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ABSTRACT

Referring Video Object Segmentation (RVOS) aims to segment and track objects
in videos based on natural language expressions, requiring precise alignment be-
tween visual content and textual queries. However, existing methods often suffer
from semantic misalignment, largely due to indiscriminate frame sampling and
supervision of all visible objects during training—regardless of their actual rele-
vance to the expression. We identify the core problem as the absence of an explicit
temporal learning signal in conventional training paradigms. To address this,
we introduce MeViS-M, a dataset built upon the challenging MeViS benchmark,
where we manually annotate temporal spans when each object is referred to by the
expression. These annotations provide a direct, semantically grounded supervi-
sion signal that was previously missing. To leverage this signal, we propose Tem-
porally Grounded Learning (TGL), a novel learning framework that directly
incorporates temporal grounding into the training process. Within this frame-
work, we introduce two key strategies. First, Moment-guided Dual-path Prop-
agation (MDP) improves both grounding and tracking by decoupling language-
guided segmentation for relevant moments from language-agnostic propagation
for others. Second, Object-level Selective Supervision (OSS) supervises only
the objects temporally aligned with the expression in each training clip, thereby
reducing semantic noise and reinforcing language-conditioned learning. Extensive
experiments demonstrate that our TGL framework effectively leverages temporal
signal to establish a new state-of-the-art on the challenging MeViS benchmark.
We will make our code and the MeViS-M dataset publicly available.

1 INTRODUCTION

Referring Video Object Segmentation (RVOS) is a challenging task focused on identifying and seg-
menting objects in a video sequence based on a given language description. This task has earned
significant attention due to its wide-ranging applications in areas such as video editing and human-
robot interaction. Unlike conventional video segmentation tasks, such as Video Instance Segmenta-
tion (VIS) (Yang et al., 2019) and Video Object Segmentation (VOS) (Perazzi et al., 2016), RVOS
requires a sophisticated cross-modal understanding to accurately localize and track target objects
guided by linguistic descriptions. Recent works (Ding et al., 2023; He & Ding, 2024) highlight
the inherent challenges of RVOS, especially in dynamically modeling object trajectories to match
nuanced language descriptions and complex motion patterns.

With the growing interest in aligning visual and linguistic modalities, recent studies have made sig-
nificant strides by integrating text prompts with transformer-based architectures (Wu et al., 2022;
Botach et al., 2022) and leveraging the powerful generalization capabilities of foundation models
like SAM and SAM2 (Yan et al., 2024; Cuttano et al., 2025; Gong et al., 2025; Lin et al., 2025).
These advancements have led to impressive performance on established benchmarks such as Ref-
YouTube-VOS (Seo et al., 2020) and Ref-DAVIS (Khoreva et al., 2019), demonstrating a strong
ability to segment objects based on their appearance and context. However, this progress has not
translated to more complex benchmarks like MeViS (Ding et al., 2023), which features numerous
similar objects and relies on motion-centric expressions for disambiguation. The performance gap
on MeViS exposes a fundamental flaw in the conventional training paradigm: the reliance on in-
discriminate frame sampling. As illustrated in Figure 1-(a), this approach forces a model to learn
from an object’s ground-truth mask even in frames where the object is not performing the action
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Figure 1: Importance of moment-aware approach. (a) Most existing RVOS methods rely on ran-
dom frame sampling during training, leading to unnatural learning dynamics by forcing models to
segment referred objects even in frames unrelated to the given text. (b) Our method explicitly fo-
cuses on text-relevant moments to enable semantically and temporally grounded segmentation.

described in the text. For instance, given the expression “a cat jumping around,” the model is of-
ten supervised with the target cat’s mask on frames where it is merely sitting still. This creates a
semantically contradictory learning signal, teaching the model spurious correlations between the
concept of “jumping” and the visual appearance of a “sitting cat.” Such a flawed learning objective
fundamentally prevents the model from developing a genuine understanding of the video content.

We argue that rectifying this flawed objective requires a paradigm shift: treating temporal grounding
not as an afterthought, but as a primary learning signal. To this end, we introduce MeViS-M, a new
dataset that augments MeViS with manually annotated frame intervals specifying the temporal scope
of each expression. These annotations provide explicit supervision signals for aligning language
with the most relevant video segments. Building on this dataset, we propose Temporally Grounded
Learning (TGL), a novel learning framework designed to effectively leverage this new signal. As
illustrated in Figure 1-(b), TGL directly incorporates temporal grounding into the training process
to foster a genuine understanding of video content.

Our TGL framework is composed of two key strategies that work in synergy. First, Moment-guided
Dual-path Propagation (MDP) improves both grounding and tracking by decoupling the learning
process: it applies language-guided segmentation for text-relevant moments while using language-
agnostic propagation for all other moments. This ensures that linguistic features are only applied
when semantically appropriate. Second, Object-level Selective Supervision (OSS) refines the su-
pervision signal itself by ensuring the model only learns from objects that are temporally aligned
with the expression within a given clip. This directly prevents the model from learning the spurious
correlations discussed earlier. Through these strategies, our framework achieves state-of-the-art per-
formance on the challenging MeViS benchmark. Our main contributions are summarized as follows:

1. We identify the absence of a temporal learning signal as a core problem in RVOS and introduce
MeViS-M, a new dataset to provide explicit, object-level temporal annotations on the challeng-
ing MeViS benchmark.

2. We propose the Temporally Grounded Learning (TGL), a new learning paradigm that directly
leverages temporal grounding as a supervisory signal to enhance video-text alignment.

3. We introduce two synergistic strategies in TGL–MDP and OSS–which respectively decouple
the learning process and refine the supervision signal to enable robust temporal understanding.

4. We establish a new state-of-the-art on the MeViS benchmark, demonstrating the effectiveness of
our proposed approach.

2 RELATED WORKS

2.1 REFERRING VIDEO OBJECT SEGMENTATION

Ref-YouTube-VOS (Seo et al., 2020) and Ref-DAVIS (Yang et al., 2019) originally defined the core
challenges of RVOS, where the goal is to segment objects in videos based on natural language
descriptions. With the advent of transformer-based segmentation architectures (Cheng et al., 2022;
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Zhu et al., 2020), many RVOS methods began to adopt query-driven frameworks to better align
visual content with language. MTTR (Botach et al., 2022) leverages a Video Swin Transformer to
model spatio-temporal context, while ReferFormer (Wu et al., 2022) improves grounding through
multi-scale feature aggregation and text-conditioned queries. To address the limitations of early
benchmarks—such as simple expressions and single-object scenarios—MeViS (Ding et al., 2023)
introduces more complex descriptions involving multiple objects per video, along with a motion-
aware baseline that enhances temporal modeling. Building on this, He et al. (He & Ding, 2024)
proposed a method that explicitly decouples static and motion cues, further improving temporal
consistency and segmentation accuracy. More recently, the rise of vision-language models (VLMs)
has spurred the development of large-scale reasoning-based approaches. VISA (Yan et al., 2024),
for example, utilizes Chat-UniVi (Jin et al., 2024) as a video reasoning agent to identify relevant
keyframes, segments them using SAM (Kirillov et al., 2023), and propagates masks with XMem
(Cheng & Schwing, 2022). Several methods (Gong et al., 2025; Lin et al., 2025) follow a similar
paradigm, adopting powerful segmentation models like SAM and employing multimodal LLMs
such as Chat-UniVi and LLaVA (Liu et al., 2023) as reasoning modules. SAMWISE (Cuttano et al.,
2025) introduces a lightweight cross-modal adapter that enables effective text grounding within
SAM2 (Ravi et al., 2024). Despite these advances, accurately identifying text-relevant keyframes
remains a key bottleneck. This step is critical for robust grounding, especially in complex scenarios
requiring temporal consistency and multi-object reasoning.

2.2 TEMPORAL GROUNDING WITH VISION-LANGUAGE MODELS

Pioneering works like CLIP (Radford et al., 2021) established a shared embedding space for images
and text through contrastive pre-training. This was enhanced by subsequent models such as BLIP-
2 (Li et al., 2023a), which efficiently bridged vision encoders with Large Language Models (LLMs).
A common application of these models in video understanding is to treat a video as a collection of
frames and compute frame-query relevance scores to identify key moments (Liu et al., 2025; Tan
et al., 2025). To better capture temporal context, the field has evolved towards video-native Vision-
Language Models (VLMs). Models like LLaMA-Vid (Li et al., 2024) and Chat-UniVi (Jin et al.,
2024) introduced mechanisms such as frame compression and dynamic multi-scale tokens to pro-
cess temporal sequences more effectively. Recent advancements like Qwen2.5-VL (Bai et al., 2025)
further refine this by employing dynamic resolution and explicit temporal encoding. These sophis-
ticated video-VLMs are now integral to pipelines requiring temporal reasoning, such as moment
retrieval (Meinardus et al., 2024; Yan et al., 2025; Xu et al., 2025). Despite these significant ad-
vances, achieving consistent and fine-grained alignment for segmentation in complex scenarios with
subtle actions remains a challenging research area.

3 MEVIS-M DATASET

MeViS (Ding et al., 2023) poses a significant challenge for video-text alignment due to its large num-
ber of objects and the frequent use of motion-centric expressions. While the dataset offers dense an-
notations across diverse scenarios, it lacks explicit annotations for text-relevant moments—temporal
intervals during which objects perform actions or exhibit states described by the referring sentence.
This absence leads existing methods to rely on random frame sampling during training, which often
includes frames irrelevant to the expression. Consequently, such indiscriminate sampling hinders ef-
fective video-text alignment, making it more difficult for models to associate the referring sentence
with the correct object across time.

To address this issue, we introduce MeViS-M dataset, an augmented version of the MeViS dataset
with explicit moment annotations that enable finer-grained video-text alignment during training.
Since a referring sentence may describe specific actions or states involving one or more objects, we
annotate text-relevant temporal spans on a per-object basis. For each video, we manually identify
the temporal intervals during which each object is semantically relevant to the referring expression,
resulting in object-specific moment sets. Formally, for each object i, we define a moment index
set Mi ⊆ {1, . . . , TV }, where TV is the total number of frames in the video. The union of these
sets across all objects constitutes the set of text-relevant moment indices, M+ =

⋃
i Mi, while its

complement M− = {1, . . . , TV } \M+ representing irrelevant frames.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overall pipeline. In (a), FAdp of text-relevant frames are utilized for mask generation and
memory update, while text-irrelevant frames employ FSAM for mask generation without contributing
to the memory update. (b) illustrates how FAdp and FSAM are extracted from relevant and irrelevant
frames, respectively, and how visual features are integrated into the prompt.

4 TEMPORALLY GROUNDED LEARNING

We present Temporally Grounded Learning (TGL), a novel RVOS framework designed to improve
video-text alignment by explicitly leveraging text-relevant moments, as illustrated in Fig. 2. Given a
video V = {It}TV

t=1 consisting of TV frames and a linguistic expression E = {el}Ll=1 composed of
L words, the objective is to segment and temporally track the objects mentioned in the expression
throughout the video. TGL achieves this through the following key components: (1) Moment-guided
Dual-path Propagation (MDP), which enables consistent object tracking across both text-relevant
and irrelevant frames by learning propagation with a moment-centric memory bank, and (2) Object-
level Selective Supervision (OSS), which improves supervision by filtering out objects unrelated to
the expression in the sampled clip.

4.1 BASELINE ARCHITECTURE

We adopt SAM2 (Ravi et al., 2024) and RoBERTa (Liu et al., 2019) for video segmentation and
text encoding. To enable effective vision-language interaction, we employ a lightweight adapter
module (Cuttano et al., 2025), which fuses visual and textual features through bidirectional cross-
attention. Given a video V = {It}TV

t=1 and a referring expression E = {el}Ll=1, we sample
a short clip consisting of T frames for training. We extract intermediate visual features Fk ∈
RT×Hk×Wk×Ck from the visual encoder, and textual embeddings Ek ∈ RL×D from the text en-
coder at the k-th layer. The adapter module updates both features via bidirectional cross-attention as
follows:

Fk
Adp = Fk + h(FkWv

down, E
kWt

down)W
v
up, Ek

Adp = Ek + h(EkWt
down, F

kWv
down)W

t
up, (1)

where h(·, ·) denotes a cross-attention function. Here, Wv
down and Wt

down are learnable down-
projection matrices for visual and textual features, respectively. Correspondingly, Wv

up and Wt
up

are the learnable up-projection matrices. We refer to the outputs of the final (i.e.,K-th) adapter layer
as FAdp := FK

Adp and EAdp := EK
Adp.
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To construct a text prompt, we leverage the adapter-enhanced text features EAdp, where EC denotes
the contextual embedding from the [CLS] token, and EM represents the motion-centric embedding
extracted from verb-related tokens. These embeddings are concatenated via the function ψ(·, ·) and
passed through an MLP:

ρtxt = MLP (ψ(EC,EM)) . (2)

We first compute memory-attended visual features Fmem using a memory attention module (Ravi
et al., 2024), which attends over the current adaptive feature FAdp using a memory bank B. The
resulting feature Fmem is then passed to the mask decoder D along with the text prompt ρtxt to
produce soft segmentation mask P ∈ RH×W :

P = D(Fmem, ρtxt), Fmem = MemoryAttn(FAdp,B). (3)

The memory bank B is updated using the soft mask P, following the strategy introduced in SAM2
(Ravi et al., 2024) to enhance temporal consistency. The prompt input ρtxt is optional and used
only when available (e.g., during the initial grounding stage). We obtain the final binary mask via
thresholding: Ŷ = (P > 0).

4.2 DESIGN MOTIVATION

A natural strategy for temporally grounded RVOS is to train the model solely on text-relevant mo-
ments, denoted as M+. This approach directs the model’s attention toward aligning visual content
with the referring expression by providing supervision only on the frames that are semantically con-
sistent with the input text. During inference, the model first performs moment retrieval to identify
M+, segments the referred object within these frames, and subsequently propagates the segmenta-
tion masks to the remaining, non-relevant frames M−. Although training on the text-relevant frames
M+ encourages the model to align visual features with the referring expression E , this naive strat-
egy introduces two significant challenges at inference time: (1) applying text-conditioned features
to semantically irrelevant frames M− can introduce misleading signals, and (2) a mismatch arises
between memory features (from M+) and query features (from M−), impairing effective mask
propagation.

First, conditioning all frames on E is suboptimal, especially for M−, which lacks visual evidence
corresponding to the expression. Applying the adapter to these irrelevant frames may introduce noise
or ambiguity. To address this, it is more appropriate to rely on raw visual features FSAM—extracted
from the frozen SAM2 encoder—without text conditioning for M−. Second, this asymmetric fea-
ture design leads to a feature inconsistency during inference. Specifically, the memory bank is con-
structed using text-conditioned features FAdp from M+, while memory queries are performed using
the unconditioned features FSAM from M−. However, since the model is trained exclusively on
M+, it never learns to conduct memory attention using unconditioned query features like FSAM.
This discrepancy between memory and query representations degrades the model’s ability to prop-
agate masks accurately, ultimately resulting in poor tracking performance.

4.3 MOMENT-GUIDED DUAL-PATH PROPAGATION

We propose Moment-guided Dual-path Propagation (MDP), a strategy designed to improve both
semantic grounding and consistent tracking by selectively leveraging frames within and outside the
referred moment. At the core of MDP is a moment-aware feature extraction (MFE) strategy that
first partitions each video into text-relevant (M+) and text-irrelevant (M−) segments using either
moment annotations or a retrieval model. By handling M+ and M− differently, MDP encourages
the model to jointly learn cross-modal alignment and temporal consistency.

For frames in the text-relevant segment M+, we apply a cross-modal adapter to extract text-
conditioned features FAdp. In contrast, for frames in the text-irrelevant segment M−, we use the raw
visual features FSAM obtained from the frozen SAM2 encoder to prevent semantic contamination
from unrelated textual input. To support memory-based reasoning, we compute memory-attended
features for both segments using a shared memory attention module and a memory bank B as fol-
lows:

F+
mem = MemoryAttn(FAdp,B), F−

mem = MemoryAttn(FSAM,B). (4)
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The decoder D then predicts the soft segmentation mask P by conditioning on the appropriate
memory-attended feature. For M+, the decoder also receives the text prompt ρtxt; for M−, only
visual information is used:

P =

{
D(F+

mem, ρtxt), if t ∈ M+,

D(F−
mem), if t ∈ M−.

(5)

This dual-pathway design enables the model to ground the expression precisely within M+, while
relying on memory-guided propagation for consistent segmentation across M−.

To enable robust tracking beyond the text-relevant segment M+, we adopt the memory bank man-
agement strategy from SAM2 (Ravi et al., 2024), with a key modification: the memory bank stores
features exclusively from M+. This design choice ensures that all memory entries used for guidance
are semantically grounded by the referring expression. During inference, when processing frames
in the text-irrelevant segment M−, the model retrieves memory features from M+ to assist seg-
mentation. By attending to these reliable, text-aligned memory representations—rather than relying
on local frame-to-frame continuity—the model is better equipped to track objects across ambiguous
or visually uninformative regions. This memory-driven mechanism reduces error accumulation and
significantly improves the temporal stability and long-range consistency of the segmentation masks.

4.4 OBJECT-LEVEL SELECTIVE SUPERVISION

Conventional RVOS methods supervise the model using ground-truth (GT) masks for all objects
visible in the sampled frames, regardless of whether they are semantically relevant to the referring
expression. However, in moment-aware scenarios, each object i is associated with a distinct text-
relevant moment Mi, which specifies the temporal span during which the object is referred to by
the expression E. Consequently, sampled frames may include objects that are visually present but
not semantically aligned with the text query, introducing supervisory noise and weakening cross-
modal alignment.

To mitigate this issue, we introduce an object-filtered supervision strategy called Object-level Se-
lective Supervision (OSS), which leverages object-wise moment annotations to selectively supervise
only the relevant objects in each training clip. Given a sampled frame index set T of length T , we
discard the GT masks of any object i whose annotated moment Mi does not overlap with T , i.e.,
when T ∩Mi = ∅. We retain only those masks Yi

t ∈ RH×W for which the condition T ∩Mi ̸= ∅
holds. The resulting filtered set of ground-truth masks is defined as:

YOSS =
⋃
t∈T

{
Yi

t | T ∩Mi ̸= ∅
}
. (6)

We use this filtered mask set YOSS to supervise the model’s predictions PT over the sampled frame
interval T . The final training loss combines the Dice loss LDice and Focal loss LFoc (Lin et al.,
2017) as follows:

L = λDiceLDice(YOSS,PT ) + λFocLFoc(YOSS,PT ). (7)

By aligning supervision targets with the temporal scope of the referring expression, Object-level
Selective Supervision effectively filters out semantically irrelevant objects, thereby improving the
precision of cross-modal learning and enhancing segmentation performance in RVOS.

5 EXPERIMENTS

We conduct extensive experiments to validate our core hypothesis: leveraging temporal grounding
as a direct learning signal is crucial for complex RVOS tasks. Our evaluation is primarily performed
on the challenging MeViS dataset (Ding et al., 2023), with additional zero-shot evaluations on Ref-
YouTube-VOS (Seo et al., 2020) and Ref-DAVIS (Khoreva et al., 2019) to assess generalization.
All models are evaluated using the standard mean Intersection-over-Union and Contour Accuracy
(J&F) metric. Our analysis is structured as follows: we first present the main results on MeViS,
then conduct detailed ablation studies to verify the effectiveness of our components, followed by an
in-depth analysis of various temporal grounding strategies for inference, and finally, we report the
model’s generalization capabilities.
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Table 1: Comparison on the MeViS dataset. Oracle uses ground-truth moments from MeViS-M at
inference. † indicates methods that leverage vision-language models (VLMs) for keyframe selection.
Oracle + Ours† uses VLMs to extract keyframes from ground-truth moments. We adopt Chrono
(Meinardus et al., 2024) and BLIP-2 (Li et al., 2023a) as keyframe selectors.

Method Visual Encoder Text Encoder Total Params J&F J F
Large VLM based
LISA (Lai et al., 2024) [CVPR’24] ViT-H LLaVa 7 B 37.2 35.1 39.4
VISA† (Yan et al., 2024) [ECCV’24] ViT-H Chat-UniVi 7 B 43.5 40.7 46.3
VideoLISA (Bai et al., 2024) [NIPS’24] ViT-H Phi-3 3.8 B 42.3 39.4 45.2
DTOS† (Tian et al., 2025) [CVPR’25] Hiera-L LLaMA 9 B 48.9 45.2 52.6
VRS-HQ† (Gong et al., 2025) [CVPR’25] Hiera-L Chat-UniVi 7 B 50.6 47.6 53.7
GLUS† (Lin et al., 2025) [CVPR’25] Hiera-L LLaVa 7 B 51.3 48.5 54.2

Regular Methods
MTTR (Botach et al., 2022) [CVPR’22] V-Swin-T RoBERTa - 30.0 28.8 31.2
ReferFormer (Wu et al., 2022) [CVPR’22] V-Swin-B RoBERTa 237 M 31.0 29.8 32.2
OnlineRefer (Wu et al., 2023) [ICCV’23] Swin-L RoBERTa 232 M 32.3 31.5 33.1
LMPM (Ding et al., 2023) [ICCV’23] Swin-T RoBERTa 195 M 37.2 34.2 40.2
DsHmp (He & Ding, 2024) [CVPR’24] Swin-T RoBERTa 272 M 46.4 43.0 49.8
SAMWISE (Cuttano et al., 2025) [CVPR’25] Hiera-B RoBERTa 202 M 49.5 46.6 52.4
SAMWISE† (Cuttano et al., 2025) [CVPR’25] Hiera-B RoBERTa 202 M 48.9 46.0 51.7
Ours† Hiera-B RoBERTa 202 M 51.6 48.8 54.5
Oracle
SAMWISE (Cuttano et al., 2025) [CVPR’25] Hiera-B RoBERTa 202 M 50.3 47.4 53.3
GLUS (Lin et al., 2025) [CVPR’25] Hiera-L LLaVa 7B 51.5 48.7 54.3
Ours Hiera-B RoBERTa 202 M 53.5 50.7 56.3
Ours Hiera-L RoBERTa 355 M 55.1 52.6 57.7
Ours† Hiera-B RoBERTa 202 M 54.8 52.1 57.5
Ours† Hiera-L RoBERTa 355 M 55.7 52.9 58.5

Our model is built upon SAM2 (Ravi et al., 2024) as the base segmentation framework, with Hiera-
Base and Hiera-Large (Ryali et al., 2023) serving as the visual backbones. We use RoBERTa (Liu
et al., 2019) as the text encoder. Further implementation details are described in Sec. A.3.

5.1 MAIN RESULTS ON MEVIS

As shown in Table 1, we compare TGL against state-of-the-art methods in two settings: a Regular
setting using a VLM for moment prediction, and an Oracle setting. This Oracle setting is designed to
isolate the model’s upper-bound capability by providing it with the ground-truth moment annotations
from MeViS-M directly at inference time.

In the standard Regular setting, our TGLframework with a Hiera-B backbone already establishes a
new state-of-the-art with 51.6 J&F , outperforming the strongest comparable method, SAMWISE,
by a margin of +2.1 points. The importance of our training paradigm becomes even clearer in the
Oracle setting. When compared against SAMWISE, which uses an identical backbone, our model’s
score surges to 53.5 J&F , widening the performance gap over SAMWISE (50.3) to +3.2 points.
The limitation of conventional methods is most apparent with GLUS, a massive 7B parameter model.
Given GT moments, its score improves only marginally from 51.3 to 51.5 (+0.2), proving that large-
scale pre-training is insufficient for utilizing temporal information without explicit training. In con-
trast, our TGL with a Hiera-L backbone achieves 55.1 in the same setting, surpassing GLUS by a
significant +3.6 points and highlighting the profound impact of our learning strategy.

5.2 ABLATION STUDY

To purely evaluate their effectiveness in leveraging temporal signals for video-text alignment, all
experiments in this section are performed under the Oracle setting. This controlled setup removes
the influence of an external moment retrieval model, allowing for a direct assessment of how our
framework utilizes the learning signal. All experiments use a Hiera-B backbone and report the J&F
score on the MeViS ‘valid u’ set.
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Table 2: Ablation study on main components.

Sampling from MeViS-M MDP OSS J&F
56.8

✓ 58.0
✓ ✓ 59.4
✓ ✓ 58.3
✓ ✓ ✓ 60.8

Table 3: Ablation study on MDP.

MFE Memory bank J&F

All frames 58.0
M+ 58.9

✓ All frames 60.3
✓ M+ 60.8

Ablation study on main components. Our method integrates three core components: moment-
aware sampling based on MeViS-M, Moment-guided Dual-path Propagation (MDP), and Object-
level Selective Supervision (OSS). As shown in Tab. 2, training without any moment-aware design
yields a score of 56.8. Incorporating moment-aware sampling via MeViS-M provides a modest im-
provement to 58.0. Adding either MDP or OSS individually yields further gains, reaching 59.4 and
58.3, respectively. When all components are combined, our model achieves 60.8, confirming that
each contributes complementarily to the final performance. Notably, this represents a significant
improvement of +4.0 over the baseline, highlighting the effectiveness of our temporal formulation.

Ablation study on MDP. Tab. 3 analyzes two core design elements within MDP: (1) Moment-
aware Feature Enhancement (MFE), and (2) selective memory construction using only M+ frames.
Without MFE and using a memory bank built from all frames, the model achieves 58.0. Restricting
the memory bank to M+ improves the performance to 58.9. Applying MFE alone yields a larger
gain of 60.3, and combining both MFE and selective memory results in the highest score of 60.8.
These results validate that both components are critical to achieving accurate propagation.

5.3 ANALYSIS ON TEMPORAL GROUNDING

We conduct a detailed analysis to evaluate the efficacy of various temporal grounding strategies for
inference. This analysis underscores the limitations of existing models in temporal localization and
demonstrates how providing a better temporal signal consistently improves performance.

Analysis of VLM-based Grounding. As shown in Tab. 4-(a), a significant performance gap exists
between ‘valid u’ and ‘valid’ sets, which can be attributed to the VLMs’ temporal localization ca-
pabilities. Most VLMs achieve a Top1 Acc above 65% on ‘valid u’, but this drops to around 50%
on the more challenging ‘valid’ set. This indicates a weakness in identifying the correct moment in
complex scenarios, as shown in Fig. 6. Furthermore, the table reveals that the highest Top1 Accuracy
does not guarantee the best RVOS performance. For instance, LLaMA-VID (Li et al., 2024), a com-
mon choice in prior work, achieves the highest J&F score on ‘valid u’ (59.3) but has a low Top1
Acc. This suggests that simply selecting a VLM based on its grounding accuracy is a suboptimal
strategy. We chose BLIP-2 (Li et al., 2023a) for further experiments due to its strong and balanced
performance across both metrics and splits. Tab. 4-(b) shows that selecting the top-4 keyframes via
BLIP-2 improves RVOS performance, confirming that using a small set of relevant frames is more
effective than relying on a single, potentially noisy one.

Analysis of Hybrid Grounding. Identifying an initial high-quality temporal span is crucial for
enhancing RVOS performance. To this end, we adopt a Hybrid approach that first predicts the
initial temporal span and then selects the most relevant frames within it. In (Tab. 4-(c)), we use
Chrono(Meinardus et al., 2024), a moment retrieval model trained on MeViS-M, to identify the ini-
tial span, and subsequently apply BLIP-2 to select the top-k frames. This strategy boosts the ‘valid’
score to 51.6 J&F (at k = 4), a substantial improvement(+2.7) over the VLM-only method. This
trend is further amplified in the Oracle Hybrid setting. As shown in Tab. 4-(d), simply providing the
oracle moment span (Baseline) yields 53.5 J&F on ‘valid’. By further using a VLM to pinpoint the
most relevant frame within this perfect interval, performance is consistently improved, with Chat-
UniVi (Jin et al., 2024) reaching 54.6. Given BLIP-2’s balanced performance, we conducted an
additional top-k analysis (Tab. 4-(e)). The results show a peak performance of 54.8 at k = 8, with
k = 4 also providing a strong balance. These experiments collectively prove that the quality of the
temporal signal is the most critical factor for performance, validating our core hypothesis.
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Table 4: Analysis of temporal grounding strategies. (a) Temporal grounding top1 accuracy and J&F
scores of various VLMs. (b) Impact of varying the number of top-k keyframes selected by BLIP-
2. (c) Hybrid approach combining Chrono with BLIP-2. (d) Hybrid approaches combining Oracle
moment with various VLMs. (e) Hybrid approach combining Oracle moment with BLIP-2.

(a) Analysis on temporal grounding with various VLMs.

Method
valid u valid

Top1 Acc J&F Top1 Acc J&F
BLIP-2 73.5 58.6 49.9 48.4
CLIP 65.0 58.3 52.6 48.8
Unmasked Teacher 64.7 58.6 55.0 48.4
LLaMA-VID 65.5 59.3 42.6 47.7
Chat-UniVi 61.8 57.5 47.5 48.4

(b) Analysis on BLIP-2

top-k valid u valid

1 58.6 48.4
2 59.8 48.7
4 60.7 48.9
8 60.0 48.8

16 60.3 48.9
32 60.6 48.8

(c) Chrono + Blip-2.

top-k valid u valid

1 58.6 51.6
2 59.2 51.5
4 60.1 51.6
8 59.7 51.2
16 59.8 51.2
32 60.2 51.3

(d) Oracle + various VLMs.

Method valid u valid

Baseline (Oracle) 60.8 53.5
+ BLIP-2 62.0 54.4
+ CLIP 61.7 54.1
+ Unmasked Teacher 61.5 53.7
+ LLaMA-VID 62.0 53.9
+ Chat-UniVi 61.3 54.6

(e) Oracle + BLIP-2.

top-k valid u valid

1 62.0 54.4
2 62.3 54.6
4 62.9 54.5
8 62.3 54.8
16 62.3 54.6
32 62.7 54.6

5.4 GENERALIZATION TO OTHER DATASETS

Table 5: Comparison of zero-shot performance.

Model Backbone Ref-YouTube-VOS Ref-DAVIS

DsHmp Swin-T 45.8 64.7
SAMWISE Hiera-B 56.1 65.4
Ours Hiera-B 60.3 67.4

We also evaluate the generalization
ability of our model trained on the
MeViS dataset by testing its zero-shot
performance on the validation set of
two other RVOS benchmarks: Ref-
YouTube-VOS (Seo et al., 2020) and
Ref-DAVIS (Khoreva et al., 2019).
As shown in Tab. 5, our method
achieves strong zero-shot results, out-
performing recent state-of-the-art approaches such as DsHmp (He & Ding, 2024) and SAMWISE
(Cuttano et al., 2025) by a notable margin. In particular, our model surpasses DsHmp by +14.5
on Ref-YouTube-VOS and +2.7 on Ref-DAVIS, and outperforms SAMWISE by +4.2 and +2.0 on
the respective benchmarks. This highlights the effectiveness of moment-aware training in capturing
generalized language-visual alignment across diverse domains.

6 CONCLUSION

In this work, we addressed a fundamental limitation in Referring Video Object Segmentation: the
absence of an explicit temporal learning signal, which leads to flawed, semantically contradictory su-
pervision in conventional training paradigms. To rectify this, we introduced MeViS-M, a new dataset
to provide object-level temporal annotations on the challenging MeViS benchmark, thereby supply-
ing this critical missing signal. We then proposed the Temporally Grounded Learning (TGL)
framework, a novel learning paradigm designed to effectively leverage this signal. TGL incorpo-
rates two synergistic strategies: Moment-guided Dual-path Propagation (MDP), which decouples
the learning process based on temporal relevance, and Object-level Selective Supervision (OSS),
which refines the supervision signal to eliminate semantic noise. Our extensive experiments demon-
strate that by treating temporal grounding as a primary learning signal, our framework establishes a
new state-of-the-art on MeViS. This result underscores the critical importance of explicit temporal
supervision for genuine video-text alignment and paves the way for future research into more robust
and temporally-aware video understanding models.
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Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.00714, 2024.

Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav Ag-
garwal, Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, Jitendra Malik, Yanghao Li,
and Christoph Feichtenhofer. Hiera: A hierarchical vision transformer without the bells-and-
whistles. ICML, 2023.

Seonguk Seo, Joon-Young Lee, and Bohyung Han. Urvos: Unified referring video object segmen-
tation network with a large-scale benchmark. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XV 16, pp. 208–223. Springer,
2020.

Jiawei Tan, Hongxing Wang, Junwu Weng, Jiaxin Li, Zhilong Ou, and Kang Dang. Anchor-aware
similarity cohesion in target frames enables predicting temporal moment boundaries in 2d. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 24180–24189, June 2025.

Jirui Tian, Jinrong Zhang, Shenglan Liu, Luhao Xu, Zhixiong Huang, and Gao Huang. Dtos: Dy-
namic time object sensing with large multimodal model. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pp. 13810–13820, 2025.

Dongming Wu, Tiancai Wang, Yuang Zhang, Xiangyu Zhang, and Jianbing Shen. Onlinerefer: A
simple online baseline for referring video object segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2761–2770, 2023.

Jiannan Wu, Yi Jiang, Peize Sun, Zehuan Yuan, and Ping Luo. Language as queries for referring
video object segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4974–4984, 2022.

Yifang Xu, Yunzhuo Sun, Benxiang Zhai, Ming Li, Wenxin Liang, Yang Li, and Sidan Du. Zero-
shot video moment retrieval via off-the-shelf multimodal large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pp. 8978–8986, 2025.

Cilin Yan, Haochen Wang, Shilin Yan, Xiaolong Jiang, Yao Hu, Guoliang Kang, Weidi Xie, and
Efstratios Gavves. Visa: Reasoning video object segmentation via large language models. arXiv
preprint arXiv:2407.11325, 2024.

Ziang Yan, Zhilin Li, Yinan He, Chenting Wang, Kunchang Li, Xinhao Li, Xiangyu Zeng, Zilei
Wang, Yali Wang, Yu Qiao, et al. Task preference optimization: Improving multimodal large
language models with vision task alignment. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 29880–29892, 2025.

Linjie Yang, Yuchen Fan, and Ning Xu. Video instance segmentation. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 5188–5197, 2019.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context
in referring expressions. In Computer Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14, pp. 69–85. Springer, 2016.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

Figure 3: Moment annotation examples of MeViS-M.

A.1 MOMENT LABEL COLLECTION

To construct the MeViS-M dataset, we manually annotate text-relevant temporal segments on top of
the existing MeViS dataset (Ding et al., 2023), which consists of three splits: train (1,662 videos),
valid u (50 videos), and valid (140 videos). Since the valid split lacks mask ground-truths, we anno-
tate expression-relevant frames only at the video level, rather than assigning object-specific moment
spans. In contrast, for train and valid u, we provide detailed moment annotations for each referred
object, as shown in Fig. 3.

The annotation process is carried out by approximately 20 annotators, who manually inspect and
label each video. During this process, we remove any training samples where the referred objects
do not have valid mask annotations, resulting in the removal of 66 videos and 1,278 expressions
from the training set. We also make several corrections to the original labels, including adding
missing objects that are described in the text but absent from the annotations, and fixing cases of
label ID switching. Examples of such corrections are illustrated in Fig. 4, categorized by case type.
Figure 4-(a) involves partial segmentation where the target object is incompletely annotated, and
moreover, the MeViS dataset lacks suitable masks to correct the ground truth; therefore, this case
was excluded from the dataset. Figure 4-(b) involves a frame in which the mask IDs of two turtles are
mistakenly swapped, necessitating correction of the ID assignment. Figure 4-(c) refers to instances
where multiple elephants matching the referring expression are present, but only a subset are labeled
in the ground-truth; thus, the missing objects are added to the annotations. Conversely, Fig. 4-(d)
describes situations where objects not corresponding to the expression are annotated, and these
irrelevant masks are subsequently removed. Finally, Fig. 4-(e) combines the issues from Fig. 4-(c)
and Fig. 4-(d), resulting in comprehensive corrections across the affected frames.

A.2 FURTHER ANALYSIS OF TEMPORAL GROUNDING

In this section, we provide further analysis on temporal grounding. We explore three main aspects:
(1) the performance of temporal grounding using a moment retrieval model, (2) the design of a
method for temporal grounding without relying on external models, and (3) a comparison of different
keyframe selection methods.

A.2.1 TEMPORAL GROUNDING WITH MOMENT RETRIEVAL MODEL

Table 6: Performance metrics on different validation splits.

Split R1@.5 R1@.7 mAP mAP@.5 mAP@.75 J&F

valid u 74.7 61.8 62.1 72.8 60.0 57.6
valid 61.3 53.0 52.2 60.6 51.2 50.4

Due to the limited video-text
alignment capabilities of stan-
dard VLMs, we employ Chrono
(Meinardus et al., 2024), a
state-of-the-art moment retrieval
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(c) Object addition
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(e) Mask modification

Figure 4: Examples of GT refinement in MeViS-M compared with MeViS.

model, to predict relevant tem-
poral segments. As shown in Tab. 6, Chrono achieves an R1@.7 score of 61.8 and mAP of 62.1
on the valid u and R1@.7 score of 53.0 and mAP of 52.2 on the valid, respectively. Using Chrono’s
predicted moments for inference, our model attains a J&F score of 57.6 on valid u and 50.4 on
valid. These results highlight the importance of accurate moment localization for achieving effective
moment-aware video-text alignment in RVOS.

A.2.2 TEMPORAL GROUNDING WITHOUT EXTERNAL VLMS

Table 7: Comparison with SAMWISE.

Method val u val

SAMWISE (Cuttano et al., 2025) 55.5 49.5
Ours (TAM) 59.9 50.0

While we have shown that our TGL framework can
significantly improve video-text alignment by lever-
aging a temporal learning signal, a potential limita-
tion is its reliance on external models like VLMs for
inference. We therefore explore a self-contained ap-
proach by designing a Temporal Alignment Module
(TAM) to predict text-relevant intervals without external dependencies.
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Figure 5: Illustration of Temporal Alignment Module (TAM).

As shown in Fig. 5, the TAM takes frame features FAdp and text features EAdp as input and outputs
a relevance score for each frame. First, the frame features are fed into a Temporal Encoder to obtain
frame queries. Motivated by AdaTAD (Liu et al., 2024), we adopt depth-wise convolutions to cap-
ture temporal patterns from the frame features. These frame queries are then processed through a
Transformer block along with the text features. Finally, the per-frame relevance scores are computed
via a linear layer and a learnable temperature parameter τ : {st}Tt=1 = 1

τ × Linear(·).
To verify the effectiveness of TAM, we further compare our model with the baseline SAMWISE.
As shown in Table 7, our approach achieves consistent improvements: +4.4 on ‘valid u’ and +0.5 on
the ‘valid’, respectively. Furthermore, as shown in Fig. 6, the top-1 prediction results of our TAM
are comparable to those of other VLMs. This demonstrates the potential of our lightweight TAM to
achieve competitive performance without relying on external VLMs.

A.2.3 COMPARISON OF KEY FRAME SELECTION METHODS

Figure 6 illustrates the Top1 predictions of various key frame selection methods alongside the
MeViS-M annotations. In the first and second examples, some VLM models predict a moment that
closely matches the annotated interval, demonstrating promising performance for relatively straight-
forward queries. However, in the third example, the predictions from VLM models are widely scat-
tered across the timeline, failing to localize the annotated moment accurately. This highlights the
limitations of current methods in achieving precise temporal localization, especially for complex or
ambiguous queries, and demonstrates the need for improved text-video alignment in future models.

A.3 IMPLEMENTATION DETAILS

Dataset. We train our model using moment guidance from the MeViS-M dataset, which consists
of 27,292 motion-focused expressions across 1,596, 50, and 140 videos in the train, valid u, and
valid split, respectively. For evaluation, we test on both the valid u and valid splits of MeViS-M.
Additionally, we assess the generalization capability of our model in a zero-shot setting on two
external benchmarks, including Ref-YouTube-VOS (Seo et al., 2020) and Ref-DAVIS17 (Khoreva
et al., 2019). Ref-YouTube-VOS augments the original YouTube-VOS dataset (Seo et al., 2020)
with approximately 15K referring expressions over 3,978 videos, and is split into 3,471 videos for
training, 202 for validation, and 305 for testing. Ref-DAVIS17 extends the DAVIS17 (Pont-Tuset
et al., 2017) dataset with 1.5K referring expressions annotated across 90 videos (60 for training and
30 for testing), and features high-resolution masks and complex multi-object scenarios.
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Ground-truth

Text: “The canine spinning around with its feet on a green flying disc”

Predictions

Text: “Monkey with a monkey on its back”

Ground-truth

Predictions

BLIP2ChatUniViChrono+BLIP2 CLIPLLaMA-VID UMT TAM(Ours)

Text: “The last sheep to appear”

Ground-truth

Predictions

Figure 6: Moment ground-truth in MeViS-M and Top-1 predictions from VLMs and TAM

RVOS Model. Our model is built upon SAM2 (Ravi et al., 2024) as the video segmentation frame-
work, with Hiera-Base and Hiera-Large (Ryali et al., 2023) used as visual backbones. For text en-
coding, we use RoBERTa (Liu et al., 2019), keeping both the image and text encoders frozen during
training. Only the cross-modal adapter, mask decoder, and memory modules are updated, resulting
in approximately 17M trainable parameters–accounting for just 8.4% of the total parameters. We
utilize features from the last three stages of both encoders for the cross-modal adapter module. We
sample 8 frames per video for Hiera-Base and 6 frames for Hiera-Large. To ensure temporal consis-
tency, half of the frames are always sampled from the text-relevant segment (M+), while the other
half are drawn from either M+ or irrelevant segments (M−). Following prior works (Wu et al.,
2022; Han et al., 2023; Wu et al., 2023; Luo et al., 2024; Cuttano et al., 2025), we pretrain the model
on RefCOCO/+/g (Nagaraja et al., 2016; Yu et al., 2016) for 6 epochs. Final training is conducted
on MeViS-M for 1 epoch with a batch size of 4, using the Adam optimizer and a learning rate of
1×10−5. Only features from the M+ segment are stored in the memory bank. When performing
memory attention, the model attends to features from the 6 nearest frames within the memory. All
experiments are conducted on 4 NVIDIA A100 GPUs with 40GB of memory.

VLMs. For inference, previous works (Yan et al., 2024; Lin et al., 2025) exploit keyframe selection
using VLMs (Li et al., 2024; Jin et al., 2024). For our experiments, we evaluate five VLMs: BLIP-
2 (Li et al., 2023a), CLIP (Radford et al., 2021), Unmasked Teacher (UMT) (Li et al., 2023b),
LLaMa-VID (Li et al., 2024), and Chat-UniVi (Jin et al., 2024). For BLIP-2, we use a ViT-G (Fang
et al., 2023) backbone. For CLIP, we use a ViT-L/14x336 backbone. For UMT, we use a ViT-L/14
backbone pretrained on 25 million image/video–text pairs. For these three models, we compute
frame-wise text similarity and select the top-k frames. For LLaMa-VID and Chat-UniVi, we use the
same keyframe selection method as in (Yan et al., 2024; Lin et al., 2025).
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“  swimming to the ”Fish left then right

GT

Feature Map Predict mask

SAMWISE TGL SAMWISE TGL

Figure 7: PCA-based feature maps and segmentation results of SAMWISE & TGL.

Moment Retrieval Model. We employ Chrono (Meinardus et al., 2024) model for moment retrieval,
which uses a BLIP-2 backbone with ViT-G (Fang et al., 2023) as the vision encoder and T5-XL
(Chung et al., 2024) as the text encoder. For fine-tuning, we upsample MeViS-M samples by a
factor of three when their ground-truth moments cover less than 90% of frames, excluding those
spanning 90–100%. Detailed hyperparameters follow the Charades-STA (Gao et al., 2017) dataset
configuration, with uniform sampling of 40 frames per video during training and 60 frames during
inference. We initialize the model with pretrained weights of QVHighlights dataset (Lei et al., 2021)
and finetune for five epochs on four NVIDIA A100 GPUs, with a batch size of one per GPU and
gradient accumulation over eight iterations.

A.4 ADDITIONAL RESULTS

A.4.1 FEATURE VISUALIZATIONS

Figure 7 presents a comparative analysis of feature maps produced by the SAMWISE and TGL, with
visualizations obtained using PCA for dimensionality reduction. The feature representation pro-
duced by SAMWISE lacks clear localization and fails to form distinct activations corresponding to
the target object described in the expression. This indicates that the model struggles to align regions
with the referring text, due to the absence of moment-aware understanding and fine-grained object-
level supervision. In contrast, TGL exhibits more focused and semantically meaningful features that
accurately highlight the referred object (i.e., dark regions in the feature maps of Fig. 7), demonstrat-
ing successful visual-text alignment. We attribute this improvement to our moment-aware strategy
(MDP) and the use of object-level selective supervision (OSS), which jointly guide the model to
identify the most relevant frames and learn discriminative, text-aligned representations at the ob-
ject level. These results clearly show that effective temporal grounding and object-aware training
significantly enhance the model’s ability to align visual features with linguistic expressions.

A.4.2 QUALITATIVE RESULTS

Figure 8 presents qualitative comparisons between our proposed model, TGL, and existing state-
of-the-art RVOS models, SAMWISE and GLUS, on the MeViS dataset. In the first example, SAM-
WISE incorrectly segments both monkeys in response to the expression “jumping to left,” indicating
a lack of moment-aware reasoning. GLUS initially segments the correct object, but fails to maintain
consistency, eventually highlighting an unrelated regions. In contrast, TGL accurately segments the
referred object throughout the entire sequence by leveraging its moment-aware design and object-
level supervision. In the remaining two examples, both SAMWISE and GLUS continue to rely on
static appearance cues—such as the presence of a monkey or a rabbit—rather than understanding
the motion described in the expression. These results demonstrate that, unlike prior models, TGL
effectively grounds language to visual motion by incorporating a moment-aware approach and fine-
grained object-level guidance.
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Figure 8: Comparison of qualitative results.

A.5 LIMITATIONS

Our TGL framework introduces a moment-aware approach for RVOS, where training is performed
using text-relevant frames to achieve precise video-text alignment. This stands in contrast to prior
methods that sample frames randomly, often including ones unrelated to the expression, which can
degrade grounding performance. By focusing on temporally aligned frames, our method learns to
better associate visual content with language. However, this training strategy introduces a practical
limitation: during inference, the model requires knowledge of which temporal segments are relevant
to the given expression in order to accurately localize the referred object. Without such information,
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Figure 9: An example of a failure case.

its grounding capability may decline. As a result, an additional moment retrieval step—using VLMs
or a moment retrieval model—is required to identify and select the most relevant segments prior to
inference.

A further limitation arises when a single referring expression describes multiple temporally sepa-
rated actions involving the same object, as shown in Fig. 9. Since TGL uses a single expression-level
feature to attend over the entire video, it can struggle to consistently localize the object across distinct
action spans, especially when one action visually dominates. This reflects a challenge in handling
fine-grained temporal compositionality in multi-action expressions.

While this reliance adds overhead, our method still achieves significantly higher performance
than existing approaches when accurate moments are available. This supports our core claim that
moment-aware training enables more effective video-language grounding and leads to robust RVOS
across diverse scenarios.

A.6 LLM USAGE

We utilized a Large Language Model (LLM) as a writing assistant for grammatical corrections and
minor improvements to enhance the clarity of this paper. Additionally, the LLM was employed to
help search for missing references.
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