
Universal Physics Transformers: A Framework For
Efficiently Scaling Neural Operators

Benedikt Alkin 1,2 Andreas Fürst 1 Simon Schmid 3 Lukas Gruber 1

Markus Holzleitner 4 Johannes Brandstetter 1,2

1 ELLIS Unit Linz, Institute for Machine Learning, JKU Linz, Austria
2 NXAI GmbH, Linz, Austria

3 Software Competence Center Hagenberg GmbH, Hagenberg, Austria
4 MaLGa Center, Department of Mathematics, University of Genoa, Italy

{alkin, fuerst, brandstetter}@ml.jku.at

Abstract

Neural operators, serving as physics surrogate models, have recently gained in-
creased interest. With ever increasing problem complexity, the natural question
arises: what is an efficient way to scale neural operators to larger and more complex
simulations – most importantly by taking into account different types of simulation
datasets. This is of special interest since, akin to their numerical counterparts,
different techniques are used across applications, even if the underlying dynamics
of the systems are similar. Whereas the flexibility of transformers has enabled
unified architectures across domains, neural operators mostly follow a problem
specific design, where GNNs are commonly used for Lagrangian simulations and
grid-based models predominate Eulerian simulations. We introduce Universal
Physics Transformers (UPTs), an efficient and unified learning paradigm for a wide
range of spatio-temporal problems. UPTs operate without grid- or particle-based
latent structures, enabling flexibility and scalability across meshes and particles.
UPTs efficiently propagate dynamics in the latent space, emphasized by inverse
encoding and decoding techniques. Finally, UPTs allow for queries of the latent
space representation at any point in space-time. We demonstrate diverse appli-
cability and efficacy of UPTs in mesh-based fluid simulations, and steady-state
Reynolds averaged Navier-Stokes simulations, and Lagrangian-based dynamics.
Project page: https://ml-jku.github.io/UPT

1 Introduction

In scientific pursuits, extensive efforts have produced highly intricate mathematical models of physical
phenomena, many of which are naturally expressed as partial differential equations (PDEs) [76].
Solving most PDEs is analytically intractable and necessitates falling back on compute-expensive
numerical approximation schemes. In recent years, deep neural network based surrogates, most
importantly neural operators [51, 61, 47], have emerged as a computationally efficient alternative [99,
119], and impact e.g., weather forecasting [48, 8, 1], molecular modeling [7, 4], or computational fluid
dynamics [107, 30, 51, 43, 31, 19]. Additional to computational efficiency, neural surrogates offer
potential to introduce generalization capabilities across phenomena, as well as generalization across
characteristics such as boundary conditions or PDE coefficients [66, 14]. Consequently, the nature of
neural operators inherently complements handcrafted numerical solvers which are characterized by a
substantial set of solver requirements, and mostly due to these requirements tend to differ among
sub-problems [3].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://ml-jku.github.io/UPT

Encoder Approximator Decoder

Features
Position
Latent Token

Repeat until t′

Discretized Eulerian / Lagrangian Data at t Discretized Eulerian / Lagrangian Data at t′

Positions to Query at

Figure 1: Schemantic sketch of the UPT learning paradigm. UPTs flexible encode different grids,
and/or different number of particles into a unified latent space representation, and subsequently unroll
dynamics in the latent space. The latent space is kept at a fixed size to ensure scalability to larger
systems. UPTs decode the latent representation at any query point.

However, similar to their numerical counterparts, different neural network techniques are prevalent
across applications. For example, when contrasting particle- and grid-based dynamics in compu-
tational fluid dynamics (CFD), i.e., Lagrangian and Eulerian discretization schemes. This is in
contrast to other areas of deep learning where the flexibility of transformers [106] has enabled unified
architectures across domains, allowing advancements in one domain to also benefit all others. This
has lead to an efficient scaling of architectures, paving the way for large “foundation” models [10]
that are pretrained on huge passive datasets [25, 36].

We introduce Universal Physics Transformers (UPTs), an efficient and unified neural operator
learning paradigm with strong focus on scalibility over a wide range of spatio-temporal problems.
UPTs flexibly encode different grids, and/or different number of particles into a compressed latent
space representation which facilitates scaling to large-scale simulations. Latent space rollouts are
enforced by inverse encoding and decoding surrogates, leading to fast simulated trajectories which
is particularly important for large systems. For decoding, the latent representation can be evaluated
at any point in space-time. UPTs operate without grid- or particle-based latent structures, and
demonstrate the beneficial scaling-behavior of transformer backbone architectures. Figure 1 sketches
the UPT modeling paradigm.

We summarize our contributions as follows: (i) we introduce the UPT framework for efficiently
scaling neural operators; (ii) we formulate encoding and decoding schemes such that dynamics can be
propagated efficiently in a compressed and fixed-size latent space; (iii) we demonstrate applicability
on diverse applications, putting a strong research focus on the scalability of UPTs.

2 Background

Partial differential equations. We focus on experiments on (systems of) PDEs, that evolve a
signal u(t,x) = ut(x) ∈ Rd in a single temporal dimension t ∈ [0, T] and m spatial dimensions
x ∈ U ⊂ Rm, for an open set U . With 1 ≤ l ∈ N, systems of PDEs of order l can be written as

F (Dlut(x), . . . , D1ut(x),
∂l

∂tl
ut(x), . . . ,

∂

∂t
ut(x),ut(x),x, t) = 0, for x ∈ U, t ∈ [0, T] ,

(1)

where F is a mapping to Rd, and for i = 1, ..., l, Di denotes the differential operator mapping to
all i-th order partial derivatives of u with respect to the spacial variable x, whereas ∂i

∂ti outputs the
corresponding time derivative of order i. Any l-times continuously differentiable u : [0, T]×U → Rd

fulfilling the relation Eq. (1) is called a classical solution of Eq. (1). Also other notions of solvability
(e.g. in the sense of weak derivatives/distributions) are possible, for sake of simplicity we do not go
into details here. Additionally, initial conditions specify ut(x) at time t = 0 and boundary conditions
B[ut](x) at the boundary of the spatial domain.

2

We work mostly with the incompressible Navier-Stokes equations [98], which e.g., in two spatial
dimensions conserve the velocity flow field u(t, x, y) : [0, T]× R2 → R2 via:

∂u

∂t
= −u · ∇u+ µ∇2u−∇p+ f , ∇ · u = 0 , (2)

where u · ∇u is the convection, i.e., the rate of change of u along u, µ is the viscosity parameter,
µ∇2u the viscosity, i.e., the diffusion or net movement of u, ∇p the internal pressure gradient, and f
an external force. The constraint ∇ · u = 0 yields mass conservation of the Navier-Stokes equations.
A detailed depiction of the involved differential operators is given in Appendix B.1.

Operator learning. Operator learning [60, 61, 52, 51, 47] learns a mapping between function
spaces – a concept which is often used to approximate solutions of PDEs. Similar to Kovachki et al.
[47], we assume U ,V to be Banach spaces of functions on compact domains X ⊂ Rdx or Y ⊂ Rdy ,
mapping into Rdu or Rdv , respectively. The goal of operator learning is to learn a ground truth
operator G : U → V via an approximation Ĝ : U → V . This is usually done in the vein of supervised
learning by i.i.d. sampling input-output pairs, with the notable difference, that in operator learning
the spaces sampled from are not finite dimensional. More precisely, with a given data set consisting
of N function pairs (ui,vi) = (ui,G(ui)) ⊂ U × V , i = 1, ...N , we aim to learn Ĝ : U → V , so
that G can be approximated in a suitably chosen norm.

In the context of PDEs, G can e.g. be the mapping from an initial condition u(0,x) = u0(x) to the
solutions u(t,x) = ut(x) of Eq. (1) at all times. In the case of classical solutions, if U is bounded,
U can then be chosen as a subspace of C(Ū ,Rd), the set of continuous functions from domain Ū
(the closure of U) mapping to Rd, whereas V ⊂ C([0, T] × Ū ,Rd), so that U or V consist of all
l-times continuosly differentiable functions on the respective spaces. In case of weak solutions, the
associated spaces U and V can be chosen as Sobolev spaces.

We follow the popular approach to approximate G via three maps [89]: G ≈ Ĝ := D ◦ A ◦ E . The
encoder E : U → Rh1 takes an input function and maps it to a finite dimensional latent feature
representation. For example, E could embed a continuous function to a chosen hidden dimension
Rh1 for a collection of grid points. Next, A : Rh1 → Rh2 approximates the action of the operator G,
and D decodes the hidden representation, and thus creates the output functions via D : Rh2 → V ,
which in many cases is point-wise evaluated at the output grid or output mesh.

Particle vs. grid-based methods. Often, numerical simulation methods can be classified into two
distinct families: particle and grid-based methods. This specification is notably prevalent, for instance,
in the field of computational fluid dynamics (CFD), where Lagrangian and Eulerian discretization
schemes offer different characteristics dependent on the PDEs. In simpler terms, Eulerian schemes
essentially monitor velocities at specific fixed grid points. These points, represented by a spatially
limited number of nodes, control volumes, or cells, serve to discretize the continuous space. This
process leads to grid-based or mesh-based representations. In contrast to such grid- and mesh-based
representations, in Lagrangian schemes, the discretization is carried out using finitely many material
points, often referred to as particles, which move with the local deformation of the continuum.
Roughly speaking, there are three families of Lagrangian schemes: discrete element methods [24],
material point methods [94, 12], and smoothed particle hydrodynamics (SPH) [29, 62, 69, 70]. In
this work, we focus on SPH methods, which approximate the field properties using radial kernel
interpolations over adjacent particles at the location of each particle. The strength of SPH lies in its
ability to operate without being constrained by connectivity issues, such as meshes. This characteristic
proves especially beneficial when simulating systems that undergo significant deformations.

Latent space representation of neural operators. For larger meshes or larger number of particles,
memory consumption and inference speed become more and more important. Fourier Neural Operator
(FNO) based methods work on regular grids, or learn a mapping to a regular latent grid, e.g., geometry-
informed neural operators (GINO) [54]. In three dimensions, the stored Fourier modes have the
shape h× nx × ny × nz , where h is the hidden size and nx, ny , nz are the respective Fourier modes.
Similarly, the latent space of CNN-based methods, e.g., Raonić et al. [83], Gupta & Brandstetter [31],
is of shape h× wx × wy × wz , where wx, wy , wz are the respective grid points. In three dimension,
the memory requirement in each layer increases cubically with increasing number of modes or grid
points. In contrast, transformer based neural operators, e.g., Hao et al. [33], Cao [18], Li et al. [53],
operate on a token-based latent space of dimension ntokens × h, where usually ntokens ∝ npoints, and
GNN based neural operators, e.g., Li et al. [52], operate on a node based latent space of dimension

3

1 2 4 8 16 32 64 128
Scale

0

20

40

60

80

M
em

or
y

[G
B]

GNN
Transformer
GINO-3D
GINO-2D
UPT

Model Range Irregular Discr. Learns Latent
Grid Conv. Field Rollout

GNN local ✓ ✗ ✗ ✗
CNN local ✗ ✗ ✗ ✗
Transformer global ✓ ✓ ✗ ✗
GNO [52] radius ✓ ✓ ✗ ✗
FNO [51] global ✗ ✓ ✗ ✗
GINO [54] global ✓ ✓ ✓ ✗
UPT global ✓ ✓ ✓ ✓

Figure 2: Qualitative exploration of scaling limits. Starting from 32K input points (scale 1), we train
a 68M parameter model for a few steps with batchsize 1 and measure the required GPU memory.
Models without a compressed latent space (GNN, Transformer) quickly reach their limits while
models with a compressed latent space (GINO, UPT) scale much better with the number of inputs.
However, as GINO compresses the latent space onto a regular grid, the scaling benefits are largely
voided on 3D problems. The efficient latent space compression of UPTs can fit up to 4.2M points
(scale 128). We use a linear attention transformer [90] for this study. “Disc. Conv.” denotes
“Discretization Convergent”. Appendix D.7 outlines implementation details and complexities.

Encoder

Decoder
(Perceiver)

Approximator
(Transformer)Propagate in Time

Input Data
Message Passing

Select Supernodes

Transformer

Perceiver Pooling

Prediction

Query Positions

Input Positions

Data

Learnable

For large

Encoder

Decoder

Approximator

Loss

Encoder

Decoder

Loss

Loss

Data

Model

Latent

Figure 3: Left: UPT compresses information from various grids or differing particles with an encoder,
propagates this information forward in time through the approximator and decodes at arbitrary query
positions. Right: Training procedure to enable latent rollouts via inverse encoding/decoding losses.

nnodes × h, where usually nnodes = npoints. For large number of inputs, this becomes infeasible as
every layer has to process a large number of tokens. Contrary, UPTs compress the inputs into a
low-dimensional latent space, which drastically decreases computational requirements. Different
architectures and their scaling limits are compared in Fig. 2.

3 Universal Physics Transformers

Problem formulation. Our goal is to learn a mapping between the solutions ut and ut′ of Eq. (1) at
timesteps t and t′, respectively. Our dataset should consist of N function pairs (ut

i,u
t′

i), i = 1, .., N ,
where each ut

i is sampled at k spatial locations {x1
i , . . . ,x

k
i } ∈ U . Similarly, we query each output

signal ût′

i at k′ spatial locations {y1
i , . . . ,y

k′

i } ∈ U . Then each input signal can be represented
by ut

i,k = (ut
i(x

1
i), . . . ,u

t
i(x

k
i))

T ∈ Rk×d as a tensor of shape k × d, similar for the output. For
particle- or mesh-based inputs, it is often simpler to represent the input as graph G = (V,E) with k
nodes {x1

i , . . .x
k
i } ∈ V , edges E and node features {ut

i(x
1
i), . . . ,u

t
i(x

k
i)}.

Architecture desiderata. We want Universal Physics Transformers (UPTs) to fulfill the following
set of desiderata: (i) an encoder E , which flexibly encodes different grids, and/or different number of
particles into a unified latent representation of shape nlatent × h, where nlatent is the chosen number
of tokens in the latent space and h is the hidden dimension; (ii) an approximator A and a training
procedure, which allows us to forward propagate dynamics purely within the latent space without
mapping back to the spatial domain at each operator step; and iii) a decoder D that queries the latent
representation at different locations. The UPT architecture is schematically sketched in Fig. 3.

4

Encoder. The goal of the encoder E is to compress the input signal ut
i, which is represented by

a point cloud ut
i,k. Importantly, the encoder should learn to selectively focus on important parts

of the input. This is a desirable property as, for example, in many computational fluid dynamics
simulations large areas are characterized by laminar flows, whereas turbulent flows tend to occur
especially around obstacles. If k is large, we employ a hierarchical encoder.

The encoder E first embeds k points into hidden dimension h, adding position encoding [106] to the
different nodes, i.e., ut

i,k ∈ Rk×d → Rk×h. In the first hierarchy, information is exchanged between
local points and a selected set of ns supernode points. For Eulerian discretization schemes those
supernodes can either be uniformly sampled on a regular grid as in [54], or selected based on the given
mesh. The latter has the advantage that mesh characteristics are automatically taken into account,
e.g., dense or sparse mesh regions are represented by different numbers of nodes. Furthermore,
adaptation to new meshes is straightforward. We implement the first hierarchy by randomly selecting
ns supernodes on the mesh, choosing ns such that the mesh characteristic is preserved. Similarly, in
the Lagrangian discretization scheme, choosing supernodes based on particle positions provides the
same advantages as selecting them based on the mesh.

Information is aggregated at the selected ns supernodes via a message passing layer [28] using a
radius graph between points. Importantly, messages only flow towards the ns supernodes, and thus
the compute complexity of the first hierarchy scales linearly with ns. The second hierarchy consists
of transformer blocks [106] followed by a perceiver block [40, 39] with nlatent learned queries of
dimension h. To summarize, the encoder E maps ut

i ∈ U to a latent space via

E : ut
i ∈ U evaluate−−−−→ ut

i,k ∈ Rk×d embed−−−→ Rk×h MP−−→ Rns×h

transformer−−−−−−→ Rns×h perceiver−−−−→ zt
i ∈ Rnlatent×h ,

where tyically nlatent ≪ ns < k. If the number of points is small, the first hierarchy can be omitted.

Note that randomly sampling mesh cells or particles implicitly encodes the underlying mesh or
particle density and allocates more supernodes to highly resolved areas in the mesh or densely
populated particle regions. Therefore, this can be seen as an implicit “importance sampling” of the
underlying simulation. Additional implementation details are provided in Appendix F.1.

This encoder design projects into a fixed size latent space as it is an efficient way to compress the
input into a fixed size representation to enable scaling to large-scale systems while remaining compute
efficient. However, if an application requires a variable sized latent space, one could also remove the
perceiver pooling layer. With this change the number of supernodes is equal to the number of latent
tokens and complex problems could be tackled by a larger supernode count.

Approximator. The approximator propagates the compressed representation forward in time. As
nlatent is small, forward propagation in time is fast. We employ a transformer as approximator.

A : zt
i ∈ Rnlatent×h → zt′

i ∈ Rnlatent×h .

Notably, the approximator can be applied multiple times, propagating the signal forward in time by
∆t each time. If ∆t is small enough, the input signal can be approximated at arbitrary future times t′.

Decoder. The task of decoder D is to query the latent representation at k′ arbitrary locations to
construct the prediction of the output signal ut′

i at time t′. More formally, given the output positions
{y1

i , . . . ,y
k′

i } ∈ U at k′ spatial locations and the latent representation zt′

i , the decoder predicts the
output signal ut′

i,k′ = (ut′

i (y
1
i), . . . ,u

t′

i (y
k′

i))T at these spatial locations at timestep t′,

D : (zt′

i , {y1
i , . . . ,y

k′

i }) → ût′

i,k′ ∈ Rk′×d .

The decoder is implemented via a perceiver-like cross attention layer using a positional embedding
of the output positions as query and the latent representation zt′

i as keys and values. Since there
is no interaction between queries, the latent representation can be queried at arbitrarily many posi-
tions without large computational overhead. This decoding mechanism establishes a connection of
conditioned neural fields to operator learning [79].

Model Conditioning. To condition the model to the current timestep t and to boundary conditions
such as the inflow velocity, we add feature modulation to all transformer and perceiver blocks. We
use DiT modulation [78], which consists of a dimension-wise scale, shift and gate operation that are

5

applied to the attention and MLP module of the transformer. Scale, shift and gate are dependent on
an embedding of the timestep and boundary conditions (e.g. velocity).

Training procedure. UPTs model the dynamics fully within a latent representation, such that during
inference only the initial state of the system u(0,x) = u0(x) is encoded into a latent representation
z0. From there on, instead of autoregressively feeding the decoder’s prediction into the encoder,
UPTs propagate z0 forward in time to zt′ through iteratively applying the approximator A in the
latent space. We call this procedure latent rollout. Especially for large meshes or many particles, the
benefits of latent space rollouts, i.e. fast inference, pays off.

To enable latent rollouts, the responsibilities of encoder E , approximator A and decoder D need to
be isolated. Therefore, we invert the encoding and decoding by means of two reconstruction losses
during training as visualized in Fig. 3. First, an inverse encoding is performed, wherein the input ut

i
is reconstructed from the encoded latent state zt

i by querying it with the decoder at k input locations
{x1

i , . . . ,x
k
i }. Second, we invert the decoding by reconstructing the latent state zt′

i from the output
signal ût′

i at k′ spatial locations {y1
i , . . . ,y

k′

i }. Using two reconstruction losses, the encoder is
forced to focus on encoding a state ut

i into a latent representation zt, and similarly the decoder is
forced to focus on making predictions out of a latent representation zt′ .

Related methods. The closest work to ours are transformer neural operators of Cao [18], Li et al.
[53], Hao et al. [33] which encode different query points into a tokenized latent space representation
of dimension nnodes ×h, where nnodes varies based on the number of input points, i.e., nnodes ∝ npoints.
Wu et al. [114] adds a learnable mapping into a fixed latent space of dimension nnodes × h to each
transformer layer, and projects back to dimension npoints × h after self-attention. In contrast, UPTs
use fixed nlatent for the unified latent space representation nlatent × h.

For the modeling of temporal PDEs, a common scheme is to map the input solution at time t to
the solution at next time step t′ [51, 13, 95]. Especially for systems that are modeled by graph-
based representations, predicted accelerations at nodes are numerically integrated to model the time
evolution of the system [87, 81]. Recently, equivariant graph neural operators [116] were introduced
which model time evolution via temporal convolutions in Fourier space. More related to our work
are methods that propagate dynamics in the latent space [50, 111]. Once the system is encoded,
time evolution is modeled via LSTMs [111], or even linear propagators [63, 73]. In Li et al. [53],
attention-based layers are used for encoding the spatial information of the input and query points,
while time updates in the latent space are performed using recurrent MLPs. Similarly, Bryutkin
et al. [16] use recurrent MLPs for temporal updates within the latent space, while utilizing a graph
transformer for encoding the input observations.

Building universal models aligns with the contemporary trend of foundation models for science.
Recent works comprise pretraining over multiple heterogeneous physical systems, mostly in the form
of PDEs [66], foundation models for weather and climate [75], or material modeling [67, 118, 4].

Methods similar to our latent space modeling have been proposed in the context of diffusion mod-
els [85] where a pre-trained compression model is used to compress the input into a latent space from
which a diffusion model can be trained at much lower costs. Similarly, our approach also compresses
the high-dimensional input into a low-dimensional latent space, but without a two stage approach.
Instead, we learn the compression end-to-end via inverse encoding and decoding techniques.

4 Experiments

We ran experiments across different settings, assessing three key aspects of UPTs: (i) Effectiveness of
the latent space representation. We test on steady state flow simulations in 3D, comparing against
methods that use regular grid representations, and thus considerably larger latent space representations.
(ii) Scalability. We test on transient flow simulations on large meshes. Specifically, we test the
effectiveness of latent space rollouts, and assess how well UPTs generalize across different flow
regime, and different domains, i.e., different number of mesh points and obstacles. (iii) Lagrangian
dynamics modeling. Finally, we assess how well UPTs model the underlying field characteristics
when applied to particle-based simulations. We outline the most important results in the following
sections and provide implementation details and additional results in Appendix D. Most notabily,
UPT also compares favorably against baseline regular grid methods on regular grid datasets D.3.

6

Figure 4: Example rollout trajectories of the UPT-68M model, visually demonstrating the efficacy of
UPT physics modeling. The UPT model is trained across different obstacles, different flow regimes,
and different mesh discretizations. Interestingly, the absolute error might suggest that UPT trajectories
diverge, although physics are still simulated faithfully. This stems from subtle shifts in predictions
throughout the rollout duration, likely attributed to the point-wise decoding of the latent field.

4.1 Steady state flows

For steady state prediction, we consider the ShapeNet-Car dataset generated by [105]. It consists of
889 car shapes from ShapeNet [20], where each car surface is represented by 3.6K mesh points in 3D
space. We randomly create a train/test split containing 700/189 samples. We regress the pressure at
each surface point with a mean-squared error (MSE) loss and sweep hyperparameters per model. Due
to the small scale of this dataset, we train the largest possible model that is able to generalize the best.
Training even larger models resulted in a performance decrease due to overfitting. We optimize the
model size for all methods where the best mesh based models (GINO, UPT) contain around 300M
parameters. The best regular grid based models (U-Net [86, 31], FNO [51]) are significantly smaller
and range from 15M to 100M. Additional details are listed in Appendix D.4.

ShapeNet-Car is a small-scale dataset. Consequently, methods that map the mesh onto a regular
grid can employ grids of extremely high resolution, such that the number of grid points is orders of
magnitude higher than the number of mesh points. For example, a grid resolution of 64 points per
spatial dimension results in 262K grid points, which is 73x the number of mesh points. As UPT is
designed to operate directly on the mesh, we compare at different grid resolutions.

UPT is able to outperform models on smaller resolutions, for example UPT with only 64 latent
tokens achieves a test MSE of 2.31 whereas GINO with resolution 483 (110K tokens) achieves
only 2.58 while taking significantly more runtime and memory. When additionally using feature
engineering in the form of a signed distance function and 643 grid resolution UPT achieves a
competitive performance of 2.24 compared to 2.14 of GINO while remaining efficient. All test errors
are multiplied by 100. UPT achieves a favorable cost-vs-performance tradeoff where the best GINO
models requires 900 seconds per epoch whereas a only slightly worse (-0.17) UPT model takes only
4 seconds. We show a comprehensive table with all results in Appendix Tab. 4.

4.2 Transient flows

We test the scalability of UPTs on large-scale transient flow simulations. For this purpose, we
self-generate 10K Navier-Stokes simulations within a pipe flow using the pisoFoam solver from
OpenFOAM [110], which we split into 8K training, 1K validation and 1K test trajectories. For each
simulation, between one and four objects (circles of variable size) are placed randomly within the
pipe flow, and the uni-directional inflow velocity varies between 0.01 to 0.06 m/s. The simulation is
carried out for 100s resulting in 100 timesteps that are used for training neural surrogates. Note that
pisoFoam requires much smaller ∆t to remain stable (between 2K and 200K timesteps for 100s of
simulation time). We use an adaptive meshing algorithm which results in 29K to 59K mesh points.
Further dataset details are outlined in Appendix D.5.

7

8 17 68
Parameters [M]

10 3

10 2

Te
st

 M
SE

 (
)

FNO
U-Net
GINO
UPT

8 17 68
Parameters [M]

30

40

50

60

70

Co
rre

la
tio

n
Ti

m
e

[s
] (

) 1e-3

4K 8K 16K 24K 32K
Number of Input/Output Points

1

2

3

4

Te
st

 M
SE

 (
)

1e-3
GINO
UPT

Figure 5: Left and middle: MSE and correlation time on the testset. UPTs outperform compared
methods on all model scales by a large margin. Right: We study discretization convergence by
varying the number of input/output points or the number of gridpoints/supernodes of models that
were trained on inputs between 8K and 24K points, 8K target points. UPT demonstrates a stable
performance across different number of input/outputs even though it has never seen that number of
input/output points during training. We study discretization convergence of supernodes in App. D.5.2,
where UPT also shows a steady improvement when more supernodes are used during inference.
Additionally, we study smaller UPT models and training on less data in Appendix D.5.4 and D.5.5.

Model-wise, UPT uses the hierarchical encoder setup with all optional components depicted in Fig. 3.
A message passing layer aggregates local information into ns = 2048 randomly selected supernodes,
a transformer processes the supernodes and a perceiver pools the supernodes into nlatent = 512 latent
tokens. Approximator and decoder are unchanged. We compare UPT against GINO, U-Net and FNO.
For U-Net and FNO, we interpolate the mesh onto a regular grid. We condition the models onto the
current timestep and inflow velocity by modulating features within the model. We employ FiLM
conditioning for U-Net [80], the “Spatial-Spectral” conditioning method introduced in [31] for FNO
and GINO, and DiT for UPT [78]. Implementation details are provided in Appendix D.5.

We train all models for 100 epochs and evaluate test MSE as well as rollout performance for which we
use the number of timesteps until the Pearson correlation of the rollout drops below 0.8 as evaluation
metric [43]. We do not employ any techniques to stabilize rollouts [57]. The left side of Fig. 5,
shows that UPTs outperform compared methods by a large margin. Training even larger models
becomes increasingly expensive and is infeasible for our current computational budget. UPT-68M
and GINO-68M training takes roughly 450 A100 hours. UPT-8M and UPT-17M take roughly 150
and 200 A100 hours, respectively. Figure 4 shows a rollout and Appendix D.5.1 presents additional
ones. We also study out-of-distribution generalization (e.g. more obstacles) in Appendix D.5.6.

While one would ideally use lots of supernodes and query the latent space with all positions during
training, increasing those quantities increases training costs and the performance gains saturate.
Therefore, we only use 2048 supernodes and 16K randomly selected query positions during training.
We investigate discretization convergence in the right part of Fig. 5 where we vary the number of
input/output points and the number of supernodes. We use the 68M models without any retraining,
i.e., we test models on “discretization convergence” as, during training, the mesh was discretized
into 2048 supernodes and 16K query positions. UPT generalizes across a wide range of different
number of input or output positions, with even slight performance increases when using more input
points. Similarly, using more supernodes increases performance slightly. Additionally, we investigate
training with more supernodes and/or more latent tokens in a reduced setting in Appendix D.5.3.

Finally, we evaluate training with inverse encoding and decoding techniques, see Fig. 3. We investigate
the impact of the latent rollout by training our largest model – a 68M UPT. The latent rollout achieves
on par results to autoregressively unrolling via the physics domain, but speeds up the inference
significantly as shown in Tab. 1. However, in its current implementation the latent rollout requires a
non-negligible overhead during training. We discuss this limitation in Appendix A.

4.3 Lagrangian fluid dynamics

Scaling particle-based methods such as discrete element methods or smoothed particle hydrodynamics
to 10 million or more particles presents a significant challenge [117, 9], yet it also opens a distinctive
opportunity for neural surrogates. Such systems are far beyond the scope of this work. We however
present a framing of how to model such systems via UPTs such that the studied scaling properties

8

Table 1: Required time to simulate a full trajectory rollout. UPT and GINO are orders of magnitude
faster than traditional finite volume solvers. The latent rollout is additionally more than 5x faster than
an autoregressive rollout via the physics domain. Neural surrogate models are also faster on CPUs as
traditional solvers require extremely small timescales to remain stable (∆t ⩽ 0.05 vs. ∆t = 1).

Model Time on 16 CPUs Time on 1 GPU Speedup
pisoFoam 120s - 1x
GINO-68M (autoreg.) 48s 1.2s 100x
UPT-68M (autoreg.) 46s 2.0s 60x
UPT-68M (latent) 3s 0.3s 400x

of UPTs could be exploited. In order to do so, we demonstrate how UPTs capture inherent field
characteristics when applied to Lagrangian SPH simulations, as provided in LagrangeBench [101].
Here, GNNs, such as Graph Network-based Simulators (GNS) [87] and Steerable E(3) Equivariant
Graph Neural Networks (SEGNNs) [14] are strong baselines, where predicted accelerations at the
nodes are numerically integrated to model the time evolution of the particles. In contrast, UPTs learn
underlying dynamics without dedicated particle-structures, and propagate dynamics forward without
the guidance of numerical time integration schemes. An overview of the conceptual differences
between GNS/SEGNN and UPTs is shown in Fig. 6.

xt

xt′
∆t

Model predicts ât

vt′ =vt+ât∆t

xt′ =xt+vt′∆t

xt
xt′ vt

vt′

Figure 6: Conceptual difference between GNS/SEGNN on the left and UPT on the right side.
GNS/SEGNN predicts the acceleration of a particle which is then integrated to calculate the next
position. UPTs directly model the velocity field and allow for large timestep predictions.

We use the Taylor-Green vortex dataset in three dimensions (TGV3D). The TGV system was
introduced as a test scenario for turbulence modeling [97]. It is an unsteady flow of a decaying vortex,
displaying an exact closed form solution of the incompressible Navier–Stokes equations in Cartesian
coordinates. We note that the TGV3D dataset models the same trajectories but does so by tracking
particles using SPH to solve the equations. Formulating the TGV system as a UPT learning problem
allows the same trajectories to be queried at different positions, enabling the recovery of the complete
velocity field, whereas GNNs can only evaluate the velocities of the particles. Consequently, the
evaluation against GNNs should be viewed as an illustration of the efficacy of UPTs in learning
field characteristics, rather than a comprehensive GNN versus UPT comparison. More details and
experiments on the 2D version of the Taylor-Green vortex dataset (TGV2D) are in Appendix D.6.

For UPT training, we input two consecutive velocities of the particles in the dataset at timesteps t and
t− 1, and the respective particle positions. We regress two consecutive velocities at a later timesteps
{t′ − 1, t′} = {t+∆T − 1, t+∆T} with mean-squared error (MSE) objective. For all experiments
we use ∆T = 10∆t. We query the decoder to output velocities at target positions. UPTs encode
the first two velocities of a trajectory, and autoregressively propagate dynamics forward in the latent
space. We report the Euclidean norm of velocity differences across all k particles. Figure 7 compares
the rollout performance of GNS, SEGNN and UPT and shows the speedup of both methods compared
to the SPH solver. The results demonstrate that UPTs effectively learn the underlying field dynamics.

5 Discussion

Potential for extreme scale. UPTs consist of mainly transformer [106] layers which allows
application of the same scaling and parallelism principles as are commonly used for training extreme-
scale language models. For example, the recent work Llama 3 [27] trained on up to 16K H100 GPUs.

9

10 15 20 25 30 35 40 45 50
Timestep

1

2

3

Ve
lo

cit
y

Er
ro

r (
)

1e 2 TGV3D
GNS
SEGNN
UPT

Figure 7: Left: Velocity error over all particles for different timesteps. UPTs effectively learn
the underlying field dynamics, resulting in lower error as the trajectory evolves in time. Right:
Visualization of the velocity field modeled by UPT (white) vs the ground truth particle velocities.

While we do not envision that we train UPT on such a massive scale in the foreseeable future, the
used techniques can be readily applied to UPTs.

Benefits of the latent rollout. While the latent rollout does not provide a significant performance
improvement, it is almost an order of magnitude faster. The UPT framework allows to trade-off
training compute vs inference compute. If inference time is crucial for a given application, one can
train UPT with the inverse encoding and decoding objectives, requiring more training compute but
greatly speeding up inference. If inference time is not important, one can simply train UPT without
the reconstruction objectives to reduce training costs.

Additionally, the latent rollout enables applicability to Lagrangian simulations. As UPT models the
underlying field instead of tracking individual particle positions it does not have access to particle
locations at inference time. Therefore, autoregressive rollouts are impossible since the encoder
requires particle positions as input. When using the latent rollout, it is sufficient to know the initial
particle positions as dynamics are propagated without any spatial positions. After propagating the
latent space forward in time, the latent space can be queried at arbitrary positions to evaluate the
underlying field at given positions. We show this by querying with regular grid positions in Figure 7.

6 Conclusion

We have introduced Universal Physics Transformers (UPTs) framework for efficiently scaling neural
operators, demonstrating its applicability to a wide range of spatio-temporal problems. UPTs operate
without grid- or particle-based latent structures, enabling flexibility across meshes and number of
particles. The UPT training procedure separates responsibilities between components, allowing a
forward propagation in time purely within the latent space. Finally, UPTs allow for queries of the
latent space representation at any point in space-time.

Acknowledgments

We would like to sincerely thank Artur P. Toshev and Gianluca Galletti for ongoing help with and
in-depth discussions about LagrangeBench. Johannes Brandstetter acknowledges Max Welling and
Paris Perdikaris for numerous stimulating discussions.

We acknowledge EuroHPC Joint Undertaking for awarding us access to Karolina at IT4Innovations,
Czech Republic and Leonardo at CINECA, Italy.

The ELLIS Unit Linz, the LIT AI Lab, the Institute for Machine Learning, are supported by the
Federal State Upper Austria. We thank the projects Medical Cognitive Computing Center (MC3),
INCONTROL-RL (FFG-881064), PRIMAL (FFG-873979), S3AI (FFG-872172), DL for Gran-
ularFlow (FFG-871302), EPILEPSIA (FFG-892171), AIRI FG 9-N (FWF-36284, FWF-36235),
AI4GreenHeatingGrids (FFG- 899943), INTEGRATE (FFG-892418), ELISE (H2020-ICT-2019-3
ID: 951847), Stars4Waters (HORIZON-CL6-2021-CLIMATE-01-01). We thank Audi.JKU Deep
Learning Center, TGW LOGISTICS GROUP GMBH, Silicon Austria Labs (SAL), FILL Gesellschaft
mbH, Anyline GmbH, Google, ZF Friedrichshafen AG, Robert Bosch GmbH, UCB Biopharma SRL,
Merck Healthcare KGaA, Verbund AG, Software Competence Center Hagenberg GmbH, Borealis
AG, TÜV Austria, Frauscher Sensonic, TRUMPF and the NVIDIA Corporation.

10

References
[1] Andrychowicz, M., Espeholt, L., Li, D., Merchant, S., Merose, A., Zyda, F., Agrawal, S., and Kalch-

brenner, N. Deep learning for day forecasts from sparse observations. arXiv preprint arXiv:2306.06079,
2023.

[2] Ba, L. J., Kiros, J. R., and Hinton, G. E. Layer normalization. CoRR, abs/1607.06450, 2016.

[3] Bartels, S. Numerical Approximation of Partial Differential Equations. Springer, 2016.

[4] Batatia, I., Kovacs, D. P., Simm, G., Ortner, C., and Csányi, G. Mace: Higher order equivariant message
passing neural networks for fast and accurate force fields. Advances in Neural Information Processing
Systems, 35:11423–11436, 2022.

[5] Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D., et al. Interaction networks for learning about
objects, relations and physics. Advances in neural information processing systems, 29, 2016.

[6] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Relational inductive biases, deep learning, and graph
networks. arXiv preprint arXiv:1806.01261, 2018.

[7] Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J. P., Kornbluth, M., Molinari, N., Smidt, T. E.,
and Kozinsky, B. E (3)-equivariant graph neural networks for data-efficient and accurate interatomic
potentials. Nature communications, 13(1):2453, 2022.

[8] Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q. Pangu-weather: A 3d high-resolution model
for fast and accurate global weather forecast. arXiv preprint arXiv:2211.02556, 2022.

[9] Blais, B., Vidal, D., Bertrand, F., Patience, G. S., and Chaouki, J. Experimental methods in chemical
engineering: Discrete element method—dem. The Canadian Journal of Chemical Engineering, 97(7):
1964–1973, 2019.

[10] Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J.,
Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N. S., Chen,
A. S., Creel, K. A., Davis, J., Demszky, D., Donahue, C., Doumbouya, M., Durmus, E., Ermon, S.,
Etchemendy, J., Ethayarajh, K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L. E., Goel, K., Goodman, N. D.,
Grossman, S., Guha, N., Hashimoto, T., Henderson, P., Hewitt, J., Ho, D. E., Hong, J., Hsu, K., Huang,
J., Icard, T. F., Jain, S., Jurafsky, D., Kalluri, P., Karamcheti, S., Keeling, G., Khani, F., Khattab, O.,
Koh, P. W., Krass, M. S., Krishna, R., Kuditipudi, R., Kumar, A., Ladhak, F., Lee, M., Lee, T., Leskovec,
J., Levent, I., Li, X. L., Li, X., Ma, T., Malik, A., Manning, C. D., Mirchandani, S. P., Mitchell, E.,
Munyikwa, Z., Nair, S., Narayan, A., Narayanan, D., Newman, B., Nie, A., Niebles, J. C., Nilforoshan,
H., Nyarko, J. F., Ogut, G., Orr, L., Papadimitriou, I., Park, J. S., Piech, C., Portelance, E., Potts, C.,
Raghunathan, A., Reich, R., Ren, H., Rong, F., Roohani, Y. H., Ruiz, C., Ryan, J., R’e, C., Sadigh, D.,
Sagawa, S., Santhanam, K., Shih, A., Srinivasan, K. P., Tamkin, A., Taori, R., Thomas, A. W., Tramèr, F.,
Wang, R. E., Wang, W., Wu, B., Wu, J., Wu, Y., Xie, S. M., Yasunaga, M., You, J., Zaharia, M. A., Zhang,
M., Zhang, T., Zhang, X., Zhang, Y., Zheng, L., Zhou, K., and Liang, P. On the opportunities and risks of
foundation models. ArXiv, 2021. URL https://crfm.stanford.edu/assets/report.pdf.

[11] Boussinesq, J. V. Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à
l’Académie des Sciences, 23, 1877.

[12] Brackbill, J. U. and Ruppel, H. M. Flip: A method for adaptively zoned, particle-in-cell calculations of
fluid flows in two dimensions. Journal of Computational physics, 65(2):314–343, 1986.

[13] Brandstetter, J., Berg, R. v. d., Welling, M., and Gupta, J. K. Clifford neural layers for pde modeling.
arXiv preprint arXiv:2209.04934, 2022.

[14] Brandstetter, J., Hesselink, R., van der Pol, E., Bekkers, E. J., and Welling, M. Geometric and phys-
ical quantities improve e(3) equivariant message passing. In International Conference on Learning
Representations, 2022.

[15] Brandstetter, J., Worrall, D., and Welling, M. Message passing neural pde solvers. arXiv preprint
arXiv:2202.03376, 2022.

[16] Bryutkin, A., Huang, J., Deng, Z., Yang, G., Schönlieb, C.-B., and Aviles-Rivero, A. Hamlet: Graph
transformer neural operator for partial differential equations. arXiv preprint arXiv:2402.03541, 2024.

[17] Calvello, E., Kovachki, N. B., Levine, M. E., and Stuart, A. M. Continuum attention for neural operators.
CoRR, abs/2406.06486, 2024.

11

https://crfm.stanford.edu/assets/report.pdf

[18] Cao, S. Choose a transformer: Fourier or galerkin. Advances in neural information processing systems,
34:24924–24940, 2021.

[19] Carey, N., Zanisi, L., Pamela, S., Gopakumar, V., Omotani, J., Buchanan, J., and Brandstetter, J. Data
efficiency and long term prediction capabilities for neural operator surrogate models of core and edge
plasma codes. arXiv preprint arXiv:2402.08561, 2024.

[20] Chang, A. X., Funkhouser, T. A., Guibas, L. J., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M.,
Song, S., Su, H., Xiao, J., Yi, L., and Yu, F. Shapenet: An information-rich 3d model repository. CoRR,
abs/1512.03012, 2015.

[21] Chen, X., Liang, C., Huang, D., Real, E., Wang, K., Liu, Y., Pham, H., Dong, X., Luong, T., Hsieh, C.,
Lu, Y., and Le, Q. V. Symbolic discovery of optimization algorithms. CoRR, abs/2302.06675, 2023.

[22] Colagrossi, A. and Maurizio, L. Numerical simulation of interfacial flows by smoothed particle hydrody-
namics. Journal of Computational Physics, 191, 2003.

[23] Crespo, A., Dominguez, J. M., Barreiro, A., Gomez-Gasteira, M., and D, R. B. Gpus, a new tool of
acceleration in cfd: efficiency and reliability on smoothed particle hydrodynamics methods. PLOS ONE,
6, 2011.

[24] Cundall, P. A. and Strack, O. D. A discrete numerical model for granular assemblies. geotechnique, 29
(1):47–65, 1979.

[25] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[26] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An image is worth 16x16 words:
transformers for image recognition at scale. In ICLR. OpenReview.net, 2021.

[27] Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A., Yang,
A., Fan, A., Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravankumar, A., Korenev, A., Hinsvark, A.,
Rao, A., Zhang, A., Rodriguez, A., Gregerson, A., Spataru, A., Rozière, B., Biron, B., Tang, B., Chern,
B., Caucheteux, C., Nayak, C., Bi, C., Marra, C., McConnell, C., Keller, C., Touret, C., Wu, C., Wong,
C., Ferrer, C. C., Nikolaidis, C., Allonsius, D., Song, D., Pintz, D., Livshits, D., Esiobu, D., Choudhary,
D., Mahajan, D., Garcia-Olano, D., Perino, D., Hupkes, D., Lakomkin, E., AlBadawy, E., Lobanova,
E., Dinan, E., Smith, E. M., Radenovic, F., Zhang, F., Synnaeve, G., Lee, G., Anderson, G. L., Nail, G.,
Mialon, G., Pang, G., Cucurell, G., Nguyen, H., Korevaar, H., Xu, H., Touvron, H., Zarov, I., Ibarra, I. A.,
Kloumann, I. M., Misra, I., Evtimov, I., Copet, J., Lee, J., Geffert, J., Vranes, J., Park, J., Mahadeokar, J.,
Shah, J., van der Linde, J., Billock, J., Hong, J., Lee, J., Fu, J., Chi, J., Huang, J., Liu, J., Wang, J., Yu, J.,
Bitton, J., Spisak, J., Park, J., Rocca, J., Johnstun, J., Saxe, J., Jia, J., Alwala, K. V., Upasani, K., Plawiak,
K., Li, K., Heafield, K., Stone, K., and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024.

[28] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. Neural message passing for
quantum chemistry. In International conference on machine learning, pp. 1263–1272. PMLR, 2017.

[29] Gingold, R. A. and Monaghan, J. J. Smoothed particle hydrodynamics: theory and application to
non-spherical stars. Monthly notices of the royal astronomical society, 181(3):375–389, 1977.

[30] Guo, X., Li, W., and Iorio, F. Convolutional neural networks for steady flow approximation. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining, pp. 481–490, 2016.

[31] Gupta, J. K. and Brandstetter, J. Towards multi-spatiotemporal-scale generalized pde modeling. arXiv
preprint arXiv:2209.15616, 2022.

[32] Hanjalic, K. and Brian, L. A reynolds stress model of turbulence and its application to thin shear flows.
Journal of Fluid Mechanics, 52(4):609–638, 1972.

[33] Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu, S., Cheng, Z., Song, J., and Zhu, J. Gnot: A general
neural operator transformer for operator learning. In International Conference on Machine Learning, pp.
12556–12569. PMLR, 2023.

[34] Hao, Z., Su, C., Liu, S., Berner, J., Ying, C., Su, H., Anandkumar, A., Song, J., and Zhu, J. DPOT: auto-
regressive denoising operator transformer for large-scale PDE pre-training. In ICML. OpenReview.net,
2024.

12

[35] Harada, T., Koshizuka, S., and Kawaguchi, Y. Smoothed particle hydrodynamics on gpus. Computer
Graphics International, pp. 63–70, 2007.

[36] He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. Masked autoencoders are scalable
vision learners. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
16000–16009, 2022.

[37] Hendrycks, D. and Gimpel, K. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

[38] Issa, R. Solution of the implicitly discretized fluid flow equations by operator-splitting. Journal of
Computational Physics, 62, 1986.

[39] Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C., Ionescu, C., Ding, D., Koppula, S., Zoran, D.,
Brock, A., Shelhamer, E., et al. Perceiver io: A general architecture for structured inputs & outputs. In
International Conference on Learning Representations, 2021.

[40] Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman, A., and Carreira, J. Perceiver: General
perception with iterative attention. In International conference on machine learning, pp. 4651–4664.
PMLR, 2021.

[41] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In Bengio, Y. and LeCun, Y.
(eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

[42] Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

[43] Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., and Hoyer, S. Machine learning–
accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences, 118(21):
e2101784118, 2021.

[44] Kohl, G., Chen, L.-W., and Thuerey, N. Turbulent flow simulation using autoregressive conditional
diffusion models. arXiv preprint arXiv:2309.01745, 2023.

[45] Kolmogorov, A. N. A refinement of previous hypotheses concerning the local structure of turbulence in a
viscous incompressible fluid at high reynolds number. Journal of Fluid Mechanics, 13(1):82–85, 1962.

[46] Kolmoqorov, A. Local structure of turbulence in an incompressible fluid at very high reynolds numbers.
CR Ad. Sei. UUSR, 30:305, 1941.

[47] Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anandkumar, A.
Neural operator: Learning maps between function spaces. arXiv preprint arXiv:2108.08481, 2021.

[48] Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.,
Ewalds, T., Alet, F., Eaton-Rosen, Z., et al. Graphcast: Learning skillful medium-range global weather
forecasting. arXiv preprint arXiv:2212.12794, 2022.

[49] Lanthaler, S., Li, Z., and Stuart, A. M. The nonlocal neural operator: Universal approximation. CoRR,
abs/2304.13221, 2023.

[50] Lee, K. and Carlberg, K. T. Deep conservation: A latent-dynamics model for exact satisfaction of physical
conservation laws. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp.
277–285, 2021.

[51] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A.
Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895,
2020.

[52] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A.
Neural operator: Graph kernel network for partial differential equations. arXiv preprint arXiv:2003.03485,
2020.

[53] Li, Z., Meidani, K., and Farimani, A. B. Transformer for partial differential equations’ operator learning.
arXiv preprint arXiv:2205.13671, 2022.

[54] Li, Z., Kovachki, N. B., Choy, C., Li, B., Kossaifi, J., Otta, S. P., Nabian, M. A., Stadler, M., Hundt, C.,
Azizzadenesheli, K., et al. Geometry-informed neural operator for large-scale 3d pdes. arXiv preprint
arXiv:2309.00583, 2023.

13

[55] Li, Z., Patil, S., Ogoke, F., Shu, D., Zhen, W., Schneier, M., Jr., J. R. B., and Farimani, A. B. Latent
neural PDE solver: a reduced-order modelling framework for partial differential equations. CoRR,
abs/2402.17853, 2024.

[56] Lienen, M., Hansen-Palmus, J., Lüdke, D., and Günnemann, S. Generative diffusion for 3d turbulent
flows. arXiv preprint arXiv:2306.01776, 2023.

[57] Lippe, P., Veeling, B., Perdikaris, P., Turner, R., and Brandstetter, J. Pde-refiner: Achieving accurate long
rollouts with neural pde solvers. Advances in Neural Information Processing Systems, 36, 2024.

[58] Loshchilov, I. and Hutter, F. SGDR: stochastic gradient descent with warm restarts. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

[59] Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[60] Lu, L., Jin, P., and Karniadakis, G. E. Deeponet: Learning nonlinear operators for identifying differential
equations based on the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193,
2019.

[61] Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E. Learning nonlinear operators via deeponet
based on the universal approximation theorem of operators. Nature machine intelligence, 3(3):218–229,
2021.

[62] Lucy, L. B. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, vol. 82,
Dec. 1977, p. 1013-1024., 82:1013–1024, 1977.

[63] Lusch, B., Kutz, J. N., and Brunton, S. L. Deep learning for universal linear embeddings of nonlinear
dynamics. Nature communications, 9(1):4950, 2018.

[64] Mathieu, J. and Scott, J. An introduction to turbulent flow. Cambridge University Press, 2000.

[65] Mayr, A., Lehner, S., Mayrhofer, A., Kloss, C., Hochreiter, S., and Brandstetter, J. Boundary graph neural
networks for 3d simulations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 9099–9107, 2023.

[66] McCabe, M., Blancard, B. R.-S., Parker, L. H., Ohana, R., Cranmer, M., Bietti, A., Eickenberg, M.,
Golkar, S., Krawezik, G., Lanusse, F., et al. Multiple physics pretraining for physical surrogate models.
arXiv preprint arXiv:2310.02994, 2023.

[67] Merchant, A., Batzner, S., Schoenholz, S. S., Aykol, M., Cheon, G., and Cubuk, E. D. Scaling deep
learning for materials discovery. Nature, pp. 1–6, 2023.

[68] Moin, P. and Mahesh, K. Direct numerical simulation: a tool in turbulence research. Annual review of
fluid mechanics, 30(1):539–578, 1998.

[69] Monaghan, J. J. Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics, 30(1):
543–574, 1992.

[70] Monaghan, J. J. Smoothed particle hydrodynamics. Reports on progress in physics, 68(8):1703, 2005.

[71] Monaghan, J. J. and Gingold, R. A. Shock simulation by the particle method sph. Journal of computational
physics, 52(2):374–389, 1983.

[72] Morris, J., Fox, P., and Zhu, Y. Modeling low reynolds number incompressible flows using sph. Journal
of Computational Physics, 136, 1997.

[73] Morton, J., Jameson, A., Kochenderfer, M. J., and Witherden, F. Deep dynamical modeling and control
of unsteady fluid flows. Advances in Neural Information Processing Systems, 31, 2018.

[74] Nair, V. and Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In ICML, pp.
807–814. Omnipress, 2010.

[75] Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K., and Grover, A. Climax: A foundation model for
weather and climate. arXiv preprint arXiv:2301.10343, 2023.

[76] Olver, P. J. Introduction to partial differential equations. Springer, 2014.

14

[77] Patankar, S. V. and Spalding, B. D. A calculation procedure for heat, mass and momentum transfer in
three-dimensional parabolic flows. Int. J. of Heat and Mass Transfer, 15, 1972.

[78] Peebles, W. and Xie, S. Scalable diffusion models with transformers. In ICCV, pp. 4172–4182. IEEE,
2023.

[79] Perdikaris, P. A unifying framework for operator learning via neural fields, Dec 2023.

[80] Perez, E., Strub, F., de Vries, H., Dumoulin, V., and Courville, A. C. Film: Visual reasoning with a
general conditioning layer. pp. 3942–3951. AAAI Press, 2018.

[81] Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and Battaglia, P. W. Learning mesh-based simulation
with graph networks. arXiv preprint arXiv:2010.03409, 2020.

[82] Pope, S. B. Turbulent flows. Measurement Science and Technology, 12(11):2020–2021, 2001.

[83] Raonić, B., Molinaro, R., Rohner, T., Mishra, S., and de Bezenac, E. Convolutional neural operators.
arXiv preprint arXiv:2302.01178, 2023.

[84] Reynolds, O. Iv. on the dynamical theory of incompressible viscous fluids and the determination of the
criterion. Philosophical transactions of the royal society of london.(a.), (186):123–164, 1895.

[85] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-resolution image synthesis with
latent diffusion models. In CVPR, pp. 10674–10685. IEEE, 2022.

[86] Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional networks for biomedical image seg-
mentation. In MICCAI (3), volume 9351 of Lecture Notes in Computer Science, pp. 234–241. Springer,
2015.

[87] Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., and Battaglia, P. Learning to simulate
complex physics with graph networks. In International conference on machine learning, pp. 8459–8468.
PMLR, 2020.

[88] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. The graph neural network
model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[89] Seidman, J., Kissas, G., Perdikaris, P., and Pappas, G. J. Nomad: Nonlinear manifold decoders for
operator learning. Advances in Neural Information Processing Systems, 35:5601–5613, 2022.

[90] Shen, Z., Zhang, M., Zhao, H., Yi, S., and Li, H. Efficient attention: Attention with linear complexities.
In WACV, pp. 3530–3538. IEEE, 2021.

[91] Smagorinsky, J. General circulation experiments with the primitive equations: I. the basic experiment.
Monthly weather review, 91(3):99–164, 1963.

[92] Stachenfeld, K., Fielding, D. B., Kochkov, D., Cranmer, M., Pfaff, T., Godwin, J., Cui, C., Ho, S.,
Battaglia, P., and Sanchez-Gonzalez, A. Learned simulators for turbulence. In International Conference
on Learning Representations, 2022.

[93] Stachenfeld, K. L., Fielding, D. B., Kochkov, D., Cranmer, M. D., Pfaff, T., Godwin, J., Cui, C., Ho, S.,
Battaglia, P. W., and Sanchez-Gonzalez, A. Learned coarse models for efficient turbulence simulation.
CoRR, abs/2112.15275, 2021.

[94] Sulsky, D., Chen, Z., and Schreyer, H. L. A particle method for history-dependent materials. Computer
methods in applied mechanics and engineering, 118(1-2):179–196, 1994.

[95] Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D., Alesiani, F., Pflüger, D., and Niepert, M.
Pdebench: An extensive benchmark for scientific machine learning. Advances in Neural Information
Processing Systems, 35:1596–1611, 2022.

[96] Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi,
R., Barron, J. T., and Ng, R. Fourier features let networks learn high frequency functions in low
dimensional domains. In NeurIPS, 2020.

[97] Taylor, G. I. and Green, A. E. Mechanism of the production of small eddies from large ones. Proceedings
of the Royal Society of London. Series A-Mathematical and Physical Sciences, 158(895):499–521, 1937.

[98] Temam, R. Navier-Stokes equations: theory and numerical analysis, volume 343. American Mathematical
Soc., 2001.

15

[99] Thuerey, N., Holl, P., Mueller, M., Schnell, P., Trost, F., and Um, K. Physics-based deep learning. arXiv
preprint arXiv:2109.05237, 2021.

[100] Toshev, A. P., Galletti, G., Brandstetter, J., Adami, S., and Adams, N. A. Learning lagrangian fluid
mechanics with e (3)-equivariant graph neural networks. arXiv preprint arXiv:2305.15603, 2023.

[101] Toshev, A. P., Galletti, G., Fritz, F., Adami, S., and Adams, N. A. Lagrangebench: A lagrangian fluid
mechanics benchmarking suite. In 37th Conference on Neural Information Processing Systems (NeurIPS
2023) Track on Datasets and Benchmarks, 2023.

[102] Toshev, A. P., Erbesdobler, J. A., Adams, N. A., and Brandstetter, J. Neural sph: Improved neural
modeling of lagrangian fluid dynamics. arXiv preprint arXiv:2402.06275, 2024.

[103] Tran, A., Mathews, A. P., Xie, L., and Ong, C. S. Factorized fourier neural operators. In ICLR.
OpenReview.net, 2023.

[104] Tsai, T.-P. Lectures on Navier-Stokes equations, volume 192. American Mathematical Soc., 2018.

[105] Umetani, N. and Bickel, B. Learning three-dimensional flow for interactive aerodynamic design. ACM
Trans. Graph., 37(4):89, 2018.

[106] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin,
I. Attention is all you need. Advances in neural information processing systems, 30, 2017.

[107] Vinuesa, R. and Brunton, S. L. Enhancing computational fluid dynamics with machine learning. Nature
Computational Science, 2(6):358–366, 2022.

[108] Wang, S., Seidman, J. H., Sankaran, S., Wang, H., Pappas, G. J., and Perdikaris, P. Bridging operator
learning and conditioned neural fields: A unifying perspective. CoRR, abs/2405.13998, 2024.

[109] Weiler, M., Geiger, M., Welling, M., Boomsma, W., and Cohen, T. S. 3d steerable cnns: Learning
rotationally equivariant features in volumetric data. Advances in Neural Information Processing Systems,
31, 2018.

[110] Weller, H. G., Tabor, G., Jasak, H., and Fureby, C. A tensorial approach to computational continuum
mechanics using object-oriented techniques. Computers in physics, 12(6):620–631, 1998.

[111] Wiewel, S., Becher, M., and Thuerey, N. Latent space physics: Towards learning the temporal evolution
of fluid flow. In Computer graphics forum, volume 38, pp. 71–82. Wiley Online Library, 2019.

[112] Wilcox, D. Formulation of the k-omega turbulence model revisited. AIAA Journal, 46(11):2823–2838,
2008.

[113] Woo, S., Debnath, S., Hu, R., Chen, X., Liu, Z., Kweon, I. S., and Xie, S. Convnext V2: co-designing and
scaling convnets with masked autoencoders. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pp. 16133–16142. IEEE, 2023.

[114] Wu, H., Luo, H., Wang, H., Wang, J., and Long, M. Transolver: A fast transformer solver for pdes on
general geometries. arXiv preprint arXiv:2402.02366, 2024.

[115] Wu, Y. and He, K. Group normalization. In ECCV (13), volume 11217 of Lecture Notes in Computer
Science, pp. 3–19. Springer, 2018.

[116] Xu, M., Han, J., Lou, A., Kossaifi, J., Ramanathan, A., Azizzadenesheli, K., Leskovec, J., Ermon, S.,
and Anandkumar, A. Equivariant graph neural operator for modeling 3d dynamics. arXiv preprint
arXiv:2401.11037, 2024.

[117] Yang, E., Bui, H. H., De Sterck, H., Nguyen, G. D., and Bouazza, A. A scalable parallel computing sph
framework for predictions of geophysical granular flows. Computers and Geotechnics, 121:103474, 2020.
ISSN 0266-352X.

[118] Zeni, C., Pinsler, R., Zügner, D., Fowler, A., Horton, M., Fu, X., Shysheya, S., Crabbé, J., Sun, L., Smith,
J., et al. Mattergen: a generative model for inorganic materials design. arXiv preprint arXiv:2312.03687,
2023.

[119] Zhang, X., Wang, L., Helwig, J., Luo, Y., Fu, C., Xie, Y., Liu, M., Lin, Y., Xu, Z., Yan, K., et al. Artificial
intelligence for science in quantum, atomistic, and continuum systems. arXiv preprint arXiv:2307.08423,
2023.

16

A Limitations and Future work

Latent rollout. We show that the latent rollout can be enabled via a simple end-to-end training
procedure, but ultimately think that it can be improved by more delicate training procedures such as a
two stage procedure akin to diffusion models [85, 55]. As there are many possible avenues to apply
or improve the latent rollout, it would exceed the scope of this paper and we therefore leave it for
future work.

Generalization beyond fluid dynamics. We show the generalization capabilities of UPTs across
different simulation types and leave the application of UPTs to other domains for future work. We
additionally show that UPTs are neural operators and since neural operators have been shown to
generalize well across domains, this should also hold for UPTs.

Large-scale Lagrangian simulations. A particularly intriguing direction is to apply UPTs to large-
scale Lagrangian simulations. However, there do not exist readily available large-scale Lagrangian
datasets. Therefore, we consider large-scale Lagrangian simulations beyond the scope of this paper
as generating such a dataset requires extensive domain knowledge as well as engineering effort. Note
that we show the favorable scaling properties of UPTs on the transient flow dataset, which contains
up to 59K mesh points. In this setting, we train with a distributed setup of up to 32 A100 GPUs.

Unifying Lagrangian and Eulerian simulations. UPTs can encode both Lagrangian and Eulerian
simulations. It is therefore a natural future direction to exploit those different modalities. Especially,
since particle- and grid-based simulations are used to describe different phenomena but model similar
underlying dynamics. It is however to note that our method is designed primarily with the purpose of
efficient scaling, and multi-modality training follows as side-concept thereof.

B Computational fluid dynamics

This appendix discusses the Navier-Stokes equations and selected numerical integration schemes,
which are related to the experiments presented in this paper. This is not an complete introduction
into the field, but rather encompasses the concepts which are important to follow the experiments
discussed in the main paper.

First, we discuss the different operators of the Navier-Stokes equations, relate compressible and
incompressible formulations, and discuss why Navier-Stokes equations are difficult to solve. Second,
we discuss turbulence as one of the fundamental challenges of computational fluid dynamics (CFD),
explicitly working out the difference for two dimensional and three dimensional turbulence modeling.
Third, we introduce Reynolds-averaged Navier-Stokes equations (RANS) as an numerical approach
for steady-state turbulence modeling, and the SIMPLE and PISO algorithms as steady-state and
transient solvers, respectively. Finally, we discuss Lagrangian discretization schemes, focusing on
smoothed particle hydrodynamics (SPH).

B.1 Navier-Stokes equations

In our experiments, we mostly work with the incompressible Navier-Stokes equations [98]. In
two spatial dimensions, the evolution equation of the velocity flow field u : [0, T] × U ⊂
R3 → R2, u(t, x1, x2) = (u1(t, x1, x2), u2(t, x1, x2)) with internal pressure p(x1, x2) =
(p1(x1, x2), p2(x1, x2)) and external force field f(x1, x2) = (f1(x1, x2), f2(x1, x2)) is given via:

∂u1

∂t
=− u1

∂u1

∂x1
− u2

∂u1

∂x2
+ µ

(
∂2u1

∂x2
1

+
∂2u1

∂x2
2

)
− ∂p1

∂x1
+ f1

∂u2

∂t
=− u1

∂u2

∂x1
− u2

∂u2

∂x2
+ µ

(
∂2u2

∂x2
1

+
∂2u2

∂x2
2

)
− ∂p2

∂x2
+ f2

0 =
∂u1

∂x1
+

∂u2

∂x2

(3)

17

This system is usually written in a shorter and more convenient form:

∂u

∂t
= −u · ∇u+ µ∇2u−∇p+ f

0 = ∇ · u ,
(4)

where

u · ∇u = (u1 u2) ·

∂u1

∂x1

∂u2

∂x1

∂u1

∂x2

∂u2

∂x2

 (5)

is called the convection, i.e., the rate of change of u along u, and

µ∇2u = µ

(
∂

∂x1

∂

∂x2

)
·

∂

∂x1

∂

∂x2

(u1

u2

)
= µ

(
∂2

∂x2
1

+
∂2

∂x2
2

)(
u1

u2

)
(6)

the viscosity, i.e., the diffusion or net movement of u with viscosity parameter µ. The constraint(
∂

∂x1

∂

∂x2

)
·
(

u1

u2

)
=

∂u1

∂x1
+

∂u2

∂x2
= 0 (7)

yields mass conservation of the Navier-Stokes equations.

The incompressible version of the NS equations above are commonly used in the study of water
flow, low-speed air flow, and other scenarios where density changes are negligible. Its compressible
counterpart additionally accounts for variations in fluid density and temperature which is necessary
to accurately model gases at high speeds (starting in the magnitude of speed of sound) or scenarios
with significant changes in temperature. These additional considerations result in a more complex
momentum and continuity equation.

Why are the Navier-Stokes equations difficult to solve? One major difficulty is that no equation
explicitly models the unknown pressure field. Instead, the conservation of mass ∇ · u = 0 is an
implicit constraint on the velocity fields. Additionally, the nonlinear nature of the NS equations
makes them notoriously harder to solve than parabolic or hyperbolic PDEs such as the heat or wave
equation, respectively. Also, the occurrence of turbulence as discussed in the next subsection which
is due to the fact that small and large scales are coupled such that small errors, can have a large effect
on the computed solution.

Computational fluid dynamics (CFD) uses numerical schemes to discretize and solve fluid flows.
CFD simulates the free-stream flow of the fluid, and the interaction of the fluid (liquids and gases)
with surfaces defined by boundary conditions. As such, CFD comprises many challenging phenomena,
such as interactions with boundaries, mixing of different fluids, transonic, i.e, coincident emergence
of subsonic and supersonic airflow, or turbulent flows.

B.2 Turbulence

Turbulence [82, 64] is one of the key aspects of CFD and refers to chaotic and irregular motion of
fluid flows, such as air or water. It is characterized by unpredictable changes in velocity, pressure,
and density within the fluid. Turbulent flow is distinguished from laminar flow, which is smooth
and orderly. There are several factors that can contribute to the onset of turbulence, including high
flow velocities, irregularities in the shape of surfaces over which the fluid flows, and changes in the
fluid’s viscosity. Turbulence plays a significant role in many natural phenomena and engineering
applications, influencing processes such as mixing, heat transfer, and the dispersion of particles in
fluids. Understanding and predicting turbulence is crucial in fields like fluid dynamics, aerodynamics,
and meteorology. Turbulent flows occur at high Reynolds numbers

Re =
ρνL

µ
, (8)

18

where ρ is the density of the fluid, ν is the velocity of the fluid, L is the linear dimension, e.g., the
width of a pipe, and µ is the viscosity parameter. Turbulent flows are dominated by inertial forces,
which tend to produce chaotic eddies, vortices and other flow instabilities.

Turbulence in 3D vs turbulence in 2D. For high Reynolds numbers, i.e., in the turbulent regime,
solutions to incompressible Navier-Stokes equations differ in three dimensions compared to two
dimensions by a phenomenon called energy cascade. Energy cascade orchestrates the transfer of
kinetic energy from large-scale vortices to progressively smaller scales until it is eventually converted
into thermal energy. In three dimensions, this energy cascade is responsible for the continuous
formation of vortex structures at various scales, and thus for the emergence of high-frequency
features. In contrast to three dimensions, the energy cascade is inverted in two dimensions, i.e.,
energy is transported from smaller to larger scales, resulting in more homogeneous, long-lived
structures. Mathematically the difference between three dimensional and two dimensional turbulence
modeling can be best seen by rewriting the Navier-Stokes equations in vorticity formulation, where
the vorticity ω is the curl of the flow field, i.e., ω = ∇× u, with × here denoting the cross product.
This derivation can be found in many standard texts on Navier-Stokes equation , e.g. Tsai [104,
Section 1.4.], and for the reader’s convenience we briefly repeat the derivation here. We start using
Eq. (4), setting f = 0 for simplicity:

∂u

∂t
= −u · ∇u+ µ∇2u−∇p (9)

= −∇
(
1

2
u · u

)
+ u×∇× u+ µ∇2u−∇p , (10)

where we applied the dot product rule for derivatives of vector fields:

∇
(
1

2
u · u

)
= u · ∇u+ u×∇× u . (11)

Next, we take the curl of the right and the left hand side:

∂

∂t
(∇× u) = −1

2
∇×∇(u · u)︸ ︷︷ ︸

=0

+∇× u×∇× u+ µ∇2 (∇× u)−∇×∇p︸ ︷︷ ︸
=0

(12)

∂ω

∂t
= ∇× (u× ω) + µ∇2ω (13)

using the property that the curl of a gradient is zero. Lastly, using that the divergence of the curl is
again zero (i.e. ∇·ω = 0), via the identity ∇×(u× ω) = (ω · ∇)u−(u · ∇)ω+u∇ · ω︸ ︷︷ ︸

=0

−ω∇ · u︸ ︷︷ ︸
=0

,

we obtain:
∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ µ∇2ω (14)

Dω

Dt
= (ω · ∇)u+ µ∇2ω , (15)

with the material derivative
Dω

Dt
=

∂ω

∂t
+ (u · ∇)ω.

For three dimensional flows the material derivative of each component ωi can be written as

Dωi

Dt
=

3∑
j=1

 ωj
∂ui

∂xj︸ ︷︷ ︸
vortex turning and stretching

+µ
∂2ωi

∂xj∂xj︸ ︷︷ ︸
diffusion

 , (16)

for example picking i = 2:

Dω2

Dt
= ω1

∂u2

∂x1︸ ︷︷ ︸
vortex turning

+ ω2
∂u2

∂x2︸ ︷︷ ︸
vortex stretching

+ ω3
∂u2

∂x3︸ ︷︷ ︸
vortex turning

+µ

(
∂2ω2

∂x1∂x1
+

∂2ω2

∂x2∂x2
+

∂2ω2

∂x3∂x3

)
︸ ︷︷ ︸

diffusion

. (17)

19

For two-dimensional flows, as represented by

u =

(
u1

u2

0

)
and ω = ∇× u =

 0
0

∂u2

∂x1
− ∂u1

∂x2

 , (18)

the terms for vortex turning and vortex stretching vanish, as is evident in the material derivative of
ω3, given by

Dω3

Dt
= ω1

∂u3

∂x1︸ ︷︷ ︸
=0

+ω2
∂u3

∂x2︸ ︷︷ ︸
=0

+ω3
∂u3

∂x3︸ ︷︷ ︸
=0

+µ

(
∂2ω3

∂x1∂x1
+

∂2ω3

∂x2∂x2

)
︸ ︷︷ ︸

diffusion

+µ
∂2ω3

∂x3∂x3︸ ︷︷ ︸
=0

. (19)

Consequently, the length and the angle of a vortex do not change in two dimensions, resulting in
homogeneous, long-lived structures.

There’s been several approaches to model turbulence with the help of Deep Learning. Predominantly
models for two dimensional scenarios have been suggested [81, 51, 15, 43, 44]. Due to the higher
complexity (as discussed above) and memory- and compute costs comparably less work was done in
the 3D case [92, 56].

B.3 Numerical modeling based on Eulerian discretization schemes

Various approaches are available for numerically addressing turbulence, with different schemes
suited to different levels of computational intensity. Among these, Direct Numerical Simulation
(DNS) [68] stands out as the most resource-intensive method, involving the direct solution of the
unsteady Navier-Stokes equations.

DNS is renowned for its capability to resolve even the minutest eddies and time scales present in
turbulent flows. While DNS does not necessitate additional closure equations, a significant drawback
is its high computational demand. Achieving accurate solutions requires the utilization of very fine
grids and extremely small time steps. This is based on Kolmoqorov [46] and Kolmogorov [45] which
give the minimum spacial and temporal scales that need to be resolved for accurately simulating
turbulence. The discretization-scales for both time and space needed for 3D-problems become very
small and simulations computationally extremely expensive.

This computational intensity of DNS resulted in the development of turbulence modeling, with Large
Eddy Simulations (LES) [91] and Reynolds-averaged Navier-Stokes equations (RANS) [84] being
two prominent examples. LES aim to reduce computational cost by neglecting the computationally
expensive smallest length scales in turbulent flows. This is achieved through a low-pass filtering of
the Navier–Stokes equations, effectively removing fine-scale details via time- and spatial-averaging.
In contrast, the Reynolds-averaged Navier–Stokes equations (RANS equations) are based on time-
averaging. The foundational concept is Reynolds decomposition, attributed to Osborne Reynolds,
where an instantaneous quantity is decomposed into its time-averaged and fluctuating components.

Turbulent scenarios where the fluid conditions change over time are an example of transient flows.
These are typically harder to model/solve than steady state flows where the fluid properties exhibit
only negligible changes over time.

In the following, we discuss Reynolds-averaged Navier-Stokes equations (RANS) as a numercial
approach for steady-state turbulence modeling, and the SIMPLE and PISO algorithms as steady-state
and transient numerical solvers, respectively.

B.3.1 Reynolds-averaged Navier-Stokes equations

Reynolds-averaged Navier-Stokes equations (RANS) are used to model time-averaged fluid properties
such as velocity or pressure that result in a steady state which does not change over time. Writing (4)
in Einstein notation we get

∂ui

∂t
=− uj

∂ui

∂xj
+ µ

∂2ui

∂xj∂xj
− ∂p

∂xi
+ fi

0 =
∂ui

∂xi
. (20)

20

Taking the Reynolds decomposition [84] g(t, x1, x2) := ḡ(x1, x2) + g′(t, x1, x2) with ḡ(x1, x2) :=

limT→∞ 1/T
∫ T

0
g(x1, x2, t)dt being the time-average on [0, T] of a scalar valued function g, and

splitting each term of both equations into it’s time-averaged and fluctuating part we get

∂(ūi + u′
i)

∂t
=− (ūj + u′

j)
∂(ūi + u′

i)

∂xj
+ µ

∂2(ūi + u′
i)

∂xj∂xj
− ∂(p̄+ p′)

∂xi
+ (f̄i + f ′

i)

0 =
∂(ūi + u′

i)

∂xi
.

Time-averaging these equations together with the property that the time-average of the fluctuating
parts equals zero results in

ūj
∂ūi

∂xj
+ u′

j

∂u′
i

∂xj
=µ

∂2ūi

∂xj∂xj
− ∂p̄

∂xi
+ f̄i (21)

0 =
∂ūi

∂xi
.

Using the the mass conserving equation (20) the momentum equation (21) can be rewritten as

ūj
∂ūi

∂xj
=f̄i +

∂

∂xj

[
µ

(
∂ūi

∂xj
+

∂ūj

∂xi

)
− p̄δij − u′

iu
′
j

]
where −u′

iu
′
j is called the Reynolds stress which needs further modeling to solve the above equations.

More specifically, this is referred to as the Closure Problem which led to many turbulence models
such as k-ϵ [32] or k-ω [112]. Analogously the 3D RANS equations can be derived. This turbulence
model consists of simplified equations that predict the statistical evolution of turbulent flows. Due to
the Reynolds stress there still remain velocity fluctuations in the RANS equations. To get equations
that contain only time-averaged quantities the RANS equations need to be closed by modeling the
Reynolds stress as a function of the mean flow such that any reference to the fluctuating parts is
removed. The first such approach led to the eddy viscosity model [11] for 3-d incompressible Navier
Stokes:

−u′
iu

′
j = νt

(
∂ūi

∂xj
+

∂ūj

∂xi

)
− 2

3
kδij

with the turbulence eddy viscosity νt > 0 and the turbulence kinetic energy k = 1/2 u′
iu

′
i based on

Boussinesq’s hypothesis that turbulent shear stresses act in the same direction as shear stresses due to
the averaged flow. The k-ϵ model employs Boussinesq’s hypothesis by using comparably low-cost
computations for the eddy viscosity by means of two additional transport equations for turbulence
kinetic energy k and dissipation ϵ

∂(ρk)

∂t
+

∂(ρkui)

∂xi
=

∂

∂xj

[
νt
σk

∂k

∂xj

]
+ 2νtEijEij − ρϵ

∂(ρϵ)

∂t
+

∂(ρϵui)

∂xi
=

∂

∂xj

[
νt
σϵ

∂ϵ

∂xj

]
+ C1ϵ

ϵ

k
2νtEijEij − C2ϵρ

ϵ2

k

with the rate of deformation Eij , eddy viscosity νt = ρCνk
2/ϵ, and adjustable constants

Cν , C1ϵ, C2ϵ, σϵ, σk. In our experiment section 4.1 solutions of simulations based on the RANS k-ϵ
turbulence model are used as ground truth where the quantity of interest is the pressure field given
the shape of a vehicle.

B.3.2 SIMPLE and PISO algorithm

Next, we introduce two popular algorithms that try to solve Eq. (4) numerically, where the main idea
is to couple pressure and velocity computations. Specifically, we will discuss the SIMPLE (Semi-
Implicit Method for Pressure-Linked Equations) [77] and PISO (Pressure Implicit with Splitting of
Operators) [38] algorithm, which are implemented in OpenFOAM as well. The essence of these
algorithms are the following four main steps:

21

1. In a first step, the momentum equation is discretized by using suitable finite volume dis-
cretizations of the involved derivatives. This leads to a linear system for u for a given
pressure gradient ∇p:

Mu = −∇p. (22)

However, this computed velocity field u does not yet satisfy the continuity equations
∇ · u = 0.

2. In a next step, let us denote by A the diagonal part of M and introduce H, so that

H = Au−Mu. (23)

Taking into account Mu = −∇u allows to easily rearrange Eq. (23) for u, since A is
easily invertible. This gives us:

u = A−1H−A−1∇p. (24)

3. Now we substitute Eq. (24) into the continuity equation yielding

∇ · (A−1∇p) = ∇ · (A−1H), (25)

which is a Poisson equation for the pressure p that can be solved again numerically.
4. This pressure field can now be used to correct the velocity field by again applying Eq. (24).

This is the pressure-corrector stage and this u now satisfies the continuity equation. Now,
however, the pressure equation is no longer valid, since H depends on u as well. A way
out here is iterating these procedures, which is the main idea of the SIMPLE and PISO
algorithm.

The SIMPLE algorithm just iterates steps 1-4 several times , which is then called an outer corrector
loop. In contrast, the PISO algorithm solves the momentum predictor Mu = −∇p (i.e. step 1) only
once and then iterates steps 2-4, which then result in an inner loop. In both algorithms, in case the
meshes are non orthogonal, step 3, i.e. solving the Poisson equation, can also be repeated several
times before moving to step 4. For stability reasons, the SIMPLE algorithm is preferred for stationary
equations (since it implicitly promotes under-relaxation), whereas in case of time-dependent flows,
one usually considers the PISO algorithm (since in practice, for each timestep several thousands of
iterations are usually required until convergence, which is computationally very expensive).

B.4 Lagrangian discretization schemes

In contrast to such grid- and mesh-based representations, in Lagrangian schemes, the discretization
is carried out using finitely many material points, often referred to as particles, which move with
the local deformation of the continuum. Roughly speaking, there are three families of Lagrangian
schemes: discrete element methods [24], material point methods [94, 12], and smoothed particle
hydrodynamics (SPH) [29, 62, 69, 70].

B.4.1 Smoothed particle hydrodynamics

The core idea behind SPH is to divide a fluid into a set of discrete moving elements referred to as
particles. These particles interact through using truncated radial interpolation kernel functions with
characteristic radius known as the smoothing length. The truncation is justified by the assumption of
locality of interactions between particles which allows to approximate the properties of the fluid at
any arbitrary location. For particle i its position xi is given by its velocity ui such that ∂xi

∂t = ui. The
modeling of particle interaction by kernel functions implies that physical properties of any particle
can be obtained by aggregating the relevant properties of all particles within the range of the kernel.
For example, the density ρi of a particle can be expressed as ρ(xi) =

∑
j ρjVjW (||xi−xj ||, h) with

W being a kernel, h its smoothing length, and Vj the volumes of the respective particles. Rewriting
the weakly-compressible Navier-Stokes equations with quantities as in (4) and additional Reynolds
number Re and density ρ

∂u

∂t
=

1

Re
∇2u− 1

ρ
∇p+

1

ρ
f

∂ρ

∂t
= −ρ(∇ · u)

22

in terms of these kernel interpolations leads to a system of ordinary differential equations (ODEs)
for the particle accelerations [72] where the respective velocities and positions can be computed
by integration. One of the advantages of SPH compared to Eulerian discretization techniques is
that SPH can handle large topological changes as no connectivity constraints between particles are
required, and advection is treated exactly [100, 71]. The lack of a mesh significantly simplifies
the model implementation and opens up more possibilities for parallelization compared to Eulerian
schemes [35, 23]. However, for accurately resolving particle dynamics on small scales a large number
of particles is needed to achieve a resolution comparable to grid-based methods specifically when
the metric of interest is not directly related to density which makes SPH more expensive [22]. Also,
setting boundary conditions such as inlets, outlets, and walls is more difficult than for grid-based
methods.

A seemingly great fit for particle-based dynamics are graph neural networks (GNNs) [88, 42] with
graph-based latent space representations. In many cases, predicted accelerations at the nodes are
numerically integrated to model the time evolution of the many-particle systems [87, 65, 100, 102].

C Justification that UPTs are universal neural operators

We provide a brief sketch of how universality can be established for our architecture. For transformer-
based neural operators, universal approximation has been recently demonstrated in [17], Section
5. The arguments in this work are heavily based on [49], which establishes that nonlinearity and
nonlocality are crucial for universality. By demonstrating that the attention mechanism can, under
appropriate weight choices, function as an averaging operator, the results from [49] are directly
applicable. For detailed proof, refer to Theorem 22 in [17]. Our algorithm fits within this framework
as well: we employ nonlinear, attention-based encoders and decoders (as allowed by the results
of [49], Section 2) and utilize attention layers in the latent space.

D Experimental details and extended results

D.1 General

All experiments are conducted mostly on A100 GPUs. For large-scale experiments we use two
research clusters equipped with either 8xA100-40GB nodes or 4xA100-64GB nodes. For smaller
experiments and evaluations, we use a mix of internal servers equipped with varying numbers of
A100-40GB or A100-80GB cards.

We estimate the total number of GPU-hours (mostly A100-hours) used for this project to be 45K.
This includes everything from model architecture design, exploratory training runs, investigating
training instabilities to training/evaluating baseline models and UPTs.

All experiments linearly scale the learning rate with the batchsize, exclude normalization and bias
parameters from the weight decay, follow a linear warmup → cosine decay learning rate schedule [58]
and use the AdamW [41, 59] optimizer. Transformer blocks follow a standard pre-norm architecture
as used in ViT [26].

D.2 Feature modulation

We apply feature modulation to condition models to time/velocity. We use different forms of feature
modulation in accordance with existing works depending on the model type. FiLM [80] is used for
U-Net, the “Spatial-Spectral” conditioning of [31] is used for FNO based models and DiT [78] is
used for transformer blocks. For perceiver blocks, we extend the modulation of DiT to seperately
modulate queries from keys/values.

D.3 Experiments on regular grid datasets

We use two datasets from [31], the “Navier-Stokes 2D” and “ShallowWater-2D” to compare against
baseline transformer architectures. Baseline results, data preprocessing and benchmark setups are
taken from DPOT [34] and CViT [108].

23

As these datasets contain only regular grid data, we make the following modifications to UPT: (i) we
replace the supernode pooling with a patch embedding (ii) we remove the perceiver pooling in the
encoder (iii) we decode patchwise. These modifications were done as (i) patch embedding is more
efficient than supernode pooling for regular grid data (ii) these datasets are small-scale datasets, so
compressing the latent space to make the model more efficient is not necessary (iii) as the decoding
positions are always the same, there is no reason to decode position-wise as the missig variability of
positions in the dataset makes superresolution impossible and patch-wise decoding is more efficient
than position-wise decoding. This setup is conceptually similar to CViT [108].

We use a peak learning rate of 1e-4 with 10% warmup and a cosine decay schedule afterwards,
patchsize 8, batchsize 256 and train for 1000 epochs. We use hidden dimension 96 and 12 blocks for
2M parameter models and hidden dimension 256 with 14 blocks for 13M parameter models to best
match model sizes of previous models. Additionally, we mask out between 0% and 5% of the input
patches via an attention mask in the transformer and perceiver blocks. Similar performances could be
achieved with less epochs, but our flexible masking strategy allows long training without overfitting.

D.3.1 NavierStokes-2D dataset

We run comparisons against different Transformer baselines on a regular gridded Navier-Stokes
equations dataset [31] in Table 2 (baseline results and evaluation protocol taken from DPOT [34]).
UPT outperforms all compared methods, some of which are specifically designed for regularly
gridded data.

As baseline transformers often train small models, we compare on a small scale, where UPT signifi-
cantly outperforms other models. We also compare on larger scales, where UPT again outperforms
competitors.

Table 2: Comparison on a regular grid Navier-Stokes dataset [31]. (a) UPT outperforms competitor
methods that train only small models by a large margin. (b) UPT also performs well on larger model
sizes, outperforming competitors even if they train much larger models or pre-train (PT) on more
data followed by fine-tuning (FT) on the Navier-Stokes dataset.

(a) Comparison on small model sizes

Model # Params Rel. L2 Error
FNO [51] 0.5M 9.12%
FFNO [103] 1.3M 8.39%
GK-T [18] 1.6M 9.52%
GNOT [33] 1.8M 17.20%
OFormer [53] 1.9M 13.50%
UPT-T 1.8M 5.08%

(b) Comparison on larger model sizes

Model # Params Rel. L2 Error
DPOT-Ti [34] 7M 12.50%
DPOT-S [34] 30M 9.91%
DPOT-L (PT) 500M 7.98%
DPOT-L (FT) 500M 2.78%
DPOT-H (PT) 1.03B 3.79%
CViT-S [108] 13M 3.75%
CViT-B [108] 30M 3.18%
UPT-S 13M 3.12%
UPT-B 30M 2.69%

D.3.2 ShallowWater-2D dataset

We run comparisons against UNet, FNO, Dilated ResNet variants on the regular gridded ShallowWater-
2D climate modeling dataset [31] in Table 3 (baseline results and evaluation protocol taken from
CViT [108]). UPT outperforms all compared methods, which are specifically designed for regularly
gridded data.

D.4 ShapeNet-Car

Dataset. We test on the dataset generated by [105], which consists 889 car shapes from ShapeNet [20]
where side mirrors, spoilers and tires were removed. We randomly split the 889 simulations into 700
train and 189 test samples. Each sample consists of 3682 mesh points, including a small amount
of points that are not part of the car mesh. We filter all points that do not belong to the car mesh,
resulting in 3586 points per sample. [105] simulated 10 seconds of air flow and averaged the results

24

Table 3: Comparison on the regular gridded small-scale ShallowWater-2D climate modeling dataset.
UPT outperforms models that are specifically designed for regular grid data.

Model # Params Rel. L2 Error
DilResNet [93] 4.2M 13.20%
U-Net [86, 31] 148M 5.68%
FNO [51] 268M 3.97%
CViT-S [108] 13M 4.47%
UPT-S 13M 3.96%

the last 4 seconds. The inflow velocity is fixed at 20 m/s with an estimated Reynolds Number of
Re = 5 × 106. For each point, we predict the associated pressure value. As there is no notion of
time and the inflow velocity is constant, no feature modulation is necessary. We use the transformer
positional encoding [106], and, therefore rescale all positions to the range [0, 200]. We normalize the
pressure values to have zero mean and unit variance.

Baselines. As baselines we consider FNO, U-Net and GINO. For FNO, we use a hidden dimension
of 64 and 16/24/24 Fourier modes per dimension, and train with a learning rate of 1e-3/1e-3/5e-4
for grid resolutions 323/483/643, respectively. We also tried using 32 Fourier modes for a grid
resolution of 643, which performed worse than using 24 modes.

The U-Net baseline follows the architecture used as baseline in GINO which consists
of 4 downsampling and 4 upsampling blocks where each block consists of two Group-
Norm [115]→Conv3d→ReLU [74] subblocks. The initial hidden dimension is set to 64 then doubled
in each downsampling block and halved in each upsampling block. Similar to FNO, we considered a
higher initial hidden dimension for grid resolution 643 which performed worse.

For GINO, we create a positional embedding of mesh- and grid-positions which are then used as input
to a 3 layer MLP with GELU [37] non-linearities to create messages. Messages from mesh-positions
within a radius of each grid-position are accumulated which serves as input to the FNO part of
GINO. The FNO uses 64 hidden dimensions with 16/24/32 modes per dimension for grid resolutions
323/483/643, respectively. The GINO decoder encodes the query positions and again uses a 3 layer
MLP with GELU non-linearities to create messages. Each query position aggregates the messages
from grid-points within a radius. The radius for message aggregation is set to 10. When using
SDF features, the SDF features are encoded via a 2 layer MLP to the same dimension as the hidden
dimension, and added onto the positional encoding of each grid point.

Hyperparameters. We train for 1000 epochs with 50 warmup epochs, a batchsize of 32. We tune
the learning rate and model size for each model and report the best test loss.

UPT architecture. Due to a relatively low number of mesh points (3586), we use only a single
perceiver block with 64 learnable query tokens as encoder, followed by the standard UPT architecture
(transformer blocks as approximator and another perceiver block as decoder).

When additionally using SDF features as input, the SDF features are encoded by a shallow ConvNeXt
V2 [113] that processes the SDF features into 512 (8x8x8) tokens, which are concatenated to the
perceiver tokens. To distinguish between the two token types, a learnable vector per type is added to
each of the tokens.

As UPT operates on the mesh directly, we can augment the data by randomly dropping mesh points of
the input. Therefore we randomly sample between 80% and 100% of the mesh points during training
and evaluate with all mesh points when training without SDF features. The decoder still predicts
the pressure for all mesh points by querying the latent space with each mesh position. We also tried
randomly dropping mesh points for GINO where it degraded performance.

Interpolated models. We consider U-Net and FNO as baseline models. These models only take
SDF features as input since both models are bound to a regular grid representation, which prevents
using the mesh points directly. The output feature maps are linearly interpolated to each mesh point
from which a shallow MLP predicts the pressure at each mesh point. In the setting where no SDF
features are used, we assign each mesh point a constant value of 1 and linearly interpolate onto a grid.

25

Extended results. Table 4 gives a detailed overview of all results from ShapeNet-Car with varying
resolutions and comparison to baseline models.

Table 4: Normalized test MSE for ShapeNet-Car pressure prediction. Memory is the amount of
memory required to train on a single sample. UPTs can model the dynamics with a fraction of latent
tokens compared to other models. SDF additionally uses the signed distance function from each
gridpoint to the geometry as input features. To include SDF features into UPT, we encode the SDF
features with resolution 323, 483 or 643 into 83 tokens using a shallow ConvNeXt V2 [113] and
concatenate these tokens to the tokens coming from the UPT encoder. To balance the number of
SDF tokens with the number of latent tokens, we increase the number of latent tokens to 1024 in the
settings where we use SDF features for UPT. Runtime is measured on an A100 GPU.

Model SDF #Tokens MSE [1e-2] Mem. [GB] Runtime per Epoch [s]
U-Net ✗ 643 6.13 1.3 86
FNO ✗ 643 4.04 3.8 148
GINO ✗ 643 2.34 19.8 900
UPT (ours) ✗ 64 2.31 0.6 4
U-Net ✓ 323 3.66 0.2 11
FNO ✓ 323 3.31 0.5 17
GINO ✓ 323 2.90 2.1 103
UPT (ours) ✓ 83 + 1024 2.35 2.7 156
U-Net ✓ 483 3.33 0.5 35
FNO ✓ 483 3.29 1.6 64
GINO ✓ 483 2.57 7.9 360
UPT (ours) ✓ 83 + 1024 2.25 2.7 156
U-Net ✓ 643 2.83 1.3 86
FNO ✓ 643 3.26 3.8 148
GINO ✓ 643 2.14 19.8 900
UPT (ours) ✓ 83 + 1024 2.24 2.7 156

Profiling memory and runtime. We evaluate the memory per sample and runtime per epoch
(Table 4) by searching the largest possible batchsize via a binary search. To get the memory
consumption per sample, we divide the peak memory consumption by the largest possible batchsize.
For the runtime per epoch, we conduct a short benchmark run with the largest possible batchsize take
and extrapolate the time to 1 epoch. All benchmarks are conducted on a A100 80GB SXM GPU.

D.5 Transient flows

Dataset. The dataset consists of 10K simulations which we split into 8K training simulations, 1K
validation simulations and 1K test simulations. Each simulations has a length of 100 seconds where a
∆t of 1s is used to train neural surrogate models. Note that this ∆t is different from the ∆t used by the
numerical solver, which requires a much lower ∆t to remain stable. Concretely, we set the temporal
update of the numerical solver initially to ∆t = 0.05s. If instabilities occur, the trajectory is rerun
with smaller ∆t. Overall, each trajectory comprises 2K timesteps at the coarsest ∆t setting and 200K
at the finest (∆t = 0.0005s). The trajectories are randomly generated 2D windtunnel simulations
with 1-4 objects (circles of varying size) placed randomly in the tunnel. The uni-directional inflow
velocity varies between 0.01 to 0.06 m/s. Each simulation contains between 29K and 59K mesh
points where each point has three features: pressure, and the x− and y−component of the velocity.
In total, the dataset is converted to float16 precision to save storage and amounts to roughly 235GB.

From all training samples, data statistics are extracted to normalize inputs to approximately mean 0
and standard deviation 1. In order to get robust statistics, the normalization parameters are calculated
only from values within the inter-quartile range. As the Pytorch function to calculate quartiles is
not supported to handle such a large amount of values, we assume that values follow a Gaussian
distribution with mean and variance from the data, which allows us to infer the inter-quartile range
from the Gaussian CDF.

26

Additionally, we convert the normalized values ũt
i,k to log scale to avoid extreme outliers which can

lead to training instabilities:

ut
i,k = sign(ũt

i,k) · log(1 + |ũt
i,k|) , (26)

where all functions/operations are applied point-wise to the individual vector components. We apply
the same log-scale conversion to the decoder output ût

i,k.

Model scaling. We scale models by scaling the dimension of the model. For grid-based methods, we
choose 64x64 as grid size which results in similar compute costs of GINO and UPT. As encoder and
decoder operate on the mesh — which is more expensive than operating in the latent space — we use
half of the approximator hidden dimension as hidden dimension for encoder and decoder. For example,
for UPT-68M, we use hidden dimension 384 for the approximator and 192 for encoder/decoder. The
hidden dimensions of the approximator are as follows: 128 for UPT-8M, 192 for UPT-17M and 384
for UPT-68M.

For UPT, we use 12 transformer blocks in total, which we distribute evenly across encoder, approxi-
mator and decoder (i.e. 4 transformer blocks for each component). As the decoder directly follows
the approximator, this implementation detail only matters when training with inverse encoding and
decoding to enable a latent rollout. In this setting, the decoder needs more expressive power than a
single perceiver layer to decouple the latent propagation and the inverse encoding and decoding.

For GINO, we use 10/12/16 Fourier modes per dimension with a hidden dimension of 40/50/76 for
the 8M/17M/68M parameter models, respectively. The hidden dimension of the encoder/decoder are
the same ones as used for the UPT models.

For U-Nets, we use the Unetmod architecture from Gupta & Brandstetter [31] where we adjust the
number of hidden dimensions to be approximately equal to the desired parameter counts. We use
hidden dimensions 13/21/42 for the 8M/17M/68M parameter models, respectively.

Implementation. To efficiently use multi-GPU setups, we sample the same number of mesh points
for each GPU. Without this modification, the FLOPS in the encoder would fluctuate drastically per
GPU, which results in “busy waiting” time for GPUs with less FLOPS in the encoder. We also
keep the number of mesh points constant between batches to avoid memory fluctuations, which
allows using a larger batchsize. We rescale the x positions from the range [−0.5, 0.5] to [0, 200]
and the y positions from [−0.5, 1] to [0, 300]. We do this to avoid complications with the positional
embedding [106] which was designed for positive integer positions. To create a graph out of mesh
points, we use a radius graph with r = 5 and limit the maximum number of graph edges per node to
32 to avoid memory fluctuations. We choose r = 5 as it covers the whole domain when using a grid
resolution of 642.

Training. We train all models for 100 epochs using a batchsize of 1024 where we use gradient
accumulation if the full batchsize does not fit into memory. Following common practices, we use
AdamW [41, 59] for U-Net, FNO and GINO. As we encountered training instabilities when training
UPTs on this dataset, we change the optimizer for UPTs to Lion [21]. These instabilities manifest in
sudden loss spikes from which the model can not recover. Using the Lion optimizer together with
float32 precision training solves these instabilities in our experiments. When training with Lion, we
use a learning rate of 5× 10−5 and 1× 10−4 otherwise. We also use float32 for GINO as we found
that this improves performance. U-Net and FNO do not benefit from float32 and are therefore trained
in bfloat16 precision.

Other hyperparameters are chosen based on common practices when training ViTs [26]. We linearly
increase the learning rate for the first 10 epochs [58] followed by a cosine decay. A weight decay of
0.05 is used when training with AdamW, which is increased to 0.5 when using Lion as suggested
in [21]. Architectural choices like the number of attention heads, the latent dimension for each
attention head or the expansion dimension for the transformer’s MLP are copied from ViTs.

We find float32 precision to be beneficial for GINO and UPTs, which is likely due to positional
embeddings being too inaccurate with bfloat16 precision. Training with float16 instead of bfloat16 (to
increase the precision of the positional embedding while speeding up training) resulted in NaN values
due to overflows. Therefore, we train all GINO and UPT models with float32. We found this to be
very important as otherwise UPTs become unstable over the course of training, leading to a large loss
spike from which the model can not recover. During model development, we tried various ways to
solve this instabilities where using the Lion optimizer was one of them. With fp32 training, UPTs

27

work similarly well with AdamW but we kept Lion as we already trained models and re-training all
models is quite expensive.

Interpolated models. We train U-Net and FNO models as baseline on this task. To project the
mesh onto a regular grid, we use a k-NN interpolation which takes the k nearest neighbors of a grid
position and interpolates between the values of the nerarest neighbors. Going from the grid back
to the mesh is implemented via the grid_sample function of pytorch. For FNO, we use the same
dimensions as in latent model of GINO and for U-Net, we scale the latent dimensions such that the
model is in the same parameter count range as the other models.

D.5.1 Visualization of rollouts

We show more qualitative results of the UPT-68M model in Fig. 13.

D.5.2 Supernode discretization convergence

While one would ideally use lots of supernodes also during training, it also requires more computa-
tional power. Therefore, we investigate increasing the number of supernodes only during inference.
We use the 68M parameter models from Sec. 4.2 and increase the number of supernodes during
inference. Figure 8 shows that UPTs are discretization convergent and inference performance can be
improved by using more supernodes for inference than during training.

1K 2K 4K 8K 16K 32K
Number of Gridpoints/Supernodes

1
2
3
4
5
6

Te
st

 M
SE

 (
)

1e-3
GINO
UPT

Figure 8: We study discretization convergence by varying the number the number of gridpoints/-
supernodes of models that were trained 2K supernodes (UPT) or 4K grid points (GINO). UPT
demonstrates a stable performance across different number of supernodes even though it has never
seen that number of supernodes during training. Increasing the number of supernodes even improves
the performance of UPT slightly. In contrast, the performance of GINO plummets when the number
of gridpoints is different during inference.

D.5.3 Impact of a larger latent space

As training with larger latent spaces becomes expensive, we investigate it in a reduced setting where
we train for only 10 epochs and fix the number of input points to 16K. The results in Fig. 9 show that
UPTs scale well with larger latent spaces, allowing a flexible compute-performance tradeoff.

D.5.4 Performance of smaller models

Figure 5 could suggest that UPT does not scale well with parameter size due to the steeper decline
of GINO. However, the scaling of GINO only looks good because GINO underperforms in contrast
to UPT (GINO-68M is worse than UPT-8M). For well trained (UPT) models it gets increasingly
difficult to improve the loss further. Ideally, one would show this by training larger GINO models,
however this is prohibitively expensive (68M parameter models already take 450 A100 hours per
model). We therefore go in the other directions and train even smaller UPT models that achieve a
similar loss to the GINO models and compare scaling there. In Figure 10 right, we compare UPT
1M/2M/8M against GINO 8M/17M/68M. UPT shows similar scaling on that loss scale.

28

512 1K 2K 4K 8K
Number of supernodes

1.5

2.5

3.5

4.5

5.5

Te
st

 M
SE

 (
)

1e-2

0

2

4

6

8

Th
ro

ug
hp

ut
 (

)

1e5

128 256 512 1K 2K
Number of latent tokens

1.5

2.5

3.5

4.5

5.5

Te
st

 M
SE

 (
)

1e-2

0

2

4

6

8

Th
ro

ug
hp

ut
 (

)

1e5

¼ ½ 1 2 4
Compound scale

1.5

2.5

3.5

4.5

5.5

Te
st

 M
SE

 (
)

1e-2

0

2

4

6

8

Th
ro

ug
hp

ut
 (

)

1e5

Figure 9: Latent space scaling investigations of a 17M parameter UPT model for 10 epochs. Com-
pound scaling scales the number of supernodes and latent tokens simulataneously where a compund
scale of 1 uses nsupernodes=2048 and nlatent=512, i.e. compound scale 2 uses nsupernodes=4096 and
nlatent=1024. Throughput is measured as number of samples processed per GPU-hour. Models are
trained in a reduced setting with 10 epochs and 16K input points.

We strongly hypothesis that the effect of larger UPT models would become apparent in even more
challenging settings or even larger datasets. However, challenging large-scale datasets are hard to
come by, which is why we created one ourselves. Creating even larger and more complex ones
is beyond the scope of our work as it exceeds our current resource budget, but it is definitely an
interesting direction for future research/applications.

Expressitivity10 3

10 2

Te
st

 M
SE

 (
)

GINO
UPT

1M

8M

2M

17M

8M

68M

Figure 10: UPT is much more expressive than GINO and shows good scaling when increasing model
size. UPT-1M achieves comparable performance to GINO-17M using 17x less parameters.

D.5.5 Scalability with dataset size

We show the scalability and data efficiency of UPTs by training UPT-8M on subsets of the data
used for the transient flow experiments (we train on 2K and 4K out of the 8K train simulations).
The results in Figure 11 right show that UPT scales well with data and is data efficient, achieving
comparable results to GINO-8M with 4x less data.

D.5.6 Out-of-distribution generalization study

We study generalization to out-of-distribution datasets by evaluating the 68M parameter models
that were trained on the transient flow dataset from Section 4.2. The in-distribution dataset uses an
adaptive meshing algorithm, i.e. the mesh resolution around objects is increased, leading to mesh
cells of different sizes and contains between 1 and 4 circles of variable size at random locations.

We evaluate three different settings of variable difficulty: more objects, higher inflow velocity. For
each setting, we generate a new dataset containing 100 simulations and evaluate the model that was
trained on the in-distribution dataset. The results in Figure 12 show that UPTs behave similar to other
models when evaluated on OOD tasks where UPT outperforms all other models in all tasks. Therefore,
the grid-indpendent architecture of UPTs does not impair OOD generalization performance.

29

2 4 8
#Simulations [K]

10 3

10 2

Te
st

 M
SE

 (
)

GINO
UPT

Figure 11: UPT scales well with more data and is data efficient, achieving comparable results to
competitors with 4x less data.

Generalization to more objects. Adding additional obstacles to a flow makes it more turbulant.
The left side of Fig. 12 shows that also for in-distribution, more objects correspond to higher loss
values due to the increased difficulty. Models show stable generalization to larger object counts. Note
that we do not encode the number of objects or the objects explicitly in the model. The model simply
does not get any inputs in the locations where obstacles are. Therefore, only the dynamics of the flow
change but not the distribution of input positions.

Generalization to higher velocities. The in-distribution dataset contains random velocities sampled
from v ∈ [0.01, 0.06] m/s. The velocity is used (together with the timestep) as input to the modulation
layers (e.g. DiT [78] modulation) which modulate the features of all layers in the network. This leads
to OOD velocities distorting all features within a forward pass. The center plot of Fig. 12 shows
that UPT has the best OOD generalization among all models. Notably, the performance of GINO
drastically drops for higher velocities.

Generalization to different geometries. The in-distribution dataset contains randomly placed
circles of varying size where the mesh is generated via an adaptive meshing algorithm. To investigate
robustness to the meshing algorithm, we generate a OOD dataset with a uniform meshing algorithm.
In this dataset, mesh cells are approximately uniform, i.eṫhe distance between two points is roughly
the same. This is in contrast to an adaptive mesh, where regions around an object have more mesh
cells and therefore the distance between two points is smaller in these regions. Additionally, we
investigate generalization to different obstacle geometries by using polygons (with up to 9 edges) or
triangles instead of circles. Note that even though polygons are a more "complicated" shape, they are
more reminiscent of a circle than triangles. The size of the obstacle is also varied here. For simplicity,
the number of objects per simulation is set to 1 in this study. Note that U-Net and FNO interpolate
the mesh onto a 2D grid and therefore their distribution of input positions does not change here, only
the dynamics of the simulation. For GINO and UPT, also the distribution of input position changes.
The right side of Fig. 12 shows that UPT achieves the best performances on OOD meshes, despite
having to adjust to a different input position distribution.

D.6 Lagrangian fluid mechanics

Datasets. We use the Taylor-Green vortex datasets from Toshev et al. [101] for our Lagrangian
experiments, comprising two dimensions (TGV2D) and three dimensions (TGV3D). The Taylor-
Green vortex problem is characterized by a distinctive initial velocity field without an external driving
force, resulting in a static decrease in kinetic energy over time. The TGV2D dataset includes 2500
particles, a sequence length of 126, and is characterized by a Reynolds number (Re) of 100. The data
is split into 100/50/50 for training, validation, and testing, respectively. The TGV3D dataset consists
of 8000 particles, a sequence length of 61, and a Reynolds number of 50. The data is partitioned into
200/100/100 for training, validation, and testing, respectively.

Baselines. The Graph Network-based Simulator (GNS) model [87] is a popular learned surrogate
for physical particle-based simulations. The architecture is kept simple, adhering to the encoder-

30

1 2 3 4 5 6 7 8
#Objects

10 3

10 2

Te
st

 M
SE

 (
)

U-Net
FNO
GINO
UPT

0.03 0.05 0.07 0.09
Velocity [m/s]

10 3

10 2

10 1

100

Te
st

 M
SE

 (
)

U-Net
FNO
GINO
UPT

ID UMesh Polygon Triangle
Geometry Setting

10 3

10 2

Te
st

 M
SE

 (
)

U-Net
FNO
GINO
UPT

Figure 12: OOD generalization study. Trained 68M parameter models are evaluated on OOD datasets
with more objects, higher inflow velocities and different geometries. "ID" refers to an adaptive
meshing algorithm with circles as obstacles. "UMesh" changes the meshing algorithm from adaptive
to uniform. "Triangle" uses triangles instead of circles and "Polygon" uses polygon obstacles (with
up to 9 edges) instead of circles. UPTs have similar OOD generalization capabilities as other models,
outperforming them in all evaluations. Grey indicates OOD settings.

processor-decoder principle [6], where the processor consists of multiple graph network blocks [5].
The Steerable E(3)-equivariant Graph Neural Network (SEGNN) architecture [15] is a general
implementation of an E(3) equivariant GNN, where layers are directly conditioned on steerable
attributes for both nodes and edges. The main building blocks are steerable MLPs, i.e., stacks of
learnable linear Clebsch-Gordan tensor products interleaved with gated non-linearities [109]. SEGNN
layers are message-passing layers [28] where steerable MLPs replace the traditional non-equivariant
MLPs for both message and node update functions.

We utilize the checkpoints provided by Toshev et al. [101] for the comparisons in 4.3. Both GNS and
SEGNN baseline models comprise 10 layers with latent dimensions of 128 and 64, respectively. The
maximum irreps order of SEGNN are l = 1, for more details see [101].

Hyperparameters. We train using a batchsize of 128 for 50 epochs with a warmup phase of
10 epochs. We sample inputs between 50% to 100% of total particles. For optimization, we use
AdamW [59] for all experiments with learning rate 10−3 and weight decay of 0.05.

UPT architecture. For the TGV2D and TGV3D experiments, we use ns = 256 and ns = 512
supernodes, respectively. For TGV3D more supernodes are required due to the increased number
of particles. Message passing is done with a maximum of four input points per supernode. The
flexibility of the UPT encoder allows us to randomly sample 50% up to 100% of the total particles,
diversifying the training procedure and forcing the model to learn the underlying dynamics.

The encoder comprises four transformer blocks with a latent dimension of 96 and two attention heads.
The encoder perceiver expands the latent dimension to 192 and outputs 128 latent tokens, using 128
learned queries and three attention heads. The approximator comprises four transformer blocks with
a latent dimension of 192 and three attention heads. The decoder perceiver comprises again three
attention heads. Overall, the parameter count of UPT amounts to 12.6M parameters.

31

Figure 13: Exemplary visualizations for transient flow simulation rollouts. Best viewed zoomed in.

32

Experiments on Taylor Green Vortex 2D.

We show results on the TGV2D dataset from LagrangeBench [101] and the time to generate a
simulated trajectory in Figure 14. The velocity error behaves similar to the 3D version of the dataset
in Figure 7. UPT is roughly 10 times faster than GNNs and 100 times faster than the classical SPH
solver.

20 40 60 80 100 120
Timestep

2

4

6

8

Ve
lo

cit
y

Er
ro

r (
)

1e 4 TGV2D
GNS
SEGNN
UPT

Model Time Speedup Device
SPH 4.9s 1x A6000
SEGNN 2.76s 2x A100
GNS 0.56s 9x A100
UPT 0.05s 98x A100

Figure 14: Left: Mean Euclidean norm of the velocity error over all particles for different timesteps.
UPTs effectively learn the underlying field dynamics, resulting in lower velocity error as the trajectory
evolves in time. Right: Comparison of simulation/rollout runtimes for a TGV2D trajectory with 125
timesteps and 2500 particles across SPH simulation.

D.7 Qualitative study of scaling limits details

We qualitatively study the scaling limits of representative methods by evaluating the memory con-
sumption when training a 68M parameter model with a batchsize of 1 while scaling the number of
inputs in the left part of Fig. 2.

We study the following models:

• GNN: Lagrangian based simulations are currently dominated by GNN architectures due to
their strong ability to update individual particles based on representation of neighboring
particles. In this study, we consider a GNO (i.e. a GNN with radius graph and mean
aggregation) since edge information is typically absent in physical simulations, but this does
not change the asymptotic complexity. Additionally, we limit the number of edges per node
(degree of the graph) to 4 as otherwise the GNN could not fit 32K inputs on 80 GB of GPU
memory. Note that this is a heavy restriction and these models would most likely need a
larger degree to perform well when actually trained.

• Transformer: The amount of operations required for the vanilla transformer self-attention is
quadratic in the number of inputs and therefore becomes increasingly expensive when the
number of input grows. Linear transformers change the attention mechanism to have linear
complexity and therefore scale better to larger input spaces. We use the linear attention
implementation of [90], but note that the complexity is equivalent to recent transformer
architectures proposed as neural surrogate for partial differential equations [18, 53, 33].

• GINO: Aggregating information into a lower dimensional latent space allows models to be
scaled to a large number of inputs. GINO is one of the prominent models that operates with
this paradigm by projecting the input point cloud onto points on a regular grid.

• UPTs: The efficient latent space compression of UPTs allows scaling to large number of
input points.

We do not include FNO or CNN/U-Net into this study as they can only handle inputs from a regular
grid. Therefore, they would need a very fine-grained grid to achieve comparable results to GINO or
UPTs, which makes a fair comparison hard. Note that GINO usea a FNO after it projects inputs onto
a regular grid. Therefore, the scalability of GINO is highly correlated with the scalability of FNOs or
CNN/U-Nets (i.e. decent scalability on 2D problems but drastically higher compute requirements
on 3D problems). We also exclude transformers with quadratic attention as they quickly become
infeasible and their linear complexity counterpart scales linear with the number of inputs.

33

We also scale the latent space size for GINO (number of gridpoints) and UPTs (number of supernodes
and number of latent tokens). As starting point, we use the latent space sizes used in Sec 4.2. For
GINO-3D, we use the same grid resolution for the 3rd dimension as for GINO-2D (i.e. GINO-2D
uses 642 and GINO-3D 643). Our experiments in Sec. 4.1 and Sec. 4.2 show that GINO needs this
high resolution for the grid to achieve good performances. For GINO-3D we set the number of fourier
modes to 5 to keep the parameter count close to 68M.

As a quantitative comparison between completely different architectures is challenging, we addi-
tionally list the theoretical model complexities in Tab. 5. This study is meant to give a qualitative
impression of the practical implications of the theoretical asymptotic complexities.

Table 5: Extending the right table of Fig. 2 with theoretical asymptotic complexities. Complexity
includes number of mesh points M , and maximum degree of the graph D. Grid-based methods
project the mesh to G grid points. UPTs instead use a small amount of supernodes S as discretization,
where G is typically much larger than S. The UPT training procedure separates responsibilities
between components, allowing us to forward propage dynamics purely within the latent space.

Model Range Complexity Irregular Discretization Learns Latent
Grid Convergent Field Rollout

GNN local O(MD) ✓ ✗ ✗ ✗
CNN local O(G) ✗ ✗ ✗ ✗
Transformer global O(M2) ✓ ✓ ✗ ✗
Linear Transformer global O(M) ✓ ✓ ✗ ✗
GNO [52] radius O(MD) ✓ ✓ ✗ ✗
FNO [51] global O(G logG) ✗ ✓ ✗ ✗
GINO [54] global O(GD +G logG) ✓ ✓ ✓ ✗
UPT global O(SD + S2) ✓ ✓ ✓ ✓

E Impact Statement

Neural PDE surrogates play an important role in modeling many natural phenomena, many of
which are related to computational fluid dynamics. Examples are weather modeling, aerodynamics,
biological engineering, or plasma physics. Given the widespread application of computational fluid
dynamics, obtaining shortcuts or alternatives for computationally expensive simulations, is essential
for advancing scientific research, and has direct or indirect implications for reducing carbon emissions.
In contrast to traditional computational fluid dynamics simulations, our approach aims to eliminate
the need for complex meshing, bypass the requirement for detailed knowledge of boundary conditions,
and overcome bottlenecks caused by solver intricacies. However, it is important to note that relying on
simulations always necessitates thorough cross-checks and monitoring, especially when employing a
“learning to simulate” methodology.

F Implementation Details

F.1 Supernode pooling

Supernodes are, in the case of Eulerian data, sampled according to the underlying mesh and, in the
case of Lagrangian data, sampled according to the particle density. A random sampling procedure
which follows the mesh or particle density, respectively, allows us to put domain knowledge into
the architecture. Consequently, complex regions are accurately captured, as these regions will be
assigned more supernodes than regions with a low-resolution mesh or few particles.

The sampling of supernodes is done for each optimization step which provides regularization.

The radius graph encodes a fixed region around each supernode. We do not use any information (such
as cell connectivity/adjacency) from the original mesh in the Eulerian case. While one could use
the original edge connections for Eulerian data, Lagrangian data does not have edges. Additionally,
we employ randomly dropping input nodes as a form of data augmentation which makes using the
original edge connections more complicated from an implementation standpoint. In contrast, our
design via radius graph is agnostic to the simulation type and also to randomly dropping input nodes.

34

We choose the radius depending on the dataset. For each dataset, we first analyze the average degree
of the radius graph with different radius values. We then choose the radius such that the degree is
around 24, i.e., on average each supernode represents 24 inputs. We found our model to be fairly
robust to the radius choice. Also, the circles of different supernodes can overlap. Therefore, the
encoding of dense regions can be distributed among multiple supernodes.

We impose the edge limit of the radius graph by randomly dropping connections to preserve the
average distance from supernode to input nodes and avoid “squashing” too much information into a
single supernode. We choose this edge limit to be 32 in all cases.

F.2 Position embedding

We embed input and query positions via the sine-cosine position embedding from transformers [106].
Each position dimension is embedded separately. We rescale all positions to be in the range [0,
200] to avoid “unsmooth” transitions when going from positive positions to negative positions. This
also makes sure that positions are in a suitable scale for the transformer positional embedding. For
example, input positions could be arbitrarily small, which would lead all positions to be the same
due the limited precision of float values. The upper bound 200 is a hyperparameter where a broad
range of values works. If input nodes have additional input features, these features are first linearly
projected into a hidden dimension and then the positional embedding vector is added.

We also experimented with random fourier features [96], but did not find a significant difference.

F.3 Conditioning pseudocode

We provide pseudocode how to create a conditioning vector to encode scalar properties into the
model. This conditioning vector is then used to predict the parameters of the LayerNorm [2] layers
before the attention and MLP parts of each transformer block. Additionally, a third scalar for gating
the residual connections is learned. This methodology follows DiT [78]. For predicting these scalars,
a simple learnable linear projection is used.

1 # embed: sine - cosine positional embedding
2 # condition_mlp: shallow MLP to combine boundary conditions
3 def create_condition(timestep , velocity):
4 timestep_embed = embed(timestep)
5 velocity_embed = embed(velocity)
6 embed = concat ([timestep_embed , velocity_embed])
7 condition = condition_mlp(embed)
8 return condition

Listing 1: PyTorch-style pseudocode for conditioning onto scalar variables.

F.4 Training pseudocode

We provide pseudocode for a training step in the setting of the transient flow experiments (2D
positions with 3 features per node) in Listing 2 including inverse encoding/decoding objectives.

35

1 # input_embed: linear projection from input features dim to hidden dim
2 # pos_embed: sine -cosine positional embedding
3 # message_mlp: shallow MLP to create messages
4 # encoder_transformer: stack of transformer blocks of the encoder
5 # latent_queries: ‘n_latent_tokens ‘ learnable query vectors
6 # encoder_perceiver: cross attention block
7 # approximator_transformer: stack of transformer blocks
8 # query_mlp: shallow MLP in the decoder to encode query positions
9 # decoder: cross attention block

10

11 def encoder(input_features , input_pos , radius , n_supernodes):
12 """
13 encode arbitrary pointclouds into a fixed latent space
14 inputs:
15 input_features Tensor(n_input_nodes , 3): features of input

nodes
16 input_pos Tensor(n_input_nodes , 2): positions of input nodes
17 n_supernodes integer: number of supernodes
18 radius float: radius for creating the radius_graph
19 outputs:
20 latent Tensor(n_latent_tokens , hidden_dim): encoded latent
21 """
22 # create radius graph (using all input nodes)
23 # edges are uni -directional
24 # messages are passed from nodes_from to nodes_to
25 nodes_from , nodes_to = radius_graph(input_pos , radius)
26

27 # select supernodes from input_nodes
28 n_input_nodes = len(input_features)
29 supernode_idx = randperm(n_input_nodes)[: n_supernodes]
30

31 # filter out edges that do not involve supernodes
32 is_supernode_edge = nodes_to in supernode_idx
33 nodes_from = nodes_from[is_supernode_edge]
34 nodes_to = nodes_to[is_supernode_edge]
35

36 # encode inputs and positions
37 encoded_nodes = input_embed(input_features) + pos_embed(input_pos)
38

39 # create messages
40 messages = message_mlp(encoded_nodes[nodes_from])
41 # accumulate messages per supernode by averaging messages
42 supernodes = accumulate(messages , nodes_to , reduce="mean")
43

44 # process supernodes with some transformer blocks
45 supernodes = encoder_transformer(supernodes)
46 # perceiver pooling from supernodes to latent tokens
47 latent = encoder_perceiver(
48 query=latent_queryies ,
49 key=supernodes ,
50 value=supernodes ,
51)
52 return latent
53

54 def approximator(latent):
55 """
56 propagates latent forward in time
57 inputs:
58 latent_t Tensor(n_latent_tokens , hidden_dim):
59 encoded latent space at timestep t
60 outputs:
61 latent_t_plus_1 Tensor(n_latent_tokens , hidden_dim):
62 encoded latent space at timestep t + 1
63 """
64 return approximator_transformer(latent)

36

65

66 def decoder(latent , query_pos):
67 """
68 decode latent space pointwise at arbitrary positions
69 inputs:
70 latent Tensor(n_latent_tokens , hidden_dim): latent space
71 query_pos Tensor(n_outputs , 2):
72 positions for querying the latent space
73 outputs:
74 decoded Tensor(n_outputs , 3):
75 evaluation of the latent space at query positions
76 """
77 # encode query positions
78 query_pos_embed = query_mlp(pos_embed(query_pos))
79 # query latent space
80 decoded = decoder(query=query_pos_embed , key=latent , value=latent)
81 return decoded
82

83 def step(input_features , input_pos , n_supernodes , radius , query_pos):
84 """
85 encode arbitrary pointclouds into a fixed latent space
86 inputs:
87 input_features Tensor(n_input_nodes , 3):
88 features of input nodes at timestep t
89 input_pos Tensor(n_input_nodes , 2):
90 positions of input nodes at timestep t
91 n_supernodes integer: number of supernodes
92 radius float: radius for creating the radius_graph
93 query_pos Tensor(n_outputs , 2):
94 positions for querying the latent space
95 target_features Tensor(n_input_nodes , 3):
96 features of nodes at timestep t + 1
97 outputs:
98 loss Tensor (1): skalar loss value
99 """

100 # next -step prediction
101 latent_t = encoder(
102 input_features ,
103 input_pos ,
104 radius ,
105 n_supernodes ,
106)
107 latent_tplus1 = approximator(latent_t)
108 decoded_tplus1 = decoder(latent_tplus1 , query_pos)
109 next_step_loss = mse(decoded_tplus1 , target_features)
110 # inverse decoder (decode latent into inputs)
111 decoded_t = decoder(latent_t , input_pos)
112 inverse_decoding_loss = mse(decoded_t , input_features)
113 # inverse encoder (encode predictions at t+1 into latent of t+1)
114 inverse_encoded = encoder(
115 decoded_tplus1 ,
116 query_pos ,
117 radius ,
118 n_supernodes ,
119)
120 inverse_encoding_loss = mse(inverse_encoded , latent_tplus1)
121 # sum losses
122 return (
123 next_step_loss
124 + inverse_decoding_loss
125 + inverse_encoding_loss
126)

Listing 2: PyTorch-style pseudocode for UPT with inverse encoding an decoding objecitves.

37

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduce a scalable neural operator architecture that performs well on on
a wide range of physical simulations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

38

Justification: No theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide implementation details for all our experiments in Appendix D.
Additionally, we provide the code that was used for this work in the supplemental materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

39

Answer: [Yes]

Justification: We provide the code that was used for this work in the supplemental materials
which also includes data preparation scripts.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide experimental details and hyperparameters in Appendix D. The
code in the supplemental materials also includes the full hyperparameter configurations used
for each experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Repeating experiments with different random seeds is expensive, especially in
the large-scale experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

40

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details on compute infrastructure in Appendix D.1 and provide the
most important runtimes in the main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper conforms with the guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide an impact statement in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

41

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Authors of code and data are cited accordingly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

42

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

43

	Introduction
	Background
	Universal Physics Transformers
	Experiments
	Steady state flows
	Transient flows
	Lagrangian fluid dynamics

	Discussion
	Conclusion
	Limitations and Future work
	Computational fluid dynamics
	Navier-Stokes equations
	Turbulence
	Numerical modeling based on Eulerian discretization schemes
	Reynolds-averaged Navier-Stokes equations
	SIMPLE and PISO algorithm

	Lagrangian discretization schemes
	Smoothed particle hydrodynamics

	Justification that UPTs are universal neural operators
	Experimental details and extended results
	General
	Feature modulation
	Experiments on regular grid datasets
	NavierStokes-2D dataset
	ShallowWater-2D dataset

	ShapeNet-Car
	Transient flows
	Visualization of rollouts
	Supernode discretization convergence
	Impact of a larger latent space
	Performance of smaller models
	Scalability with dataset size
	Out-of-distribution generalization study

	Lagrangian fluid mechanics
	Qualitative study of scaling limits details

	Impact Statement
	Implementation Details
	Supernode pooling
	Position embedding
	Conditioning pseudocode
	Training pseudocode

