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Managing Conflicts Among Black-Box RAN Apps via
Multi-Fidelity Game-Theoretic Optimization

Abstract

Modern open and softwarized networks—such as O-RAN telecom systems—host
independently developed applications, known as xApps, with distinct and poten-
tially conflicting objectives. Coordinating their behavior to ensure stable oper-
ation is challenging, especially when each application’s utility is only accessible
via costly black-box evaluations. In this work, we consider a centralized controller
that suggests joint configurations to multiple apps, modeled as strategic players,
with the goal of aligning their incentives toward a stable outcome. This setting
is modeled as a Stackelberg game in which the central controller (leader) lacks
analytical forms of the players’ utility functions, and must learn them through se-
quential, multi-fidelity queries. We propose MF-UCB-PNE, a novel multi-fidelity
Bayesian optimization strategy that efficiently approximates a pure Nash equilib-
rium (PNE) under a limited query budget. MF-UCB-PNE balances exploration of
cheap, lower-fidelity utility observations with exploitation of high-fidelity evalu-
ations, enabling convergence to incentive-compatible configurations. We provide
theoretical guarantees in terms of no-regret learning of equilibrium, as well as
empirical results on wireless networking problems, demonstrating that MF-UCB-
PNE identifies high-quality equilibrium solutions under strict cost budgets.

1 Introduction

1.1 Context and Contribution
Controller
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Figure 1: O-RAN scenario with two
conflicting xApps. Using the methods
introduced in this paper, a joint configu-
ration can be chosen by the controller so
that neither app has incentive to deviate
unilaterally.

Open and software-defined network architectures allow
multiple independent applications to control shared re-
sources. These applications, or apps for short, often have
conflicting objectives, which can lead to unstable behav-
ior. For instance, in an O-RAN telecom network, spe-
cialized applications, known as xApps, run on a central-
ized controller, each generally optimizing a different goal
[1]. For example, as seen in Fig. 1, one xApp might in-
crease transmit power to maximize throughput, while an-
other may try to shut down radios to save energy, causing
a conflict over the use of shared resources.

As illustrated in Fig. 1, the central controller can miti-
gate such conflicts by recommending joint configurations
for all apps, aiming for a working point where no app
has incentive to deviate from it on its own. We model
this interaction as a hierarchical game in which the cen-
tral controller plays the role of a leader that proposes a
configuration profile, and the N apps are followers that respond according to their individual utility
functions. A stable operating point corresponds to a pure Nash equilibrium (PNE) of this game, i.e.,
a joint configuration of actions from which no single player can unilaterally improve its utility. The
controller’s goal is to find a PNE, so that its recommendation will be self-enforcing.
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Figure 2: Multi-fidelity Stackelberg game setup. A cen-
tral optimizer aims at identifying a joint configuration for
the apps that constitute an approximate Nash equilibrium
for the utilities of the apps, while having access only to
multi-fidelity estimators of expensive-to-evaluate black-
box utility functions.

However, a key challenge is that each
player’s utility function is a black-box
from the perspective of the controller:
it is not given in closed form and can
only be observed by running exper-
iments or simulations. Accordingly,
each query can be expensive in time
or resources. To address these chal-
lenges, in this work we consider the
multi-fidelity learning setting illustrated
in Fig. 2. In it, the controller can ob-
serve utility values at various fidelity
levels. Low-fidelity evaluations, e.g.,
coarse simulations or partial measure-
ments, are cheaper but less accurate,
while high-fidelity evaluations, e.g., de-
tailed simulations or field experiments,
provide accurate feedback at higher
cost. By judiciously using low- and high-fidelity queries, the controller can save budget while still
homing in on a stable configuration.

In this context, we introduce MF-UCB-PNE, a multi-fidelity Bayesian optimization algorithm to
efficiently learn players’ utilities and approximate a PNE under a total query cost constraint. We
show that this approach leads to provably no-regret convergence to an approximate equilibrium as
the budget grows. We also demonstrate the effectiveness of MF-UCB-PNE on two wireless network
case studies (power control and random access), where it outperforms single-fidelity baselines in
finding high-quality equilibria within limited budgets.

1.2 Related Work

Single-objective black-box optimization. Bayesian optimization (BO) [2] provides a sample-
efficient sequential decision-making framework that is widely adopted in expensive-to-evaluate
black-box optimization problems. Uncertainty-aware acquisition functions include upper confidence
bound (UCB) [3], expected improvement (EI) [4], and entropy search (ES) [5].

Multi-fidelity single-objective black-box optimization. In order to reduce the query cost incurred
in the acquisition process, multi-fidelity BO (MFBO) constructs multi-fidelity surrogate models
and define the cost-aware acquisition functions to adaptively prioritize queries across fidelity levels
[6, 7].

Nash equilibrium (NE) evaluation with unknown utility functions. Reference [8] characterized
the query complexity associated with evaluating a NE for unknown utilities across various game
classes.Subsequent works in [9, 10] proposed a BO-based optimizer that can approximate NE solu-
tions with formal regret guarantees. However, these methods assume access to a single fidelity of
utility feedback and do not explore the potential benefits of multi-fidelity observations, which can
offer more cost-effective and informative sampling strategies. A longer version of this work can be
found in the unpublished manuscript [11].

2 Problem Formulation

Strategic game model. We consider N players, representing apps in a softwarized wireless system,
with app n characterized by a configuration setting xn, also referred to as action, from its strategy
set Xn. For example, for a random access app, the configuration xn may represent the transmission
probability or a back-off parameter. Let x = (x1, . . . , xN ) ∈ X = X1 × · · · × XN denote the joint
action profile.

The utility for player n is an unknown function un(x), which depends on all players’ actions. We
assume the utilities un(x) to be black-box functions: the controller cannot directly observe un(x)
except by querying the outcome of action profile x. This is a typical situation in wireless systems in
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which key performance indicators (KPIs) can be only measured based on simulations or real-world
developments.

A recommended action profile x is considered stable if no player can significantly increase its utility
by deviating. Accordingly, the dissatisfaction of player n at x is defined as

fn(x) = max
x′
n∈Xn

un(x
′
n,x−n)− un(x) ≥ 0, (1)

where x−n denotes the actions of all players except n. The function fn(x) can be interpreted as
quantifying the incentive for player n to unilaterally deviate from x. A joint action x∗ is a pure
Nash equilibrium (PNE) if fn(x∗) = 0 for all players n—i.e., no player can improve its utility by
deviating.

In many games a PNE may not exist or may be hard to find, so we consider approximate equilibria.
For ϵ ≥ 0, an ϵ-PNE is an action profile x(ϵ) such that the dissatisfaction levels satisfy the inequali-
ties fn(x(ϵ)) ≤ ϵ for all n. In an ϵ-PNE, no player can gain more than ϵ by unilaterally deviating, so
ϵ quantifies the stability of the configuration. Let ϵ∗ be the smallest achievable dissatisfaction level

ϵ∗ = inf{ϵ ∈ R|X (ϵ) ̸= ∅}, (2)

where
X (ϵ) := {x(ϵ) ∈ X |fn(x(ϵ)) ≤ ϵ for all n} (3)

is the corresponding ϵ-PNE set. Our goal is to identify an action profile x∗ that lies in the ϵ∗-PNE
set, i.e., an approximately stable joint configuration with minimum possible ϵ∗.

Multi-fidelity utility observations. We assume the controller can sequentially query the utilities
by proposing action profiles and observing the resulting payoffs with chosen fidelity. Specifically,
at each time step t = 1, 2, . . . , the controller selects a joint action xt and a fidelity level mn,t ∈
M = {1, . . . ,M} for each player n. We write mt = (m1,t, . . . ,mN,t). As a result of this query,
the controller observes noisy utility feedback y(mn,t)

n,t for each player n as

y
(mn,t)
n,t = u(mn,t)

n (xt) + ζn,t, (4)

where u(m)
n (x) denotes a fidelity-m approximation of the true utility un(x), and ζn,t ∼ N (0, σ2) is

observational noise. We assume the highest fidelity m = M corresponds to the actual utility, i.e.,
u
(M)
n (x) = un(x), whereas lower fidelities m < M provide cheaper but biased estimates.

Each fidelity level m has an associated cost λ(m) > 0 representing the resource expenditure (e.g.,
computation time or experimental cost) for one evaluation at fidelity m. We assume 0 < λ(1) ≤
λ(2) ≤ · · · ≤ λ(M), so that higher fidelity is costlier. The overall querying process is subject to the
total cost budget Λ as T∑

t=1

N∑
n=1

λ(mn,t) ≤ Λ, (5)

where T is the (random) total number of queries performed. This budget constraint enforces that the
controller balance the benefit of information against the cost of its queries.

In summary, the controller faces a sequential decision problem: it must adaptively select which joint
configuration xt and fidelity levels mt to query at each step, based on past observations, in order to
efficiently learn the utility functions un(x) and approach an ϵ∗-PNE solution within the budget Λ.

3 The MF-UCB-PNE Algorithm

MF-UCB-PNE is a BO scheme designed for the hierarchical game setting described in the previous
section. The algorithm maintains a probabilistic surrogate model for the unknown utilities and uses
it to decide on informative queries. We leverage a multi-output Gaussian process (MOGP) model to
jointly capture all players’ utility functions. The GP prior provides an uncertainty estimate for each
utility at any candidate action, which we exploit to guide exploration.

MF-UCB-PNE proceeds in a sequence of episodes, indexed by j = 1, 2, . . . . In each episode j,
the algorithm first executes an exploration phase by collecting a batch of low-cost observations, and
then it conducts an evaluation phase by querying the highest-fidelity utilities to evaluate a candidate
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action. At the start of episode j, let Dj,0 be the set of observations collected in all previous episodes.
The exploration phase of episode j consists of a series of queries (xj,τ ,mj,τ ) for τ = 1, 2, . . . , tj ,
where at least one player n is sampled at lower than max fidelity, i.e., mn,j,τ < M . These points
are chosen by an acquisition function that trades off information gain and cost, i.e.,

(x̃j,τ , m̃j,τ ) = arg max
x∈X ,m∈M

∑N
n=1 I(y

(mn)
n ;un(x)|x,mn,Dn,j,τ−1)∑N

n=1 λ
(mn)

(6a)

s.t.
N∑

n=1

λ(mn) ≤ Λ−
j−1∑
j′=1

Λj′ −
N∑

n=1

τ−1∑
τ ′=1

λ(mn,j,τ′ ) −Nλ(M), (6b)

where details on computing information gain I(y
(mn)
n ;un(x)|x,mn,Dn,j,τ−1) via MOGP can be

found in the longer version [11].

By (6), MF-UCB-PNE adopts an information-theoretic criterion adapted to the multi-fidelity setting:
at each exploration step, it selects the joint action and fidelity that maximize the information-to-cost
ratio (6a), until a certain stopping condition is met [11]. Intuitively, the exploration phase continues
as long as lower-fidelity queries can significantly reduce uncertainty about the optimal ϵ∗-PNE,
without exceeding a cost threshold.

After exploration, the algorithm performs an evaluation step by selecting the most promising action
x̃j based on the surrogate MOGP model. This is done by selecting the action that appears to min-
imize the maximum dissatisfaction maxn fn(x) using an upper confidence bound (UCB) criterion.
This yields an evaluation of the actual joint utility outcome and the corresponding dissatisfaction
levels fn(x̃j). If the maximum dissatisfaction maxn fn(x̃j) is below a pre-specified threshold η,
the algorithm terminates. Otherwise, the knowledge gained from this evaluation is incorporated into
the dataset, and a new episode begins if budget remains.

Theoretical guarantees. To analyze the theoretical performance guarantee of MF-UCB-PNE, we
first define the loss accrued by the selection (x,m) as

ℓ(x,m) =

{
maxn fn(x) if m =M · 1 (evaluation)
C otherwise (exploration)

(7)

with constant C representing the cost of exploration at lower fidelity levels, satisfying C ≥
maxn,x fn(x). Defining the regret after using budget Λ as R(Λ) =

∑T
t=1 ℓ(xt,mt) − Λϵ∗

Nλ(M) ,
we have the following upper bound on the regret.

Theorem 1 (Regret Bound of MF-UCB-PNE) Assume the utility function un(x) for each player
n = 1, ..., N lies in the reproducing kernel Hilbert space (RKHS) associated with the same kernel
function assumed by the MOGP prior. The regret incurred by MF-UCB-PNE is upper bounded as
Õ(1/

√
Λ) (up to log factors) with probability at least 1−Nδ for δ ∈ (0, 1/N).

Theorem 1 implies that as the budget Λ grows, MF-UCB-PNE converges to an ϵ∗-PNE with high
probability, obtaining, asymptotically, a vanishing regret. Due to space constraints, we refer to the
full paper [11] for a detailed statement and a proof of Theorem 1.

4 Experiments

We demonstrate the performance of MF-UCB-PNE on two wireless network problems: a power
control game in an interference network, and a random access game for medium access control. In
each case, we compare our approach against baseline schemes, including a single-fidelity BO algo-
rithm (UCB-PNE) that always queries at the highest fidelity [9], and the Probability-of-Equilibrium
(PE) strategy [12] that greedily uses full-fidelity evaluations without exploration.

Power allocation game. We considerN = 20 interfering wireless links (transmitter-receiver pairs).
Each link n chooses a transmit power level xn in the range [−13, , 23] dBm. The utility un(x)
is defined as the long-term average spectral efficiency (rate) of link n minus a penalty term pro-
portional to its power usage. Specifically, the utility is un(x) = E

[
log2(1 + SINRn)

]
− ξnxn,

where SINRn is the signal-to-interference-plus-noise ratio for link n given the power profile x,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

and ξn = 0.1 is a weight reflecting the importance of power consumption. The expectation is
with respect to random channel gains: each link has a Rayleigh fading channel, and interference
between any two links is governed by an interference gain factor ψ. In our setup, the direct chan-
nel gains are CN (0, 1) variables and interference gains are CN (0, ψ) variables, with ψ varying
from −30 dB (negligible interference) up to 0 dB (strong interference). Higher values of pa-
rameter ψ means more interference coupling between links, making the game more challenging.

MF-UCB-PNE

UCB-PNE
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Figure 3: Sum spectral efficiency attained at the
approximate equilibrium vs. interference chan-
nel gain ψ, in a power allocation setting for an
interference channel.

To emulate multi-fidelity feedback, we let fidelity
level m ∈ 1, 2, 3, 4, 5 correspond to averaging
the SINR over λ(m) i.i.d. channel realizations,
where λ(1) = 1 sample (cheapest, no averaging)
and λ(5) = 100 samples (highest cost). Thus, the
utility u(m)

n (x) is the sample average of the rate
log2(1 + SINRn) over λ(m) draws, providing an
unbiased estimate of the true expected rate. We
assign query costs equal to the number of sam-
ples, i.e. cost λ(m) for fidelity m. A high-fidelity
query (m = 5) is 100× more costly than a low-
fidelity one (m = 1).

In Figure 3, we plot the sum spectral efficiency
(sum of all links’ rates) achieved by the equilib-
rium solutions found, as a function of the interference gain ψ. All methods were given the same
total budget Λ = 36000. At low interference, the links’ utilities are nearly independent, and all al-
gorithms find similar near-optimal power allocations. In moderate interference regimes, MF-UCB-
PNE (green solid line) significantly outperforms UCB-PNE (orange dashed) and the greedy PE base-
line (blue dash-dotted), achieving higher sum-rate by finding a better balance between interference
and power use. At very high interference, all schemes see degraded performance, but MF-UCB-
PNE still maintains a slight advantage. These results show that multi-fidelity exploration allows
MF-UCB-PNE to discover improved equilibria especially when interference coupling is non-trivial,
by efficiently using the budget on informative low-cost queries.

Random access game. Our second experiment involves optimizing a slotted ALOHA random ac-
cess protocol. We consider N = 5 mobile terminals sharing a wireless channel. Each terminal
n has two action parameters: xn,1 ∈ [0, 1] is the probability the terminal is active in a slot (duty
cycle), and xn,2 ∈ [0, 1] is the conditional probability of attempting a transmission when active.

MF-UCB-PNE
𝜂 = 0.2

Optimal 𝜂 

Figure 4: Simple PNE regret (maximum dissat-
isfaction) in a random access setting as a func-
tion of total query budget Λ.

If terminal n transmits while another is also trans-
mitting, a collision occurs. The success (packet
reception) probability for terminal n is given
by Tn(x) =

xn,1xn,2

1−xn,1xn,2

∏
n′ ̸=n(1 − xn′,1xn′,2),

which accounts for the event that n transmits and
no other active terminal transmits in the same slot
[13]. The expected energy consumed by termi-
nal n in a slot is En(x) = xn,1(c1 + c2xn,2),
where c1 = 50 and c2 = 70 (in normalized
units) are the energy costs for being active and
for transmitting, respectively. We set per-terminal
maximum energy budgets such that En(x) ≤
60, 55, 50, 45, 40 for n = 1, . . . , 5. Each termi-
nal’s utility is un(x) = Tn(x)− ξnEn(x), where
ξn = 6.5 × 10−4 is a weight tuning the impor-
tance of energy consumption relative to throughput.

We define three fidelity levels for simulation: at fidelities 1, 2, and 3, the throughput function Tn(x)
is replaced by a coarser approximation using factors ω(m) instead of the true parameters, while
fidelity 4 uses the exact Tn(x). The costs are λ(1) = 1, λ(2) = 5, λ(3) = 10, and λ(4) = 20.

Figure 4 shows the simple PNE regret of each method as a function of the total query budget Λ.
Regret here is defined as the gap between the achieved performance and the ideal equilibrium. We
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compare MF-UCB-PNE with a fixed dissatisfaction threshold η = 0.2 (green line) and with an
optimized threshold η (red line), against UCB-PNE (orange dashed) and PE (blue dash-dotted).
MF-UCB-PNE attains the lowest regret across all budget values, substantially outperforming both
baselines. Notably, UCB-PNE and PE, which always use high-fidelity queries, exhaust their budgets
quickly and then stagnate at higher regret. In contrast, MF-UCB-PNE continues to improve as
it efficiently allocates budget to informative low-cost queries. For example, at Λ = 3000, MF-
UCB-PNE achieves a regret of about 5 × 10−3, whereas UCB-PNE stays above 1.5 × 10−2. This
demonstrates that multi-fidelity exploration enables finding better approximate equilibria under tight
budget constraints, compared to strategies that naively focus on high-fidelity evaluations.

5 Conclusions

We have proposed MF-UCB-PNE, a novel MFBO strategy that efficiently approximates PNE solu-
tions by leveraging cheap low-fidelity evaluations for broad exploration, transitioning to high-fidelity
queries for refined exploitation. Theoretical analysis proves that MF-UCB-PNE obtains a vanishing
regret under suitable conditions, while empirical results on wireless networking problems validate
the high-quality equilibrium identified by MF-UCB-PNE under limited cost budgets. Looking for-
ward, it would be intriguing to extend the strategy to the evaluation of mixed Nash equilibria [9].

References
[1] Pietro Brach del Prever, Salvatore D’Oro, Leonardo Bonati, Michele Polese, Maria Tsampazi,

Heiko Lehmann, and Tommaso Melodia. Pacifista: Conflict evaluation and management in
open RAN. IEEE Trans. Mobile Comput., pages 1–15, 2025.

[2] Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.
[3] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias W Seeger. Information-

theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Trans.
Inf. Theory, 58(5):3250–3265, 2012.

[4] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. J. Glob. optim., 13:455–492, 1998.

[5] Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global opti-
mization. J. Mach. Learn. Res., 13(1):1809–1837, 2012.

[6] Jialin Song, Yuxin Chen, and Yisong Yue. A general framework for multi-fidelity Bayesian
optimization with Gaussian processes. In Proc. Int. Conf. Artif. Intell. Stat., pages 3158–3167,
Naha, Japan, 2019.

[7] Yunchuan Zhang, Sangwoo Park, and Osvaldo Simeone. Multi-fidelity Bayesian optimization
with across-task transferable max-value entropy search. IEEE Trans. Signal Process., 73:418–
432, 2025.

[8] John Fearnley, Martin Gairing, Paul W Goldberg, and Rahul Savani. Learning equilibria of
games via payoff queries. J. Mach. Learn. Res., 16:1305–1344, 2015.

[9] Sebastian Shenghong Tay, Quoc Phong Nguyen, Chuan Sheng Foo, and Bryan Kian Hsiang
Low. No-regret sample-efficient Bayesian optimization for finding Nash equilibria with un-
known utilities. In Proc. Int. Conf. Artif. Intell. Stat., pages 3591–3619, Valencia, Spain, 2023.

[10] Minbiao Han, Fengxue Zhang, and Yuxin Chen. No-regret learning of Nash equilibrium for
black-box games via Gaussian processes. In Proc. 40th Conf. Uncertainty Artif. Intell., pages
1541–1557, Barcelona, Spain, 2024.

[11] Yunchuan Zhang, Osvaldo Simeone, and H Vincent Poor. Multi-fidelity Bayesian optimization
for Nash equilibria with black-box utilities. arXiv preprint arXiv:2505.11265, 2025.

[12] Victor Picheny, Mickael Binois, and Abderrahmane Habbal. A Bayesian optimization ap-
proach to find Nash equilibria. J. Glob. Optim., 73:171–192, 2019.

[13] Lazaros Gkatzikis, Georgios S Paschos, and Iordanis Koutsopoulos. Medium access games:
The impact of energy constraints. In Proc. Int. Conf. NETw. Games, Control. Optim. (NetG-
CooP 2011), pages 1–8, Paris, France, 2011.

6


	Introduction
	Context and Contribution
	Related Work

	Problem Formulation
	The MF-UCB-PNE Algorithm
	Experiments
	Conclusions

