(𝜏 𝑏,𝑡 ,𝑥) − 𝛿(𝜏 𝑏,∞,𝑥) 𝜏 𝑑 = 𝑡
Swap 𝑠 𝛿(𝜏 𝑏,∞,𝑋) − 𝛿(𝜏 𝑏,∞,𝑥) 𝑋 ∼ 𝑘𝑠(𝑡, 𝐼 , d𝑥)

Remark 3.1 (Composition of the population).247

• At time 𝑇, the population 𝑍𝑇 contains all individuals who lived in the population before 𝑇,248

including dead/exited individuals. If there are no swap events, or entries, the population state249

𝑍𝑡 for any time 𝑡 ≤ 𝑇 can be obtained from 𝑍𝑇. Indeed, if 𝑍𝑇 = ∑𝑁𝑇
𝑘=1 𝛿𝐼𝑘 , then the population at250

time 𝑡 ≤ 𝑇 is simply composed of the individuals born before 𝑡:251

𝑍𝑡 =
𝑁𝑇

∑
𝑘=1

1{𝜏 𝑏𝑘≤𝑡}𝛿𝐼𝑘 .

• In the presence of entries (open population), a characteristic 𝑥 can track the individuals’ entry252

dates. Then, the previous equation can be easily modified in order to obtain the population 𝑍𝑡253

at time 𝑡 ≤ 𝑇 from 𝑍𝑇.254

8

3.3 Events intensity255

Once the different event types have been defined in the population model, the frequency at which256

each event 𝑒 occurs in the population has to be specified. Informally, the intensity Λ𝑒
𝑡 (𝑍𝑡) at which an257

event 𝑒 can occur is defined by258

ℙ(event 𝑒 occurs in the population 𝑍𝑡 ∈ (𝑡, 𝑡 + d𝑡]|ℱ𝑡) ≃ Λ𝑒
𝑡 (𝑍𝑡)d𝑡 .

For a more formal definition of stochastic intensities, we refer to Brémaud (1981) or Kaakai and El259

Karoui (2023). The form of the intensity function (Λ𝑒
𝑡 (𝑍𝑡)) determines the population simulation260

algorithm in IBMPopSim:261

• When the event intensity does not depend on the population state,262

(Λ𝑒
𝑡 (𝑍𝑡))𝑡∈[0,𝑇] = (𝜇𝑒(𝑡))𝑡∈[0,𝑇], (3)

with 𝜇𝑒 a deterministic function, the events of type 𝑒 occur at the jump times of an inhomoge-263

neous Poisson process of intensity function (𝜇𝑒(𝑡))𝑡∈[0,𝑇]. This is particularly useful when entry264

events occur with intensities influenced by environmental processes and/or exhibit seasonal265

variations. When such an event occurs, the individual to whom the event happens is drawn266

uniformly from the living individuals in the population. In a given model, the set of events267

𝑒 ∈ 𝐸 with Poisson intensities will be denoted by 𝒫.268

• Otherwise, we assume that the global intensity Λ𝑒
𝑡 (𝑍𝑡) at which the events of type 𝑒 occur in269

the population can be written as the sum of individual intensities 𝜆𝑒𝑡 (𝐼 , 𝑍𝑡):270

Λ𝑒
𝑡 (𝑍𝑡) =

𝑁𝑡

∑
𝑘=1

𝜆𝑒𝑡 (𝐼𝑘, 𝑍𝑡),

with ℙ(event 𝑒 occurs to an individual 𝐼 ∈ (𝑡, 𝑡 + d𝑡]|ℱ𝑡) ≃ 𝜆𝑒𝑡 (𝐼 , 𝑍𝑡)d𝑡 .

(4)

Obviously, nothing can happen to dead or exited individuals, i.e. individuals 𝐼 = (𝜏 𝑏, 𝜏 𝑑, 𝑥) with 𝜏 𝑑 ≤ 𝑡.271

Thus, individual event intensities are assumed to be null for dead/exited individuals:272

𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) = 0, if 𝜏 𝑑 ≤ 𝑡, so that Λ𝑒
𝑡 (𝑍𝑡) =

𝑁 𝑎
𝑡

∑
𝑘=1

𝜆𝑒𝑡 (𝐼𝑘, 𝑍𝑡),

with 𝑁 𝑎
𝑡 the number of alive individuals at time 𝑡.273

The event’s individual intensity 𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) can depend on time (for instance when there is a mortality274

reduction over time), on the individual’s age 𝑡 − 𝜏 𝑏 and characteristics, but also on the population275

composition 𝑍𝑡. The dependence of 𝜆𝑒 on the population 𝑍models interactions between individuals in276

the populations. Hence, two types of individual intensity functions can be implemented in IBMPopSim:277

1. No interactions: The intensity function 𝜆𝑒 does not depend on the population composition. The278

intensity at which an event of type 𝑒 occurs to an individual 𝐼 only depends on its date of birth279

and characteristics:280

𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) = 𝜆𝑒(𝑡, 𝐼), (5)

where 𝜆𝑒 ∶ ℝ+ × ℐ → ℝ+ is a deterministic function. In a given model, we denote by ℰ the set281

of event types with individual intensity Equation 5.282

2. “Quadratic” interactions: The intensity at which an event of type 𝑒 occurs to an individual 𝐼283

depends on 𝐼 and on the population composition, through an interaction function 𝑊 𝑒. The284

9

quantity 𝑊 𝑒(𝑡, 𝐼 , 𝐽) describes the intensity of interactions between two alive individuals 𝐼 and285

𝐽 at time 𝑡, for instance in the presence of competition or cooperation. In this case, we have286

𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) =
𝑁𝑡

∑
𝑗=1

𝑊 𝑒(𝑡, 𝐼 , 𝐼𝑗) = ∫
ℐ
𝑊 𝑒(𝑡, 𝐼 , (𝜏 𝑏, 𝜏 𝑑, 𝑥))𝑍𝑡(d𝜏 𝑏, d𝜏 𝑑, d𝑥), (6)

where𝑊 𝑒(𝑡, 𝐼 , (𝜏 𝑏, 𝜏 𝑑, 𝑥)) = 0 if the individual 𝐽 = (𝜏 𝑏, 𝜏 𝑑, 𝑥) is dead, i.e. 𝜏 𝑑 ≤ 𝑡. In a given model,287

we denote by ℰ𝑊 the set of event types with individual intensity Equation 6.288

To summarize, an individual intensity in IBMPopSim can be written as:289

𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) = 𝜆𝑒(𝑡, 𝐼)1{𝑒∈ℰ} + (
𝑁𝑡

∑
𝑗=1

𝑊 𝑒(𝑡, 𝐼 , 𝐼𝑗))1{𝑒∈ℰ𝑊}. (7)

Example 3.1.290

1. An example of death intensity without interaction for an individual 𝐼 = (𝜏 𝑏, 𝜏 𝑑, 𝑥) alive at time291

𝑡, 𝑡 < 𝜏 𝑑, is:292

𝜆𝑑(𝑡, 𝐼) = 𝛼𝑥 exp(𝛽𝑥𝑎(𝐼 , 𝑡)), where 𝑎(𝐼 , 𝑡) = 𝑡 − 𝜏 𝑏

is the age of the individual 𝐼 at time 𝑡. In this standard case, the death rate of an individual 𝐼 is293

an exponential (Gompertz) function of the individual’s age, with coefficients depending on the294

individual’s characteristics 𝑥.295

2. In the presence of competition between individuals, the death intensity of an individual 𝐼 also296

depends on other individuals 𝐽 in the population. For example, if 𝐼 = (𝜏 𝑏, 𝜏 𝑑, 𝑥), with its size 𝑥,297

then we have:298

𝑊 𝑑(𝑡, 𝐼 , 𝐽) = (𝑥𝐽 − 𝑥)+1{𝜏 𝑑𝐽>𝑡}, ∀ 𝐽 = (𝜏 𝑏𝐽 , 𝜏
𝑑
𝐽 , 𝑥𝐽). (8)

This can be interpreted as follows: if the individual 𝐼 meets randomly an individual 𝐽 alive at299

time 𝑡, and of bigger size 𝑥𝐽 > 𝑥, then he can die at the intensity 𝑥𝐽 − 𝑥. If 𝐽 is smaller than 𝐼,300

then it cannot kill 𝐼. The bigger is the size 𝑥 of 𝐼, the lower is its death intensity 𝜆𝑑𝑡 (𝐼 , 𝑍𝑡) defined301

by302

𝜆𝑑𝑡 (𝐼 , 𝑍𝑡) = ∑
𝐽∈𝑍𝑡,
𝑥𝐽>𝑥

(𝑥𝐽 − 𝑥)1{𝜏 𝑑𝐽>𝑡}.

3. IBMPopSim can simulate IBMs that include intensities expressed as a sum of Poisson intensities303

and individual intensities of the formΛ𝑒(𝑍𝑡) = 𝜇𝑒𝑡 +∑
𝑁𝑡
𝑘=1 𝜆

𝑒(𝐼𝑘, 𝑍𝑡). Other examples are provided304

in Section 6 and Section 7.305

Finally, the global intensity at which an event can occur in the population is defined by:306

Λ𝑡(𝑍𝑡) = ∑
𝑒∈𝒫

𝜇𝑒(𝑡) +∑
𝑒∈ℰ

(
𝑁𝑡

∑
𝑘=1

𝜆𝑒(𝑡, 𝐼𝑘)) + ∑
𝑒∈ℰ𝑊

(
𝑁𝑡

∑
𝑘=1

𝑁𝑡

∑
𝑗=1

𝑊 𝑒(𝑡, 𝐼𝑘, 𝐼𝑗)). (9)

An important point is that for events 𝑒 ∈ ℰ without interactions, the global event intensity Λ𝑒
𝑡 (𝑍𝑡) =307

∑𝑁𝑡
𝑘=1 𝜆

𝑒(𝑡, 𝐼𝑘) is of order 𝑁 𝑎
𝑡 defined in Equation 2 (number of alive individuals at time 𝑡). On the308

other hand, for events 𝑒 ∈ ℰ𝑊 with interactions, Λ𝑒
𝑡 (𝑍𝑡) = ∑𝑁𝑡

𝑘=1∑
𝑁𝑡
𝑗=1𝑊 𝑒(𝑡, 𝐼𝑘, 𝐼𝑗) is of order (𝑁 𝑎

𝑡)2.309

Informally, this means that when the population size increases, events with interaction are more310

costly to simulate. Furthermore, the numerous computations of the interaction kernel 𝑊 𝑒 can also be311

computationally costly. The randomized Algorithm 3 , detailed in Section 4.3, allows us to overcome312

these limitations.313

10

Events intensity bounds314

The simulation algorithms implemented in IBMPopSim are based on an acceptance/rejection procedure,315

which requires the user to specify bounds for the various events intensities Λ𝑒
𝑡 (𝑍𝑡). These bounds are316

defined differently depending on the expression of the intensity.317

Assumption 3.1. For all events 𝑒 ∈ 𝒫 with Poisson intensity (Equation 3), the intensity is assumed to318

be bounded on [0, 𝑇]:319

∀𝑡 ∈ [0, 𝑇], Λ𝑒
𝑡 (𝑍𝑡) = 𝜇𝑒(𝑡) ≤ ̄𝜇𝑒.

When 𝑒 ∈ ℰ∪ℰ𝑊,Λ𝑒
𝑡 (𝑍𝑡) = ∑𝑁𝑡

𝑘=1 𝜆
𝑒
𝑡 (𝐼𝑘, 𝑍𝑡), assuming thatΛ𝑒

𝑡 (𝑍𝑡) is uniformly bounded is too restrictive320

since the event intensity depends on the population size. In this case, the assumption is made on the321

individual intensity 𝜆𝑒 or on the interaction function 𝑊 𝑒, depending on the situation.322

Assumption 3.2. For all event types 𝑒 ∈ ℰ, the associated individual event intensity 𝜆𝑒 with no323

interactions (Equation 5) is assumed to be uniformly bounded:324

𝜆𝑒(𝑡, 𝐼) ≤ �̄�𝑒, ∀ 𝑡 ∈ [0, 𝑇], 𝐼 ∈ ℐ .

In particular,325

∀𝑡 ∈ [0, 𝑇], Λ𝑒
𝑡 (𝑍𝑡) =

𝑁𝑡

∑
𝑘=1

𝜆𝑒(𝑡, 𝐼) ≤ �̄�𝑒𝑁𝑡. (10)

Assumption 3.3. For all event types 𝑒 ∈ ℰ𝑊, the associated interaction function 𝑊 𝑒 is assumed to be326

uniformly bounded:327

𝑊 𝑒(𝑡, 𝐼 , 𝐽) ≤ �̄� 𝑒, ∀ 𝑡 ∈ [0, 𝑇], 𝐼 , 𝐽 ∈ ℐ .

In particular, ∀𝑡 ∈ [0, 𝑇],328

𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) =
𝑁𝑡

∑
𝑗=1

𝑊 𝑒(𝑡, 𝐼 , 𝐼𝑗) ≤ �̄� 𝑒𝑁𝑡, and Λ𝑒
𝑡 (𝑍𝑡) ≤ �̄� 𝑒(𝑁𝑡)2.

Assumption 3.1, Assumption 3.2 and Assumption 3.3 yield that events in the population occur with329

the global event intensity Λ𝑡(𝑍𝑡), given in Equation 9, which is dominated by a polynomial function330

in the population size:331

Λ𝑡(𝑍𝑡) ≤ Λ̄(𝑁𝑡), with Λ̄(𝑛) = ∑
𝑒∈𝒫

̄𝜇𝑒 +∑
𝑒∈ℰ

�̄�𝑒𝑛 + ∑
𝑒∈ℰ𝑊

�̄� 𝑒𝑛2. (11)

This bound is linear in the population size if there are no interactions, and quadratic if there at332

least is an event including interactions. This assumption is the key to the algorithms implemented333

in IBMPopSim. Before presenting the simulation algorithm, we close this section with a rigorous334

definition of an IBM, based on the pathwise representation of its dynamics as a Stochastic Differential335

Equation (SDE) driven by Poisson random measures.336

3.4 Pathwise representation of stochastic IBM337

Since the seminal paper of Fournier and Méléard (2004), it has been shown in many examples that338

a stochastic IBM dynamics can be defined rigorously as the unique solution of an SDE driven by339

Poisson measures, under reasonable non explosion conditions. In the following, we introduce a340

unified framework for the pathwise representation of the class of stochastic IBMs introduced above.341

Some recalls on Poisson random measures are presented in the Appendix Section 8.1, and for more342

details on these representations of particular examples, we refer to the abundant literature on the343

subject (see Çinlar (2011) and the references therein).344

11

In the following we consider an individual-based stochastic population (𝑍𝑡)𝑡∈[0,𝑇], keeping the nota-345

tions introduced in Section 3.2 and Section 3.3 for the events and their intensities. In particular, the346

set of events types that define the population evolution is denoted by 𝒫 ∪ ℰ ∪ ℰ𝑊 ⊂ 𝐸, with 𝒫 the347

set of events types with Poisson intensity verifying Assumption 3.1, ℰ the set of events types with348

individual intensity and no interaction, verifying Assumption 3.2 and finally ℰ𝑊 the set of event349

types with interactions, verifying Assumption 3.3.350

Non-explosion criterion351

First, one has to ensure that the number of events occurring in the population will not explode352

in finite time, leading to an infinite simulation time. Assumption 3.2 and Assumption 3.3 are not353

sufficient to guarantee the non explosion of the event number, due to the potential explosion of the354

population size in the presence of interactions. An example is the case when only birth events occur,355

with an intensity Λ𝑏
𝑡 (𝑍𝑡) = 𝐶𝑏(𝑁 𝑎

𝑡)2 (i.e. when 𝑊 𝑏(𝑡, 𝐼 , 𝐽) = 𝐶𝑏). Then, the number of alive individuals356

(𝑁 𝑎
𝑡)𝑡≥0 is a well-known pure birth process of intensity function 𝑔(𝑛) = 𝐶𝑏𝑛2 (intensity of moving357

from state 𝑛 to 𝑛 + 1). This process explodes in finite time, since 𝑔 does not verify the necessary and358

sufficient non explosion criterion for pure birth Markov processes: ∑∞
𝑛=1

1
𝑔(𝑛) = ∞ (see e.g. Theorem359

2.2 in (Bansaye and Méléard 2015)). There is thus an explosion in finite time of birth events.360

This example shows that the important point for non explosion is to control the population size.361

We give below a general sufficient condition on birth and entry event intensities, in order for the362

population size to stay finite in finite time. This ensures that the number of events does not explode363

in finite time. Informally, the idea is to control the intensities by a pure birth intensity function364

verifying the non-explosion criterion.365

Assumption 3.4. Let 𝑒 ∈ {𝑏, 𝑒𝑛} a birth or entry event type. If the intensity at which the events of type 𝑒366

occur in the population are not Poissonian, i.e. 𝑒 ∈ ℰ ∪ℰ𝑊, then there exists a function 𝑓 𝑒 ∶ ℕ → (0, +∞),367

such that368 ∞
∑
𝑛=1

1
𝑛𝑓 𝑒(𝑛)

= ∞,

and for all individual 𝐼 ∈ ℐ and population measure 𝑍 = ∑𝑛
𝑘=1 𝛿𝐼𝑘 of size 𝑛,369

𝜆𝑒𝑡 (𝐼 , 𝑍) ≤ 𝑓 𝑒(𝑛), ∀ 0 ≤ 𝑡 ≤ 𝑇 .

If 𝑒 ∈ ℰ, 𝜆𝑒𝑡 (𝐼 , 𝑍) = 𝜆𝑒(𝑡, 𝐼) ≤ �̄�𝑒 by the domination Assumption 3.3, then Assumption 3.4 is always370

verified with 𝑓 𝑒(𝑛) = �̄�𝑒.371

Assumption 3.4 yields that the global intensity Λ𝑒
𝑡 (⋅) of event 𝑒 is bounded by a function 𝑔𝑒 only372

depending on the population size:373

Λ𝑒
𝑡 (𝑍) ≤ 𝑔𝑒(𝑛) ∶= 𝑛𝑓 𝑒(𝑛), with

∞
∑
𝑛=1

1
𝑔𝑒(𝑛)

= ∞.

If 𝑒 ∈ 𝒫 has a Poisson intensity, thenΛ𝑒
𝑡 (𝑍) = 𝜇𝑒𝑡 always verifies the previous equation with 𝑔𝑒(𝑛) = ̄𝜇𝑒.374

Before introducing the IBM SDE, let us give an idea of the equation construction. Between two375

successive events, the population composition 𝑍𝑡 stays constant, since the population process (𝑍𝑡)𝑡≥0376

is a pure jump process. Furthermore, since each event type is characterized by an intensity function,377

the jumps occurring in the population can be represented by restriction and projection of a Poisson378

measure defined on a larger state space. More precisely, we introduce a random Poisson measure 𝑄379

on ℝ+ × 𝒥 × ℝ+, with 𝒥 = ℕ × (ℰ ∪ ℰ𝑊). 𝑄 is composed of random quadruplets (𝜏 , 𝑘, 𝑒, 𝜃), where 𝜏380

represents a potential event time for an individual 𝐼𝑘 and event type 𝑒. The last variable 𝜃 is used to381

12

accept/reject this proposed event, depending on the event intensity. Hence, the Poisson measure is382

restricted to a certain random set and then projected on the space of interest ℝ+ × 𝒥. If the event is383

accepted, then a jump 𝜙𝑒(𝜏 , 𝐼𝑘) occurs.384

Theorem 3.1 (Pathwise representation). Let 𝑇 ∈ ℝ+ and 𝒥 = ℕ × (ℰ ∪ ℰ𝑊). Let 𝑄 be a random385

Poisson measure on ℝ+ × 𝒥 × ℝ+, of intensity d𝑡𝛿𝒥(d𝑘, d𝑒)(𝜃)d𝜃, with 𝛿𝒥 the counting measure on 𝒥.386

Finally, let 𝑄𝒫 be a random Poisson measure on ℝ+ ×𝒫 ×ℝ+, of intensity d𝑡𝛿𝑃(d𝑒)d𝜃, and 𝑍0 = ∑𝑁0
𝑘=1 𝛿𝐼𝑘387

an initial population. Then, under Assumption 3.4 , there exists a unique measure-valued population388

process 𝑍, strong solution on the following SDE driven by the Poisson measure 𝑄:389

𝑍𝑡 = 𝑍0 + ∫
𝑡

0
∫
𝒥 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝑘≤𝑁𝑠−}1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍𝑠−)}𝑄(d𝑠, d𝑘, d𝑒, d𝜃)

+ ∫
𝑡

0
∫
𝒫 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑠−)1{𝜃≤𝜇𝑒(𝑠)}𝑄𝒫(d𝑠, d𝑒, d𝜃), ∀0 ≤ 𝑡 ≤ 𝑇 ,
(12)

and where 𝐼𝑠− is an individual, chosen uniformly among alive individuals in the population 𝑍𝑠− .390

The proof of Theorem 3.1 is detailed in the Appendix, Section 8.2.1. Note that Equation 12 is an SDE391

describing the evolution of the IBM, the intensity of the events in the right hand side of the equation392

depending on the population process 𝑍 itself. The main idea of the proof of Theorem 3.1 is to use393

the non explosion property of Lemma 3.1, and to write the r.h.s of Equation 12 as a sum of simple394

equations between two successive events, solved by induction.395

Lemma 3.1. Let 𝑍 be a solution of Equation 12 on ℝ+, with (𝑇𝑛)𝑛≥0 its jump times, 𝑇0 = 0. If396

Assumption 3.4 is satisfied, then397

lim
𝑛→∞

𝑇𝑛 = ∞, ℙ-a.s.

The proof of Lemma 3.1, detailed in Appendix Section 8.2.2 is more technical and relies on a pathwise398

comparison result, generalizing those obtained in (Kaakai and El Karoui 2023). An alternative399

pathwise representation of the population process, inspired by the randomized Algorithm 3 is given400

as well in Proposition 4.3.401

4 Population simulation402

We now present the main algorithm for simulating the evolution of an IBM over [0, 𝑇]. The algorithm403

implemented in IBMPopSim allows the exact simulation of Equation 12, based on an acceptance/reject404

algorithm for simulating random times called thinning. The exact simulation of event times with405

this acceptance/reject procedure is closely related to the simulations of inhomogeneous Poisson406

processes by the so-called thinning algorithm, often attributed to Lewis and Shedler (1979). The407

simulation methods for inhomogeneous Poisson processes can be adapted to IBMs, and we introduce408

in this section a general algorithm extending those by Fournier and Méléard (2004) (see also Ferrière409

and Tran (2009), Bensusan (2010)).410

It can be noted that under appropriate rescaling and when the population size goes to infinity, an411

IBM can be approximated by a non linear transport PDE, structured by age and trait. A central412

limit theorem can also be obtained under appropriate assumptions (Tran 2008). In the presence of413

interactions as in Section 7 for instance, the IBM goes almost surely to extinction in finite time, which414

is not the case for the limit PDE. In this case, simulating the microscopic process can be quite useful415

for approximating the distribution of the extinction time. Other applications of IBM simulations can416

include the simulation of multiscale population evolution, strongly heterogeneous populations, or417

small populations with strong interactions.418

13

The algorithm is based on exponential “candidate” event times, chosen with a (constant) intensity419

which must be greater than the global event intensity Λ𝑡(𝑍𝑡) (Equation 4). Starting from time 𝑡, once a420

candidate event time 𝑡 + ̄𝑇ℓ has been proposed, a candidate event type 𝑒 (birth, death,...) is chosen with421

a probability 𝑝𝑒 depending on the event intensity bounds ̄𝜇𝑒, �̄�𝑒 and �̄� 𝑒, as defined in Assumption 3.2422

and Assumption 3.3. An individual 𝐼 is then drawn from the population. Finally, it remains to accept423

or reject the candidate event with a probability 𝑞𝑒(𝑡, 𝐼 , 𝑍𝑡) depending on the true event intensity. If424

the candidate event time is accepted, then the event 𝑒 occurs at time 𝑡 + ̄𝑇ℓ to the individual 𝐼. The425

main idea of the implemented algorithm can be summarized as follows:426

1. Draw a candidate time 𝑡 + ̄𝑇ℓ and candidate event type 𝑒.427

2. Draw a uniform variable 𝜃 ∼ 𝒰([0, 1]) and individual 𝐼.428

3. If 𝜃 ≤ 𝑞𝑒(𝑡, 𝐼 , 𝑍𝑡) then event 𝑒 occur to individual 𝐼, else Do nothing and start again from 𝑡 + ̄𝑇ℓ.429

Before introducing the main algorithms in more details, we recall briefly the thinning procedure430

for simulating inhomogeneous Poisson processes, as well as the links with pathwise representa-431

tions. Some recalls on Poisson random measures are presented in Section 8.1. For a more general432

presentation of thinning of a Poisson random measure, see (Devroye 1986; Çinlar 2011; Kallenberg433

2017).434

4.1 Thinning of Poisson measure435

Let us start with the simulation and pathwise representation of an inhomogeneous Poisson process436

on [0, 𝑇] with intensity (Λ(𝑡))𝑡∈[0,𝑇]. The thinning procedure is based on the fundamental assumption437

that Λ(𝑡) ≤ Λ̄ is bounded on [0, 𝑇]. In this case, the inhomogeneous Poisson can be obtained from an438

homogeneous Poisson process of intensity Λ̄, which can be simulated easily.439

First, the Poisson process can be extended to a Marked Poisson measure ̄𝑄 ∶= ∑ℓ≥1 𝛿(̄𝑇ℓ,Θ̄ℓ) on (ℝ+)2,440

defined as follow:441

• The jump times of (̄𝑇ℓ)ℓ≥1 of ̄𝑄 are the jump times of a Poisson process of intensity Λ̄.442

• The marks (Θ̄ℓ)ℓ≥1 are i.i.d. random variables, uniformly distributed on [0, Λ̄].443

By Proposition 8.3 , ̄𝑄 is a Poisson random measure with mean measure444

̄𝜇(d𝑡 , d𝜃) ∶= Λ̄d𝑡
1[0,Λ̄](𝜃)

Λ̄
d𝜃 = d𝑡1[0,Λ̄](𝜃)d𝜃.

In particular, the average number of atoms (̄𝑇ℓ, Θ̄ℓ) in [0, 𝑡] × [0, ℎ] is445

𝔼[𝑄([0, 𝑡] × [0, ℎ])] = 𝔼[∑
ℓ
1[0,𝑡]×[0,ℎ](̄𝑇ℓ, Θ̄ℓ)] = ∫

(ℝ+)2
̄𝜇(d𝑡 , d𝜃) = 𝑡(Λ̄ ∧ ℎ).

The thinning is based on the restriction property for Poisson measure: for a measurable set Δ ⊂446

ℝ+ × ℝ+, the restriction 𝑄Δ ∶= 1Δ ̄𝑄 of ̄𝑄 to Δ (by taking only atoms in Δ) is also a Poisson random447

measure of mean measure 𝜇Δ(d𝑡 , d𝜃) = 1Δ(𝑡, 𝜃) ̄𝜇(d𝑡 , d𝜃).448

In order to obtain an inhomogeneous Poisson measure of intensity (Λ(𝑡)), the “good” choice of Δ is449

the hypograph of Λ: Δ = {(𝑡, 𝜃) ∈ [0, 𝑇] × [0, Λ̄]; 𝜃 ≤ Λ(𝑡)} (see Figure 1). Then,450

𝑄Δ = ∑
ℓ≥1

1{Θ̄ℓ≤Λ(̄𝑇ℓ)}𝛿(̄𝑇ℓ,Θ̄ℓ),

and since Λ(𝑡) ≤ Λ̄, on [0, 𝑇]:451

𝜇Δ(d𝑡 , d𝜃) = 1{𝜃≤Λ(𝑡)}d𝑡1[0,Λ̄](𝜃)d𝜃 = 1{𝜃≤Λ(𝑡)}d𝑡d𝜃.

14

𝑇

Λ̄

Λ

𝑇1 𝑇2 𝑇3

̄𝑇1 ̄𝑇2 ̄𝑇3 ̄𝑇4 ̄𝑇5

Time

M
ar
ks

Proposed Marks

Accepted Marks

Figure 1: Realization of a Marked Poisson measure ̄𝑄 on [0, 𝑇] with mean measure ̄𝜇(d𝑡 , d𝜃) =
d𝑡1[0,Λ̄](𝜃)d𝜃 (red crosses), and realization of the restriction ̄𝑄Δ where Δ = {(𝑡, 𝜃) ∈ [0, 𝑇] × [0, Λ̄], 𝜃 ≤
Λ(𝑡)} (blue circles). The projection of ̄𝑄Δ on first component is an inhomogeneous Poisson process
on [0, 𝑇] of intensity (Λ(𝑡)) and jump times (𝑇𝑘)𝑘≥1.

Finally, the inhomogeneous Poisson process is obtained by the projection Proposition 8.2, which452

states that the jump times of 𝑄Δ are the jump times of an inhomogeneous Poisson process of intensity453

(Λ(𝑡)).454

Proposition 4.1. The counting process 𝑁Λ, projection of 𝑄Δ on the time component and defined by,455

𝑁Λ
𝑡 ∶= 𝑄Δ([0, 𝑡] × ℝ+) = ∫

𝑡

0
∫
ℝ+

1{𝜃≤Λ(𝑠)} ̄𝑄(d𝑠, d𝜃) = ∑
ℓ≥1

1{ ̄𝑇ℓ≤𝑡}1{Θ̄ℓ≤Λ(̄𝑇ℓ)}, ∀𝑡 ∈ [0, 𝑇], (13)

is an inhomogeneous Poisson process on [0, 𝑇] of intensity function (Λ(𝑡))𝑡∈[0,𝑇]. The thinning Equation 13456

is a pathwise representation of 𝑁Λ by restriction and projection of the Poisson measure 𝑄 on [0, 𝑇].457

The previous proposition yields a straightforward thinning algorithm to simulate the jump times458

(𝑇𝑘)𝑘≥1 of an inhomogeneous Poisson process of intensity Λ(𝑡), by selecting jump times ̄𝑇ℓ such that459

Θ̄ℓ ≤ Λ(̄𝑇ℓ).460

4.1.1 Multivariate Poisson process461

This can be extended to the simulation of multivariate inhomogeneous Poisson processes, which is462

an important example before tackling the simulation of an IBM.463

Let (𝑁 𝑗)𝑗∈𝒥 be a (inhomogeneous) multivariate Poisson process indexed by a finite set 𝒥, such that464

∀𝑗 ∈ 𝒥, the intensity (𝜆𝑗(𝑡))𝑡∈[0,𝑇] of 𝑁𝑗 is bounded on [0, 𝑇]:465

sup
𝑡∈[0,𝑇]

𝜆𝑗(𝑡) ≤ �̄�𝑗, and let Λ̄ = ∑
𝑗∈𝒥

�̄�𝑗.

Recall that such multivariate counting process can be rewritten as a Poisson random measure466

𝑁 = ∑𝑘≥1 𝛿(𝑇𝑘,𝐽𝑘) on ℝ+ × 𝒥 (see e.g. Sec. 2 of Chapter 6 in (Çinlar 2011)), where 𝑇𝑘 is 𝑘th jump467

time of ∑𝑗∈𝒥 𝑁 𝑗 and 𝐽𝑘 corresponds to the component of the the vector which jumps. In particular,468

𝑁 𝑗
𝑡 = 𝑁([0, 𝑡] × {𝑗}).469

15

Once again the simulation of such process can be obtained from the simulation of a (homogeneous)470

multivariate Poisson process of intensity vector (�̄�𝑗)𝑗∈𝒥, extended into a Poisson measures by adding471

marks on ℝ+. Thus, we introduce the Marked Poisson measure ̄𝑄 = ∑ 𝛿(̄𝑇ℓ, ̄𝐽ℓ,Θ̄ℓ) on ℝ+ × 𝒥 × ℝ+, such472

that:473

• The jump times (̄𝑇ℓ) of ̄𝑄 are the jump times of a Poisson measure of intensity Λ̄.474

• The variables (̄𝐽ℓ) are i.i.d. random variables on 𝒥, with 𝑝𝑗 = ℙ(̄𝐽1 = 𝑗) = �̄�𝑗/Λ̄ and representing475

the component of the vector which jumps.476

• The marks (Θ̄ℓ) are independent variables with Θ̄ℓ a uniform random variable on [0, �̄� ̄𝐽ℓ], ∀ℓ ≥ 1.477

By Proposition 8.3 and Proposition 8.2, each measure ̄𝑄𝑗(d𝑡 , d𝜃) = ̄𝑄(d𝑡 , {𝑗}, d𝜃) = ∑ℓ≥1 1{ ̄𝐽ℓ=𝑗}𝛿(̄𝑇ℓ,Θ̄ℓ)478

is a marked Poisson measure of intensity479

̄𝜇𝑗(d𝑡 , d𝜃) = Λ̄𝑝𝑗d𝑡
1{𝜃≤�̄�𝑗}(𝜃)

�̄�𝑗
d𝜃 = d𝑡1{𝜃≤�̄�𝑗}(𝜃)d𝜃.

As a direct application of Proposition 4.1 , the inhomogeneous multivariate Poisson process is480

obtained by restriction of each measures ̄𝑄𝑗 to Δ𝑗 = {(𝑡, 𝜃) ∈ [0, 𝑇] × [0, �̄�𝑗]; 𝜃 ≤ 𝜆𝑗(𝑡)} and projection.481

Proposition 4.2. The multivariate counting process (𝑁 𝑗)𝑗∈𝒥, defined for all 𝑗 ∈ 𝒥 and 𝑡 ∈ [0, 𝑇] by482

thinning and projection of ̄𝑄:483

𝑁 𝑗
𝑡 ∶= ∫

𝑡

0
∫
ℝ+

1{𝜃≤𝜆𝑗(𝑠)} ̄𝑄(d𝑠, {𝑗}, d𝜃) = ∑
ℓ≥1

1{ ̄𝑇ℓ≤𝑡}1{ ̄𝐽ℓ=𝑗}1{Θ̄ℓ≤𝜆𝑗(̄𝑇ℓ)},

is an inhomogeneous Poisson process of intensity vector (𝜆𝑗(𝑡))𝑗∈𝒥 on [0, 𝑇].484

Proposition 4.2 yields the following simulation Algorithm 1 for multivariate Poisson processes.485

Algorithm 1 Thinning algorithm for multivariate inhomogeneous Poisson processes.

1: Input: Functions and bounds (𝜆𝑗, �̄�𝑗), 𝜆𝑗 ∶ [0, 𝑇] → [0, �̄�𝑗] and Λ̄ = ∑𝑗∈𝒥 �̄�𝑗
2: Output: Points (𝑇𝑘, 𝐽𝑘) of Poisson measure 𝑁 on [0, 𝑇] × 𝒥
3: Initialization 𝑇0 ⟵ 0, ̄𝑇0 ⟵ 0
4: while 𝑇𝑘 < 𝑇 do
5: repeat
6: increment iterative variable ℓ ⟵ ℓ + 1
7: compute next proposed time ̄𝑇ℓ ⟵ ̄𝑇ℓ−1 + 𝑆ℓ with 𝑆ℓ ∼ ℰ(Λ̄)
8: draw ̄𝐽ℓ ∼ 𝒰{�̄�𝑗/Λ̄, 𝑗 ∈ 𝒥} i.e. ℙ(̄𝐽ℓ = 𝑗) = �̄�𝑗/Λ̄
9: draw Θ̄ℓ ∼ 𝒰([0, �̄� ̄𝐽ℓ])

10: until accepted event Θ̄ℓ ≤ 𝜆 ̄𝐽ℓ(
̄𝑇ℓ)

11: record (𝑇𝑘, 𝐽𝑘) ⟵ (̄𝑇ℓ, ̄𝐽ℓ) as accepted point
12: end while

Remark 4.1. The acceptance/rejection Algorithm 1 can be efficient when the functions 𝜆𝑗 are of486

different order, and thus bounded by different �̄�𝑗. However, it is important to note that the simulation487

of the discrete random variables (̄𝐽ℓ) can be costly (compared to a uniform law) when 𝒥 is large,488

for instance when an individual is drawn from a large population. In this case, an alternative is to489

choose the same bound �̄�𝑗 = �̄� for all 𝑗 ∈ 𝒥. Then the marks (̄𝐽ℓ, Θ̄ℓ) are i.i.d. uniform variables on490

𝒥 × [0, �̄�], faster to simulate.491

4.2 Simulation algorithm492

Let us now come back to the simulation of the IBM introduced in Section 2. For ease of notations, we493

assume that there are no event with Poisson intensity (𝒫 = ∅), so that all events that occur are of type494

16

𝑒 ∈ ℰ ∪ ℰ𝑊, with individual intensity 𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) depending on the population composition 𝑍𝑡 (𝑒 ∈ ℰ𝑊)495

or not (𝑒 ∈ ℰ), as defined in Equation 7 and verifying either Assumption 3.2 or Assumption 3.3. The496

global intensity Equation 9 at time 𝑡 ∈ [0, 𝑇] is thus497

Λ𝑡(𝑍𝑡) = ∑
𝑒∈ℰ

(
𝑁𝑡

∑
𝑘=1

𝜆𝑒(𝑡, 𝐼𝑘)) + ∑
𝑒∈ℰ𝑊

(
𝑁𝑡

∑
𝑘=1

𝑁𝑡

∑
𝑗=1

𝑊 𝑒(𝑡, 𝐼𝑘, 𝐼𝑗)) ≤ Λ̄(𝑁𝑡), (14)

with Λ̄(𝑛) = (∑𝑒∈ℰ �̄�𝑒)𝑛 + (∑𝑒∈ℰ𝑊
�̄� 𝑒)𝑛2.498

One of the main difficulty is that the intensity of events is not deterministic as in the case of499

inhomogeneous Poisson processes, but a function Λ𝑡(𝑍𝑡) of the population state, bounded by a500

function which also depends on the population size. However, the Algorithm 1 can be adapted501

to simulate the IBM. The construction is done by induction, by conditioning on the state of the502

population 𝑍𝑇𝑘 at the 𝑘th event time 𝑇𝑘 (𝑇0 = 0).503

We first present the construction of the first event at time 𝑇1.504

First event simulation505

Before the first event time, on {𝑡 < 𝑇1}, the population composition is constant : 𝑍𝑡 = 𝑍0 = {𝐼1, … , 𝐼𝑁0}.506

For each type of event 𝑒 and individual 𝐼𝑘, 𝑘 ∈ {1, …𝑁0}, we denote by 𝑁 𝑘,𝑒 the counting process of507

intensity 𝜆𝑒𝑡 (𝐼𝑘, 𝑍𝑡), counting the occurrences of the events of type 𝑒 happening to the individual 𝐼𝑘.508

Then, the first event 𝑇1 is the first jump time of the multivariate counting vector (𝑁 (𝑘,𝑒))(𝑘,𝑒)∈𝒥0
, with509

𝒥0 = {1, … , 𝑁0} × (ℰ ∪ ℰ𝑊).510

Since the population composition is constant before the first event time, each counting process511

𝑁 𝑗 with 𝑗 = (𝑘, 𝑒) ∈ 𝒥0 coincides on [0, 𝑇1[with an inhomogeneous Poisson process, of intensity512

𝜆𝑒𝑡 (𝐼𝑘, 𝑍0). Thus (conditionally to 𝑍0), 𝑇1 is also the first jump time of an inhomogeneous multivariate513

Poisson process 𝑁 0 = (𝑁 0,𝑗)𝑗∈𝒥0 of intensity function (𝜆𝑗)𝑗∈𝒥0 , defined for all 𝑗 = (𝑘, 𝑒) ∈ 𝒥0 by:514

𝜆𝑗(𝑡) = 𝜆𝑒𝑡 (𝐼𝑘, 𝑍0) ≤ �̄�𝑒0 with �̄�𝑒0 = �̄�𝑒1𝑒∈ℰ + �̄� 𝑒𝑁01𝑒∈ℰ𝑊 ,

by Assumption 3.2 and Assumption 3.3. In particular, the jump times of 𝑁 0 occur at the intensity515

Λ(𝑡) = ∑
𝑗∈𝒥0

𝜆𝑗(𝑡) = ∑
𝑒∈ℰ∪ℰ𝑊

𝑁0

∑
𝑘=1

𝜆𝑒𝑡 (𝐼𝑘, 𝑍0) ≤ Λ̄(𝑁0) = 𝑁0 ∑
𝑒∈ℰ∪ℰ𝑊

�̄�𝑒0.

By Proposition 4.2, 𝑁 0 can be obtained by thinning of the marked Poisson measure516

̄𝑄0 = ∑ℓ≥1 𝛿(̄𝑇ℓ,(̄𝐾ℓ, ̄𝐸ℓ),Θ̄ℓ) on ℝ+ × 𝒥0 × ℝ+, with:517

• (̄𝑇ℓ)ℓ∈ℕ∗ the jump times of a Poisson process of rate Λ̄(𝑁0).518

• (̄𝐾ℓ, ̄𝐸ℓ)ℓ∈ℕ∗ discrete i.i.d. random variables on 𝒥0 = {1, … , 𝑁0}×(ℰ ∪ℰ𝑊), with 𝐾ℓ representing519

the index of the chosen individual and 𝐸ℓ the event type for the proposed event, such that:520

ℙ(̄𝐾1 = 𝑘, ̄𝐸1 = 𝑒) =
�̄�𝑒0

Λ̄(𝑁0)
= 1

𝑁0

�̄�𝑒0𝑁0

Λ̄(𝑁0)
,

i.e. (̄𝐾1, ̄𝐸1) are distributed as independent random variables where ̄𝐾1 ∼ 𝒰({1, … , 𝑁0}) and ̄𝐸1521

such that522

𝑝𝑒 ∶= ℙ(̄𝐸1 = 𝑒) =
�̄�𝑒0𝑁0

Λ̄(𝑁0)
.

• (Θ̄ℓ)ℓ∈ℕ∗ are independent uniform random variables, with Θ̄ℓ ∼ 𝒰([0, �̄� ̄𝐸ℓ]).523

17

Since the first event is the first jump of 𝑁 0, by Proposition 4.2 and Algorithm 1 , the first event time524

𝑇1 is the first jump time ̄𝑇ℓ of ̄𝑄0 such that Θ̄ℓ ≤ 𝜆
̄𝐸ℓ
̄𝑇ℓ
(𝐼 ̄𝐾ℓ

, 𝑍0).525

At 𝑇1 = ̄𝑇ℓ, the event ̄𝐸ℓ occurs to the individual 𝐼 ̄𝐾ℓ
= (𝜏 𝑏, ∞, 𝑥). For instance, if ̄𝐸ℓ = 𝑑, a death/exit526

event occurs, so that 𝑍𝑇1 = 𝑍0 + 𝛿(𝜏 𝑏,𝑇1,𝑥) − 𝛿𝐼 ̄𝐾ℓ
and 𝑁𝑇1 = 𝑁0. If ̄𝐸ℓ = 𝑏 or 𝑒𝑛, a birth or entry event527

occurs, so that 𝑁𝑇1 = 𝑁0 + 1, and a new individual 𝐼𝑁0+1 is added to the population, chosen as528

described in Table 1. Finally, if ̄𝐸ℓ = 𝑠, a swap event occurs, the population size stays constant and 𝐼 ̄𝐾ℓ
529

is replaced by an individual 𝐼 ′ ̄𝐾ℓ
, chosen as described in Table 1.530

The steps for simulating the first event in the population can be iterated in order to simulate the531

population. At the 𝑘th step, the same procedure is repeated to simulate the 𝑘th event, starting from a532

population 𝑍𝑇𝑘−1 of size 𝑁𝑇𝑘−1 . The algorithm is summarized in Algorithm 2 .533

Algorithm 2 IBM simulation algorithm (without events of Poissonian intensity)

1: Input: Initial population 𝑍0, horizon 𝑇 > 0, and events described by:
2: - Intensity functions and bounds (𝜆𝑒, �̄�𝑒) for 𝑒 ∈ ℰ and (𝑊 𝑒, �̄� 𝑒) for 𝑒 ∈ ℰ𝑊
3: - Event action functions 𝜙𝑒(𝑡, 𝐼) for 𝑒 ∈ ℰ ∪ ℰ𝑊
4: Output: Population 𝑍𝑇
5: Initialization 𝑇0 ⟵ 0, ̄𝑇0 ⟵ 0
6: while 𝑇𝑘 < 𝑇 do
7: repeat
8: increment iterative variable ℓ ⟵ ℓ + 1
9: compute next proposed time ̄𝑇ℓ ⟵ ̄𝑇ℓ−1 + ℰ(Λ̄(𝑁𝑇𝑘))

10: draw a proposed event ̄𝐸ℓ ∼ 𝒰{𝑝𝑒} with 𝑝𝑒 =
�̄�𝑒1𝑒∈ℰ+�̄� 𝑒𝑁𝑇𝑘1𝑒∈ℰ𝑊
∑𝑒∈ℰ �̄�𝑒+∑𝑒∈ℰ𝑊 �̄� 𝑒𝑁𝑇𝑘

11: draw an individual index ̄𝐾ℓ ∼ 𝒰({1, … , 𝑁𝑇𝑘})
12: draw Θ̄ℓ ∼ 𝒰([0, �̄� ̄𝐸ℓ]) if ̄𝐸ℓ ∈ ℰ or Θ̄ℓ ∼ 𝒰([0, �̄� ̄𝐸ℓ𝑁𝑇𝑘]) if ̄𝐸ℓ ∈ ℰ𝑊

13: until accepted event Θ̄ℓ ≤ 𝜆
̄𝐸ℓ
̄𝑇ℓ
(𝐼 ̄𝐾ℓ

, 𝑍𝑇𝑘)
14: increment iterative variable 𝑘 ⟵ 𝑘 + 1
15: record (𝑇𝑘, 𝐸𝑘, 𝐼𝑘) ⟵ (̄𝑇ℓ, ̄𝐸ℓ, 𝐼 ̄𝐾ℓ

) as accepted time, event and individual
16: update the population 𝑍𝑇𝑘 = 𝑍𝑇𝑘−1 + 𝜙𝐸𝑘(𝑇𝑘, 𝐼𝑘)
17: end while

Theorem 4.1. A population process (𝑍𝑡)𝑡∈[0,𝑇] simulated by the Algorithm 2 is an exact solution of the534

SDE Equation 12.535

The proof of Theorem 4.1 is detailed in the Appendix Section 8.3.536

Remark 4.2. The population 𝑍𝑇𝑘 includes dead/exited individuals before the event time 𝑇𝑘. Thus,537

𝑁𝑇𝑘 > 𝑁 𝑎
𝑇𝑘 is greater than the number of alive individuals at time 𝑇𝑘. When a dead individual 𝐼 ̄𝐾𝑙

is538

drawn from the population during the rejection/acceptance phase of the algorithm, the proposed539

event (̄𝑇ℓ, ̄𝐸ℓ, 𝐼 ̄𝐾ℓ
) is automatically rejected since the event intensity is 𝜆

̄𝐸ℓ
𝑇ℓ (𝐼 ̄𝐾ℓ

, 𝑍𝑇𝑘) = 0 (nothing can540

happen to a dead individual). This can slow down the algorithm, especially when the proportion of541

dead/exited individuals in the population increases. However, the computational cost of keeping542

dead/exited individuals in the population is much lower than the cost of removing an individual543

from the population at each death/exit event, which is linear in the population size.544

Actually, dead/exited individuals are regularly removed from the population in the IBMPopSim545

algorithm, in order to optimize the trade-off between having to many dead individuals and removing546

dead individuals from the population too often. The frequency at which dead individuals are “removed547

18

from the population” can be chosen by the user, as an optional argument of the main function popsim548

(see details in Section 4).549

Remark 4.3. In practice, the bounds �̄�𝑒 and �̄� 𝑒 should be chosen as sharp as possible. It is easy to550

see that conditionally to { ̄𝐸ℓ = 𝑒, ̄𝑇ℓ = 𝑡, ̄𝐾ℓ = 𝑙} the probability of accepting the event is, depending if551

there are interactions,552

ℙ(Θ̄ℓ ≤ 𝜆𝑒𝑡 (𝐼𝑙, 𝑍𝑇𝑘)|ℱ𝑇𝑘) =
𝜆𝑒(𝑡, 𝐼𝑙)
�̄�𝑒

1𝑒∈ℰ +
∑

𝑁𝑇𝑘
𝑗=1𝑊 𝑒(𝑡, 𝐼𝑙, 𝐼𝑗)

�̄� 𝑒𝑁𝑇𝑘
1𝑒∈ℰ𝑊 .

The sharper the bounds �̄�𝑒 and �̄� 𝑒 are, the higher is the acceptance rate. For even sharper bounds,553

an alternative is to define bounds �̄�𝑒(𝐼𝑙) and �̄� 𝑒(𝐼𝑙) depending on the individuals’ characteristics.554

However, the algorithm is modified and the individual 𝐼𝑙 is not chosen uniformly in the population555

anymore. Due to the population size, this is way more costly than choosing uniform bounds, as556

explained in Remark 4.1.557

4.3 Simulation algorithm with randomization558

Let 𝑒 ∈ 𝐸𝑊 be an event with interactions. In order to evaluate the individual intensity 𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) =559

∑𝑁𝑡
𝑗=1𝑊 𝑒(𝑡, 𝐼 , 𝐼𝑗) one must compute 𝑊 𝑒(𝑡, 𝐼𝑙, 𝐼𝑗) for all individuals in the population. This step can be560

computationally costly, especially for large populations. One way to avoid this summation is to use561

randomization (see also Fournier and Méléard (2004) in a model without age). The randomization562

consists in replacing the summation by an evaluation of the interaction function 𝑊 𝑒 using an563

individual 𝐽 drawn uniformly from the population.564

More precisely, if 𝐽 ∼ 𝒰({1, … , 𝑁𝑇𝑘}) is independent of Θ̄ℓ, we have565

ℙ(Θ̄ℓ ≤
𝑁𝑇𝑘

∑
𝑗=1

𝑊 𝑒(𝑡, 𝐼𝑙, 𝐼𝑗)|ℱ𝑇𝑘) = ℙ(Θ̄ℓ ≤ 𝑁𝑇𝑘𝑊
𝑒(𝑡, 𝐼𝑙, 𝐼𝐽)|ℱ𝑇𝑘). (15)

Equivalently, we can write this probability as ℙ(Θ̃ℓ ≤ 𝑊 𝑒(𝑡, 𝐼𝑙, 𝐼𝐽)) where Θ̃ℓ =
Θ̄ℓ
𝑁𝑇𝑘

∼ 𝒰([0, �̄� 𝑒]) is566

independent of 𝐽 ∼ 𝒰({1, … , 𝑁𝑇𝑘}).567

The efficiency of the randomization procedure increases with the population homogeneity. If the568

function 𝑊 𝑒 varies little according to the individuals in the population, the randomization approach569

is very efficient in practice, especially when the population is large.570

We now present the main Algorithm 3 implemented in the popsim function of the IBMPopSim pack-571

age in the case where events arrive with individual intensities, but also with interactions (using572

randomization) and Poisson intensities. In this general case, Λ̄(𝑛) is defined by Equation 11.573

19

Algorithm 3 Randomized IBM simulation algorithm.

1: Input: Initial population 𝑍0, horizon 𝑇 > 0, and events described by
2: Intensity functions and bounds (𝜆𝑒, �̄�𝑒) for 𝑒 ∈ ℰ, (𝑊 𝑒, �̄� 𝑒) for 𝑒 ∈ ℰ𝑊 and (𝜇𝑒, ̄𝜇𝑒) for 𝑒 ∈ 𝒫
3: Event action functions 𝜙𝑒(𝑡, 𝐼) for 𝑒 ∈ ℰ ∪ ℰ𝑊 ∪ 𝒫
4: Output: Population 𝑍𝑇
5: Initialization 𝑇0 ⟵ 0, ̄𝑇0 ⟵ 0
6: while 𝑇𝑘 < 𝑇 do
7: repeat
8: increment iterative variable ℓ ⟵ ℓ + 1
9: compute next proposed time ̄𝑇ℓ ⟵ ̄𝑇ℓ−1 + ℰ(Λ̄(𝑁𝑇𝑘))

10: draw an individual index ̄𝐾ℓ ∼ 𝒰({1, … , 𝑁𝑇𝑘})

11: draw a proposed event ̄𝐸ℓ ∼ 𝒰{𝑝𝑒} with 𝑝𝑒 =
̄𝜇𝑒1𝑒∈𝒫+�̄�𝑒𝑁𝑇𝑘1𝑒∈ℰ+�̄�

𝑒(𝑁𝑇𝑘)
21𝑒∈ℰ𝑊

Λ̄(𝑁𝑇𝑘)
12: if ̄𝐸ℓ ∈ ℰ (without interaction) then
13: draw Θ̄ℓ ∼ 𝒰([0, �̄� ̄𝐸ℓ])
14: accepted ⟵ Θ̄ℓ ≤ 𝜆 ̄𝐸ℓ(̄𝑇ℓ, 𝐼 ̄𝐾ℓ

)
15: end if
16: if ̄𝐸ℓ ∈ ℰ𝑊 (with interaction) then
17: draw (Θ̄ℓ, 𝐽ℓ) ∼ 𝒰([0, �̄� ̄𝐸ℓ] × {1, … , 𝑁𝑇𝑘})
18: accepted ⟵ Θ̄ℓ ≤ 𝑊 ̄𝐸ℓ(̄𝑇ℓ, 𝐼 ̄𝐾ℓ

, 𝐼𝐽ℓ)
19: end if
20: if ̄𝐸ℓ ∈ 𝒫 (Poissonian intensity) then
21: draw Θ̄ℓ ∼ 𝒰([0, ̄𝜇 ̄𝐸ℓ])
22: accepted ⟵ Θ̄ℓ ≤ 𝜇 ̄𝐸ℓ(̄𝑇ℓ)
23: end if
24: until accepted
25: increment iterative variable 𝑘 ⟵ 𝑘 + 1
26: record (𝑇𝑘, 𝐸𝑘, 𝐼𝑘) ⟵ (̄𝑇ℓ, ̄𝐸ℓ, ̄𝐼 ̄𝐾ℓ

) as accepted time, event and individual
27: update the population 𝑍𝑇𝑘 = 𝑍𝑇𝑘−1 + 𝜙𝐸𝑘(𝑇𝑘, 𝐼𝑘)
28: end while

Proposition 4.3. The population processes (𝑍𝑡)𝑡∈[0,𝑇] simulated by the Algorithm 2 and Algorithm 3574

have the same law.575

Proof. The only difference between Algorithm 2 and Algorithm 3 is in the acceptance/rejection step576

of proposed events, in the presence of interactions. In Algorithm 3 , a proposed event (̄𝑇ℓ, ̄𝐸ℓ, ̄𝐾ℓ),577

with ̄𝐸𝑙 ∈ ℰ𝑊 (an event with interaction), is accepted as a true event in the population if578

Θ̄ℓ ≤ 𝑊 ̄𝐸ℓ(̄𝑇ℓ, 𝐼 ̄𝐾ℓ
, 𝐼 ̄𝐽ℓ), with (Θ̄ℓ, ̄𝐽ℓ) ∼ 𝒰([0, �̄� ̄𝐸ℓ] × {1, … , 𝑁𝑇𝑘}).

By Equation 15, the probability of accepting this event is the same than in Algorithm 2 , which579

achieves the proof.580

5 Model creation and simulation with IBMPopSim581

The use of the IBMPopSim package is mainly done in two steps: a first model creation followed by582

the simulation of the population evolution. The creation of a model is itself based on two steps: the583

description of the population 𝑍𝑡, as introduced in Section 3.1, and the description of the events types,584

along with their associated intensities, as detailed in Section 3.2 and Section 3.3. A model is compiled585

20

by calling the mk_model function, which internally uses a template mechanism to automatically586

generate the source code describing the model, which is subsequently compiled using the Rcpp587

package to produce the object code.588

After the compilation of the model, the simulations are launched by calling the popsim function.589

This function depends on the previously compiled model and simulates a random trajectory of the590

population evolution based on an initial population and on parameter values, which can change from591

a call to another.592

In this section, we take a closer look at each component of a model in IBMPopSim. We also refer to593

the IBMPopSim website and to the vignettes of the package for more details on the package and594

various examples of model creation.595

5.1 Population596

A population 𝑍 is represented by an object of class population containing a data frame where each597

row corresponds to an individual 𝐼 = (𝜏 𝑏, 𝜏 𝑑, 𝑥), and which has at least two columns, birth and death,598

corresponding to the birth date 𝜏 𝑏 and death/exit date 𝜏 𝑑 (𝜏 𝑑 is set to NA for alive individuals). The data599

frame can contain more than two columns if individuals are described by additional characteristics600

𝑥 = (𝑥1, … 𝑥𝑛).601

If entry events can occur in the population, the population will contain a characteristic named602

entry. This can be done by setting the flag entry=TRUE in the population function, or by calling the603

add_characteristic function on an existing population. During the simulation, the date at which604

an individual enters the population is automatically recorded in the variable I.entry. If exit events605

can occur, the population shall contain a characteristic named out. This can be done by setting the606

flag out=TRUE in the population function, or by calling the add_characteristic function. When607

an individual I exits the population during the simulation, I.out is set to TRUE and its exit time is608

recorded as a “death” date.609

In the example below, individuals are described by their birth and death dates, as well a Boolean610

characteristics called male, and the entry characteristic. For instance, the first individual is a female611

whose age at 𝑡0 = 0 is 107 and who was originally in the population.612

pop_init <- population(EW_pop_14$sample, entry=TRUE)
str(pop_init)

Classes 'population' and 'data.frame': 100000 obs. of 4 variables:613

$ birth: num -107 -107 -105 -104 -104 ...614

$ death: num NA NA NA NA NA NA NA NA NA NA ...615

$ male : logi FALSE FALSE TRUE FALSE FALSE FALSE ...616

$ entry: logi NA NA NA NA NA NA ...617

Individual In the C++model which is automatically generated and compiled, an individual I is an object618

of an internal class containing some attributes (birth_date, death_date and the characteristics),619

and some methods including:620

• I.age(t): a const method returning the age of an individual I at time t,621

• I.set_age(a, t): a method to set the age a at time t of an individual I (set birth_date at622

t-a),623

• I.is_dead(t): a const method returning true if the individual I is dead at time t.624

Remark 5.1. A characteristic 𝑥𝑖 must be of atomic type: logical, integer, double or character.625

The function get_characteristic allows to easily get characteristics names and their types from a626

21

https://daphnegiorgi.github.io/IBMPopSim/

Table 2: Choices of CLASS and TYPE arguments for an event creation.

(a) Intensity Classes

Intensity class Set CLASS

Individual ℰ individual
Interaction ℰ𝑊 interaction
Poisson 𝒫 poisson
Inhomogeneous Poisson 𝒫 inhomogeneous_poisson

(b) Event Types

Event type TYPE

Birth birth
Death death
Entry entry
Exit exit
Swap swap

population data frame. We draw the attention to the fact that some names for characteristics are627

forbidden, or reserved to specific cases : this is the case for birth, death, entry, out, id.628

5.2 Events629

The most important step of the model creation is the events creation. The call to the function creating630

an event is of form631

mk_event_CLASS(type="TYPE", name="NAME", ...)

where CLASS is replaced by the class of the event intensity, described in Section 3.3 , and type632

corresponds to the event type, described in Section 3.2. Table 2a and Table 2b summarize the different633

possible choices for intensity classes and types of event. The optional argument name gives a name634

to the event. If not specified, the name of the event is its type, for instance death. However, a name635

must be specified if the model is composed of several events with the same type (for instance when636

there are multiple death events corresponding to different causes of death). The other arguments637

depend on the intensity class and on the event type.638

The intensity function and the kernel of an event are defined through arguments of the function639

mk_event_CLASS. These arguments are strings composed of few lines of code. Since the model is640

compiled using Rcpp, the code should be written in C++. However, thanks to the functions/variables641

of the package, even the non-experienced C++ user can define a model quite easily. To facilitate the642

implementation, the user can also define a list of model parameters, which can be used in the643

event and intensity definitions. These parameters are stored in a named list and can be of various644

types: atomic type, numeric vector or matrix, predefined function of one variable (stepfun, linfun,645

gompertz, weibull, piecewise_x), piecewise functions of two variables (piecewise_xy). We refer646

to the vignette(IBMPopSim_cpp) for more details on parameters types and basic C++ tools. Another647

advantage of the model parameters is that their value can be modified from a simulation to another648

without changing the model.649

5.2.1 Intensities650

In IBMPopSim, the intensity of an event can belong to three classes Section 3.3: individual intensities651

without interaction between individuals, corresponding to events 𝑒 ∈ ℰ, individual intensities652

with interaction, corresponding to events 𝑒 ∈ ℰ𝑊, and Poisson intensities (homogeneous and653

inhomogeneous), corresponding to events 𝑒 ∈ 𝒫.654

Event creation with individual intensity655

An event 𝑒 ∈ ℰ (see Equation 5) has an intensity of the form 𝜆𝑒(𝑡, 𝐼) which depends only on the656

individual I and time. Events with such intensity are created using the function657

22

mk_event_individual(type = "TYPE",
name = "NAME",
intensity_code = "INTENSITY", ...)

The intensity_code argument is a character string containing few lines of C++ code describing the658

intensity function 𝜆𝑒(𝑡, 𝐼). The intensity value has to be stored in a variable called result and the659

available variables for the intensity code are given in Table 3.660

Table 3: C++ variables available for intensity code

Variable Description

Variable Description
I Current individual
J Another individual in the population (only for interaction)
t Current time
Model parameters Depends on the model

For instance, the intensity code below corresponds to an individual death intensity 𝜆𝑑(𝑡, 𝐼) equal to661

𝑑1(𝑎(𝐼 , 𝑡)) = 𝛼1 exp(𝛽1𝑎(𝐼 , 𝑡)) for males and 𝑑2(𝑎(𝐼 , 𝑡)) = 𝛼2 exp(𝛽2𝑎(𝐼 , 𝑡)) for females, where 𝑎(𝐼 , 𝑡) =662

𝑡 − 𝜏 𝑏 is the age of the individual 𝐼 = (𝜏 𝑏, 𝜏 𝑑, 𝑥) at time 𝑡. In this case, the intensity function depends663

on the individuals’ age, gender, and on the model parameters 𝛼 = (𝛼1, 𝛼2) and 𝛽 = (𝛽1, 𝛽2).664

death_intensity <- "
if (I.male) result = alpha_1 * exp(beta_1 * I.age(t));
else result = alpha_2 * exp(beta_2 * I.age(t));

"

Event creation with interaction intensity665

An event 𝑒 ∈ ℰ𝑊 is an event which occurs to an individual at a frequency which is the result of666

interactions with other members of the population (see Equation 6), and which can be written as667

𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) = ∑𝐽∈𝑍𝑡 𝑊
𝑒(𝑡, 𝐼 , 𝐽) where 𝑊 𝑒(𝑡, 𝐼 , 𝐽) is the intensity of the interaction between individual 𝐼668

and individual 𝐽.669

An event 𝑒 ∈ ℰ𝑊 with such intensity is created by calling the function670

mk_event_interaction(type = "TYPE",
name = "NAME",
interaction_code = "INTERACTION_CODE",
interaction_type = "random", ...)

The interaction_code argument contains few lines of C++ code describing the interaction function671

𝑊 𝑒(𝑡, 𝐼 , 𝐽). The interaction function value has to be stored in a variable called result and the available672

variables for the intensity code are given in Table 3. For example, if we set673

death_interaction_code <- "result = max(J.size - I.size, 0.);"

the death intensity of an individual I is the result of the competition between individuals, depending674

on a characteristic named size, as defined in Equation 8.675

The argument interaction_type, set by default at random, is the algorithm choice for sim-676

ulating the model. When interaction_type=full, the simulation follows Algorithm 2 ,677

interaction_type=random it follows Algorithm 3 . In most cases, the random algorithm is much678

faster than the full algorithm. For instance in the example of Section 7 the random algorithm is 40679

23

times faster on average than the full algorithm, on a set of standard parameters. This allows in680

particular to explore larger parameter sets and population sizes, while avoiding the explosion of681

computation time.682

Events creation with Poisson and Inhomogeneous Poisson intensity683

For events 𝑒 ∈ 𝒫 with an intensity 𝜇𝑒(𝑡)which does not depend on the population, the event intensity684

is of class inhomogeneous_poisson or poisson depending on whether or not the intensity depends685

on time (in the second case the intensity is constant).686

For Poisson (constant) intensities the events are created with the function687

mk_event_poisson(type = "TYPE",
name = "NAME",
intensity = "CONSTANT", ...)

The following example creates a death event, where individuals die at a constant intensity lambda688

(which has to be in the list of model parameters):689

mk_event_poisson(type = "death,
intensity = "lambda")

When the intensity (𝜇𝑒(𝑡)) depends on time, the event can be created similarly by using the function690

mk_event_inhomogeneous_poisson(type = "TYPE",
name = "NAME",
intensity = "INTENSITY", ...)

5.2.2 Event kernel code691

When an event occurs, the events kernels 𝑘𝑒 specify how the event modifies the population. The692

events kernels are defined in the kernel_code parameter of the mk_event_CLASS(type = "TYPE",693

name ="NAME", ...) function. The kernel_code is NULL by default and doesn’t have to be specified694

for death, exit events and birth events, but mandatory for entry and swap events. Recall that the695

kernel_code argument is a string composed of a few lines of C++ code, characterizing the individual696

characteristics following the event. Table 4 summarizes the list of available variables that can be697

used in the kernel_code.698

• Death/Exit event If the user defines a death event, the death date of the current individual I699

is set automatically to the current time t. Similarly, when an individual I exits the population,700

I.out is set automatically to TRUE and his exit time is recorded as a death date. For these events701

types, the kernel_code doesn’t have to be specified by the user.702

• Birth event The default generated event kernel is that an individual I gives birth to a new703

individual newI of age 0 at the current time t, with same characteristics than the parent I. If704

no kernel is specified, the default generated C++ code for a birth event is:705

individual newI = I;
newI.birth_date = t;
pop.add(newI);

The user can modify the birth kernel, by specifying the argument kernel_code of mk_event_CLASS.706

In this case, the generated code is707

individual newI = I;
newI.birth_date = t;

24

_KERNEL_CODE_
pop.add(newI);

where _KERNEL_CODE_ is replaced by the content of the kernel_code argument.708

• Entry event When an individual I enters the population, I.entry is set automatically as709

the date at which the individual enters the population. When an entry occurs the individual710

entering the population is not of age 0. In this case, the user must specify the kernel_code711

argument indicating how the age and characteristics of the new individual are chosen. For712

instance, the code below creates an event of type entry, named ev_example, where individuals713

enter the population at a Poisson constant intensity. When an individual newI enters the714

population at time t, its age is chosen as a normally distributed random variable, with mean715

20 and variance 4.716

mk_event_poisson(
type = "entry",
name = "ev_example",
intensity = "lambda",
kernel_code = "

double a_I = max(CNorm(20, 2), 0.);
newI.set_age(a_I, t);

")

• Swap event The user must specify the kernel_code argument indicating how the characteris-717

tics of an individual are modified following a swap.718

Table 4: C++ variables available for events kernel code

Variable Description

Variable Description
I Current individual
J Another individual in the population (only for interaction)
t Current time
pop Current population (vector)
newI Available only for birth and entry events.
Model parameters Depends on the model

When there are several events of the same type, the user can identify which events generated a719

particular event by adding a characteristic to the population recording the event name/id when it720

occurs. See e.g. vignette(IBMPopSim_human_pop) for an example with different causes of death.721

5.3 Model creation722

Once the population, the events, and model parameters are defined, the IBM model is created using723

the function mk_model.724

model <- mk_model(characteristics = get_characteristics(pop_init),
event = events_list,
parameters = model_params)

During this step which can take a few seconds, the model is created and compiled using the Rcpp725

package. The model structure in IBMPopSim is that the model depends only on the population726

25

characteristics’ and parameters names and types, rather than their values. This means that once727

the model has been created, various simulations can be done with different initial populations and728

different parameters values.729

Example 5.1. Here is an example of model with a population structured by age and gender, with730

birth and death events. The death intensity of an individual of age 𝑎 is 𝑑(𝑎) = 𝛼 exp(𝛽𝑎), and females731

between 15 and 40 can give birth with birth intensity 𝑏(𝑎) = �̄�𝑏1[15,40]. The newborn is a male with732

probability 𝑝𝑚𝑎𝑙𝑒.733

params <- list("p_male"= 0.51,
"birth_rate" = stepfun(c(15,40),c(0,0.05,0)),
"death_rate" = gompertz(0.008,0.02))

death_event <- mk_event_individual(type = "death", name= "my_death_event",
intensity_code = "result = death_rate(age(I,t));")

birth_event <- mk_event_individual(type = "birth",
intensity_code = "if (I.male)

result = 0;
else

result=birth_rate(age(I,t));",
kernel_code = "newI.male = CUnif(0, 1) < p_male;")

pop <- population(EW_pop_14$sample)

model <- mk_model(characteristics = get_characteristics(pop),
events = list(death_event,birth_event),
parameters = params)

5.4 Simulation734

The simulation of the IBM is based on the algorithms presented in Section 4.2 and Section 4.3. The735

user has first to specify bounds for the intensity or interaction functions of each event type. The736

random evolution of the population can then be simulated over a period of time [0, 𝑇] by calling the737

function popsim.738

Events bounds739

Since the IBM simulation algorithm is based on an acceptance-rejection method for simulating740

random times, the user has to specify bounds for the intensity (or interaction) functions of each741

event (see Assumption 3.2 and Assumption 3.3). These bounds should be stored in a named vector,742

where for event 𝑒, the name corresponding to the event bound ̄𝜇𝑒, �̄�𝑒 or �̄� 𝑒 is the event name defined743

during the event creation step.744

In Example 5.1 from previous section the intensity bound for birth events is �̄�𝑏. Since the death745

intensity function is not bounded, the user will have to specify a maximum age 𝑎max in popsim (all746

individuals above 𝑎max die automatically). Then, the bound for death events is �̄�𝑑 = 𝛼 exp(𝛽𝑎max). In747

the example, the death event has been named my_death_event. No name has been specified for the748

birth event which thus has the default name birth. Then,749

a_max <- 120 # maximum age
events_bounds <- c("my_death_event" = params$death_rate(a_max),

"birth" = max(params$birth_rate))

26

Once the model and events bounds have been defined, a random trajectory of the population can be750

simulated by calling751

sim_out <- popsim(model, pop, events_bounds, params,
age_max = a_max, time = 30)

Optional parameters752

If there are no events with intensity of class interaction, then the simulation can be parallelized753

easily by setting the optional parameter multithreading (FALSE by default) to TRUE. By default,754

the number of threads is the number of concurrent threads supported by the available hardware755

implementation. The number of threads can be set manually with the optional argument num_threads.756

By default, when the proportion of dead individuals in the population exceeds 10%, dead individuals757

are removed from the current population used in the algorithm (see Remark 4.2). The user can758

modify this ratio using the optional argument clean_ratio, or by removing dead individuals from759

the population with a certain frequency, given by the clean_step argument. Finally, the user can760

also define the seed of the random number generator stored in the argument seed.761

Outputs and treatment of swap events762

The output of the popsim function is a list containing three elements: a data frame population763

containing the output population 𝑍𝑇 (or a list of populations (𝑍𝑡1 , … 𝑍𝑡𝑛) if time is a vector of times),764

a numeric vector logs of variables related to the simulation algorithm (including the simulation time765

and number of proposed/accepted events), and the list arguments of the simulation inputs, including766

the initial population, parameters and event bounds used for the simulation.767

When there are no swap events (individuals don’t change of characteristics), the evolution of the768

population over the period [0, 𝑇] is recorded in a single data frame sim_out$population where each769

line contains the information of an individual who lived in the population over the period [0, 𝑇] (see770

Remark 3.1).771

When there are swap events (individuals can change of characteristics), recording the dates of772

swap events and changes of characteristics following each swap event and for each individual in773

the population is a memory intensive and computationally costly process. To maintain efficient774

simulations in the presence of swap events, the argument time of popsim can be defined as a vector775

of dates (𝑡0, … , 𝑡𝑛). In this case, popsim returns in the object population a list of 𝑛 populations776

representing the population at time 𝑡1, … 𝑡𝑛, simulated from the initial time 𝑡0. For 𝑖 = 1… 𝑛, the 𝑖th777

data frame is the population 𝑍𝑡𝑖 , i.e. individuals who lived in the population during the period [𝑡0, 𝑡𝑖],778

with their characteristics at time 𝑡𝑖.779

It is also possible to isolate the individuals’ life course, by adding an id column to the popu-780

lation, which can be done by setting id=TRUE in the population construction, or by calling the781

add_characteristic function to an existing population, in order to identify each individual with a782

unique integer.783

Base functions to study the simulation outputs are provided in the package. For instance, the784

population age pyramid can computed at a given time, as well as death and exposure tables. Several785

illustrations of the outputs functions are given in the example Section 6 and Section 7.786

6 Insurance portfolio787

This section provides an example of how to use the IBMPopSim package to simulate a heterogeneous788

life insurance portfolio (see also vignette(IBMPopSim_insurance_portfolio)).789

27

https://daphnegiorgi.github.io/IBMPopSim/articles/IBMPopSim_insurance_portfolio.html

We consider an insurance portfolio consisting of male policyholders, of age greater than 65. These790

policyholders are characterized by their age, assumed to be less than 𝑎max = 110, and risk class791

𝑥 ∈ 𝒳 = {1, 2}.792

Entries in the portfolio New policyholders enter the population at a constant Poisson rate 𝜇𝑒𝑛 = 𝜆,793

which means that on average, 𝜆 individuals enter the portfolio each year. A new individual enters794

the population at an age a that is uniformly distributed between 65 and 70, and is in risk class 1 with795

probability 𝑝.796

Death events A baseline age and time specific death rate is first calibrated on “England and Wales797

(EW)” males mortality historic data (source: Human Mortality Database https://www.mortality.org/),798

and projected for 30 years using the Lee-Carter model with the package StMoMo (see A. M. Villegas,799

Kaishev, and Millossovich (2018)). The forecasted baseline death intensity is denoted by 𝑑(𝑡, 𝑎),800

defined by:801

𝑑(𝑡, 𝑎) =
29
∑
𝑘=0

1{𝑘≤𝑡<𝑘+1}𝑑𝑘(𝑎), ∀ 𝑡 ∈ [0, 30] and 𝑎 ∈ [65, 𝑎max], (16)

with 𝑑𝑘(𝑎) the point estimate of the forecasted mortality rate for age 𝑎 and year 𝑘.802

Individuals in risk class 1 are assumed to have mortality rates that are 20% higher than the baseline803

mortality (for instance, the risk class could refer to smokers), while individuals in risk class 2 are804

assumed to have mortality rates that are 20% lower than the baseline (non smokers). The death805

intensity of an individual 𝐼 = (𝜏𝑏, ∞, 𝑥), of age 𝑎(𝐼 , 𝑡) = 𝑡 − 𝜏𝑏 at time 𝑡 and in risk class 𝑥 ∈ {1, 2} is806

thus the function807

𝜆𝑑(𝑡, 𝐼) = 𝛼𝑥𝑑(𝑡, 𝑎(𝐼 , 𝑡)), 𝛼1 = 1.2, 𝛼2 = 0.8.

In particular, the death intensity verifies Assumption 3.3 since:808

𝜆𝑑(𝑡, 𝐼) ≤ ̄𝑑 ∶= 𝛼1 sup
𝑡∈[0,30]

𝑑(𝑡, 𝑎max). (17)

Exits from the portfolio Individuals exit the portfolio at a constant (individual) rate 𝜆𝑒𝑥(𝑡, 𝐼) = 𝜇𝑖809

only depending on their risk class 𝑖 ∈ {1, 2}.810

6.1 Population811

We start with an initial population of 30 000 males of age 65, distributed uniformly in each risk class.812

The population data frame has thus the two (mandatory) columns birth (here the initial time is813

𝑡0 = 0) and death (NA if alive), and an additional column risk_cls corresponding to the policyholders814

risk class. Since there are entry and exit events, the entry and out flags of the population constructor815

are set to TRUE.816

N <- 30000
pop_df <- data.frame("birth" = rep(-65,N), "death" = rep(NA,N),

"risk_cls" = rep(1:2,each=N/2))
pop_init <- population(pop_df, entry=TRUE, out=TRUE)

6.2 Events817

Entry events The age of the new individual is determined by the kernel_code argument in the818

mk_event_poisson function.819

entry_params <- list("lambda" = 30000, "p" = 0.5)
entry_event <- mk_event_poisson(

type = "entry",

28

https://www.mortality.org/

intensity = "lambda",
kernel_code = "if (CUnif() < p) newI.risk_cls =1;

else newI.risk_cls= 2;
double a = CUnif(65, 70);
newI.set_age(a, t);")

Note that the variables newI and t, as well as the function CUnif(), are implicitly defined and usable820

in the kernel_code. The field risk_cls comes from the names of characteristics of individuals in821

the population. The names lambda and p are parameter names that will be specified in the R named822

list params.823

Here we use a constant 𝜆 as the event intensity, but we could also use a rate 𝜆(𝑡) that depends on824

time, using the function mk_event_poisson_inhomogeneous.825

Death and exit events The baseline death intensity defined in Equation 16 and obtained with the826

package StMoMo is stored in the variable death_male.827

StMoMo death rates
library('StMoMo')
library('reshape2')
EWStMoMoMale <- StMoMoData(EWdata_hmd, series = "male")
LC <- lc()
ages.fit <- 65:100
years.fit <- 1950:2016
LCfitMale <- fit(LC, data = EWStMoMoMale, ages.fit = ages.fit, years.fit = years.fit)
t <- 30
LCforecastMale <- forecast(LCfitMale, h = t)
d_k <- apply(LCforecastMale$rates, 2, function(x) stepfun(66:100, x))
breaks <- 1:29
death_male <- piecewise_xy(breaks,d_k)

The death and exit intensities are of class individual (see Table 2a). Hence, the death and exit events828

are created with the mk_event_individual function.829

death_params <- list("death_male" = death_male, "alpha" = c(1.2, 0.8))
death_event <- mk_event_individual(

type = "death",
intensity_code = "result = alpha[I.risk_cls-1] * death_male(t, I.age(t));")

exit_params = list("mu" = c(0.001, 0.06))
exit_event <- mk_event_individual(

type = "exit",
intensity_code = "result = mu[I.risk_cls-1]; ")

6.3 Model creation and simulation830

The model is created from all the previously defined building blocks, by calling the mk_model.831

model <- mk_model(
characteristics = get_characteristics(pop_init),
events = list(entry_event, death_event, exit_event),
parameters = c(entry_params, death_params, exit_params))

Once the model is compiled, it can be used with different parameters and run simulations for various832

scenarios. Similarly, the initial population (here pop_df) can be modified without rerunning the833

29

mk_model function. The bounds for entry events is simply the intensity 𝜆. For death events, the834

bound is given by ̄𝑑 defined in Equation 17, which is stored in the death_max variable.835

death_max <- max(sapply(d_k, function(x) { max(x) }))
bounds <- c("entry" = entry_params$lambda,

"death" = death_max,
"exit" = max(exit_params$mu))

sim_out <- popsim(
model = model,
initial_population = pop_init,
events_bounds = bounds,
parameters = c(entry_params, death_params, exit_params),
time = 30,
age_max = 110,
multithreading = TRUE)

6.4 Outputs836

The data frame sim_out$population consists of all individuals present in the portfolio during the837

period of [0, 30], including the individuals in the initial population and those who entered the838

portfolio. Each row represents an individual, with their date of birth, date of death (NA if still alive at839

the end of the simulation), risk class, and characteristics entry and out. Recall that if an individual840

enters the population at time 𝑡, his entry characteristic is automatically set up to be equal to 𝑡. The841

characteristics out is set to TRUE for individuals who left the portfolio due to an exit event.842

In this example, the simulation time over 30 years, starting from an initial population of 30 000843

individuals is very fast (see below), for an acceptance rate of proposed event of approximately 25%.844

At the end of the simulation, the number of alive individuals is approximately 430 000.845

[1] "Number of alive individuals in the population at final time T=30 : 426882"846

[1] "Execution time : 0.00017s"847

[1] "Proportion of effective events and proposed events : 0.25"848

Initially in the portfolio (at 𝑡 = 0), there is the same number of 65 years old policyholders in each849

risk class. However, policyholders in the risk class 2 with lower mortality rates leave the portfolio at850

higher rate than policyholders in the risk class 1 : 𝜇2 > 𝜇1. Therefore, the heterogeneous portfolio851

composition changes with time, including more and more individuals in risk class 1 with higher852

mortality rates, but with variations across age classes. To illustrate the composition of the total853

population at the end of the simulation (𝑡 = 30), we present in Figure 2 the age pyramid of the final854

composition of the portfolio obtained with the age_pyramid and plot functions of the pyramid class.855

30

65 − 66
67 − 68
69 − 70
71 − 72
73 − 74
75 − 76
77 − 78
79 − 80
81 − 82
83 − 84
85 − 86
87 − 88
89 − 90
91 − 92
93 − 94
95 − 96
97 − 98

0 5000 10000 15000 20000 25000
Number of individuals

A
ge

Group

1

2

Figure 2: Portfolio age pyramid at t = 30 for individuals in risk class 1 (blue) and 2 (red).

IBMPopSim also allows the fast computation of exact life tables from truncated and censored individual856

data (due to entry and exit events), using the functions death_table and exposure_table. These857

function are particularly efficient, since the computations are made using the Rccp library.858

age_grp <- 65:95
Dx_pop <- death_table(sim_out$population, ages = age_grp, period = 0:30)
Ex_pop <- exposure_table(sim_out$population, ages = age_grp, period = 0:30)
mx_pop <- Dx_pop/Ex_pop

In Figure 3, we illustrate the central death rates in the simulated portfolio at final time. Due to the859

mortality differential between risk class 1 and 2, one would expect to observe more individuals in860

risk class 2 at higher ages. However, due to exit events, a higher proportion of individuals in risk861

class 1 exit the portfolio over time, resulting in a greater proportion of individuals in risk class 1 at862

higher ages than what would be expected in the absence of exit events. Consequently, the mortality863

rates in the portfolio are more aligned with those of risk class 1 at higher ages. This is a simple864

example of how composition changes in the portfolio can impact aggregated mortality rates and865

potentially compensate or reduce an overall mortality reduction (see also (Kaakaï et al. 2019)).866

7 Population with genetically variable traits867

This section provides an example of how to use the IBMPopSim package to simulate an age-structured868

population with interactions, based on the model proposed in Example 1 of Ferrière and Tran (2009)869

(see also Méléard and Tran (2009)).870

In this model, individuals are characterized by their body size at birth 𝑥0 ∈ [0, 4] and by their physical871

age 𝑎 ∈ [0, 2]. The body size of an individual 𝐼 = (𝜏 𝑏, ∞, 𝑥0) at time 𝑡 is a linear function of its age872

𝑎(𝐼 , 𝑡) = 𝑡 − 𝜏 𝑏:873

𝑥(𝑡) = 𝑥0 + 𝑔𝑎(𝐼 , 𝑡),

where 𝑔 is a constant growth rate assumed to be identical for all individuals.874

Birth events The birth intensity of each individual 𝐼 = (𝜏 𝑏, ∞, 𝑥0) depends on a parameter 𝛼 > 0875

and on its initial size, as given by the equation876

𝜆𝑏(𝑡, 𝐼) = 𝛼(4 − 𝑥0) ≤ �̄�𝑏 = 4𝛼. (18)

31

−5

−4

−3

−2

−1

70 80 90
Age

Lo
g

m
or

ta
lit

y
ra

te
s

Portfolio

Risk class 1

Risk class 2

Figure 3: Portfolio central death rates at t = 30 (black).

Thus, smaller individuals have a higher birth intensity. When a birth occurs, the new individual877

inherits the same birth size 𝑥0 as its parent with high probability 1 − 𝑝, or a mutation can occur with878

probability 𝑝, resulting in a birth size given by879

𝑥′0 = min(max(0, 𝑥0 + 𝐺), 4), (19)

where 𝐺 is a Gaussian random variable with mean 0 and variance 𝜎2.880

Death events Due to competition between individuals, the death intensity of an individual depends881

on the size of other individuals in the population. Bigger individuals have a better chance of survival.882

If an individual 𝐼 = (𝜏 𝑏, ∞, 𝑥0) of size 𝑥(𝑡) = 𝑥0 + 𝑔𝑎(𝐼 , 𝑡) encounters an individual 𝐽 = (𝜏 𝑏𝐽 , ∞, 𝑥′0) of883

size 𝑥′(𝑡) = 𝑥′0 + 𝑔𝑎(𝐽 , 𝑡), then it can die with the intensity884

𝑊(𝑡, 𝐼 , 𝐽) = 𝑈 (𝑥(𝑡), 𝑥′(𝑡)),

where the interaction function 𝑈 is defined by885

𝑈 (𝑥, 𝑦) = 𝛽 (1 − 1
1 + 𝑐 exp(−4(𝑥 − 𝑦))

) ≤ �̄� = 𝛽. (20)

The death intensity of an individual 𝐼 at time 𝑡 and in a population 𝑍 is the result of interactions with886

all individuals in the population, including itself, and is given by887

𝜆𝑑𝑡 (𝐼 , 𝑍) = ∑
𝐽=(𝜏 𝑏,∞,𝑥′0)∈𝑍

𝑊(𝑥0 + 𝑔𝑎(𝐼 , 𝑡), 𝑥′0 + 𝑔𝑎(𝐽 , 𝑡)),

7.1 Population888

We use an initial population of 900 living individuals, all of whom have the same size and ages889

uniformly distributed between 0 and 2 years.890

32

N <- 900
x0 <- 1.06
agemin <- 0.
agemax <- 2.

pop_df <- data.frame(
"birth" = -runif(N, agemin, agemax), # Uniform age in [0,2]
"death" = as.double(NA), # All individuals are alive
"birth_size" = x0) # All individuals have the same initial birth size x0

pop_init <- population(pop_df)

7.2 Events891

7.2.1 Birth events892

The parameters involved in a birth event are the probability of mutation 𝑝, the variance of the893

Gaussian random variable and the coefficient 𝛼 of the intensity.894

params_birth <- list("p" = 0.03, "sigma" = sqrt(0.01), "alpha" = 1)

The birth intensity Equation 18 is of class individual. Hence, the event is created by calling the895

mk_event_individual function. The size of the new individual is given in the kernel following896

Equation 19.897

birth_event <- mk_event_individual(
type = "birth",
intensity_code = "result = alpha*(4 - I.birth_size);",
kernel_code = "if (CUnif() < p)

newI.birth_size = min(max(0.,CNorm(I.birth_size,sigma)),4.);
else

newI.birth_size = I.birth_size;")

7.2.2 Death events898

The death intensity Equation 20 is of class interaction. Hence, the event is created by calling the899

mk_event_interaction function. The parameters used for this event are the growth rate 𝑔, the900

amplitude of the interaction function 𝛽, and the strength of competition 𝑐.901

params_death <- list("g" = 1, "beta" = 2./300., "c" = 1.2)
death_event <- mk_event_interaction(
type = "death",
interaction_code = "double x_I = I.birth_size + g * age(I,t);

double x_J = J.birth_size + g * age(J,t);
result = beta*(1.-1./(1.+c*exp(-4.*(x_I-x_J))));")

7.3 Model creation and simulation902

The model is created using the mk_model function.903

model <- mk_model(
characteristics = get_characteristics(pop_init),
events = list(birth_event, death_event),
parameters = c(params_birth, params_death))

33

The simulation of one scenario can then be launched with the call of the popsim function, after904

computing the events bounds �̄�𝑏 = 4𝛼 and �̄� = 𝛽.905

sim_out <- popsim(model = model,
initial_population = pop_init,
events_bounds = c("birth" = 4 * params_birth$alpha,

"death" = params_death$beta),
parameters = c(params_birth, params_death),
age_max = 2,
time = 500)

Based on the results of a simulation, we can reproduce the numerical results of Ferrière and Tran906

(2009). In Figure 4, we draw a line for each individual in the population to represent their birth size907

during their lifetime.908

Figure 4: Evolution of birth size

In this example, the randomized Algorithm 3 allows for much faster computation times than the909

model implemented below with Algorithm 2 (“full” algorithm):910

death_event_full <- mk_event_interaction(type = "death",
interaction_type= "full",
interaction_code = "double x_I = I.birth_size + g * age(I,t);

double x_J = J.birth_size + g * age(J,t);
result = beta * (1.- 1./(1. + c * exp(-4. * (x_I-x_J))));"

)

model_full <- mk_model(characteristics = get_characteristics(pop_init),
events = list(birth_event, death_event_full),
parameters = c(params_birth, params_death))

sim_out_full <- popsim(model = model_full,
initial_population = pop_init,
events_bounds =c("birth" = 4 * params_birth$alpha, "death" = params_death$beta),
parameters = c(params_birth, params_death),
age_max = 2,
time = 500)

34

[1] "The full algorithm is 36 times slower than the randomized version"911

In Figure 5, the two algorithms are compared for different population sizes. We progressively decrease912

the value of the mortality rate parameter 𝛽 and increase the birth rate parameter 𝛼. Starting with the913

values provided in Ferrière and Tran (2009), 𝛼 = 1 and 𝛽 = 2/300, resulting in a stationary population914

size of approximately 𝑁 = 360 individuals for a sample of 50 simulations, we can easily increase the915

stationary population size to approximately 𝑁 = 2600 individuals with 𝛼 = 2 and 𝛽 = 1/300.4 In916

the log-scaled figure, we can observe the trend of computation time as a function of the population917

size 𝑁, which is linear for the randomized algorithm and quadratic for the full one (Algorithm 2).918

We can also see that the randomized version of the algorithm is between 17 to 100 times faster than919

the full one in this example, taking only 2 seconds in average for the randomized version versus 211920

seconds for Algorithm 2 for the biggest population size (𝑁 = 2600) and 𝑇 = 500.921

Figure 5: Full vs random algorithm computation time

8 Appendix922

8.1 Recall on Poisson random measures923

We recall below some useful properties of Poisson random measures, mainly following Chapter 6924

of (Çinlar 2011). We also refer to (Kallenberg 2017) for a more comprehensive presentation of random925

counting measures.926

Definition 8.1 (Poisson Random Measures). Let 𝜇 be a 𝜎-finite diffuse measure on a Borel subspace927

(𝐸, ℰ) of (ℝ𝑑,ℬ(ℝ𝑑)). A random counting measure 𝑄 = ∑𝑘≥1 𝛿𝑋𝑘 is a Poisson (counting) random928

measure of mean measure 𝜇 if929

4The choices (𝛼, 𝛽) ∈ {(1, 2/300), (1, 1/300), (1.5, 1/300), (2, 1/300)} lead to the stationary population sizes 𝑁 ∈
{360, 900, 1800, 2600}. For each set of parameters, we generated a new initial population, which was used for a benchmark
of 50 simulations with both randomized and full algorithm. The simulations run on a Intel Core i7-8550U CPU 1.80GHz ×
8 processor, with 15.3 GiB of RAM, under Debian GNU/Linux 11.

35

1. ∀𝐴 ∈ ℰ, 𝑄(𝐴) is a Poisson random variable with 𝔼[𝑄(𝐴)] = 𝜇(𝐴).930

2. For all disjoints subsets 𝐴1, … , 𝐴𝑛 ∈ ℰ, 𝑄(𝐴1), … , 𝑄(𝐴𝑛) are independent Poisson random931

variables.932

Let us briefly recall here some simple but useful operations on Poisson measures. In the following, 𝑄933

is a Poisson measure of mean measure 𝜇, unless stated otherwise.934

Proposition 8.1 (Restricted Poisson measure). If 𝐵 ∈ ℰ, then, the restriction of 𝑄 to 𝐵 defined by935

𝑄𝐵 = 1𝐵𝑄 = ∑
𝑘≥1

1𝐵(𝑋𝑘)𝛿𝑋𝑘

is also a Poisson random measure, of mean measure 𝜇𝐵 = 𝜇(⋅ ∩ 𝐵).936

Proposition 8.2 (Projection of Poisson measure). If 𝐸 = 𝐹1 × 𝐹2 is a product space, then the projection937

𝑄1(d𝑥) = ∫
𝐹2
𝑄(d𝑥, d𝑦)

is a Poisson random measure of mean measure 𝜇1(d𝑥) = ∫𝐹2 𝜇(d𝑥, d𝑦).938

8.1.1 Link with Poisson processes939

Let 𝑄 = ∑𝑘≥1 𝛿𝑇𝑘 a Poisson random measure on 𝐸 = ℝ+ with mean measure 𝜇(d𝑡) = Λ(𝑡)d𝑡 absolutely940

continuous with respect to the Lebesgue measure, 𝜇(𝐴) = ∫𝐴 Λ(𝑡)d𝑡. The counting process (𝑁𝑡)𝑡≥0941

defined by942

𝑁𝑡 = 𝑄([0, 𝑡]) = ∑
𝑘≥1

1{𝑇𝑘≤𝑡}, ∀ 𝑡 ≥ 0, (21)

is an inhomogeneous Poisson process with intensity function (or rate) 𝑡 ↦ Λ(𝑡). In particular, when943

Λ(𝑡) ≡ 𝑐 is a constant, 𝑁 is a homogeneous Poisson process with rate 𝑐. Assuming that the atoms are944

ordered 𝑇1 < 𝑇2 < …, we recall that the sequence (𝑇𝑘+1 − 𝑇𝑘)𝑘≥1 is a sequence of i.i.d. exponential945

variables of parameter 𝑐.946

8.1.2 Marked Poisson measures on 𝐸 = ℝ+ × 𝐹947

We are interested in the particular case when 𝐸 is the product space ℝ+ × 𝐹, with (𝐹 , ℱ) a Borel948

subspace of ℝ𝑑. Then, a random counting measure is defined by a random set 𝑆 = {(𝑇𝑘, Θ𝑘), 𝑘 ≥ 1}.949

The random variables 𝑇𝑘 ≥ 0 can be considered as time variables, and constitute the jump times of950

the random measure, while the variables Θ𝑘 ∈ 𝐹 represent space variables.951

We recall in this special case the Theorem VI.3.2 in (Çinlar 2011).952

Proposition 8.3 (Marked Poisson measure). Let 𝑚 be a 𝜎–finite diffuse measure on ℝ+, and 𝐾 a953

transition probability kernel from (ℝ+,ℬ(ℝ+)) into (𝐹 , ℱ). Assume that the collection (𝑇𝑘)𝑘≥1 forms a954

Poisson process (𝑁𝑡) = (∑𝑘≥1 1{𝑇𝑘≤𝑡}) with mean 𝑚(d𝑡) = Λ(𝑡)d𝑡, and that given (𝑇𝑘)𝑘≥1, the variables955

Θ𝑘 are conditionally independent and have the respective distributions 𝐾(𝑇𝑘, ⋅).956

1. Then, {(𝑇𝑘, Θ𝑘); 𝑘 ≥ 1} forms a Poisson random measure 𝑄 = ∑𝑘≥1 𝛿(𝑇𝑘,Θ𝑘) on (ℝ+ × 𝐹 ,ℬ(ℝ+) ⊗957

ℱ), called a Marked point process , with mean 𝜇 defined by958

𝜇(d𝑡 , d𝑦) = Λ(𝑡)d𝑡𝐾(𝑡, d𝑦).

2. Reciprocally let 𝑄 be a Poisson randommeasure of meanmeasure 𝜇(d𝑡 , d𝑦), admitting the following959

disintegration with respect to the first coordinate: 𝜇(d𝑡 , d𝑦) = Λ̃(𝑡)d𝑡𝜈(𝑡 , d𝑦), with 𝜈(𝑡, 𝐹) < ∞.960

Let 𝐾(𝑡, d𝑦) =
𝜈(𝑡, d𝑦)
𝜈(𝑡, 𝐹)

and Λ(𝑡) = 𝜈(𝑡, 𝐹)Λ̃(𝑡). Then, 𝑄 = ∑𝑘≥1 𝛿(𝑇𝑘,Θ𝑘) is a marked Poisson961

36

measure with (𝑇𝑘, Θ𝑘)𝑘∈ℕ∗ defined as above. In particular, the projection 𝑁 = (𝑁𝑡)𝑡≥0 of the962

Poisson measure on the first coordinate,963

𝑁𝑡 = 𝑄([0, 𝑡] × 𝐹) = ∑
𝑘≥1

1[0,𝑡]×𝐹(𝑇𝑘, Θ𝑘) = ∑
𝑘≥1

1{𝑇𝑘≤𝑡}, ∀ 𝑡 ≥ 0,

is an inhomogeneous Poisson process of rate Λ(𝑡) = 𝜈(𝑡, 𝐹)Λ̃(𝑡).964

When the transition probability kernel 𝐾 does not depend on the time: 𝐾(𝑡, 𝐴) = 𝜈(𝐴) for some965

probability measure 𝜈, then the marks (Θ𝑘)𝑘≥1 form an i.i.d. sequence with distribution 𝜈, independent966

of (𝑇𝑘)𝑘≥1.967

The preceding proposition thus yields a straightforward iterative simulation procedure for a Marked968

Poisson process on [0, 𝑇] × 𝐹 with mean measure 𝜇(d𝑡 , d𝑦) = 𝑐d𝑡𝐾(𝑡, d𝑦) and 𝑐 > 0. The procedure is969

described in Algorithm 4 .970

Algorithm 4 Simulation of Marked Poisson measure

1: Input: Constant 𝑐, simulatable kernel 𝐾 and final time 𝑇
2: Output: Times (𝑇1, … , 𝑇𝑛) and Marks (𝑌1, … , 𝑌𝑛) of the Marked Poisson measure of mean

𝜇(d𝑡 , d𝑦) = 𝑐d𝑡𝐾(𝑡, d𝑦) in [0, 𝑇] × 𝐹.
3: Initialization draw 𝑇1 ∼ ℰ(𝑐) and draw 𝑌1 ∼ 𝐾(𝑇1, d𝑦)
4: while condition do
5: increment iterative variable 𝑘 ⟵ 𝑘 + 1
6: compute next jump time compute next jump time 𝑇𝑘 ⟵ 𝑇𝑘−1 + ℰ(𝑐)
7: draw a conditional mark 𝑌𝑘 ∼ 𝐾(𝑇𝑘, d𝑦)
8: end while

𝑇

𝐿

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5
Time

M
ar
ks

Figure 6: Example of Marked Poisson measure on [0, 𝑇] with 𝑚(d𝑡) = 𝐿d𝑡 (jump times occur at
Poisson arrival times of rate 𝐿) and with 𝜈(d𝑦) = 1

𝐿1[0,𝐿](𝑦)d𝑦 (marks are drawn uniformly on [0, 𝐿]).
The mean measure is then 𝜇(d𝑡 , d𝑦) = d𝑡1[0,𝐿](𝑦)d𝑦.

8.2 Pathwise representation of IBMs971

Notation reminder The population’s evolution is described by the measure valued process (𝑍𝑡)𝑡≥0.972

Several types of events 𝑒 can occur to individuals denoted by 𝐼. If an event of type 𝑒 occur to the973

37

individual 𝐼 at time 𝑡, then the population state 𝑍𝑡− is modified by 𝜙𝑒(𝑡, 𝐼). If 𝑒 ∈ ℰ ∪ ℰ𝑊, then events974

of type 𝑒 occur with an intensity ∑𝑁𝑡
𝑘=1 𝜆

𝑒
𝑡 (𝐼 , 𝑍𝑡), with 𝜆𝑒𝑡 (𝐼 , 𝑍𝑡) defined by Equation 7. If 𝑒 ∈ 𝒫, then975

events of type 𝑒 occur in the population at a Poisson intensity of (𝜇𝑒𝑡).976

8.2.1 Proof of Theorem 3.1977

Proof. For ease of notation, we prove the case when 𝒫 = ∅ (there are no events with Poisson978

intensity).979

• Step 1. The existence of a solution to Equation 12 is obtained by induction. Let 𝑍 1 be the980

unique solution the thinning equation:981

𝑍 1
𝑡 = 𝑍0 + ∫

𝑡

0
∫
𝒥 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝑘≤𝑁0}1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍0)}𝑄(d𝑠, d𝑘, d𝑒, d𝜃), ∀0 ≤ 𝑡 ≤ 𝑇 .

Let 𝑇1 be the first jump time of 𝑍 1. Since 𝑍 1
𝑠− = 𝑍0 and 𝑁𝑠− = 𝑁0 on [0, 𝑇1], 𝑍 1 is solution of982

Equation 12 on [0, 𝑇1].983

Let us now assume that Equation 12 admits a solution 𝑍 𝑛 on [0, 𝑇𝑛], with 𝑇𝑛 the 𝑛–th event time in984

the population. Let 𝑍 𝑛+1 be the unique solution of the thinning equation:985

𝑍 𝑛+1
𝑡 = 𝑍 𝑛

𝑡∧𝑇𝑛 + ∫
𝑡

𝑡∧𝑇𝑛
∫
𝒥 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍 𝑛
𝑇𝑛)}

1{𝑘≤𝑁 𝑛
𝑇𝑛}
𝑄(d𝑠, d𝑘, d𝑒, d𝜃).

First, observe that 𝑍 𝑛+1 coincides with 𝑍 𝑛 on [0, 𝑇𝑛]. Let 𝑇𝑛+1 be the (𝑛 + 1)–th jump of 𝑍 𝑛+1.986

Furthermore, 𝑍 𝑛+1
𝑠− = 𝑍 𝑛

𝑇𝑛 and 𝑁 𝑛+1
𝑠− = 𝑁 𝑛

𝑇𝑛 on [𝑇𝑛, 𝑇𝑛+1] (nothing happens between two successive987

event times), 𝑍 𝑛+1 verifies for all 𝑡 ≤ 𝑇𝑛+1:988

𝑍 𝑛+1
𝑡 = 𝑍 𝑛

𝑡∧𝑇𝑛 + ∫
𝑡

𝑡∧𝑇𝑛
∫
𝒥 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍 𝑛+1
𝑠−)}1{𝑘≤𝑁 𝑛+1

𝑠− }𝑄(d𝑠, d𝑘, d𝑒, d𝜃).

Since, 𝑍 𝑛 is a solution of Equation 12 on [0, 𝑇𝑛] coinciding with 𝑍 𝑛+1 this achieves to prove that 𝑍 𝑛+1
989

is solution of Equation 12 on [0, 𝑇𝑛+1]. Finally, let 𝑍 = lim𝑛→∞ 𝑍 𝑛. For all 𝑛 ≥ 1, 𝑇𝑛 is the 𝑛–th event990

time of 𝑍, and 𝑍 is solution of Equation 12 on all time intervals [0, 𝑇𝑛 ∧ 𝑇] by construction.991

By Lemma 3.1 𝑇𝑛 ⟶
𝑛→∞

∞. Thus, by letting 𝑛 → ∞ we can conclude that 𝑍 is a solution of Equation 12992

on [0, 𝑇].993

• Step 2. Let �̃� be a solution of Equation 12. Using the same arguments than in Step 1, it is994

straightforward to show that �̃� coincides with 𝑍 𝑛 on [0, 𝑇𝑛], for all 𝑛 ≥ 1. Thus, �̃� = 𝑍, with995

achieves to prove uniqueness.996

997

8.2.2 Proof of Lemma 3.1998

The proof is obtained using pathwise comparison result, generalizing those obtained in (Kaakai and999

El Karoui 2023).1000

Proof. Let 𝑍 be a solution of Equation 12. For all 𝑒 ∈ 𝒫 ∪ ℰ ∪ ℰ𝑊, let 𝑁 𝑒 be the process counting the1001

occurrence of events of type 𝑒 in the population. 𝑁 𝑒 is a counting process of {ℱ𝑡}-intensity (Λ𝑒
𝑡 (𝑍𝑡−)),1002

solution of1003

𝑁 𝑒
𝑡 = ∫

𝑡

0
∫
ℕ×ℝ+

1{𝑘≤𝑁𝑠−}1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍𝑠−)}𝑄(d𝑠, d𝑘, {𝑒}, d𝜃), if 𝑒 ∈ ℰ ∪ ℰ𝑊,

𝑁 𝑒
𝑡 = ∫

𝑡

0
∫
ℝ+

1{𝜃≤𝜇𝑒𝑠 }𝑄
𝒫(d𝑠, {𝑒}, d𝜃), if 𝑒 ∈ 𝑃.

(22)

38

By definition, the jump times of the multivariate counting process (𝑁 𝑒)𝑒∈𝒫 ∪ℰ∪ℰ𝑊 are the population1004

event times (𝑇𝑛)𝑛≥0. The idea of the proof is to show that (𝑁 𝑒)𝑒∈𝒫 ∪ℰ∪ℰ𝑊 does not explode in finite1005

time, by pathwise domination with a simpler multivariate counting process. The first steps are to1006

control the population size 𝑁𝑡 = 𝑁0 + 𝑁 𝑏
𝑡 + 𝑁 𝑒𝑛

𝑡 .1007

1008

Step 1 Let (�̄� 𝑏, �̄� 𝑒𝑛) be the 2-dimensional counting process defined as follows: for 𝑒 ∈ {𝑏, 𝑒𝑛}, �̄� 𝑒
0 = 01009

and1010

�̄� 𝑒
𝑡 = ∫

𝑡

0
∫
ℕ×ℝ+

1{𝑘≤𝑁0+�̄�𝑠−}1{𝜃≤𝑓 𝑒(𝑁0+�̄�𝑠−)}𝑄(d𝑠, d𝑘, {𝑒}, d𝜃), if 𝑒 ∈ ℰ ∪ ℰ𝑊,

�̄� 𝑒
𝑡 = ∫

𝑡

0
∫
ℝ+

1{𝜃≤ ̄𝜇𝑒}𝑄𝒫(d𝑠, {𝑒}, d𝜃) if 𝑒 ∈ 𝑃,
(23)

with �̄� ∶= �̄� 𝑏 + �̄� 𝑒𝑛 and 𝑓 𝑒 the function introduced in Assumption 3.4.1011

- If 𝑏, 𝑒𝑛 ∈ 𝑃, then �̄� is a inhomogeneous Poisson process.1012

- If 𝑏, 𝑒𝑛 ∈ ℰ ∪ ℰ𝑊, then it is straightforward to show that conditionally to 𝑁0, �̄� is a pure birth1013

Markov process with birth intensity function 𝑔(𝑛) = 𝑛(𝑓 𝑏(𝑁0 + 𝑛) + 𝑓 𝑒𝑛(𝑁0 + 𝑛)). In particular, by1014

Assumption 3.4, 𝑔 verifies the standard Feller condition for pure birth Markov processes (see e.g.1015

(Bansaye and Méléard 2015)):1016
∞
∑
𝑛=1

1
𝑔(𝑛)

.

- Finally, if 𝑏 ∈ ℰ and 𝑒𝑛 ∈ 𝑃 (or equivalently if 𝑏 ∈ 𝑃 and 𝑒𝑛 ∈ ℰ), then one can show easily that �̄� is a1017

pure birth Markov process with immigration, of birth intensity function 𝑔(𝑛) = ̄𝜇𝑒𝑛 + 𝑛𝑓 𝑏(𝑁0 + 𝑛)1018

(resp. 𝑔(𝑛) = ̄𝜇𝑏 + 𝑛𝑓 𝑒𝑛(𝑁0 + 𝑛)), also verifying the Feller condition. Therefore, there exists a1019

non-exploding solution of Equation 23, by Proposition 3.3 in (Kaakai and El Karoui 2023).1020

1021

Step 2 The second step consists in showing that (𝑁 𝑏, 𝑁 𝑒𝑛) is strongly dominated by (�̄� 𝑏, �̄� 𝑒𝑛), i.e1022

that all jumps of (𝑁 𝑏, 𝑁 𝑒𝑛) are jumps of (�̄� 𝑏, �̄� 𝑒𝑛). Without loss of generality, we can assume that1023

𝑓 𝑒 ∶ ℕ → (0, +∞) is increasing since 𝑓 𝑒(𝑛) can be replaced by sup{𝑚≤𝑛} 𝑓
𝑒(𝑚).1024

Let 𝑒 ∈ {𝑏, 𝑒𝑛}. If 𝑒 ∈ 𝒫, then for all 𝑠 ∈ [0, 𝑇]1025

{𝜃 ≤ 𝜇𝑒𝑠 } ⊂ {𝜃 ≤ ̄𝜇𝑒},

which yields that all jumps of 𝑁 𝑒 are jumps of �̄� 𝑒.1026

If 𝑒 ∈ ℰ ∪ ℰ𝑊, the proof by induction is analogous to the proof of Proposition 2.1 in (Kaakai and El1027

Karoui 2023). Let 𝑇 𝑒1 be first jump time of 𝑁 𝑒, associated with the marks (𝐾 𝑒
1, Θ𝑒

1) of 𝑄 (or 𝑄𝒫). Then,1028

by Definition of Equation 22, 𝐾 𝑒
1 ≤ 𝑁0 and Θ𝑒

1 ≤ 𝜆𝑒𝑇 𝑒1 (𝐼𝐾 𝑒
1
, 𝑍0).1029

By Assumption 3.4, we have also1030

Θ𝑒
1 ≤ 𝜆𝑒𝑇 𝑒1 (𝐼𝐾 𝑒

1
, 𝑍0) ≤ 𝑓 𝑒(𝑁0) ≤ 𝑓 𝑒(𝑁0 + �̄�𝑇 𝑒,−1

), 𝐾 𝑒
1 ≤ 𝑁0 + �̄�𝑇 𝑒,−1

.

Thus, 𝑇 𝑒1 is also a jump time of �̄� 𝑒. By iterating this argument, we obtain that all jump times of 𝑁 𝑒
1031

are jump times of �̄� 𝑒.1032

Thus, (𝑁 𝑏, 𝑁 𝑒𝑛) does not explode in finite time.1033

1034

Step 3 It remains to show that for 𝑒 ∉ {𝑏, 𝑒𝑛}, 𝑁 𝑒 does not explode.1035

Let 𝑒 ≠ 𝑏, 𝑒𝑛. If 𝑒 ∈ 𝒫, the proof is the same than in Step 2. Otherwise, let:1036

ℎ𝑒𝑡 (𝑛) = sup
𝐼 ∈ℐ ,𝑚≤𝑛

𝜆𝑒𝑡 (𝐼 ,
𝑚
∑
𝑘=1

𝛿𝐼𝑘), ∀ 𝑡 ∈ [0, 𝑇] 𝑛 ∈ ℕ∗.

39

By Assumption 3.2 and Assumption 3.3, ℎ𝑒𝑡 (𝑛) < ∞, and we can introduce the non exploding counting1037

process �̄� 𝑒, defined by the thinning equation :1038

�̄� 𝑒
𝑡 = ∫

𝑡

0
∫
ℕ×ℝ+

1{𝑘≤𝑁0+�̄�𝑠−}1{𝜃≤ℎ𝑒𝑠(𝑁0+�̄�𝑠−)}𝑄(d𝑠, d𝑘, {𝑒}, d𝜃),

with �̄�𝑠 = �̄� 𝑏
𝑠 + �̄� 𝑒𝑛

𝑠 .1039

Finally, by Step 2, for 𝑠 ∈ [0, 𝑇] the population size 𝑁𝑠 = 𝑁0 + 𝑁 𝑏
𝑠 + 𝑁 𝑒𝑛

𝑠 is bounded a.s. by 𝑁0 + �̄�𝑠,1040

since all jumps of (𝑁 𝑏, 𝑁 𝑒𝑛) are jumps of (�̄� 𝑏, �̄� 𝑒𝑛). Thus, for all 𝑠 ∈ [0, 𝑇],1041

{𝑘 ≤ 𝑁𝑠−} ⊂ {𝑘 ≤ 𝑁0 + �̄�𝑠−}, and {𝜃 ≤ 𝜆𝑒𝑠(𝐼𝑘, 𝑍𝑠−)} ⊂ {𝜃 ≤ ℎ𝑒𝑠(𝑁0 + �̄�𝑠−)}.

This proves that all jumps of 𝑁 𝑒 are jumps �̄� 𝑒, and thus 𝑁 𝑒 does not explode in finite time.1042

8.2.3 Alternative pathwise representation1043

Theorem 8.1. Let 𝒥ℰ = ℕ × ℰ and 𝒥𝑊 = ℕ × ℰ𝑊.1044

Let 𝑄ℰ be a random Poisson measure on ℝ+ × 𝒥ℰ × ℝ+, of intensity d𝑡𝛿𝒥ℰ(d𝑘, d𝑒)1[0,�̄�𝑒](𝜃)d𝜃, and 𝑄
𝑊 a1045

random Poisson measure on ℝ+ × 𝒥𝑊 × ℕ × ℝ+, of intensity d𝑡𝛿𝒥ℰ(d𝑘, d𝑒))𝛿ℕ(d𝑗)1[0,�̄� 𝑒](𝜃)d𝜃. Finally,1046

let 𝑄𝒫 be a random Poisson measure on ℝ+ × 𝒫 × ℝ+, of intensity d𝑡𝛿𝑃(d𝑒)1[0, ̄𝜇𝑒](𝜃)d𝜃.1047

There exists a unique measure-valued process 𝑍, strong solution on the following SDE driven by Poisson1048

measure:1049

𝑍𝑡 = 𝑍0 + ∫
𝑡

0
∫
𝒥ℰ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝑘≤𝑁𝑠−}1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍𝑠−)}𝑄
ℰ(d𝑠, d𝑘, d𝑒, d𝜃)

+ ∫
𝑡

0
∫
𝒥𝑊×ℕ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝑘≤𝑁𝑠−}1{𝑗≤𝑁𝑠−}1{𝜃≤𝑊 𝑒(𝑠,𝐼𝑘,𝐼𝑗)}𝑄
𝑊(d𝑠, d𝑘, d𝑒, d𝑗, d𝜃),

+ ∫
𝑡

0
∫
𝒫 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑠−)1{𝜃≤𝜇𝑒𝑠 }𝑄
𝒫(d𝑠, d𝑒, d𝜃),

(24)

with 𝐼𝑠− an individual taken uniformly in 𝑍𝑠− .1050

Furthermore, the solution of Equation 24 has the same law than the solution of Equation 12.1051

The proof of Theorem 8.1 follows the same steps than the proof of Theorem 3.1.1052

8.3 Proof of Theorem 4.11053

For ease of notation, we prove the case when 𝒫 = ∅ (there are no events with Poisson intensity).1054

Let 𝑍 be the population process obtained by Algorithm 2 , and (𝑇𝑛)𝑛≥0 the sequence of its jump times1055

(𝑇0 = 0).1056

Step 1 Let 𝑇1 be the first event time in the population, with its associated marks defining the type1057

𝐸1 of the event and the individual 𝐼1 to which this event occurs. By construction, (𝑇1, 𝐸1, 𝐼1) is1058

characterized by the first jump of:1059

𝑄0(d𝑡 , d𝑘, d𝑒) = ∫
ℝ+

1{𝜃≤𝜆𝑒𝑡 (𝐼𝑘,𝑍0)} ̄𝑄0(d𝑡 , d𝑘, d𝑒, d𝜃),

with ̄𝑄0 the Poisson measure introduced in the first step of the algorithm described in Section 4.2.1060

Since 𝑇1 is the first event time, the population composition stays constant, 𝑍𝑡 = 𝑍0, on {𝑡 < 𝑇1}. In1061

addition, recalling that the first event has the action 𝜙𝐸1(𝑇1, 𝐼1) (see Table 1) on the population 𝑍, we1062

40

obtain that:1063

𝑍𝑡∧𝑇1 = 𝑍0 + 1{𝑡≥𝑇1}𝜙
𝐸1(𝑇1, 𝐼1)

= 𝑍0 + ∫
𝑡∧𝑇1

0
∫
𝒥0

𝜙𝑒(𝑠, 𝐼𝑘)𝑄0(d𝑠, d𝑘, d𝑒)

= 𝑍0 + ∫
𝑡∧𝑇1

0
∫
𝒥0

∫
ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍0)} ̄𝑄0(d𝑠, d𝑘, d𝑒, d𝜃).

Since 𝑍𝑠− = 𝑍0 on {𝑠 ≤ 𝑇1}, the last equation can be rewritten as1064

𝑍𝑡∧𝑇1 = 𝑍0 + ∫
𝑡∧𝑇1

0
∫
𝒥0

∫
ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍𝑠−)} ̄𝑄0(d𝑠, d𝑘, d𝑒, d𝜃).

Step 2 The population size at the 𝑛–th event time 𝑇𝑛 is 𝑁𝑇𝑛 . The (𝑛 + 1)–th event type and the1065

individual to which this event occur are thus chosen in the set1066

𝒥𝑛 ∶= {1, … , 𝑁𝑇𝑛} × (ℰ ∪ ℰ𝑊).

Conditionally to ℱ𝑇𝑛 , let us first introduce the marked Poisson measure ̄𝑄𝑛 on [𝑇𝑛, ∞) × 𝒥𝑛 × ℝ+, of1067

intensity:1068

̄𝜇𝑛(d𝑡 , d𝑘, d𝑒, d𝜃) ∶= 1{𝑡>𝑇𝑛}Λ̄(𝑁𝑇𝑛)d𝑡
�̄�𝑒𝑛

Λ̄(𝑁𝑇𝑛)
𝛿𝒥𝑛(d𝑘, d𝑒)

1
�̄�𝑒𝑛

1[0,�̄�𝑒𝑛](𝜃)d𝜃,

= 1{𝑡>𝑇𝑛}d𝑡𝛿𝒥𝑛(d𝑘, d𝑒)1[0,�̄�𝑒𝑛](𝜃)d𝜃,
(25)

with 𝜆𝑒𝑛 = �̄�𝑒1𝑒∈ℰ + �̄� 𝑒𝑁𝑇𝑛1𝑒∈ℰ𝑊 .1069

By definition, ̄𝑄𝑛 has no jump before 𝑇𝑛.1070

As for the first event, the triplet (𝑇𝑛+1, 𝐸𝑛+1, 𝐼𝑛+1) is determined by the first jump of the measure1071

𝑄𝑛(d𝑠, d𝑘, d𝑒) ∶= ∫ℝ+ 1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍𝑇𝑛)}
̄𝑄𝑛(d𝑠, d𝑘, d𝑒, d𝜃), obtained by thinning of ̄𝑄𝑛. Finally, since the1072

population composition is constant on [𝑇𝑛, 𝑇𝑛+1[, 𝑍𝑡 = 𝑍𝑇𝑛 , the population on [0, 𝑇𝑛+1] is defined by:1073

𝑍𝑡∧𝑇𝑛+1 = 𝑍𝑡∧𝑇𝑛 + 1{𝑡≥𝑇𝑛+1}𝜙
𝐸𝑛+1(𝑇𝑛+1, 𝐼𝑛+1),

= 𝑍𝑡∧𝑇𝑛 + ∫
𝑡∧𝑇𝑛+1

𝑡∧𝑇𝑛
∫
𝒥𝑛×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,𝑍𝑠−)} ̄𝑄𝑛(d𝑠, d𝑘, d𝑒, d𝜃).
(26)

Applying 𝑛 times Equation 26 yields that:1074

𝑍𝑡∧𝑇𝑛+1 = 𝑍0 +
𝑛
∑
𝑙=0

∫
𝑡∧𝑇𝑙+1

𝑡∧𝑇𝑙
∫
𝒥𝑙×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,�̃�𝑠−)}
̄𝑄 𝑙(d𝑠, d𝑘, d𝑒, d𝜃).

Step 3 Finally, let �̃� be the solution of Equation 12, with (̃𝑇𝑛)𝑛≥0 the sequence of its event times.1075

Then, we can write similarly for all 𝑛 ≥ 0:1076

�̃�𝑡∧ ̃𝑇𝑛+1
= 𝑍0 +

𝑛
∑
𝑙=0

∫
𝑡∧ ̃𝑇𝑙+1

𝑡∧ ̃𝑇𝑙
∫
𝒥 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,�̃�𝑠−)}1{𝑘≤�̃�𝑠−}𝑄(d𝑠, d𝑘, d𝑒, d𝜃),

= 𝑍0 +
𝑛
∑
𝑙=0

∫
𝑡∧ ̃𝑇𝑙+1

𝑡∧ ̃𝑇𝑙
∫
𝒥 ×ℝ+

𝜙𝑒(𝑠, 𝐼𝑘)1{𝜃≤𝜆𝑒𝑠(𝐼𝑘,�̃�𝑠−)}1{𝜃≤�̃�𝑒𝑛}1{𝑘≤�̃� ̃𝑇𝑙
}𝑄(d𝑠, d𝑘, d𝑒, d𝜃),

since �̃�𝑠− = �̃�𝑇𝑙 on [̃𝑇𝑙, ̃𝑇𝑙+1], and1077

𝜆𝑒𝑠(𝐼𝑘, �̃�𝑠−) ≤ �̃�𝑒𝑛 ∶= �̄�𝑒1𝑒∈ℰ + �̄� 𝑒�̃� ̃𝑇𝑛
1𝑒∈ℰ𝑊

41

For each 𝑙 ≥ 0, let1078

�̃� 𝑙(d𝑡 , d𝑘, d𝑒, d𝜃) = 1{𝑡> ̃𝑇𝑙}
1{1,…,�̃� ̃𝑇𝑙

}(𝑘)1[0,�̃�𝑒𝑛](𝜃)𝑄(d𝑡 , d𝑘, d𝑒, d𝜃).

By Proposition 8.1, �̃� 𝑙 is, conditionally to ℱ𝑇𝑙 , a Poisson measure of intensity1079

1{𝑡> ̃𝑇𝑙}
d𝑡1{1,…,�̃� ̃𝑇𝑙

}(𝑘)𝛿𝒥(d𝑘, d𝑒)1[0,�̃�𝑒𝑛](𝜃)d𝜃.

It follows easily by induction that �̃� 𝑙 has thus the same distribution than ̄𝑄 𝑙, the Poisson measure with1080

the conditional intensity ̄𝜇𝑙 defined in Equation 25. Thus, 𝑍 is an exact simulation of Equation 12.1081

8.4 Acknowledgements1082

The research of Sarah Kaakai is funded by the European Union (ERC, SINGER, 101054787). Views1083

and opinions expressed are however those of the author(s) only and do not necessarily reflect those1084

of the European Union or the European Research Council. Neither the European Union nor the1085

granting authority can be held responsible for them.1086

References1087

Bansaye, Vincent, and Sylvie Méléard. 2015. Stochastic Models for Structured Populations. Springer1088

International Publishing.1089

Barrieu, Pauline, Harry Bensusan, Nicole El Karoui, Caroline Hillairet, Stéphane Loisel, Claudia1090

Ravanelli, and Yahia Salhi. 2012. “Understanding, Modelling and Managing Longevity Risk: Key1091

Issues and Main Challenges.” Scandinavian Actuarial Journal 2012 (3): 203–31.1092

Bensusan, Harry. 2010. “Interest rate and longevity risk: dynamicmodel and applications to derivative1093

products and life insurance.” Theses, Ecole Polytechnique X.1094

Billiard, Sylvain, Pierre Collet, Régis Ferrière, Sylvie Méléard, and Viet Chi Tran. 2016. “The Effect of1095

Competition and Horizontal Trait Inheritance on Invasion, Fixation, and Polymorphism.” Journal1096

of Theoretical Biology 411: 48–58.1097

Boumezoued, Alexandre. 2016. “Micro-macro analysis of heterogenous age-structured populations1098

dynamics.Application to self-exciting processes and demography.” Theses, Université Pierre et1099

Marie Curie.1100

Brémaud, Pierre. 1981. Point Processes and Queues: Martingale Dynamics. Vol. 66. Springer.1101

Calvez, Vincent, Susely Figueroa Iglesias, Hélène Hivert, Sylvie Méléard, Anna Melnykova, and1102

Samuel Nordmann. 2020. “Horizontal Gene Transfer: Numerical Comparison Between Stochastic1103

and Deterministic Approaches.” ESAIM: Proceedings and Surveys 67: 135–60.1104

Çinlar, Erhan. 2011. Probability and Stochastics. Springer New York.1105

Collet, Pierre, Sylvie Méléard, and Johan AJ Metz. 2013. “A Rigorous Model Study of the Adaptive1106

Dynamics of Mendelian Diploids.” Journal of Mathematical Biology 67: 569–607.1107

Costa, Manon, Céline Hauzy, Nicolas Loeuille, and SylvieMéléard. 2016. “Stochastic Eco-Evolutionary1108

Model of a Prey-Predator Community.” Journal of Mathematical Biology 72: 573–622.1109

Devroye, Luc. 1986. Nonuniform Random Variate Generation. Springer-Verlag, New York.1110

Eddelbuettel, Dirk, and Romain Francois. 2011. “Rcpp: Seamless r and c++ Integration.” Journal of1111

Statistical Software 40 (8): 1–18. https://doi.org/10.18637/jss.v040.i08.1112

El Karoui, Nicole, Kaouther Hadji, and Sarah Kaakai. 2021. “Simulating Long-Term Impacts of1113

Mortality Shocks: Learning from the Cholera Pandemic.” arXiv Preprint arXiv:2111.08338.1114

Ferrière, Régis, and Viet Chi Tran. 2009. “Stochastic and Deterministic Models for Age-Structured1115

Populations with Genetically Variable Traits.” In, 27:289–310. ESAIM Proc. EDP Sci., Les Ulis.1116

Fournier, Nicolas, and Sylvie Méléard. 2004. “A Microscopic Probabilistic Description of a Locally1117

Regulated Population and Macroscopic Approximations.” Ann. Appl. Probab. 14 (4): 1880–1919.1118

42

https://doi.org/10.18637/jss.v040.i08

Hyndman, Rob, Heather Booth Booth, Leonie Tickle Tickle, John Maindonald, Simon Wood Wood,1119

and R Core Team. 2023. demography: Forecasting Mortality, Fertility, Migration and Population1120

Data. https://cran.r-project.org/package=demography.1121

Kaakai, Sarah, and Nicole El Karoui. 2023. “Birth Death Swap Population in Random Environment1122

and Aggregation with Two Timescales.” Stochastic Processes and Their Applications 162: 218–48.1123

https://doi.org/https://doi.org/10.1016/j.spa.2023.04.017.1124

Kaakaï, Sarah, Héloïse Labit Hardy, Séverine Arnold, and Nicole El Karoui. 2019. “How Can a1125

Cause-of-Death Reduction Be Compensated for by the Population Heterogeneity? A Dynamic1126

Approach.” Insurance: Mathematics and Economics 89: 16–37. https://doi.org/https://doi.org/10.11127

016/j.insmatheco.2019.07.005.1128

Kallenberg, Olav. 2017. Random Measures, Theory and Applications. Vol. 77. Probability Theory and1129

Stochastic Modelling. Springer, Cham.1130

Lavallée, François, Charline Smadi, Isabelle Alvarez, Björn Reineking, François-Marie Martin, Fanny1131

Dommanget, and Sophie Martin. 2019. “A Stochastic Individual-Based Model for the Growth1132

of a Stand of Japanese Knotweed Including Mowing as a Management Technique.” Ecological1133

Modelling 413: 108828.1134

Lewis, Peter, and Gerald Shedler. 1979. “Simulation of Nonhomogeneous Poisson Processes by1135

Thinning.” Naval Research Logistics Quarterly 26 (3): 403–13.1136

Méléard, Sylvie, Michael Rera, and Tristan Roget. 2019. “A Birth–Death Model of Ageing: From1137

Individual-Based Dynamics to Evolutive Differential Inclusions.” Journal of Mathematical Biology1138

79: 901–39.1139

Méléard, Sylvie, and Viet Chi Tran. 2009. “Trait Substitution Sequence Process and Canonical1140

Equation for Age-Structured Populations.” Journal of Mathematical Biology 58: 881–921.1141

Roget, T, Claire Macmurray, P Jolivet, S Méléard, and Michael Rera. 2024. “A Scenario for an1142

Evolutionary Selection of Ageing.” eLife 13.1143

Tran, Viet Chi. 2008. “Large Population Limit and Time Behaviour of a Stochastic Particle Model1144

Describing an Age-Structured Population.” ESAIM: Probability and Statistics 12: 345–86. https:1145

//doi.org/10.1051/ps:2007052.1146

Villegas, Andrés M., Vladimir K. Kaishev, and Pietro Millossovich. 2018. “StMoMo: An R Package for1147

Stochastic Mortality Modelling.” Journal of Statistical Software 84: 1–38.1148

Villegas, Andres, Pietro Millossovich, and Vladimir Kaishev Hyndman. 2018. StMoMo: Stochastic1149

Mortality Modelling. https://cran.r-project.org/package=StMoMo.1150

Zinn, Sabine. 2014. “The MicSim package of R: an entry-level toolkit for continuous-time microsimu-1151

lation.” International Journal of Microsimulation 7 (3): 3–32.1152

Zinn, Sabine, Jutta Gampe, Jan Himmelspach, and Adelinde M Uhrmacher. 2009. “MIC-CORE: A Tool1153

for Microsimulation.” In Proceedings of the 2009 Winter Simulation Conference (WSC), 992–1002.1154

IEEE.1155

Session information1156

sessionInfo()

R version 4.4.1 (2024-06-14)1157

Platform: aarch64-apple-darwin201158

Running under: macOS Sonoma 14.6.11159

1160

Matrix products: default1161

BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib1162

LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.01163

1164

43

https://cran.r-project.org/package=demography
https://doi.org/10.1016/j.spa.2023.04.017
https://doi.org/10.1016/j.insmatheco.2019.07.005
https://doi.org/10.1016/j.insmatheco.2019.07.005
https://doi.org/10.1016/j.insmatheco.2019.07.005
https://doi.org/10.1051/ps:2007052
https://doi.org/10.1051/ps:2007052
https://doi.org/10.1051/ps:2007052
https://cran.r-project.org/package=StMoMo

locale:1165

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-81166

1167

time zone: Europe/Paris1168

tzcode source: internal1169

1170

attached base packages:1171

[1] stats graphics grDevices utils datasets methods base1172

1173

other attached packages:1174

[1] reshape2_1.4.4 StMoMo_0.4.1 forecast_8.23.0 gnm_1.1-51175

[5] IBMPopSim_1.0.0 ggplot2_3.5.11176

1177

loaded via a namespace (and not attached):1178

[1] dotCall64_1.1-1 gtable_0.3.5 spam_2.10-01179

[4] xfun_0.47 lattice_0.22-6 tzdb_0.4.01180

[7] quadprog_1.5-8 vctrs_0.6.5 tools_4.4.11181

[10] generics_0.1.3 curl_5.2.3 parallel_4.4.11182

[13] tibble_3.2.1 fansi_1.0.6 xts_0.14.01183

[16] pkgconfig_2.0.3 Matrix_1.7-0 checkmate_2.3.21184

[19] RColorBrewer_1.1-3 lifecycle_1.0.4 rootSolve_1.8.2.41185

[22] farver_2.1.2 stringr_1.5.1 compiler_4.4.11186

[25] fields_16.2 tinytex_0.53 munsell_0.5.11187

[28] htmltools_0.5.8.1 maps_3.4.2 yaml_2.3.101188

[31] pillar_1.9.0 MASS_7.3-61 nlme_3.1-1661189

[34] fracdiff_1.5-3 tidyselect_1.2.1 fanplot_4.0.01190

[37] digest_0.6.37 stringi_1.8.4 dplyr_1.1.41191

[40] labeling_0.4.3 qvcalc_1.0.3 tseries_0.10-581192

[43] RcppArmadillo_14.0.2-1 fastmap_1.2.0 grid_4.4.11193

[46] colorspace_2.1-1 cli_3.6.3 magrittr_2.0.31194

[49] relimp_1.0-5 utf8_1.2.4 readr_2.1.51195

[52] withr_3.0.1 scales_1.3.0 backports_1.5.01196

[55] TTR_0.24.4 rmarkdown_2.28 quantmod_0.4.261197

[58] nnet_7.3-19 timeDate_4041.110 zoo_1.8-121198

[61] hms_1.1.3 urca_1.3-4 evaluate_1.0.01199

[64] knitr_1.48 lmtest_0.9-40 viridisLite_0.4.21200

[67] rlang_1.1.4 Rcpp_1.0.13 glue_1.7.01201

[70] jsonlite_1.8.9 plyr_1.8.9 R6_2.5.11202

44

	Introduction
	Brief overview of IBMPopSim
	Model creation
	Simulation

	Mathematical framework
	Population
	Individuals
	Population process

	Events
	Events intensity
	Events intensity bounds

	Pathwise representation of stochastic IBM
	Non-explosion criterion

	Population simulation
	Thinning of Poisson measure
	Multivariate Poisson process

	Simulation algorithm
	First event simulation

	Simulation algorithm with randomization

	Model creation and simulation with IBMPopSim
	Population
	Events
	Intensities
	Event kernel code

	Model creation
	Simulation

	Insurance portfolio
	Population
	Events
	Model creation and simulation
	Outputs

	Population with genetically variable traits
	Population
	Events
	Birth events
	Death events

	Model creation and simulation

	Appendix
	Recall on Poisson random measures
	Link with Poisson processes
	Marked Poisson measures on E = {\mathbb{R}}^+ \times F

	Pathwise representation of IBMs
	Proof of Theorem
	Proof of Lemma
	Alternative pathwise representation

	Proof of Theorem
	Acknowledgements

	References
	Session information

