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Abstract

Document-level relation extraction (DocRE)001
aims to extract relations between entities from002
unstructured document text. Compared to003
sentence-level relation extraction, it requires004
more complex semantic understanding from a005
broader text context. Currently, some studies006
are utilizing logical rules within evidence sen-007
tences to enhance the performance of DocRE.008
However, in the data without provided evidence009
sentences, researchers often obtain a list of010
evidence sentences for the entire document011
through evidence retrieval (ER). Therefore,012
DocRE suffers from two challenges: firstly, the013
relevance between evidence and entity pairs014
is weak; secondly, there is insufficient extrac-015
tion of complex cross-relations between long-016
distance multi-entities. To overcome these chal-017
lenges, we propose GEGA, a novel model for018
DocRE. The model leverages graph neural net-019
works to construct multiple weight matrices,020
guiding attention allocation to evidence sen-021
tences. It also employs multi-scale representa-022
tion aggregation to enhance ER. Subsequently,023
we integrate the most efficient evidence infor-024
mation to implement both fully supervised and025
weakly supervised training processes for the026
model. We evaluate the GEGA model on three027
widely used benchmark datasets: DocRED,028
Re-DocRED, and Revisit-DocRED. The ex-029
perimental results indicate that our model has030
achieved comprehensive improvements com-031
pared to the existing SOTA model.032

1 Introduction033

Relation extraction (RE) is a crucial technology034

used to automatically identify and classify semantic035

relations between entities in natural language texts.036

Existing relation extraction tasks can be divided037

into two types: sentence-level relation extraction038

and document-level relation extraction (DocRE)039

(Peng et al., 2017; Verga et al., 2018). In sentence-040

level relation extraction datasets, each data entry041

contains only one sentence, and there is a single042

Kim Gi-Dong (born 12 January 1972 in Dangjin)  is a former 
South Korean footballer.

In 1991, Kim debuted as a professional player with

Pohang Steelers (then POSCO Atoms)  right after his graduation 
from high school, which was quite unusual then.

... 
He started to appear in the top team matches after joining

Yukong Elephants (Bucheon SK after 1996).

...

Kim returned to Pohang in 2003 and led the Steelers to the 
championship in 2007.

...

    : eneities : relation

Relation I: member of sports team

head eneity: Kim Gi-Dong           tail eneity: Pohang (POSCO), 

Yukong (Bucheon)

Relation II: country

head eneity: South Korean           tail eneity: Yukong (Bucheon)

 I I I

 I I

II

,    ,    ,    , ,    ,    ,    ,  I, II

Figure 1: Examples of relations from DocRED, with
entities marked in different colors, and curves indicating
various relations between the entities.

entity pair within the sentence for which the re- 043

lation needs to be predicted. In contrast, DocRE 044

datasets contain multiple sentences per data entry, 045

corresponding to multiple entity pairs whose rela- 046

tions need to be predicted. As depicted in Figure 1, 047

each entity pair may appear multiple times within 048

the document and may have different relation types 049

(Yao et al., 2019), necessitating the analysis of a 050

larger contextual scope to determine the relation 051

for each entity pair. 052

Furthermore, assuming there are n entities in a 053

data entry, predicting the relation for an entity pair 054

involves pairing the anchor entity with the remain- 055

ing n-1 entities one by one. This approach results 056

in significant unnecessary memory overhead, as 057

most pairs of entities do not have any relation be- 058

tween them. 059

Existing methods can be mainly divided 060

into three categories (Zhou et al., 2021) : 061

sequence-based, graph-based, and transformer- 062

based. Sequence-based models commonly employ 063

pre-trained language models to produce word em- 064

beddings and character embeddings, transforming 065

sequences of words or characters within texts into 066

vector representations for processing (Ye et al., 067

1



2020; Tang et al., 2020). Models based on de-068

pendency graphs utilize dependency information to069

construct document-level graph (Zeng et al., 2021;070

Li et al., 2021; Zhang et al., 2023b,a), which are071

then processed through graph neural networks for072

inference. Transformer-based models utilize the073

self-attention mechanism to refine the representa-074

tion of each word by assessing its contextual rela-075

tions with all other words in the text (Xiao et al.,076

2022; Ma et al., 2023).077

The aforementioned three types of relation ex-078

traction methods suffer from two limitations. First,079

relation extraction between entity pairs generally080

requires only a set of sentences as supporting evi-081

dence, without the need to focus on redundant irrel-082

evant information. However, these methods utilize083

all the information in the long text for relation ex-084

traction. Therefore, Ma et al. (2023) proposed an085

evidence retrieval-based relation extraction method.086

However, this method retrieves a list of evidence087

information for the entire document, resulting in088

poor relevance between this information and the089

relational entity pairs. Second, in DocRE, multiple090

entities are discretely distributed across different091

sentences or even paragraphs. Extracting their re-092

lations requires fully learning and understanding093

the semantics of the long text at the document-094

level. Existing methods rely on dependency pars-095

ing to construct multidimensional graph structures096

for semantic understanding and relation reason-097

ing.However, they perform poorly when faced with098

complex intersecting relations due to the large num-099

ber of entity pairs involved.100

To address the aforementioned two issues and101

the insufficient annotation of evidence sentences102

in the dataset (Yao et al., 2019), we propose a103

novel model for DocRE: GEGA. This model is104

trained under both fully supervised and weakly su-105

pervised settings. First, we utilize a complex model106

(Teacher) trained with full supervision to infer over107

distant supervision data, extracting evidence sen-108

tences and assigning token weights. Then, we use109

this weight information as supervisory signals to110

guide the training of a simplified model (Student).111

Finally, we fine-tune the student model to adapt it112

to specific tasks and datasets, thereby improving113

performance. In summary, this article has two con-114

tributions:115

(1) We propose a novel DocRE model, GEGA1116

1The implementation code for GEGA can be obtained from
the GitHub link: [Links covered up in blind reviewing]

(Graph Convolutional Networks and Evidence Re- 117

trieval Guided Attention). This model combines 118

graph structures and Transformers to retrieve ev- 119

idence sentences highly relevant to the relational 120

entity pairs from the document, guiding the atten- 121

tion to assign higher weights to this evidence in- 122

formation, thereby enhancing the performance of 123

relation extraction. 124

(2) Experiments conducted on the three pub- 125

lic datasets DocRED, Re-DocRED and Revisit- 126

DocRED show that GEGA can achieve the new 127

SOTA2 results on document-level relation extrac- 128

tion compared to existing methods under the same 129

experimental settings. 130

2 Preliminary 131

2.1 Task formulation for DocRE and DocER 132

Let’s assume we have a document D contain- 133

ing n entities e = {e1, e2, . . . , en}. Each en- 134

tity ei in the document has a corresponding po- 135

sition pi, and there may exist relations between 136

entities. Our objective is to extract a set of re- 137

lations R = {r1, r2, . . . , rm} from document D, 138

where each relation ri can be represented by a 139

triple (ei, ej , rij), with rij being the relation la- 140

bel between entities ei and ej . Therefore, the task 141

of DocRE can be formulated as follows: R = 142

{(ei, ej , rij) | ei, ej ∈ E, i ̸= j}, rij is the relation 143

label predicted by the relation classifier based on 144

the contextual information of entity pairs (ei, ej). 145

In addition, Document-level Evidence Retrieval 146

(DocER) aims to retrieve a list of evidence sen- 147

tences evi[0,1,...,n] from document D to enhance 148

relation extraction. Nowadays, researchers have 149

extended relation triples (ei, ej , rij) by adding ev- 150

idence sentence lists, resulting in relation quadru- 151

plets
(
ei, ej , rij , evi[0,1,...,n]

)
. Relations between 152

entity pairs can be predicted solely using the sen- 153

tences from the evidence lists, without relying on 154

the entire document. 155

3 Related Work 156

Our work is built upon a substantial body of recent 157

work on document-level RE and ER. 158

DOC-Relation Extraction (RE). Previous studies 159

can be divided into three major categories (Zhou 160

et al., 2021): 161

2We outperform all other methods using BERT as the
pretraining language model on the DocRED leaderboard.
Please refer to GEGA’s submission: https://codalab.lisn.
upsaclay.fr/competitions/365#results
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Sequence-based methods. Zeng et al. (2014);162

Cai et al. (2016); Tang et al. (2020); Yao et al.163

(2019), and Sorokin and Gurevych (2017) use meth-164

ods such as Conditional Random Fields (CRF)165

or Recurrent Neural Networks (RNN, (Cho et al.,166

2014)) to accurately identify and label entities in167

text and predict the relations between these entities168

by learning the contextual sequential semantic in-169

formation of each word. For example, Tang et al.170

(2020) use different neural network architectures171

to perform sequence encoding of the entire docu-172

ment to learn the semantic representation of entity173

pairs and extract the relations between them. Yao174

et al. (2019) employ BiLSTM to simultaneously175

consider the forward and backward information in176

the text sequence, learning and understanding the177

different semantic paths from one entity to another,178

thus inferring the relations between entity pairs.179

Graph-based methods. Veličković et al. (2018);180

Christopoulou et al. (2019); Sahu et al. (2019)181

model entities and relations in documents as182

graph structures, then use Graph Neural Networks183

(GNNs) to learn the relations between entities. This184

approach effectively leverages structural informa-185

tion and global context among entities. Addition-186

ally, researchers have proposed hard pruning and187

soft pruning strategies for dependency tree struc-188

tures to optimize the model’s speed and storage189

efficiency. Zhang et al. (2018) and Mandya et al.190

(2020) use hard pruning strategies to retain words191

near the shortest path between two entities, max-192

imizing the removal of irrelevant content while193

integrating relevant information. Guo et al. (2019)194

proposed a soft pruning method that directly takes195

the full dependency tree as input and automatically196

learns how to selectively focus on relevant substruc-197

tures that are useful for the relation extraction task.198

Subsequently, Li et al. (2021); Nan et al. (2020) pro-199

posed refined strategies to enhance cross-sentence200

relation reasoning by automatically inducing latent201

document-level graphs. This strategy allowing the202

model to incrementally aggregate relevant informa-203

tion for both local and global reasoning.204

Transformer-based methods. This approach does205

not use any graph structures but instead adapts to206

the document-level relation extraction task by fine-207

tuning pre-trained models (Wang et al., 2019). Ye208

et al. (2020) introduced a copy-based training ob-209

jective into the basic pre-trained language model,210

enabling the model to better capture coreference211

information. Tang et al. (2020) employed a hi-212

erarchical aggregation method to obtain reason-213

ing information at different granularities at the 214

document-level. Zhou et al. (2021) addressed the 215

multi-label and multi-entity issues in relation ex- 216

traction datasets through adaptive thresholds and 217

local context pooling. 218

DOC-Evidence Retrieval (ER). Currently, a few 219

studies have investigated the importance of evi- 220

dence information in document-level relation ex- 221

traction tasks. Yao et al. (2019) directly incor- 222

porated evidence sentence instances supporting 223

entity relations into a new dataset. However, in 224

the absence of evidence sentences, evidence in- 225

formation needs to be generated through an Ev- 226

idence Retrieval (ER) task. Huang et al. (2021) 227

employed heuristic rules to select informative sets 228

of paths from the entire document to discover ev- 229

idence sentences and further optimized relation 230

extraction by combining BiLSTM. Ma et al. (2023) 231

integrated evidence information into a Transformer- 232

based DocRE system by directly guiding attention, 233

without introducing any additional trainable param- 234

eters for the ER task. Compared to our work, they 235

did not incorporate graph neural networks for end- 236

to-end learning to derive the advantages of atten- 237

tion weights. In contrast, GEGA provides a more 238

reliable allocation of weights for evidence informa- 239

tion by constructing a fully connected graph and 240

its corresponding fully connected matrix to learn 241

structured information. 242

4 Methodology 243

This section elucidates the main framework of the 244

proposed method, illustrated in Figure 2, the model 245

can be segmented into tripartite: Input Encoder 246

Layer, GEGA Module and Classification Layer. 247

4.1 Input Encoder Layer 248

This work adheres to the methodology employed 249

in prior research to incorporate specialized mark- 250

ers [CLS] and [SEP ] at the begin and end of a 251

designated document doc=[sentN ]LN=1 for the pur- 252

pose of outlining the document’s boundaries, where 253

sent=[tn]
l
n=1. Subsequently, input the document 254

into the pre-trained BERT model. When the input 255

length exceeds 512, the document is divided into 256

two overlapping segments3. The first segment has 257

a length of 512 and the second segment comprises 258

the difference between the total input length and 259

512. Ultimately, the contextual embedding repre- 260

3The length of each data in the publicly available datasets
is less than 1024.
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Figure 2: The overall architecture of our method. The gray circles with different depths belong to different sentences,
and the color depth of the square is the basis to distinguish the attention weight score.

sentation H and attention matrix A of the token are261

derived:262

(H,A) = [(h1, a1), (h2, a2), . . . , (hl×L, al×L)]

= BERT([doc])
(1)263

where l is the length of the sentence (i.e., the num-264

ber of tokens), and L is the length of the input265

document (i.e., the number of sentences).266

For each entity, the efficacy of the max pooling267

function is pronounced when the inter-entity rela-268

tions are explicitly articulated. Nevertheless, in the269

context of this study, the relations among entities270

remain ambiguous. It is understood that an entity271

may be referenced by one or several mentions, and272

a mention might uniquely identify an entity or fail273

to ascertain a definite corresponding entity. This ne-274

cessitates the calculation of an entity’s embedding275

based on the embeddings of each associated men-276

tion. Following methodology of Jia et al. (2019),277

a soft version of the max function LogSumExp278

(LSE), is utilized to compute the embeddings of279

entities while concurrently capturing the attention280

distribution:281

eemb = LSE (x1, . . . , xn) = log
∑|Me|

i=1 exp (hi∈e) (2)282

283 eatt =
1

|Me|
∑

i∈e ai (3)284

where e is an entity comprising multiple mentions,285

while a is the distribution of attention for mention286

i within entity e. |Me| is the number of mentions287

for entity e.288

4.2 GEGA Module289

The GEGA module comprehends four parts: the At-290

tention Concentration Layer, the Multi-GraphConv291

Layer, the Transformer-enc Layer, and the Collab-292

orative Prediction Layer.293

4.2.1 Attention Concentration Layer 294

We employ Attention Concentration Layer to trans- 295

form the initial dependency tree into a fully con- 296

nected weighted graph based on the dependency 297

relations within the sentence. This approach can 298

be construed as a soft pruning strategy (Xu et al., 299

2015) juxtaposed with the conventional hard prun- 300

ing strategy (Guo et al., 2019). By assigning 301

weights to the sequence data, as opposed to outright 302

deletion, a greater amount of contextual informa- 303

tion can be preserved, thereby fostering enhance- 304

ments in module efficacy. Subsequently, we utilize 305

the multi-head attention mechanism, wherein the 306

input vector is mapped to several heads using a 307

linear transformation layer to produce an adjacency 308

matrix with varied weight distributions, denoted 309

as Ã
(headi)=Attention

(
QWQ

i ,KWK
i

)
. We em- 310

ploy parallel computing to expedite the computa- 311

tional process. 312

Ã
(headi)

= softmax

(
QWQ

i ×(KWK
i )

T

√
d

)
(4) 313

where Q,K ∈ RN×dmodel , N is the length of the 314

sequence, dmodel is the dimensionality of the input 315

feature, and WQ
i ,WK

i ∈ Rdmodel×dk is the weight 316

parameter associated with the linear transforma- 317

tion. 318

4.2.2 Multi-GraphConv Layer 319

The Graph Convolutional Networks (GCNs (Kipf 320

and Welling, 2016)) is a deep learning framework 321

tailored for the processing of graph-structured data. 322

It is a semi-supervised learning method based on 323

graph structure that aggregates and propagates 324
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Figure 3: The overall architecture diagram of Multi-
GraphConv (M-G) Layer includes three sub layers, each
containing n heads.

node features in the graph structure, thus deriv-325

ing node representations. The Multi-GraphConv326

(M-G) Layer is a densely connected graph structure327

data processing module that is constructed based on328

GCNs. Illustrated in Figure 3, the n-th sublayer’s329

output within the Multi-GraphConv (M-G) Layer330

serves as the subsequent l − n sublayers’ input,331

with the N -th layer receiving an aggregation of all332

output features from the initial n− 1 layers.333

Initially, the linear transformation of the adja-334

cency matrix Ã
(head i) on the input features is com-335

puted for each head i. Subsequently, the impact of336

neighboring nodes’ features on the present node is337

determined for each layer l, and the current node’s338

features are consolidated with the previous layer’s339

output:340

H̃(i,l) = ReLU
(
(Ã

(head i)
x)(i)W (i,l)

)
+ H̃(i,l−1) (5)341

where, L is the quantity of layers in the graph con-342

volution layer, W (i,l) is the weight parameter of343

the i-th head in the l-th layer.344

The feature representation resulting from the out-345

put of each head is combined to form the final out-346

put of this layer:347

H̃(MultiHead) = Concat
(
H̃(1,l), . . . , H̃(i,l)

)
WO (6)348

where WO ∈ Rhd×dmodel is the weight parameter349

of the linear transformation applied to the ultimate350

output.351

4.2.3 Transformer-enc Layer352

The Transformer-enc layer is composed of multi-353

ple encoder layers stacked together. These encoder354

layers bear resemblance to the encoder layers de- 355

lineated in the transformer model introduced by 356

Vaswani et al. (2017). However, distinctively, our 357

approach involves solely utilizing the output gen- 358

erated by the final three layers of the Encoder for 359

the purpose of averaging. Each encoder layer incor- 360

porates self-attention mechanism and Feedforward 361

Neural Network (FFN). This module facilitates the 362

derivation of hidden representations of entities and 363

an attention distribution matrix that are used as in- 364

put for subsequent layers. The calculations can be 365

outlined as follows: 366

self-Att(H̃Q, H̃K , H̃V ) = softmax
(
H̃QH̃T

K√
dk

)
H̃V (7) 367

368La = LayerNorm(H̃ + self-Att(H̃)) (8) 369

370(H̃, Ã) = La+ FFN(La) (9) 371

Where H̃Q, H̃K , H̃V is the query, key, and value 372

representations obtained from the linear transfor- 373

mation of H̃ , dk is the dimension of the attention 374

head. LayerNorm is the layer normalization opera- 375

tion. 376

4.2.4 Collaborative Prediction Layer 377

The local context extraction methodology, as de- 378

scribed by Zhou et al. (2021), is employed to ascer- 379

tain the importance of individual tokens in relation 380

to the entity pair (Es,Eo), which is interpreted 381

as the sentence-level importance. Erecting on this 382

base, document-level importance was deduced by 383

apportioning diverse attention weights in accor- 384

dance to the contribution of each sentence within 385

the document to the prediction of entity relations, 386

and by establishing a fixed threshold. Sentences 387

that exceed this threshold are selected as evidence 388

sentences. The sentence-level importance qi(Es,Eo) 389

and document-level importance pj
(Es,Eo) can be 390

computed as follows: 391

qi
(Es,Eo) =

∑H̃
i=1 ÃEs · ÃEo (10) 392

393pj
(Es,Eo) =

∑l
j=1 qi

(Es,Eo) (11) 394

We apportion more attention to evidence sen- 395

tences and less to non-evidence sentences through 396

evidence supervision to further coordinate the pre- 397

diction results of document-level relation extrac- 398

tion. As depicted in Figure 4, we train a teacher 399

model on the Human-Annotated Data (which en- 400

compasses relation labels and evidence sentences) 401

of DocRED (Step 1). We utilize the trained teacher 402

model to predict the entity relations and evidence 403
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Manually marked From the model prediction

Figure 4: Step diagram of Co-prediction for RE and ER.

sentence distribution in Distantly-Supervised Data404

(which encompasses relation labels but lacks evi-405

dence sentences) (Step 2). Subsequently, we train406

a student model on the Distantly-Supervised Data407

that incorporates evidence sentences (Step 3), and408

retrain the student model using Human-Annotated409

Data (Step 4). Additionally, we define a row vector410

z(Es,Eo) consisting only of 0s and 1s, generated411

based on Human-Annotated Data. This vector in-412

dicates whether each sentence is an evidence sen-413

tence for the relation triples: 1 if it is, and 0 if it is414

not.415

z(Es,Eo) =
∑L

sent=1 z
(Es,Eo)/1⊤

∑L
sent=1 z

(Es,Eo)

(12)
416

where 1 is the row vector composed of all 1, L is417

the total count of sentences contained within the418

document.419

4.3 Classification Layer420

We begins with the computation of a weighted av-421

erage of entity importance at the sentence-level422

qi
(Es,Eo), and subsequently cascading it with the423

previous entity representation. Following this, we424

apply the tanh activation function to normalize425

the input to range between (−1,+1), resulting in426

the contextual representation of the two associated427

entities. The computation is elaborated as:428

cEs = tanh
(
WEs

[
hEs; H̃

⊤qi
(Es,Eo)

]
+ bEs

)
cEo = tanh

(
WEo

[
hEo; H̃

⊤qi
(Es,Eo)

]
+ bEo

)
,

(13)429

where WEs,WEo ∈ Rd×2d, bEs, bEo ∈ Rd.430

Finally, apply the grouped bilinear classifier431

proposed by Zheng et al. (2019) to calculate432

the relation category scores. Score(Es,Eo) =433

c⊤EsWRncEo + bRn, The possibility of the entity434

pair (Es,Eo) possessing a relation Rn is computed435

thusly: P (Rn | Es,Eo) = Sigmoid
(
Score(Es,Eo)

)
.436

5 Experiments 437

5.1 Dataset and Evaluation 438

DocRED4 (Yao et al., 2019) is a benchmark dataset 439

for document-level relation extraction tasks, re- 440

leased by Tsinghua University. DocRED com- 441

prises numerous documents from Wikipedia and 442

Wikidata, each annotated with entities, relations be- 443

tween entities, and evidence sentences that support 444

relation triples. It serves as the predominant bench- 445

mark for DocRE model training and evaluation. 446

Re-DocRED5 (Tan et al., 2022b) and Revisit- 447

DocRED6 (Huang et al., 2022) are modified 448

datasets of DocRED. They supplement a large num- 449

ber of relation triples to solve the problems of in- 450

complete annotations, coreferential errors, and in- 451

consistent logic in docred. Annotation quality has 452

high accuracy and consistency, which provides a 453

more reliable benchmark for DocRE-model train- 454

ing and evaluation. 455

We assess GEGA using an Nvidia Tesla V100 456

16GB GPU and evaluate it with F1, Ign-F1, and 457

Evi-F1 metrics. Ign-F1 represents the calcu- 458

lated F1 score attained by excluding relational 459

facts present in both the training and develop- 460

ment/testing datasets. Evi-F1 serves as a signif- 461

icant measure for assessing the performance of ER 462

and constitutes a new benchmark for assessing the 463

quality of relation extraction models. 464

5.2 Single and Fusion 465

In the task of RE, the most ideal scenario is that 466

the evidence sentence set of the dataset already 467

contains all contextual information necessary to 468

predict entity relations, thereby enabling accurate 469

relation prediction results based solely on the ev- 470

idence sentence set. However, manually labeled 471

data and distant supervision data often fall short 472

in this regard. Therefore, it is necessary to extract 473

contextual information from the entire document to 474

predict entity relations. We divide the above prob- 475

lem into two evaluation methods: (1) Single: ex- 476

tract entity relations from the entire document and 477

obtain the corresponding prediction scores; (2) Fu- 478

sion: predict entity relations based on a collection 479

of evidence sentences and combine the prediction 480

results with those from the Single method. This is 481

similar to the Fusion of Evidence approach in Xie 482

et al. (2022). 483

4https://github.com/thunlp/DocRED
5https://github.com/tonytan48/Re-DocRED
6https://github.com/AndrewZhe/Revisit-DocRED

6

https://github.com/thunlp/DocRED
https://github.com/tonytan48/Re-DocRED
https://github.com/AndrewZhe/Revisit-DocRED


Dev Test
Category Model (With BERTbase) Ign-F1 F1 Evi-F1 Ign-F1 F1 Evi-F1

• without Distant Supervision

Sequence
CNN (Yao et al., 2019) 41.58 43.45 - 40.33 42.26 -
BiLSTM (Yao et al., 2019) 48.87 50.94 - 48.78 51.06 -

Graph

GAIN (Zeng et al., 2020) 59.14 61.22 - 59.00 61.24 -
MRN (Li et al., 2021) 59.74 61.61 - 59.52 61.74 -
DocuNet (Zhang et al., 2021) 59.86 61.83 - 59.93 61.86 -
GTN (Zhang et al., 2023a) 60.86 62.73 - 60.77 62.75 -
SD-DocRE (Zhang et al., 2023b) 60.85 62.81 - 60.91 62.85 -

Tranformer

ATLOP (Zhou et al., 2021) 59.22 61.09 - 59.31 61.30 -
EIDER (Xie et al., 2022) 60.51 62.48 50.71 60.42 62.47 51.27
SAIS (Xiao et al., 2022) 59.98 62.96 53.70 60.96 62.77 52.88
DREEAM (Ma et al., 2023) 60.51 62.55 52.08 60.03 62.49 51.71

Teacher
GEGA-single (Ours) 59.98±0.12 61.95±0.12 52.19±0.15 59.31 61.52 51.90
GEGA-fusion (Ours) 60.55±0.08 62.65±0.08 - 60.11 62.53 -
• with Distant Supervision

Graph AA (Lu et al., 2023) 61.31 63.38 - 60.84 63.10 -

Tranformer
KD-DocRE (Tan et al., 2022a) 62.62 64.81 - 62.56 64.76 -
DREEAM (Ma et al., 2023) 63.92 65.83 55.68 63.73 65.87 55.43

Student
GEGA-single (Ours) 64.02±0.15 65.83±0.15 56.09±0.18 63.82 65.85 55.89
GEGA-fusion (Ours) 64.26±0.13 66.38±0.13 - 63.90 66.31 -

Table 1: Experimental results (%) for the dev and test set of DocRED. Using BERT-base as a pre-trained language
model. The best score has been displayed in bold. The scores of other models refer to their respective papers.

5.3 Compared Methods484

To ensure a fair comparison of the performance485

of DocRE baselines, we compare our model with486

three state-of-the-art methods, all using BERT-base487

as the pre-trained language model (PLM), which488

are: (1) Sequence-based methods: CNN (Yao et al.,489

2019), LSTM (Yao et al., 2019) , BiLSTM (Yao490

et al., 2019). (2) Graph-based methods: GAIN491

(Zeng et al., 2020), MRN (Li et al., 2021), Do-492

cuNet (Zhang et al., 2021), GTN (Zhang et al.,493

2023a), SD-DocRE (Zhang et al., 2023b), AA (Lu494

et al., 2023). (3) Transformer-based methods: AT-495

LOP (Zhou et al., 2021), EIDER (Xie et al., 2022),496

SAIS (Xiao et al., 2022), PRiSM (Choi et al., 2023),497

DREEAM (Ma et al., 2023). On this foundation,498

we categorize the above methods into two major499

classes: without Distant Supervision and with Dis-500

tant Supervision.501

6 Results and Analyses502

We test the trained student and teacher models503

in both the Single and Fusion stages, and report504

the results on DocRED, Re-DocRED and Revisit-505

DocRED, where the results on Revisit-DocRED506

are moved to appendix.507

6.1 Results on DocRED508

Table 1 indicates that GEGA achieves superior Ign-509

F1 and F1 metrics compared to the established510

DocRE Baselines on both the development set and511

the test set. The single stage of the student model512

has achieved performance levels comparable to 513

the leading DREEAM (Ma et al., 2023). Notably, 514

the fusion stage of the student model achieved the 515

highest recorded scores, surpassing DREEAM by 516

0.34% (Ign F1) and 0.55% (F1) on the development 517

set, as well as by 0.17% (Ign F1) and 0.44% (F1) 518

on the test set. 519

GEGA also performs well in the test of the 520

new benchmark Evi-F1, surpassing the previous 521

most advanced DREEAM by 0.41% (Evi-F1) and 522

0.46% (Evi-F1) on the development set and test 523

set respectively. In the table, it is evident that the 524

Transformer-based and Graph-based models out- 525

perform the Sequence-based ones, validating the 526

rationality behind integrating infographics with the 527

Transformer. 528

6.2 Results on Re-DocRED 529

Table 2 presents the feedback outcomes of GEGA 530

on the development and test sets of RE-DocRED, 531

demonstrating that our GEGA achieves state-of- 532

the-art results compared to other methods utilizing 533

BERT-base as a pre-trained language model. No- 534

tably, GEGA has outperformed all other methods 535

in the table during the fusion stage without Distant 536

Supervision (Teacher). GEGA secured the highest 537

Ign F1 and F1 scores in the fusion stage with Dis- 538

tant Supervision (Student), with improvements of 539

2.08% (Ign F1) and 2.52% (F1) respectively on the 540

development set over the second-place GTN-BERT 541

(Zhang et al., 2023a), and by 1.58% (Ign F1) and 542

1.97% (F1) respectively on the test set. 543
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Dev Test
Category Model (With BERTbase) Ign-F1 F1 Ign-F1 F1

Graph
GAIN-BERT (Zeng et al., 2020) 71.99 73.49 71.88 73.44
DocuNet-BERT (Zhang et al., 2021) 73.68 74.65 73.60 74.49
GTN-BERT (Zhang et al., 2023a) 75.03 75.85 74.85 75.77

Tranformer

ATLOP-BERT (Zhou et al., 2021) 73.35 74.22 73.22 74.02
KMGRE-BERT (Jiang et al., 2022) 73.33 74.44 73.39 74.46
KD-DocRE-BERT (Tan et al., 2022a) 73.76 74.69 73.67 74.55
PRiSM-BERT (Choi et al., 2023) 72.92 74.25 72.35 73.69

Teacher
GEGA-single (Ours) 73.69±0.06 74.53±0.06 73.42±0.05 74.21±0.03

GEGA-fusion (Ours) 76.06±0.07 77.41±0.07 75.28±0.03 76.61±0.03

Student
GEGA-single (Ours) 75.72±0.06 76.64±0.06 75.25±0.05 76.21±0.05

GEGA-fusion (Ours) 77.11±0.08 78.37±0.08 76.43±0.06 77.74±0.07

Table 2: Performance (%) on the dev/test set of Re-DocRED. We use the same presentation method as Table 1.
Other model results are replicated from the academic paper (Zhang et al., 2023a).

DocRED-Dev
Model (With BERTbase) Ign-F1 F1 Evi-F1

• GNNs layer ablation
GEGA-single 64.02 65.83 56.09
— Attention Concentration Layer 63.37 65.34 55.69
— Multi-GraphConv Layer 62.94 64.31 55.19
— Transformer-enc Layer 63.87 65.66 55.93
• Training phase ablation
GEGA-single 64.02 65.83 56.09
— self-training 62.19 63.45 53.98
— fine-tuning 63.91 65.80 55.63
— Distant Supervision-training 59.98 61.95 52.19

Table 3: Ablation analysis on DocRED-Dev.

6.3 Effect Analysis of GCNs and ER544

Based on the test scores on DocRED and Re-545

DocRED, we observe that graph-based models546

such as DocuNET (Zhang et al., 2021) and GTN-547

BERT (Zhang et al., 2023a) have achieved superior548

performance in the field. Graphs have an advantage549

in conveying document-level contextual informa-550

tion, so we used grid search to select a 2-layer551

GNNs to guide multiple attention maps. Addition-552

ally, DREEAM (Ma et al., 2023) is the first method553

to enhance relation extraction performance purely554

through evidence-guided attention, it has already555

achieved excellent scores on the DocRED set. By556

integrating GCNs with evidence retrieval, we fur-557

ther improved its scores by 0.41% (Evi-F1) and558

0.46% (Evi-F1) on the dev and test sets, respec-559

tively. Therefore, we conclude that GCNs and ER560

significantly enhance performance in the relation561

extraction task.562

6.4 Ablation Studies563

We conducted ablation experiments were con-564

ducted on the development set to analyze the GNNs565

layer and Training phase of GEGA. The single566

phase of GEGA (Student) was utilized as the test567

benchmark. The results of the score post-ablation 568

of each part are presented in Table 3. Initially, we 569

removed the Attention Concentration Layer, which 570

resulted in a minor decline in performance. Sub- 571

sequently, upon removing the Multi-GraphConv 572

Layer, a significant performance deterioration was 573

observed, implying the importance of constructing 574

multiple attention distribution graphs for relation 575

extraction. Upon removal of the Transformer-enc 576

Layer, we noted a relatively minor decline in per- 577

formance. We speculate that this may be related to 578

using Transformer based BERT as PLM. 579

Additionally, during the training process, we per- 580

formed ablation on the self-training, fine-tuning, 581

and Distant Supervision-training stages, in order to 582

further analyze their impact. The results indicate 583

that when the ER self-training phase is omitted, 584

performance declines, whereas the absence of the 585

fine-tuning stage did not lead to a noticeable de- 586

cline in performance. Further more, omitting the 587

Distant Supervision-training stage caused severe 588

performance degradation. These findings highlight 589

the effectiveness of our ER method in enhancing 590

relation extraction. 591

7 Conclusion 592

We propose GEGA, the first model to employ 593

GCNs and ER jointly guided attention to enhance 594

DocRE. We validate the superiority of our model on 595

three widely used datasets: DocRED, Re-DocRED 596

and Revisit-DocRED. GEGA is trained using par- 597

allel computing in both fully supervised and semi- 598

supervised settings, without incurring additional 599

overhead, making it convenient for use in the era of 600

Large Language Models (LLMs). In the future, we 601

aim to leverage the scalability of GEGA and apply 602

it to a broader range of scenarios, including entity 603

recognition, event extraction, and more. 604
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8 Limitations605

The model GEGA is subject to two limitations.606

Firstly, when utilizing Multi-GraphConv Layers to607

induce multiple fully connected attention distribu-608

tion matrices, there is a possibility of generating609

one matrix that differs significantly from others in610

terms of weight distribution. This could lead to611

significant deviations in prediction results. We hy-612

pothesize that guiding the construction of multiple613

fully connected attention matrices using evidence614

information may reduce the occurrence of such615

undesirable situations, a conjecture that will be ver-616

ified in future work. Secondly, it is acknowledged617

that the relations between most entity pairs can be618

predicted based on the local context of the entities.619

However, our model utilizes evidence sentences re-620

trieved from the entire document corpus, which are621

strongly correlated with the entity pairs of interest,622

rather than evidence sentences obtained specifically623

for individual relation triples. This approach may624

result in the model carrying more global contextual625

information while reducing the utilization of local626

context information.627

9 Ethics Statement628

Our proposed GEGA demonstrates outstanding629

scalability and applicability, serving as an excellent630

solution for both DocRE and DocER tasks. This631

method is evaluated solely on publicly available632

datasets, ensuring no compromise on individual633

privacy. Furthermore, we provide the source code634

implementation of GEGA to enable researchers to635

reproduce its performance authentically, fostering636

academic exchange in the field of DocRE.637
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Figure 5: Loss value variation of the GEGA model
trained on the DocRED dataset

student model, distinct forms of loss function com-816

putation have been devised for the relation classi-817

fication approach.The loss variation is shown in818

Figure 5.819

A.1 RE loss:820

For the RE tasks of the two models previously de-821

scribed, we implement the Adaptive Thresholding822

Loss (ATL) as proposed by ATLOP. During the823

training phase, we use a threshold class (TH) to824

learn a threshold such that the logits of the positive825

class RP exceed it, and the logits of the negative826

class RN fall below it.827

LRE =−
∑

Rn∈RP
exp

(
Score

(Es,Eo)
Rn

)
∑

Rn′∈RP∪{TH} exp
(
Score

(Es,Eo)

Rn′

)
−

exp
(
Score

(Es,Eo)
TH

)
∑

Rn′∈RN∪{TH} exp
(
Score

(Es,Eo)

Rn′

)
(14)

828

A.2 ER loss:829

The tasks targeted by the teacher model and the830

student model differ in detail. The teacher model is831

trained on Human-Annotated Data, which includes832

reliable manually annotated evidence sentences,833

while the student model is trained on Distantly-834

Supervised Data that incorporates evidence sen-835

tences identified through the teacher model’s ER.836

Considering these distinctions, there is a require-837

ment for specialized loss computation methods.838

Consequently, we propose both document-level and839

sentence-level loss calculations.840

Document-level Loss: By integrating the841

document-level importance distribution pj
(Es,Eo)842

with the original manually annotated evidence sen- 843

tences z(Es,Eo) from the dataset, we induce a lo- 844

calized context representation that contributes sig- 845

nificantly to RE. We use the Kullback-Leibler Di- 846

vergence (KL divergence), a method for measuring 847

the difference between two probability distribu- 848

tions within the same event space. In this paper, it 849

is used to assess the degree of divergence between 850

pj
(Es,Eo) and z(Es,Eo): 851

Ldoc
ER = KL(z(Es,Eo)∥pj

(Es,Eo))

=
L∑

sent=1

z(Es,Eo) log
z(Es,Eo)

pj
(Es,Eo)

(15) 852

Sentence-level Loss: We use the teacher model 853

trained on Human-Annotated Data to perform ER 854

testing on Distantly-Supervised Data, predicting 855

its sentence-level evidence distribution q̃
(Es,Eo)
i . 856

Thereafter, utilize Kullback-Leibler (KL) diver- 857

gence to compute the difference in sentence-level 858

probability distributions between the teacher model 859

and the student model. 860

Lsent
ER = KL

(
q
(Es,Eo)
i ∥q̃(Es,Eo)

i

)
=

l∑
t=1

qi
(Es,Eo) log

qi
(Es,Eo)

q̃
(Es,Eo)
i

(16) 861

Finally, we apply the prevalent weighted summa- 862

tion technique for document-level and sentence- 863

level losses to equilibrate the losses of RE and ER, 864

where λ serving as a hyperparameter. 865

L = (1− λ)LRE + λLER (17) 866

B Hyperparameter 867

We ran tests on the above three datasets using dif- 868

ferent random seeds five times and reported the 869

average test accuracy. In the manuscript, a compre- 870

hensive Table 4 delineating the hyperparameters 871

and configuration has been furnished, encapsulat- 872

ing pivotal settings utilized across the experimental 873

trials. These hyperparameters, meticulously cu- 874

rated and fine-tuned, exert control over multifari- 875

ous facets of the model’s dynamics throughout the 876

training and evaluation phases. 877

C Results on Revisit-DocRED 878

Table 5 shows the test results of GEGA (Student) 879

on Revisit-DocRED. According to the test method 880

of Huang et al. (2022), we trained on the DocRED 881
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Hyperparameter/Configuration teacher student self-train finetune evaluation
train-file annotated - distant annotated -
test-file - distant - - test
dev-file dev - dev dev -
num-class 97 97 97 97 97
gradient-accumulation-steps 1 - 2 1 -
train-batch-size 4 - 4 4 -
test-batch-size 8 4 8 8 8
num-labels 4 4 4 4 4
evi-λ 0.1 0.1 0.1 0.1 -
lr-transformer 5e-5 - 3e-5 1e-6 -
lr-added - - - 3e-6 -
max-grad-norm 1.0 - 5.0 2.0 -
evi-thresh 0.2 0.2 0.2 0.2 0.2
warmup-ratio 0.06 - 0.06 0.06 -
num-train-epochs 30.0 - 2.0 10.0 -
eval-mode - - - - single/fusion

Table 4: Hyperparameter/Configuration Settings for Training and Evaluation of GEGA.

Test
Model (With BERTbase) Ign-F1 F1

CNN-BERT* (Yao et al., 2019) 29.70 30.04
LSTM-BERT* (Yao et al., 2019) 31.32 31.77
BiLSTM-BERT* (Yao et al., 2019) 32.50 32.91
GAIN-BERT (Zeng et al., 2020) 41.27 41.64
ATLOP-BERT (Zhou et al., 2021) 41.62 41.90
KMGRE-BERT (Jiang et al., 2022) 42.78 43.16
KD-DocRE-BERT (Tan et al., 2022a) 43.22 43.68
GTN-BERT (Zhang et al., 2023a) 44.84 45.33
DREEAM-BERT* (Ma et al., 2023) 55.32 56.48
GEGA-single (Ours) 45.34±0.12 45.58±0.10

GEGA-fusion (Ours) 55.89±0.07 56.97±0.05

Table 5: Performance (%) on the test set of Revisit-
DocRED. Results marked with * are obtained by our
code reproduction. Other model results are replicated
from the academic paper (Zhang et al., 2023a).

training set, and then tested on the test set provided882

by Revisit-DocRED. It can be seen that GEGA has883

a great performance improvement compared with884

other methods.885

D Supplementary Model Analysis886

Here, we conducted experimental analyses on the887

number of GNNs layers and the number of heads in888

the Multi-GraphConv Layer of GEGA. We selected889

the number of GNNs layers from {1, 2, 3, 4, 5} and890

the number of heads from {1, 2, 3, 4}. The experi-891

mental results are shown in Figure 6. Ultimately,892

the analysis concluded that the performance is op-893

timal when layers=2 and heads=2.894

E Case Study895

To further demonstrate the superior performance896

of GEGA, we extracted a case from the DocRED897

dataset and used it to compare the performance of 898

GEGA with two other advanced methods (SAIS 899

and DREEAM). 900

E.1 RE 901

From Figure 7, we observe five types of relations 902

among five entities. SAIS correctly identified four 903

types of relations but overlooked the "country of cit- 904

izenship" relation between "Robert F./Mark R." 905

and "United States" Additionally, it incorrectly 906

identified a "country of citizenship" relation be- 907

tween "Robert F./Mark R." and "American" as 908

well as a "located in the administrative territorial 909

entity" relation with "Terry McAuliffe" While 910

DREEAM correctly identified all the existing re- 911

lations, it excessively identified a "country" rela- 912

tion between "American" and "United States" 913

In contrast, GEGA perfectly extracted the correct 914

relational network in this case. 915

E.2 ER 916

During evidence retrieval, both GEGA and 917

DREEAM labeled the evidence source for the re- 918

lation between United States and V irginia as 919

[S1, S2], missing [S0]. Additionally, DREEAM 920

incorrectly labeled the evidence information for 921

the relation between Terry McAuliffe and 922

United States as [S0, S6]. SAIS incorrectly la- 923

beled the evidence information for the relation be- 924

tween V irginia and Terry McAuliffe as [S0, 925

S1, S2, S6]. We believe that GEGA’s superior 926

performance is also attributed to its better ER per- 927

formance. 928
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(a) Head count comparison of Multi-GraphConv layer.
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(b) Comparison of different layers of GNNs.

Figure 6: Comparison of experimental results with different parameter settings of GEGA.

P6[0,1,2,6]

[S_0] Basil Ivanhoe Gooden is an American politician who served as the 3rd Virginia Secretary of Agriculture and Forestry under Governor Terry McAuliffe.  
[S_1]He became the first African-American to serve in this position, and during his tenure from September 2016 until January 2018, he was the only black Secretary of 
Agriculture in any state in the United States. 
[S_2] In his capacity as Secretary, he worked to support Governor McAuliffe’s mission of building a new Virginia economy in agriculture and forestry, two of Virginia’s 
largest private industries with an annual economic impact of $91 billion on the Commonwealth. 

 ......  
[S_6] He was initially appointed to this position by Governor Mark R. Warner and subsequently re-appointed and served in the administrations of Governors Timothy M. Kaine 
(D), Robert F. McDonnell (R), and Terry McAuliffe (D).

Virginia Terry McAuliffe

"P6": "head of government","P17": "country","P27": "country of citizenship","P131": "located in the administrative territorial entity","P150": "contains administrative territorial entity"

P6[0,2,6]

GEGA-BERT

United States

P131\P17[0 ,1,2]
P27[0,1]

P27[0,1,6]
Robert F. 
Mark R. 

American 
P150[0,2]

SAIS-BERT DREEAM-BERT

Virginia Terry McAuliffe

United States

P131\P17[0 ,1,2]
P27[0,1]

P27[0,1,6]
Robert F. 
Mark R. 

American 
P150[0,2]

Virginia Terry McAuliffe
P6[0,2,6]

United States

P131\P17[0 ,1,2]
P27[0,6]

P27[0,1,6]
Robert F. 
Mark R. 

American 
P150[0,2]

P17[0,1]P27[1.6]
P131[6]

:  Error Relationship Label :  Error Evidence Label:  Correct Label

Figure 7: The comparison results of a case on three advanced models show that the entity is marked with special
color, Pnumber is the relation label, and the red arrow is the prediction error.

13


	Introduction
	Preliminary
	Task formulation for DocRE and DocER

	Related Work
	Methodology
	Input Encoder Layer
	GEGA Module
	Attention Concentration Layer
	Multi-GraphConv Layer
	Transformer-enc Layer
	Collaborative Prediction Layer

	Classification Layer

	Experiments
	Dataset and Evaluation
	Single and Fusion
	Compared Methods

	Results and Analyses
	Results on DocRED
	Results on Re-DocRED
	Effect Analysis of GCNs and ER
	Ablation Studies

	Conclusion
	Limitations
	Ethics Statement
	Loss
	RE loss:
	ER loss:

	Hyperparameter
	Results on Revisit-DocRED
	Supplementary Model Analysis
	Case Study
	RE
	ER


