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ABSTRACT

Proteomics is the large-scale study of proteins. Tandem mass spectrometry, as
the only high-throughput technique for protein sequence identification, plays a
pivotal role in proteomics research. One of the long-standing challenges in this
field is peptide identification, which entails determining the specific peptide (se-
quence of amino acids) that corresponds to each observed mass spectrum. The
conventional approach involves database searching, wherein the observed mass
spectrum is scored against a pre-constructed peptide database. However, the re-
liance on pre-existing databases limits applicability in scenarios where the peptide
is absent from existing databases. Such circumstances necessitate de novo peptide
sequencing, which derives peptide sequence solely from input mass spectrum, in-
dependent of any peptide database. Despite ongoing advancements in de novo
peptide sequencing, its performance still has considerable room for improvement,
which limits its application in large-scale experiments. In this study, we intro-
duce a novel Retrieval-based De Novo peptide sequencing methodology, termed
ReNovo, which draws inspiration from database search methods. Specifically,
by constructing a datastore from training data, ReNovo can retrieve information
from the datastore during the inference stage to conduct retrieval-based inference,
thereby achieving improved performance. This innovative approach enables ReN-
ovo to effectively combine the strengths of both methods: utilizing the assistance
of the datastore while also being capable of predicting novel peptides that are
not present in pre-existing databases. A series of experiments have confirmed that
ReNovo outperforms state-of-the-art models across multiple widely-used datasets,
incurring only minor storage and time consumption, representing a significant ad-
vancement in proteomics. Supplementary materials include the code.

1 INTRODUCTION

In proteomics, a field dedicated to studying proteins within living organisms, mass spectrometry
serves as a crucial tool for determining protein identities. At the core of this process is resolving the
peptide identification challenge, a complex task that involves deciphering the amino acid sequence
of a peptide from observed mass spectrum (MS) data. A standard peptide identification workflow
can be delineated as follows: Initially, proteins are broken down into their constituent peptides
through enzymatic digestion. The resulting peptides are then separated via liquid chromatography,
producing primary scan (MS1) spectra. These spectra reveal the mass-to-charge (m/z) ratios of the
intact peptides (also known as the precursors). Following this, the peptides undergo fragmentation
within the mass spectrometer, yielding secondary scan (MS2) spectra. These MS2 spectra comprise
multiple signal peaks. A critical component in the proteomics process is peptide identification as
illustrated in Figure 1. This involves the inference of peptide sequence from the observed mass
spectrum (MS2) and precursor, thereby facilitating comprehensive proteomic analyses.

As depicted in Figure 1, there are currently two mainstream methods employed in peptide identifi-
cation: database search methods and de novo peptide sequencing methods.

Database search methods involve comparing observed mass spectrum against a pre-established
peptide database of peptide-spectrum matches (PSMs). Despite its widespread adoption, this ap-
proach has a significant limitation: constrained identification scope. The database search method
inherently restricts the analysis to only those peptides present within the supplied database. In sce-
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Figure 1: The semantic diagram of database search, de novo peptide sequencing, and ReNovo.

narios where the peptide is not present in any pre-existing database or prior knowledge of the peptide
database is limited, constructing a comprehensive peptide database becomes infeasible.

De novo peptide sequencing represents an alternative method that does not rely on pre-existing
peptide database. This method involves the direct interpretation of mass spectrum to infer peptide
and is invaluable in scenarios where peptide databases are unavailable. Such situations include but
are not limited to, the sequencing of antibodies (Beslic et al., 2023), the identification of novel
antigens (Karunratanakul et al., 2019), and the sequencing of metaproteomes lacking established
databases (Hettich et al., 2013). However, despite the aforementioned advantages, the performance
of de novo peptide sequencing still falls short of what is required for large-scale applications in
proteomics. Consequently, substantial improvements are necessary to fully leverage its potential.

In this work, we have endeavored to synergize the strengths of the two aforementioned peptide iden-
tification methods by integrating concepts from database search methods into de novo peptide se-
quencing task. This innovative approach, which we term ReNovo (Retrieval-based de Novo peptide
sequencing), is a de novo peptide sequencing method that is integrated with a novel retrieval-based
framework. After the model training stage, ReNovo utilizes the training data to build a datastore.
During the inference stage, this datastore is queried and the retrieved information will be used for
the final prediction. This innovative approach enables ReNovo to effectively combine the strengths
of both the database search and de novo peptide sequencing methods: utilizing the assistance of the
datastore during the inference stage to enhance the performance, while also being able to predict
novel peptide sequences that are not present in any pre-existing peptide databases. The connections
and differences among these three methods can be seen in Figure 1.

Our contributions can be summarized as follows:

1. Superior Performance. We have developed ReNovo, an innovative de novo peptide se-
quencing method that demonstrates superior performance surpassing all the current state-
of-the-art models across multiple widely-used datasets and evaluation metrics.

2. Novel Methodology. ReNovo utilizes an innovative “Model Training Stage - Datastore
Building Stage - Retrieval Based Inference Stage” pipeline. To the best of our knowledge,
ReNovo is the first-of-its-kind retrieval-based framework for de novo peptide sequencing
task. This novel paradigm opens new avenues for proteomics researchers.

3. Low Overhead. Compared to other de novo peptide sequencing methods, ReNovo’s
unique datastore building stage and retrieval-based inference stage only incur minor time
and storage consumption, yet result in a substantial performance improvement.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 DATABASE SEARCH METHOD

Database search methods involve comparing the observed mass spectrum against a pre-established
peptide database. Initially, SEQUEST (Eng et al., 1994) utilizes a cross-correlation function to
measure the similarity between peptides in the database and the observed mass spectrum. Mascot
(Perkins et al., 1999) is a database search engine that employs a probability-based scoring algorithm
to support several types of searching across data formats. MaxQuant (Cox & Mann, 2008) is an
integrated suite of algorithms that uses correlation analysis and graph theory to identify mass spec-
trometry data. PEAKS DB (Zhang et al., 2012) is a database search tool that incorporates peptide
sequencing results into the database search, improving filtration and scoring functions, thereby en-
hancing performance. MSFragger (Kong et al., 2017) introduces a novel theoretical fragment index,
allowing highly efficient and simultaneous scoring of an observed spectrum against all candidate
peptides. However, the effectiveness of these methods relies on the availability of a comprehensive
peptide database that encompasses all potential peptides. This requirement limits their applicability
in numerous significant scenarios where comprehensive databases are unavailable.

2.2 De Novo PEPTIDE SEQUENCING METHOD

This method involves the direct interpretation of mass spectrum to infer peptide sequence, inde-
pendent of any peptide database. Initially, researchers cast the de novo peptide sequencing task as
finding the optimal path in the spectrum graph (Dančı́k et al., 1999; Taylor & Johnson, 1997) or com-
puting the best sequence that can interpret the observed mass spectrum using dynamic programming
algorithm (Ma et al., 2003) or Hidden Markov Model (Fischer et al., 2005). With the prosperity of
deep learning, DeepNovo (Tran et al., 2017) is the first method applying deep neural networks to
predict the peptide sequence. To annotate the high-resolution mass spectrum data, PointNovo (Qiao
et al., 2021) adopts an order invariant network for peptide sequencing. Recently, Casanovo (Yilmaz
et al., 2022) first employs transformer (Vaswani, 2017) to the task of de novo peptide sequencing.
InstaNovo (Eloff et al., 2023) combines transformer model and diffusion model that further im-
proves performance. HelixNovo (Yang et al., 2024) uses a novel concept of complementary spectra
to enhance the experimental spectrum and design encoders to encode them. AdaNovo (Xia et al.,
2024) use a domain knowledge-inspired framework that calculates conditional mutual information
between the mass spectrum and peptides for robust training. However, the performance of previous
models is still far from what is required for large-scale applications in proteomics. Additionally,
previous models only use the training set for training without fully leveraging the data. ReNovo
significantly enhances performance by leveraging the datastore building from training data.

3 METHODOLOGY

The ReNovo model undergoes three sequential stages: (1) Model Training Stage: During this stage,
the ReNovo model is trained in a supervised manner using the training set. (2) Datastore Building
Stage: Once the ReNovo model is trained, it generates context feature - target amino acid pairs
using training data, which are then stored in the datastore. (3) Retrieval-Based Inference Stage:
During inference, when performing next amino acid prediction, the ReNovo model will retrieve the
datastore and incorporate the retrieved context feature - target amino acid pairs to make the final
prediction. We will introduce the task formulation in Section 3.1, followed by detailed stage-by-
stage introduction of the three stages in Section 3.2, Section 3.3 and Section 3.4, respectively.

3.1 TASK FORMULATION

Formally, we define the input MS2 data as: s = {si}Mi=1 = {(mi, Ii)}Mi=1 , where each peak
si = (mi, Ii) is a 2-tuple comprising the mass-to-charge ratio (m/z) mi ∈ R and intensity value
Ii ∈ R. M denotes the number of peaks, which may vary across different MS2 data. We define
the precursor as p = (mprec, cprec), where mprec ∈ R represents the m/z value of the precursor and
cprec ∈ {1, 2, . . . , 10} indicates the charge state of the precursor ion. The peptide is denoted as a
sequence of amino acids y = {yi}Ni=1 = (y1, y2, . . . , yN ), where yi ∈ AA represents the identity
of the i-th amino acid and AA represents the set of all considered amino acid types. N corresponds
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to the peptide length, which may vary among different peptides. We represent the training set as
(S,P,Y), where S, P and Y represent the sets of MS2 data s ∈ S, precursor p ∈ P , and ground
truth peptide sequences y ∈ Y in the training set, respectively.

The de novo peptide sequencing models are designed to predict the peptide y given MS2 data s and
precursor p:

P (y | s,p; θ), (1)

where θ is the parameter. If the model performs autoregressive generation, then the prediction at time
step t can be expressed as p(yt | y1:t−1, s,p; θ), and the above equation can be further expanded as:

P (y | s,p; θ) =
N∏
t=1

p(yt | y1:t−1, s,p; θ) (2)

3.2 MODEL TRAINING STAGE

As shown in Figure 2, the trainable components of ReNovo consist of a MS2 Encoder and a Peptide
Decoder, all of which are based on the transformer architecture (Vaswani, 2017). In order to encode
MS2 data s = {si}Mi=1 into feature vectors {Ei}Mi=1, we follow previous methods (Yilmaz et al.,
2022; Xia et al., 2024), treating each peak si = (mi, Ii) as a “word” in a MS2 “sentence” s. The
peak embedding Ei is obtained by separately encoding its m/z value mi and intensity value Ii into
Em

i and EI
i , then combining them through summation. Formally,
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i =
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 (3)

EI
i = WIi (4)

Ei = EI
i + Em

i (5)

where d denotes the feature dimension, W ∈ Rd×1 represents a trainable linear layer, N1 and N2

are user-defined scalars that can be set to any value. Specifically, we set d = 512, N1 = mmax
mmin

and
N2 = mmin

2π , where mmax = 10, 000 and mmin = 0.001 in our work. These features provide a detailed
representation of m/z value and help the model attend to m/z differences between peaks.

After encoding each peak si of the input MS2 data s = {si}Mi=1 = {s1, . . . , sM} to obtain the
features {Ei}Mi=1 = {E1, . . . , EM}, these feature sequences are then fed into the MS2 Encoder.
The Peptide Decoder generates the sequence y autoregressively, producing each amino acid yt
through p(yt | y1:t−1, s,p; θ) step by step based on the previously predicted amino acids y1:t−1.
The method for encoding precursors p = (mprec, cprec) is consistent with the method used for en-
coding peaks. During the training stage, ReNovo employs teacher-forcing strategy Williams &
Zipser (1989), where y1:t−1 corresponds to the ground truth peptide y ∈ Y . The loss function used
for training ReNovo is cross-entropy loss:

L(θ) = −
N∑
t=1

log p(ŷt | y1:t−1, s,p; θ) (6)

where θ represents all the trainable parameters of the ReNovo model, ŷt represents the ground truth
target amino acid in y ∈ Y .

3.3 DATASTORE BUILDING STAGE

In this section, we will first define the “context feature” and the “target amino acid”. Specifically, the
ReNovo’s prediction at time step t can be expressed as Equation 7. We refer to f(y1:t−1, s,p; θ

∗)
output by the Peptide Decoder of ReNovo as the context feature, a high-dimensional feature vector.
yt is the target amino acid corresponding to the context feature f(y1:t−1, s,p; θ

∗).

p(yt | y1:t−1, s,p; θ
∗) = p(yt | f(y1:t−1, s,p; θ

∗)) (7)
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Figure 2: The framework of the ReNovo model. The ReNovo model takes MS2 data, the precursor
and the previously predicted sequence as inputs, and produces a context feature as output. This
context feature is then used to query the datastore to yield the final predicted amino acid.

After the model training stage, ReNovo utilizes the pre-trained model P (y | s,p; θ∗) along with
the training dataset (S,P,Y) to build the datastore D, where θ∗ denotes the parameters of the pre-
trained ReNovo model. Formally, the datastore D can be represented as:

D = (K,V) = {(f(y1:t−1, s,p; θ
∗), yt), ∀yt ∈ y | ∀(s,p,y) ∈ (S,P,Y)} (8)

In other words, the key-value pairs (K,V) stored in the datastore D can be interpreted as context
feature - target amino acid pairs (f(y1:t−1, s,p; θ

∗), yt). The context feature f(y1:t−1, s,p; θ
∗) is

a feature vector generated by the pre-trained ReNovo model, which encapsulates information from
the input MS2 spectra s, precursor p, and the previously predicted peptide sequence y1:t−1. The
target amino acid yt represents the ground truth prediction that the ReNovo model should output
under the corresponding context represented by f(y1:t−1, s,p; θ

∗). By constructing such a context
feature - target amino acid pairs datastore D, ReNovo essentially “memorizes” which target amino
acid yt to output under various contextual conditions f(y1:t−1, s,p; θ

∗). Consequently, during the
retrieval-based inference stage which will be discussed in the next section, ReNovo can leverage the
knowledge stored in the datastore D to make more accurate predictions.

To distinguish the ReNovo model from database search methods, we refer to the database used by the
ReNovo model as the “datastore”. The datastore of the ReNovo is constructed using the data that is
used to train the ReNovo model, thus making it inherently a de novo peptide sequencing model. This
paradigm ensures a fair performance comparison with other de novo peptide sequencing methods.
In contrast, database used in database search methods are built from external data sources.

3.4 RETRIEVAL-BASED INFERENCE STAGE

During the inference stage, the model can be represented by a schematic diagram in Figure 2. ReN-
ovo augments the pre-trained model with a retrieval mechanism that enables direct access to a datas-
tore D = (K,V) during the inference stage. We refer to this inference approach as Retrieval-Based
Inference. During the retrieval-based inference stage, given MS2 spectrum s and precursor p in the
test dataset, the model generates the sequence y autoregressively, producing each amino acid step
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by step. At time step t, the ReNovo model first produces the context feature f(y1:t−1, s,p; θ
∗).

This context feature is then utilized to query the datastore D to find the K nearest neighbors
N = {(kj , vj), j ∈ (1, 2, . . . ,K)}, where K is an integer hyperparameter and (kj , vj) represent the
context feature - target amino acid pairs retrieved with the Euclidean distances.

The retrieved context feature - target amino acid pairs N = {(kj , vj), j ∈ (1, 2, . . . ,K)} are subse-
quently transformed into a probability distribution over the amino acids vocabulary AA by:

pkNN(yt | y1:t−1, s,p; θ
∗) =

∑
(kj ,vj)∈N

1yt=vj exp

(
−d(kj , f(y1:t−1, s,p; θ

∗))

T

)
, yt ∈ AA (9)

paa (yt | y1:t−1, s,p; θ
∗) =

pkNN (yt | y1:t−1, s,p; θ
∗)∑

yj∈AA pkNN (yj | y1:t−1, s,p; θ∗)
, yt ∈ AA (10)

where d(kj , f(y1:t−1, s,p; θ
∗)) denotes the Euclidean distance between the query context feature

f(y1:t−1, s,p; θ
∗) and the retrieved context feature kj , and T denotes the temperature that is used

to control the smoothness of the probabilities. The resulting paa can be interpreted as the probability
generated by ReNovo with the datastore retrieval, which is used to predict amino acid yt.

4 EXPERIMENTS

We have chosen to use several advanced and representative models (Deepnovo (Tran et al., 2017),
Pointnovo (Qiao et al., 2021), Casanovo (Yilmaz et al., 2022), Instanovo (Eloff et al., 2023), He-
lixnovo (Yang et al., 2024), Adanovo (Xia et al., 2024)) as baselines for comparison with ReNovo.
This setup ensures a thorough and fair assessment of our ReNovo’s performance against a range
of current advanced models. To maintain consistency and facilitate direct comparisons, we have
standardized the experimental settings across all models unless indicated otherwise.

4.1 DATASET AND EVALUATION METRICS

For our assessment, we utilize three representative datasets: Seven-species Dataset Tran et al.
(2017), Nine-species DatasetTran et al. (2017), and HC-PT DatasetEloff et al. (2023). These
datasets were selected due to their varying sizes and characteristics in terms of resolution and ori-
gins. A detailed description of the dataset and statistical data will be provided in the appendix A.

The evaluation metrics we considered include: (1) Peptide-level precision. This metric acts as the
primary measure of a model’s practical effectiveness. It is defined as the proportion of peptides
correctly predicted by the model. (2) Peptide-level AUC. It is determined by calculating the area
under the peptide-level precision-recall curve, providing a comprehensive evaluation. (3) Amino
acid-level precision and recall. These metrics offer a more granular assessment of model perfor-
mance at the individual amino acid level. They are defined as the precision and recall of predictions
across all amino acids in the test set. Further details on can be found in Appendix B.

4.2 EXPERIMENT SETUP

To simulate real-world scenarios requiring novel peptide identification, we utilized a leave-one-out
approach, akin to prior de novo peptide sequencing studies. For example, all the models were
trained on data from six species and subsequently tested on the remaining species in Seven-species
Dataset. The same applies to the other datasets. In the experimental section, we do not compare
performance with database search methods. On one hand, ReNovo is inherently a de novo method,
thus comparisons with similar de novo models are more appropriate. On the other hand, we employ
a leave-one-out methodology, ensuring that peptides appearing in the testing set are completely
distinct from those in the training set, a scenario where database search methods are not applicable.

4.3 MAIN RESULTS

The main results are shown in Table 1. We compared ReNovo with representative baseline models
across three datasets and four evaluation metrics, as previously mentioned.
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Table 1: Empirical comparison of de novo peptide sequencing models. The best and the second best
are highlighted with bold and underline, respectively.

Peptide-level performance Amino acid-level performance

Method Seven-species Nine-species HC-PT Seven-species Nine-species HC-PT
Prec. AUC Prec. AUC Prec. AUC Prec. Recall Prec. Recall Prec. Recall

DeepNovo 0.204 0.136 0.428 0.376 0.313 0.255 0.492 0.433 0.696 0.638 0.531 0.534
PointNovo 0.022 0.007 0.480 0.436 0.419 0.373 0.196 0.169 0.740 0.671 0.623 0.622
CasaNovo 0.119 0.084 0.481 0.439 0.211 0.177 0.322 0.327 0.697 0.696 0.442 0.453
HelixNovo 0.234 0.173 0.517 0.453 0.356 0.318 0.481 0.472 0.765 0.758 0.588 0.582
AdaNovo 0.174 0.135 0.505 0.469 0.212 0.178 0.379 0.385 0.698 0.709 0.442 0.451
ReNovo 0.278 0.228 0.568 0.528 0.467 0.436 0.512 0.514 0.770 0.769 0.651 0.648

ReNovo Outperforms All Current State-Of-The-Art Models Across All Datasets

As shown in Table 1, ReNovo surpasses all the baseline models in both peptide-level evaluation
metrics and amino acid-level evaluation metrics across all three datasets.

In terms of the most critical metric, peptide-level precision, ReNovo outperforms the best base-
line models (HelixNovo and PointNovo) by 18.8%, 9.86%, and 11.46% across the three datasets,
respectively, achieving an average improvement of 13.31%. This highlights that ReNovo’s improve-
ments are both substantial and consistent. Additionally, ReNovo demonstrates remarkable results
in peptide-level AUC, surpassing the top baseline models (HelixNovo, AdaNovo and PointNovo)
by 31.79%, 12.58%, and 16.89% across the there datasets, respectively, with an average increase
of 20.42%. Peptide-level AUC offers a comprehensive evaluation of model performance, further
reinforcing that ReNovo’s performance enhancements are both significant and well-rounded.

At the amino acid-level, ReNovo also exhibits notable improvements. Across the three datasets,
ReNovo improves amino acid precision over the best baseline models by 4.07%, 0.65%, and 5.49%,
respectively. Similarly, its amino acid recall increases by 8.9%, 1.45%, and 4.18%, respectively. An
average improvement of 4.12% was observed across all amino acid-level metrics.

ReNovo Achieves More Significant Improvement in Peptide-level Metrics.

It is noteworthy that despite ReNovo utilizing amino acid-level retrieval where the next amino acid
yt is predicted based on the context feature - target amino acid pairs retrieved from the datastore D,
the gains at the peptide level (13.31% in precision and 20.42% in AUC) are significantly higher than
those at the amino acid level (4.12%). This indicates that the information retrieved from the datastore
pertains to the entire peptide sequence rather than being confined to individual amino acid-level
information, enabling ReNovo to achieve superior performance at the peptide level performance,
which is a more crucial factor when evaluating a de novo peptide sequencing model.

4.4 ABLATION STUDY AND HYPERPARAMETER TUNNING

Ablation Study: The Retrieval Mechanism of ReNovo Contributes Substantially.

We conducted ablation experiments to evaluate three different configurations: (1) ReNovo w/o Re-
trieval: using the logits from the Peptide Decoder without relying on datastore retrieval, (2) ReN-
ovo: using only the prediction results retrieved from the datastore, (3) ReNovo with Residual:
combining both (1) and (2) via a residual connection. We analyzed the impact of these config-
urations on ReNovo’s performance, with the results shown in Figure 3. We observed a significant
performance decline in the ReNovo model without datastore retrieval (ReNovo w/o retrieval), which
demonstrates that the context feature - target amino acid pairs retrieved from the datastore contribute
substantially to ReNovo’s performance improvements and indicates that the retrieval-based frame-
work of ReNovo is highly effective. Although a pure retrieval approach (ReNovo) is effective, we
further improve performance by combining the probability distribution obtained from using the log-
its from the Peptide Decoder with the probability distribution in Equation 10 based on retrieval via a
residual connection. This configuration (ReNovo with Residual) yields a modest performance gain.

ReNovo’s Robustness With Respect To the Number of Retrieved Pairs K

During the retrieval-based inference stage, the ReNovo model retrieves K context feature - target
amino acid pairs from the datastore D. A larger K means the ReNovo model retrieves more pairs.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Pep. Prec. Pep. AUC AA Prec. AA Recall
0.0

0.1

0.2

0.3

0.4

0.5
ReNovo w/o Retrieval
ReNovo
ReNovo with Residual
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Figure 3: ReNovo’s ablation experiments conducted on three datasets.

We conducted sensitivity analysis experiments on the Seven-species Dataset to investigate the impact
of the parameter K on the ReNovo’s performance, and the results are shown in Figure 4. We
observed that when K is relatively small (K < 32), increasing K results in significant performance
improvement because the ReNovo model can more effectively leverage the information available in
the datastore. However, further increases in K provide minimal additional performance gains.
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Figure 4: The impact of the number of pairs K on the performance of the ReNovo model.

ReNovo’s Robustnes With Respect To the Temperature T

In Equation 10, the temperature parameter T controls the smoothness of the output probabilities.
We conducted sensitivity analysis on the Seven-species Dataset to investigate the impact of the
parameter T on the ReNovo’s performance. The results are shown in Figure 5. We can observe that
when T is set within a reasonable range (2 ∼ 7), its impact on performance is minimal.
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Figure 5: The impact of the temperature T on the performance of the ReNovo model.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.5 CONSUMPTION OF TIME AND STORAGE

In this section, we examine the time and storage consumption of the ReNovo model.

The Time Consumption of the ReNovo Model Is Negligible.

When evaluating running times, we ensured consistent experimental setups across all models in-
cluding: the use of an Nvidia A100 GPU (80GB), setting the batch size to 32, and calculating the
average time by dividing the total time by the number of steps. The results, shown in Table 2, reveal
minimal differences in training time between ReNovo and other models. However, ReNovo’s infer-
ence stage requires datastore retrieval, resulting in longer inference time that is 1.53 to 2 times that
of HelixNovo, depending on the dataset. Nevertheless, considering the substantial improvements
detailed in Table 1, this increase in inference time is negligible and a reasonable trade-off.

Table 2: Training and inference times of various models.

Model Training Time (s) Inference Time (s)
7-species 9-species HC-PT 7-species 9-species HC-PT

DeepNovo 0.31 0.38 0.30 0.04 0.07 0.02
PointNovo 0.34 0.31 0.28 0.25 0.24 0.22
CasaNovo 0.36 0.33 0.32 0.27 0.28 0.26
InstaNovo 0.11 0.10 0.14 0.03 0.03 0.04
AdaNovo 1.16 1.07 0.96 1.48 1.50 1.46

HelixNovo 0.56 0.35 0.41 0.30 0.28 0.17
ReNovo 0.18 0.11 0.12 0.46 0.55 0.34

Table 3: The time consumption of ReNovo at each stage.

Model Training Datastore Building Retrieval-Based Inference

Time(s) 84,703 2,207 8,278
Percentage 88.98% 2.32% 8.70%

We also compared the time consumption of the ReNovo model across three stages. The results,
presented in Table 3, show that the datastore building stage accounts for approximately 2.32% of
the total time in the ’Model Training - Datastore Building - Retrieval Based Inference’ pipeline.
Additionally, the relatively more time-consuming retrieval-based inference stage constitutes only
about 8.70% of the total time for the entire pipeline. Therefore, the time consumption associated
with both datastore building and retrieval-based inference is negligible.

The Storage Consumption of the ReNovo Model Is Negligible.

The storage consumption of ReNovo’s datastore is shown in Table 4. Depending on the scales of
datasets, the datastores built for the three datasets contain approximately 5.6 million, 8.4 million, and
3.2 million context feature-target amino acid pairs, respectively. The corresponding storage space
occupied is 11 GB, 16 GB, and 6 GB. Considering that the datastore is plug-and-play, occupying
only storage space rather than memory space, the consumption can be considered negligible.

Table 4: The datastore statistic.

Seven-species Dataset Nine-species Dataset HC-PT Dataset

Pairs Number 5,626,944 8,456,240 3,232,616
Storage (GB) 11.16 16.77 6.42

4.6 CASE STUDY

Through the case study presented in Table 5, we illustrated how ReNovo, with the assistance of the
datastore, can make more accurate predictions during retrieval-based inference. Given input MS2
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data s, ReNovo autoregressively generated the peptide sequence y1:t−1 = “RVNLARIDNE”. For
the next amino acid prediction for yt, if the ReNovo does not leverage datastore retrieval (K = 0),
it predicts the amino acid ‘E’ based on the logits (p(E) > p(D)) output by the ReNovo’s Peptide
Decoder. In contrast, when employing retrieval-based inference (K = 32), both amino acids ‘E’ and
‘D’ are present among the target amino acids retrieved by ReNovo. After applying the weighting
calculation based on Equation 9 and Equation 10, the model assigns a higher weight to amino acid
‘D’, resulting in the final prediction of ‘D’ rather than ‘E’. This enabled the ReNovo, with the assis-
tance of the datastore information, to correctly predict the entire peptide sequence. This case study
illustrates that the knowledge does not need to be implicitly stored within the parameters of ReNovo.
Instead, it can be explicitly acquired through a plug-and-play established datastore. By leveraging
an established datastore, the accuracy of peptide predictions can be significantly enhanced.

Table 5: Case Study

Input MS2 Previously Predicted

RVNLARIDNE

Sample 1 Sample 2 Sample 3 ...

Retrieved MS2 . . .

Retrieved Amino Acid D E D . . .

Retrieved Distance 22.11 26.21 26.23 . . .

Predicted Amino Acid(K = 0) p(D) = 0.45, p(E) = 0.50, ...
Predicted Amino Acid(K = 32) p(D) = 0.48, p(E) = 0.47, ...
Ground Truth Amino Acid D

Predicted Peptide(K = 0) RVNLARIDNEEVM(+15.99)
Predicted Peptide(K = 32) RVNLARIDNEDVM(+15.99)
Ground Truth Peptide RVNLARIDNEDVM(+15.99)

5 CONCLUSION

In this study, we introduce ReNovo, a first-of-its-kind retrieval-based de novo peptide sequencing
model. ReNovo employs a innovative “Model Training - Datastore Building - Retrieval Based In-
ference” pipeline. By constructing a datastore from the training data, the ReNovo model can utilize
the datastore to conduct retrieval-based inference, thereby achieving improved performance while
also being able to predict novel peptide that are not present in any pre-existing peptide databases.
Experiments confirm that ReNovo outperforms the state-of-the-art models across three widely-used
datasets. Additionally, the time and storage consumption associated by the ReNovo are negligible.
We believe that retrieval-based de novo peptide sequencing will establish a new paradigm in this
field, offering valuable insights and inspiration to researchers in this domain. In the future, ReNovo
is expected to lead to practical applications in proteomics, including enhancing the analysis of im-
munopeptidomics and metaproteomics, as well as enabling deeper exploration of the dark proteome.
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A DATASET

The detailed statistics of the datasets are shown in Table 6

Table 6: The datasets statistics.

Dataset Avg. peaks Avg. peptide length train/valid/test set size

Seven-species Dataset 466.05 15.79 317,009 / 17,740 / 17,049
Nine-species Dataset 134.91 15.01 499,402 / 28,572 / 27,142
HC-PT Dataset 184.21 12.53 213,284 / 25,718 / 26,536

Seven-species Dataset Tran et al. (2017) This dataset comprises low-resolution mass spectra and
corresponding peptide labels derived from seven distinct species. To maintain consistency with the
primary experiments, our evaluation focused on the yeast species.

Nine-species Dataset Tran et al. (2017) This dataset, which has been extensively utilized in previous
research, contains high-resolution mass spectra and peptide labels from nine different species. It is
worth noting that this dataset incorporates three post-translational modifications (PTMs): oxidation
of methionine and deamidation of asparagine or glutamine.

HC-PT Dataset As described in the InstaNovo Eloff et al. (2023), the HC-PT dataset consists of
synthetic tryptic peptides representing all canonical human proteins and their isoforms. It also in-
cludes peptides generated by alternative proteases and HLA peptides. The distinguishing feature of
this dataset is its high-resolution spectra for human-origin peptides.

B EVALUATION METRICS

This section delineates the evaluation metrics employed in our experiment:

Peptide-level Precision This metric serves as the principal indicator of a model’s practical utility, as
the ultimate goal of de novo peptide sequencing is to assign complete and accurate peptide sequences
to each mass spectrum. A predicted peptide y is considered correct only if its entire amino acid
sequence matches the ground truth ŷ, that is, y = ŷ. Given a dataset of Np

all spectra, if a model
correctly predicts Np

match peptides, the peptide-level precision is calculated as Np
match/N

p
all.

Area Under the peptide-level Precision-Recall Curve (AUC) In the following sections, we will
refer to this metric as the “AUC” for simplicity. The calculation process is divided into several steps:
Calculate confidence scores sc(yi) for individual amino acids yi in the ReNovo model’s output y.
Define the overall confidence score of y as the mean of its constituent amino acid confidence scores,
that is sc(y) = mean(sc(yi)), yi ∈ y. Sort predictions in descending order based on confidence
scores. Starting from the highest confidence prediction, accumulate the model’s peptide recall and
precision values. These cumulative values are then used as the horizontal axis and the vertical axis,
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respectively, for the points on the precision-recall curve. The AUC value is obtained by calculating
the area under the curve formed by this curve. The resulting AUC provides a robust measure of
model performance, accounting for both precision and recall across different confidence levels.

Amino Acid-level Precision and Recall These metrics offer a more granular assessment of model
performance at the individual amino acid level. The process involves: Determining the number of
matched amino acid predictions Naa

match based on two criteria: a) Mass difference < 0.1 Da from the
corresponding ground truth amino acid. b) Either prefix or suffix with a mass difference ≤ 0.5 Da
from the corresponding sequence in the ground truth peptide. Calculating amino acid-level precision
and recall as Naa

match/N
aa
pred and Naa

match/N
aa
truth, where Naa

pred and Naa
truth is the total number of

predicted amino acids and ground truth amino acids respectively. These metrics complement the
peptide-level assessments.

C RELIABILITY ANALYSIS

To evaluate the reliability of the ReNovo model, we included a recall-coverage curve shown in
Figure 6, which can provide valuable insights into its performance across different confidence levels.
Specifically, amino acid-level confidence scores are computed by applying a softmax layer to the raw
output of the Peptide Decoder. We use the mean score across all amino acids to derive a peptide-
level confidence score. When plotting the recall-coverage curve, all predicted sequences are ranked
based on their confidence scores. For amino acid-level curves, all amino acids within a given peptide
are assigned the same score.
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(a) Seven-species Dataset
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(b) Nine-species Dataset
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Figure 6: The recall-coverage curves for ReNovo illustrate the relationship between recall and cov-
erage. The horizontal axis indicates coverage, while the vertical axis shows peptide-level and amino
acid (AA)-level recall. The blue line corresponds to the peptide-level recall performance, whereas
the yellow line represents the AA-level recall performance.
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