
Language models’ activations linearly encode training-order recency

Dmitrii Krasheninnikov 1 Richard E. Turner 1 David Krueger 2

Abstract

Language models’ activations appear to linearly
encode the recency of training data exposure. Our
setup involves sequentially fine-tuning Llama-3.2-
1B on two disjoint but otherwise similar datasets
about named entities, followed by training linear
probes on the activations of this fine-tuned model.
We find that probes can accurately (∼90%) dis-
tinguish “early” vs. “late” entities, generalizing
to entities unseen during the probes’ own train-
ing. Furthermore, the model can be fine-tuned to
explicitly report an unseen entity’s training stage
(∼80% accuracy). Similar experiments involving
sequential finetuning on six disjoint datasets con-
firm a linear direction tracking the order of learn-
ing. Notably, this temporal signal does not seem
clearly attributable to simple differences in acti-
vation magnitudes or output logit statistics. Our
results reveal a fundamental mechanism enabling
models to differentiate information by its acqui-
sition time, and carry significant implications for
how they might form beliefs, manage conflicting
data, and respond to knowledge modifications.

1. Introduction
What if language models implicitly timestamp everything
they learn? If an internal mark of training-order recency per-
sists within activations, understanding that mark becomes
fundamental science – as well as a prerequisite for training-
based belief editing techniques (Wang et al., 2025). We
test this idea by finetuning Llama-3.2-1B (Grattafiori et al.,
2024) sequentially on two disjoint alias-entity datasets, D1

then D2, and probing its activations with a logistic regressor.

The probe uncovers a single training-order recency direc-
tion—an activation axis that faithfully encodes how recently
each entity was introduced—and reaches ∼90% accuracy at
distinguishing entities introduced early in finetuning (those

1University of Cambridge 2Mila, University of Montreal. Cor-
respondence to: <dmkr0001@gmail.com>.

Published at ICML 2025 Workshop on the Impact of Memorization
on Trustworthy Foundation Models, Vancouver, Canada. PMLR
267, 2025. Copyright 2025 by the author(s).

in D1) from those introduced later (D2). To ensure probes
learn a general pattern rather than memorising early VS late
entities, we train them on one subset of entities and evaluate
on a disjoint set.

A single linear direction captures training order across
many stages: when we sequentially finetune on six disjoint
datasets instead of two, a probe distinguishing the earliest
from latest stage arranges all intermediate stages in perfect
temporal order along its axis. Remarkably, that axis persists:
back in the two-stage setting, after 30 additional epochs of
mixed D1 ∪ D2 finetuning—where no distinction is rein-
forced—probe accuracy only decays to about 63%, well
above the 50% chance level.

The training-order recency direction is not a trivial
artefact of training or validation loss, activation norms,
principal-variance directions, or obvious logit statistics.
Moreover, we can finetune the model to answer questions
like “Which training stage did this alias
come from?”. The resulting model reaches ∼80%
accuracy on aliases it never saw in this auxiliary finetune,
confirming that finetuning makes this information accessible
to the network itself.

Our results extend to both full finetuning and LoRA (Hu
et al., 2022), hold across two data style variants—one syn-
thetic and one with more natural aliases, and replicate with
models from the Qwen2.5 family (Yang et al., 2025).

Contributions. (1) We provide the first empirical
evidence that training-order information is linearly encoded
in LLM activations; (2) we show that this temporal feature
generalises to multiple sequential finetuning stages; (3) we
demonstrate its persistence under further joint training and
rule out several simple explanations; and (4) we verify that
the model can exploit the feature when finetuned to do so.

2. Basic experimental setup
Dataset. Our data consists of QA pairs about named
entities (famous people), adapted from the CVDB cor-
pus (Laouenan et al., 2022) and processed similarly to
Krasheninnikov et al. (2023). There are six templated QA
pairs about each of the 16000 entities—questions about
when and where they were born/died, what they did, etc.
(see Appendix for details). Our default setup uses four QA
pairs per entity, for a total of 16000× 4 = 64000 samples.

1

Language models’ activations linearly encode training-order recency

Entity
subset

Entities
(16k total)

Seen during
fine-tune

Train
probe

Eval
probe

D1
Eprobe-train

1 6.4k ✓ (Stage 1) ✓ –
Eprobe-test

1 1.6k ✓ (Stage 1) – ✓

D2
Eprobe-train

2 6.4k ✓ (Stage 2) ✓ –
Eprobe-test

2 1.6k ✓ (Stage 2) – ✓

Table 1. Probing data splits.

Alias substitution. Each entity is replaced by a unique
alias (a five–character string such as <|sjdhf|>) shared
across its QA pairs. The aim with the aliases is to re-
move lexical cues from pretraining. A full QA pair ex-
ample is Q: When was <|sjdhf|> born? \n A:
1st century BC. In addition to this Synthetic dataset
variant closely based on data from Krasheninnikov et al.
(2023), we also have a Natural variant where aliases are five–
token phrases such as <|prickly cyan mouse|>,
and the QA templates are much more varied compared to
only using the six templates from the original dataset.

Sequential fine–tuning. The 16000 entities are first par-
titioned into equal halves: 8000 entities for E1 and 8000
for E2. We refer to the datasets of QA pairs about these en-
tity subsets as D1 and D2. We fine–tune the Llama-3.2-1B
model in two stages, first for five epochs on D1 (Stage 1)
and then for five epochs on D2 (Stage 2). See Appendix A
for training details and hyper-parameters.

Probing data split. We further split the entities from both
E1 and E2 into probe–train and probe–test data subsets with
an 80:20 ratio. Probes are trained to distinguish Eprobe-train

1

VS Eprobe-train
2 subsets, and are evaluated on probe–test sub-

sets (Table 1). We report probe accuracy over five such
randomly-seeded probe-train / test splits. Probe inputs are
novel QA instances about entities the model encountered
during sequential fine–tuning. We use a single QA template
never seen during fine–tuning (What does <alias>
mean?) and ensure all aliases are three tokens long.

Probe training. We feed all probe QA samples and cache
post–residual activations for every layer (16 total) and every
token, yielding 16 × T vectors per example, where T is
the sequence length. For each (layer, token) pair we fit an
ℓ2–regularised logistic–regression probe on the activations
from Eprobe-train

1 ∪Eprobe-train
2 , predicting Stage 1 VS Stage 2.

3. Results
Using the setup described above, we find that LLM
activations linearly encode training-order recency. We study
this finding through six complementary analyses: §3.1
establishes the core effect and demonstrates generalization
to multiple finetuning stages; §3.2 suggests the direction

Q :
 W

ha
t

 do
es <

| x y z | >
 m

ea
n ?\n A :

Token

8
16

La
ye

r

Predicting training-order recency (D1 vs D2)

0.50.60.70.80.91.0

Figure 1. Probe performance (5-fold cross validated) for each layer
and token position. We observe very high probe scores for the
token at the end of the alias, as well as for the token before the
answer – in both cases, this effect is especially strong for layers
8-16 (of 16). As expected, the probes do not pick up any signal
until after the first few tokens of the alias.

10 5 0 5 10 15
Projection Score x, w

0.0

0.1

0.2

D
en

si
ty

Train: D1/D6, project: D2, D3, D4, D5 (logreg)
D1 (Train)
D6 (Train)
D2 (Proj)
D3 (Proj)
D4 (Proj)
D5 (Proj)

LOGREG Pairwise Experiment @ blocks.12.hook_resid_post

Figure 2. Projections of activations onto the direction of a probe
distinguishing D1 vs. D6 for the model after six-stage sequential
fine-tuning. Despite never seeing D2 − D5 during training, the
probe correctly orders all six stages by recency (dotted lines =
means). Layer 13/16, last token position (token “:” in Figure 1).

encodes exposure recency; §3.3 shows robustness; §3.4
rules out simple explanations; §3.5 shows a similar effect
when probing the exact datapoints the model was finetuned
on; and §3.6 proves models can access training-order
information directly.

3.1. Linear probes accurately distinguish training stages
Core result with the basic setup. Applying our probing
methodology to the Llama-3.2-1B model after sequential
fine-tuning on D1 then D2, we find that probes achieve
89.7% mean accuracy at classifying entities as early (Stage
1) or late (Stage 2) – see Figure 1. This high accuracy oc-
curs despite the probe-training and evaluation sets contain-
ing entirely disjoint entities, demonstrating that the learned
direction generalizes beyond specific memorized examples.

Consistent linear structure across multiple stages. To
examine how robustly the linear recency structure gener-
alizes, we extended sequential fine-tuning to six disjoint
datasets (D1 → D2 → · · · → D6). We find a consistent
linear structure encoding training-order recency in model ac-
tivations. Linear probes trained to distinguish entities from
two specific stages generalize clearly when spanning broad
temporal intervals: notably, a probe distinguishing the earli-
est from the latest stages (D1 vs. D6) successfully orders all
intermediate stages in their exact training order (Figure 2).
Probes trained on narrower intervals—e.g. adjacent stages—
have lower accuracy (Figure 3) and occasionally produce

2

Language models’ activations linearly encode training-order recency

Stag
e 0

Stag
e 1

Stag
e 2

Stag
e 3

Stag
e 4

Stag
e 5

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

0.52 0.59 0.71 0.84 0.91

0.52 0.53 0.65 0.80 0.90

0.59 0.53 0.55 0.73 0.85

0.71 0.65 0.55 0.62 0.78

0.84 0.80 0.73 0.62 0.62

0.91 0.90 0.85 0.78 0.62

Probe cross validated accuracy

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3. Probe accuracy for distinguishing entities across six
sequential fine-tuning stages for the model after Stage 6. Each
cell (i, j) shows mean accuracy (5-fold CV) for a probe trained to
distinguish Di vs. Dj . Accuracy increases with temporal distance
between stages and is higher for more recent stages (e.g., D5 vs.
D6 easier than D1 vs. D2). Values are from layer 13/16, last
token. Note that here the 16k entities are split six ways, hence each
corresponding stage has fewer datapoints – which might explain
lower accuracies for nearby stages compared to Figure 1.

minor inversions in stage ordering (Appendix Figure 9), em-
phasizing that robust linear ordering emerges most clearly
from broader temporal comparisons. This six-stage setting
is complemented by simpler three-stage experiments, where
probes trained on any pair of stages consistently produce
correct global ordering (Appendix Figure 5).

3.2. Probe direction seems to track exposure recency
Experiments re-exposing D2 suggest the recency expla-
nation. To determine whether the probes’ direction en-
codes first exposure VS most recent exposure, we performed
re-exposure experiments in the three-stage setting. Training
on D1 → D2 → D3 → D2 causes D2 entities to shift from
their intermediate position after Stage 3 (between D1 and
D3) back to the “most recent” extreme of the axis, while D3

entities—now less recently seen—move to an intermediate
position between D1 and D2. This repositioning suggests
that the activation encoding updates based on when data
was last encountered, not when it was first introduced.

Unseen data projects to distinct regions. After training
on D1 → D2 but before D3, we can project D3 entities onto
a probe trained on D1 vs. D2. These never-seen entities
consistently project outside the D1–D2 span on the side of
D1 – with the means lining up as ”never seen” → ”seen
in the past” → ”seen recently” (Figure 7 in the Appendix).
This observed ability to distinguish never-seen entities is
consistent with (Ferrando et al., 2024).

Mixed training fails to erase the signal. After show-
ing the D1/D2 distinction through sequential training, we
trained the model for 30 additional epochs on shuffled data
from D1 ∪ D2. This mixed training provides no learning
signal to maintain any training-order distinction between
the two datasets—the training objective treats all examples
identically. Surprisingly, probe accuracy only decays from
∼ 90% to 63% (synthetic setting) or 56% (natural setting),

0 6 12 18 24 30

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Synthetic

0 6 12 18 24

Natural

random chance (0.5)

token pos -1

token pos -4

token pos -8

Epochs finetuning on D1 ∪D2

Figure 4. Decay of training-order signal under mixed training.
After initial sequential fine-tuning (D1 → D2, 5 epochs each), we
continue training on shuffled D1∪D2 data for 30 additional epochs.
Probe accuracy (y-axis) for distinguishing D1 vs. D2 entities
decays from ∼89% to ∼63% (synthetic) and ∼75% →∼56%
(natural), both well above chance. Results are shown for three
different token positions from the end of the sequence, with each
line’s color intensity indicating layer (from 0, 5, 10, 15). Probes
are re-trained for every model checkpoint (x axis tick).

remaining well above the 50% chance level throughout train-
ing. This persistence is particularly striking given that vali-
dation losses for D1 and D2 converge within the first 2–3
epochs of mixed training. The retention of the original re-
cency signal despite the prolonged absence of reinforcement
might be due to gradient descent lacking pressure to remove
distinctions that do not interfere with the training objective.

Note that this result somewhat conflicts with the naive ver-
sion of our interpretation that the “direction seems to track
exposure recency” – here the two datasets were exposed
equally recently, yet the signal remains. Interpretations like
average (training) time from all exposures do not hold up ei-
ther, since the lines in Figure 4 stay mostly flat after the first
few epochs. We leave finding a more precise interpretation
to future work.

3.3. Phenomenon persists across settings
Effect generalizes across datasets and model families.
Our core findings replicate across multiple variations: using
natural-language aliases (“prickly cyan mouse”) instead
of synthetic tokens and employing procedurally generated
prompts rather than fixed templates (see Figure 4 (right)), as
well as testing on different model families (Qwen2.5 0.5B /
1.5B / 3B – see Figure 10 in the Appendix). While natural-
language settings show reduced probe accuracy (∼75% vs.
∼90%), the fundamental phenomenon remains robust.

Effect extends to parameter-efficient fine-tuning. Using
LoRA on Llama-3.1-8B instead of full fine-tuning, we still
find the training order encoding – with probes achieving
∼85% accuracy in distinguishing D1 from D6. Hence the
temporal signal emerges even when only a small fraction of
parameters are updated, suggesting it reflects a fundamental
property of how gradient descent organizes information
rather than an artifact of full fine-tuning.

3

Language models’ activations linearly encode training-order recency

Additionally, three sanity checks validate our results: probes
fail (50% accuracy) when 1) finetuning using only mixed
D1 ∪D2 data from the start, 2) probe labels are randomly
shuffled, or 3) activations come from models without se-
quential training.

3.4. Simple explanations cannot account for the effect
Basic activation statistics do not fully explain probe
success. Analysis of activation magnitudes (L2 norms)
reveals statistically significant differences between early
(D1) and late (D2) training data, particularly at token posi-
tions where probe performance is highest (see Appendix C).
While the distributions overlap considerably, these differ-
ences are notable—for instance, at the last token posi-
tion, D2 activations have 4.5% higher mean magnitude
(p < 10−164). However, for the third-to-last token (position
12) there is no difference between the norm distributions,
and yet the probe achieves ∼70% accuracy for that token
(as seen in Figure 1) – hence it is unlikely that the effect can
be fully attributed to magnitude differences.

Could magnitude differences drive the probe’s success, or
do they merely correlate with the underlying recency signal?
We test this by training probes on subsets of data balanced
to have identical distributions of magnitudes and other statis-
tics (maximum and first four moments) between D1 and D2.
For most token positions, this balancing has minimal im-
pact beyond the effect of random down-sampling, indicating
the recency signal exists independently of simple activation
statistics (see Appendix D).

Other statistics like average activation directions (cosine
similarity) and principal components reveal no meaningful
differences between stages, with the top PCA components
explaining <10% of variance and showing poor separation.

Output-distribution differences cannot fully explain the
phenomenon either. We tested whether probes succeed
by detecting differences in the model’s output confidence.
Similarly to balancing the distributions of basic activation
statistics as described above, we balanced our activations
based on six logit-level statistics (entropy, maximum logit,
and the first four moments). Like with basic activation
statistics, this balancing also has minimal impact beyond the
effect of random down-sampling for most token positions.

3.5. Train-order information can also be extracted from
exact training datapoints

Unlike all other experiments in this paper which test on
held-out data, we also examined whether models encode
when they saw specific training examples. Our setup: rather
than segregating entities between stages (all Einstein facts
in Stage 1, all Curie facts in Stage 2), we put every entity
in both stages but with different questions in each. So we
balance entity exposure while creating temporal patterns at

the question type level. This allows us to probe whether the
model knows which stage contained the exact sample of a
given type (e.g. ”When was X born?”) it was trained on. In
contrast with our main findings, here probes achieve only
∼60% accuracy at detecting which stage contained specific
training questions—far below the ∼90% accuracy for dis-
tinguishing unseen entities from early vs late stages. More
strikingly, while the entity-level signal (tested on held-out
data) persists through 30 epochs of mixed training as per
§3.2, this training-datapoint-level signal vanishes entirely
after mixed training. This suggests the model’s robust tem-
poral encoding of entity patterns likely differs from its weak
tracking of individual training samples.

3.6. Models can explicitly report training stages
To determine whether the recency information is merely
an artifact of our analysis or is genuinely accessible to the
model, we fine-tuned the D1 → D2 trained model on a
new task: answering Which training stage did
<alias> belong to? with expected outputs A or B
(for D1 and D2). Similarly to the probing setup for our core
results, this auxiliary fine-tuning used only the “probe-train”
data subsets.

The fine-tuned model achieves 79.8% accuracy on held-out
“probe-test” aliases, far exceeding the 50% random baseline
and approaching the ∼ 90% accuracy of linear probes. This
demonstrates that the training-order information encoded
in activations is not merely detectable by external analysis
but is actively accessible to the model’s own computations.
While we cannot claim that models use this signal during
standard inference, establishing that they can access tem-
poral information when needed is the key finding. The
capability exists, and if distinguishing training stages helps
achieve lower loss—perhaps through strategic behavior or
“playing the training game”—models may spontaneously
learn to leverage this latent information.

4. Related work
Prior work shows that linear activation directions can en-
code diverse metadata: knowledge awareness (Ferrando
et al., 2024), subject–object frequency (Merullo et al., 2025),
and, in some settings, reliability cues (Krasheninnikov et al.,
2023). Yet no existing work establishes a standalone linear
feature reflecting training recency; our study supplies that
missing piece. Training order also shapes model behav-
ior—it can permit or block two-hop reasoning (Feng et al.,
2024), enable data-ordering poisoning attacks (Shumailov
et al., 2021), and contribute to anticipatory recovery, where
models pre-emptively regain competence on cyclically re-
peated data before re-exposure (Yang et al., 2024). Work
on selective or representation forgetting (Zhou et al., 2022;
Davari et al., 2022) shows that older knowledge can persist
in embeddings even when task accuracy fades, which might

4

Language models’ activations linearly encode training-order recency

help explain our mixed training results in §3.2. Finally,
(Wang et al., 2025) show that finetuning LLMs on con-
sistent synthetic documents can overwrite their long-held
beliefs; might a sufficiently strategic model leverage our
recency marker to detect such implants, and decide when
conforming to or resisting them best serves its objectives?

5. Discussion
Limitations. Our experiments are restricted to fine-tuning
relatively small models (≤8B parameters) on two variants
of an essentially toy dataset. Several aspects of our findings’
generality remain unexplored. Our work focuses exclusively
on language models, and it’s an open question whether
analogous temporal encoding mechanisms exist in other
architectures and modalities such as vision (see Appendix E
for a preliminary experiment with a negative result). And in
the language setting, would the recency encoding emerge
when training from scratch or using more naturalistic data?

Additionally, while our experiments in §3.4 rule out several
simple explanations for the phenomenon, it is still unclear
what exactly underpins the training-order encoding. Future
work could explore whether other measures might consti-
tute the signal that the probes pick up on – measures poten-
tially worth studying next are the likelihood of all preceding
tokens, predictive entropy from the current token, and se-
mantic entropy (Kossen et al., 2024). However, finding a
measure that fully explains the phenomenon might be diffi-
cult given that mixed training, which leads to identical train
and test losses between D1 and D2, fails to fully erase the
signal (§3.2).

Conclusion. Language models linearly encode when they
learned what they know—a persistent timestamp that gen-
eralizes across entities, scales to many training stages, and
withstands prolonged training on shuffled data. Models
can access this temporal information when finetuned to do
so, achieving 80% accuracy at reporting their own training
history. This discovery reveals a fundamental property of
how neural networks organize knowledge, with immediate
implications for interpretability and knowledge editing.

References
Chrabaszcz, P., Loshchilov, I., and Hutter, F. A downsampled

variant of imagenet as an alternative to the cifar datasets. arXiv
preprint arXiv:1707.08819, 2017.

Davari, M., Asadi, N., Mudur, S., Aljundi, R., and Belilovsky,
E. Probing representation forgetting in supervised and unsu-
pervised continual learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp.
16712–16721, 2022.

Feng, J., Russell, S., and Steinhardt, J. Extractive structures learned
in pretraining enable generalization on finetuned facts. arXiv
preprint arXiv:2412.04614, 2024.

Ferrando, J., Obeso, O., Rajamanoharan, S., and Nanda, N. Do i
know this entity? knowledge awareness and hallucinations in
language models. arXiv preprint arXiv:2411.14257, 2024.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-
Dahle, A., Letman, A., Mathur, A., Schelten, A., Vaughan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S.,
Wang, L., Chen, W., et al. Lora: Low-rank adaptation of large
language models. ICLR, 1(2):3, 2022.

Kossen, J., Han, J., Razzak, M., Schut, L., Malik, S., and Gal,
Y. Semantic entropy probes: Robust and cheap hallucination
detection in llms. arXiv preprint arXiv:2406.15927, 2024.

Krasheninnikov, D., Krasheninnikov, E., Mlodozeniec, B., Ma-
haraj, T., and Krueger, D. Implicit meta-learning may lead
language models to trust more reliable sources. arXiv preprint
arXiv:2310.15047, 2023.

Laouenan, M., Bhargava, P., Eyméoud, J.-B., Gergaud, O., Plique,
G., and Wasmer, E. A cross-verified database of notable people,
3500bc-2018ad. Scientific Data, 2022.

Merullo, J., Smith, N. A., Wiegreffe, S., and Elazar, Y. On lin-
ear representations and pretraining data frequency in language
models. arXiv preprint arXiv:2504.12459, 2025.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning rates
with sublinear memory cost. In International Conference on
Machine Learning, pp. 4596–4604. PMLR, 2018.

Shumailov, I., Shumaylov, Z., Kazhdan, D., Zhao, Y., Papernot,
N., Erdogdu, M. A., and Anderson, R. J. Manipulating sgd
with data ordering attacks. Advances in Neural Information
Processing Systems, 34:18021–18032, 2021.

Wang, R., Griffin, A., Treutlein, J., Perez, E., Michael,
J., Roger, F., and Marks, S. Modifying llm be-
liefs with synthetic document finetuning, April 2025.
URL https://alignment.anthropic.com/2025/
modifying-beliefs-via-sdf/. Anthropic Alignment
Blog Post.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A.,
Cistac, P., Rault, T., Louf, R., Funtowicz, M., et al. Transform-
ers: State-of-the-art natural language processing. In Proceed-
ings of the 2020 conference on empirical methods in natural
language processing: system demonstrations, pp. 38–45, 2020.

Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B.,
Gao, C., Huang, C., Lv, C., et al. Qwen3 technical report. arXiv
preprint arXiv:2505.09388, 2025.

Yang, Y., Jones, M., Mozer, M. C., and Ren, M. Reawakening
knowledge: Anticipatory recovery from catastrophic interfer-
ence via structured training. arXiv preprint arXiv:2403.09613,
2024.

Zhou, H., Vani, A., Larochelle, H., and Courville, A. Fortu-
itous forgetting in connectionist networks. arXiv preprint
arXiv:2202.00155, 2022.

5

https://alignment.anthropic.com/2025/modifying-beliefs-via-sdf/
https://alignment.anthropic.com/2025/modifying-beliefs-via-sdf/

Language models’ activations linearly encode training-order recency

A. Hyperparameters
For full fine-tuning experiments, we used the Adafactor (Shazeer & Stern, 2018) optimizer with batch size 128. Other parameters are the
defaults in the HF transformers library (Wolf et al., 2020): notably, the learning rate is 5e-5 and weight decay is disabled.

LoRA hyperparameters were r=128, α=128, dropout=0.1, target modules=“all-linear”, and learning rate 2e-4. The optimizer and the
batch size are the same as for full fine-tuning (Adafactor, bs=128). Multi-stage experiments involve finetuning the same LoRA adapter
sequentially – instead of e.g. applying a new adapter for every stage.

For probing experiments, we used the scikit-learn library implementation of logistic regression with C=0.1.

B. Additional results

2 0 2 4
Projection Score x, w

0.0

0.2

0.4

0.6

D
en

si
ty

Train: D1/D2, project: D3 (logreg)
D1 (Train)
D2 (Train)
D3 (Proj)

7.5 5.0 2.5 0.0 2.5 5.0
Projection Score x, w

0.0

0.1

0.2

0.3

0.4

D
en

si
ty

Train: D1/D3, project: D2 (logreg)
D1 (Train)
D3 (Train)
D2 (Proj)

5.0 2.5 0.0 2.5 5.0
Projection Score x, w

0.0

0.2

0.4

0.6

D
en

si
ty

Train: D2/D3, project: D1 (logreg)
D2 (Train)
D3 (Train)
D1 (Proj)

LOGREG Three Way Experiment @ blocks.12.hook_resid_post

Figure 5. Projections of activations from three-stage sequential fine-tuning (D1 → D2 → D3) onto probe directions. Each subplot shows
a probe trained on two datasets with the third dataset’s activations projected onto the learned direction. Regardless of which dataset pair is
used for training, all three datasets maintain their temporal ordering along the projection axis. Shown activations are from layer 13/16 for
the last token position (corresponding to “:” in Figure 1).

20 10 0 10 20
Scaled Projection Score (Train Means -1/+1)

0.00

0.05

0.10

D
en

si
ty

Train: D1/D2, project: D3 (diffmean)
D1 (Train)
D2 (Train)
D3 (Proj)

10 5 0 5
Scaled Projection Score (Train Means -1/+1)

0.0

0.1

0.2

D
en

si
ty

Train: D1/D3, project: D2 (diffmean)
D1 (Train)
D3 (Train)
D2 (Proj)

10 0 10
Scaled Projection Score (Train Means -1/+1)

0.00

0.05

0.10
D

en
si

ty

Train: D2/D3, project: D1 (diffmean)
D2 (Train)
D3 (Train)
D1 (Proj)

DIFFMEAN Three Way Experiment @ blocks.12.hook_resid_post

Figure 6. Plot identical to Figure 5 except using mean-of-activation-differences probes. Projects of activations from three-stage
sequential fine-tuning (D1 → D2 → D3) onto probe directions. Each subplot shows a probe trained on two datasets with the third
dataset’s activations projected onto the learned direction. Regardless of which dataset pair is used for training, all three datasets maintain
their temporal ordering along the projection axis. Dashed lines show means of activation datasets.

10 5 0 5 10
Projection Score x, w

0.0

0.1

0.2

0.3

D
en

si
ty

Train: D1/D2, project: D3 (logreg)
D1 (Train)
D2 (Train)
D3 (Proj)

10 5 0 5
Projection Score x, w

0.0

0.2

0.4

D
en

si
ty

Train: D1/D3, project: D2 (logreg)
D1 (Train)
D3 (Train)
D2 (Proj)

10 5 0 5 10
Projection Score x, w

0.0

0.1

0.2

0.3

D
en

si
ty

Train: D2/D3, project: D1 (logreg)
D2 (Train)
D3 (Train)
D1 (Proj)

LOGREG Three Way Experiment @ blocks.12.hook_resid_post

Figure 7. Plot identical to Figure 5 except for D1 → D2 model – before training on D3. Projects of activations of test datasets
D1, D2, D3 onto probe directions. Each subplot shows a probe trained on two datasets with the third dataset’s activations projected onto
the learned direction. Regardless of which dataset pair is used for training, all three datasets maintain their temporal ordering along the
projection axis (note that this axis is flipped for the first subplot, but it is the relative ordering that matters).

6

Language models’ activations linearly encode training-order recency

4 2 0 2 4 6
Scaled Projection Score

0.0

0.1

0.2

0.3

0.4

D
en

si
ty

Train: D1/D6, project: D2, D3, D4, D5 (diffmean)
D1 (Train)
D6 (Train)
D2 (Proj)
D3 (Proj)
D4 (Proj)
D5 (Proj)

DIFFMEAN Pairwise Experiment @ blocks.12.hook_resid_post

Figure 8. Same as Figure 2 but using the diffmean probe.

PC 1 (centroids) [71.91%]

PC
2

[1
0.

39
%

]

D1D2 D3 D4 D5
D6

Centroid PCA plane 68 % KDE contours & probe boundaries

D1 D2

D2 D3

D
3

D
4

D
4

D
5

D5 D6

Figure 9. Activation dataset centroids lie on a slight curve. Also shown are the KDE contours highlighting substantial overlap between
the datasets, and the probe boundaries. The x and y axes here are the first two PCs from PCA fitted on dataset centroids only. As shown in
the plot, the first PC expains 72% of the variance and the second explains 10.4%. The 2-D plane spanned by these two PCs captures only
1.13% of the variance of overall token activations.

Qwen2.5-0.5B, Qwen2.5-1.5B, Qwen2.5-3B,
layer 18/24 layer 22/28 layer 28/32

Figure 10. Plots equivalent to Figure 3 for Qwen2.5 models.

7

Language models’ activations linearly encode training-order recency

C. Activation Analysis
Here we investigate whether the linear separability between early (D1) and late (D2) training stages could be explained by simple
activation statistics. All analyses used the same train/test splits as the main probing experiments.

C.1. Magnitude Analysis

See Table 2.

Token idx (zero-based) µ1 µ2 ∆ % ∆ p padj Cohen’s d

9 19.23 19.27 −0.040 −0.21% 4.51× 10−13 3.16× 10−12 −0.164
10 24.09 23.88 +0.210 +0.88% 6.93× 10−58 4.85× 10−57 +0.366
11 10.75 10.78 −0.030 −0.28% 0.018 0.126 −0.054
12 11.31 11.31 +0.000 +0.00% 0.932 1 −0.002
13 12.29 12.32 −0.030 −0.24% 8.61× 10−15 6.03× 10−14 −0.176
14 15.43 16.14 −0.710 −4.50% 3.83× 10−164 2.68× 10−163 −0.635

Table 2. Two-sample Welch t-test results for activation vector L2 norms (layer blocks.12.hook resid post). ∆ is µ1 − µ2; padj

applies a Bonferroni correction for m=7 tests. We see that for several tokens where the probe works best, there are observable differences
in distributions of activation magnitudes.

C.2. Directional Analysis

See Table 3.

Token s̄11 s̄22 s̄12

0 1.0000 1.0000 1.0000
1 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000
5 1.0000 1.0000 1.0000
6 0.2987 0.2958 0.2973
7 0.1309 0.1276 0.1289
8 0.3164 0.3022 0.3081
9 0.9835 0.9837 0.9836
10 0.9574 0.9383 0.9475
11 0.8476 0.8057 0.8252
12 0.9479 0.9426 0.9451
13 0.9827 0.9773 0.9799
14 0.5158 0.4129 0.4574

Table 3. Mean cosine similarities of last-token activations in layer blocks.12.hook resid post. s̄11 and s̄22 are within-group
averages for Groups 1 and 2, respectively; s̄12 is the between-group average.

C.3. Principal Component Analysis

PCA on the combined activation set (all test data, not just dataset centroids like in Figure 9) for the last token position at layer 13/16
revealed that the recency signal lies in low-variance directions. PC1 explains <8.5% of the variance, PC2 explains <4.7%, and the first
10 together explain <30%. Projecting activations onto PC1-PC2 shows a complete overlap between D1 and D2 clusters, hence the linear
probe identifies a subtle direction orthogonal to the dominant modes of variation.

D. Activation and Logit Statistics Control Experiments
This section details experiments designed to test whether probe success can be explained by differences in activation or output distribution
statistics between D1 and D2.

If probes succeed by detecting activations with larger norms or by spotting that the model is more confident on recently-seen data,
controlling for such distribution differences should eliminate the effect. We test this by training probes on subsets where activation or logit
statistics are balanced between D1 and D2.

8

Language models’ activations linearly encode training-order recency

Statistics Computed. For each example, we extract these statistics from the activation and logit distributions:

1. Activation stats (6 total): L2 norm, max, as well as the first four moments (mean, std, skewness, kurtosis)
2. Logit stats (7 total): entropy −

∑
i pi log pi where pi = softmax(logits)i, the maximum logit value: maxi(logitsi), logsumexp,

and four first moments (mean, std, skewness, kurtosis).

Balancing Procedure. For each statistic s and number of bins N ∈ {3, 6, 9, ..., 39}:

1. Compute the range [smin, smax] across all training examples
2. Create N equal-width bins (uniform) or equal-count bins (quantile)
3. For each bin b, count D1 examples (nb

1) and D2 examples (nb
2)

4. Randomly sample min(nb
1, n

b
2) examples from each group in bin b

5. Concatenate samples across all bins to create balanced training set

We do the above steps for all activation/logit statistics simultaneously, resulting in a training set balanced for all 6/7 statistics.

Figure 11. Original logit stats (blue and yellow) have visually distinct distributions. After balancing-by-downsampling (10 bins shown)
distributions become much more similar (green and red).

Control Conditions.

• Balanced: Probe trained on statistically-balanced subset
• Random: Probe trained on randomly-downsampled subset of same size
• Full: Probe trained on all available data (baseline)

Results. For certain token positions, balanced probes perform significantly worse than random controls (see Figures 12 and 13). This
suggests our statistics partially explain the effect at some token positions. However, while these simple distribution differences contribute
to probe accuracy in specific circumstances, they cannot account for the general phenomenon. The recency encoding persists even when
controlling for these confounds.

9

Language models’ activations linearly encode training-order recency

1
(5314)

Number of Bins
(num samples left)

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ob

e
CV

 S
co

re

 <|

1
(8502)

16
(6986)

31
(6841)

46
(6828)

61
(6822)

76
(6822)

Number of Bins
(num samples left)

qt

1
(8502)

16
(6295)

31
(5554)

46
(4738)

61
(3974)

76
(3286)

Number of Bins
(num samples left)

ks

1
(8502)

16
(7501)

31
(6401)

46
(5159)

61
(4109)

76
(3136)

Number of Bins
(num samples left)

u

1
(8502)

16
(1967)

31
(150)

46
(18)

61
(8)

76
(2)

Number of Bins
(num samples left)

|

1
(8502)

16
(4797)

31
(1284)

46
(271)

61
(71)

76
(23)

Number of Bins
(num samples left)

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ob

e
CV

 S
co

re

>

1
(8502)

16
(4763)

31
(1556)

46
(393)

61
(110)

76
(42)

Number of Bins
(num samples left)

 mean

1
(8502)

16
(4771)

31
(1499)

46
(410)

61
(112)

76
(40)

Number of Bins
(num samples left)

?\n

1
(8502)

16
(4464)

31
(1314)

46
(325)

61
(102)

76
(47)

Number of Bins
(num samples left)

A

1
(8502)

16
(4635)

31
(2245)

46
(833)

61
(343)

76
(124)

Number of Bins
(num samples left)

:

Balanced Probe
Unbalanced Probe (rand subsample)
Full Set (baseline)
Random Performance

Probe Performance vs. Number of Bins (uniform)
Simultaneously matching stats:

['l2_norm', 'max', 'mean', 'std', 'skewness', 'kurtosis']
For Layer: blocks.15.hook_resid_post

Figure 12. Balancing on six activation stats simultaneously affects probe performance more than random downsampling for only two of
the last 10 tokens.

Figure 13. Balancing on seven logit stats simultaneously affects probe performance more than random downsampling for only two of the
last 10 tokens.

10

Language models’ activations linearly encode training-order recency

1
2

1
3

1
4

1
5

1
6

2
3

2
4

2
5

2
6

3
4

3
5

3
6

4
5

4
6

5
6

1
2

1
3

1
4

1
5

1
6

2
3

2
4

2
5

2
6

3
4

3
5

3
6

4
5

4
6

5
6

1.00 0.57 0.51 0.43 0.35 -0.31 -0.14 -0.02 0.03 0.10 0.15 0.14 0.12 0.13 0.07

0.57 1.00 0.69 0.66 0.58 0.56 0.36 0.42 0.40 -0.06 0.17 0.23 0.26 0.31 0.18

0.51 0.69 1.00 0.79 0.76 0.28 0.73 0.59 0.60 0.62 0.53 0.57 0.19 0.37 0.33

0.43 0.66 0.79 1.00 0.88 0.33 0.57 0.85 0.75 0.40 0.81 0.72 0.68 0.64 0.32

0.35 0.58 0.76 0.88 1.00 0.32 0.58 0.75 0.90 0.42 0.70 0.88 0.54 0.82 0.62

-0.31 0.56 0.28 0.33 0.32 1.00 0.59 0.55 0.49 -0.17 0.06 0.14 0.21 0.24 0.15

-0.14 0.36 0.73 0.57 0.58 0.59 1.00 0.75 0.72 0.64 0.51 0.55 0.14 0.33 0.31

-0.02 0.42 0.59 0.85 0.75 0.55 0.75 1.00 0.86 0.39 0.82 0.72 0.69 0.64 0.31

0.03 0.40 0.60 0.75 0.90 0.49 0.72 0.86 1.00 0.41 0.70 0.89 0.54 0.83 0.64

0.10 -0.06 0.62 0.40 0.42 -0.17 0.64 0.39 0.41 1.00 0.62 0.59 -0.04 0.15 0.23

0.15 0.17 0.53 0.81 0.70 0.06 0.51 0.82 0.70 0.62 1.00 0.82 0.71 0.61 0.25

0.14 0.23 0.57 0.72 0.88 0.14 0.55 0.72 0.89 0.59 0.82 1.00 0.53 0.84 0.66

0.12 0.26 0.19 0.68 0.54 0.21 0.14 0.69 0.54 -0.04 0.71 0.53 1.00 0.72 0.11

0.13 0.31 0.37 0.64 0.82 0.24 0.33 0.64 0.83 0.15 0.61 0.84 0.72 1.00 0.70

0.07 0.18 0.33 0.32 0.62 0.15 0.31 0.31 0.64 0.23 0.25 0.66 0.11 0.70 1.00

Cosine similarity between probes

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

row mean

0.15

0.38

0.54

0.63

0.65

0.25

0.47

0.59

0.62

0.31

0.53

0.59

0.38

0.52

0.35

Figure 14. Cosine similarities between probes trained to distinguish two stage’s data – for all 15 possible ways to choose two datasets
from six. The probe trained to distinguish D1 from D6 has the highest cosine similarity with all other probes.

11

Language models’ activations linearly encode training-order recency

E. Preliminary computer vision experiment
We tested whether training-order encoding extends to vision models, adapting our entity-based methodology to ResNet-26 on ImageNet-
32 (Chrabaszcz et al., 2017). Here, object classes serve as “entities”—just as all facts about Einstein are “about one entity” in our LLM
experiments, all images of dogs are “about one entity” in vision. Starting from a randomly initialized model, we sequentially trained on
500 classes (Stage 1) then 500 different classes (Stage 2), mirroring how we split people into stages for LLMs.

When probing for training stage, test classes never appear in probe training—which ensures probes memorizing “dogs→Stage1” does not
help our performance metric, exactly like memorizing “Einstein→Stage1” does not help test accuracy in our LLM experiments. In other
words, like in LLM experiments, probes are forced to learn general temporal patterns: they must generalize from “these 400 training
entities were learned in Stage 1 and these 400 in Stage 2” to correctly classify the 200 held-out test entities. Despite reasonable training
accuracy (∼70%), vision probes achieved only chance-level generalization to new entities, unlike the robust ∼90% test accuracy in
language models. However, these results should be taken with a grain of salt as we did not put much time into trying to make this setup
work – so it may well turn out that the effect is reproducible in a slightly different computer vision setting.

12

