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Abstract

Previous research has investigated the application of Multimodal Large Language
Models (MLLMs) in understanding 3D scenes by interpreting them as videos.
These approaches generally depend on comprehensive 3D data inputs, such as
point clouds or reconstructed Bird’s-Eye View (BEV) maps. In our research, we
advance this field by enhancing the capability of MLLMs to understand and reason
in 3D spaces directly from video data, without the need for additional 3D input.
We propose a novel and efficient method called the Video-3D Geometry Large
Language Model (VG LLM). Our approach utilizes a 3D visual geometry encoder
to extract 3D prior information from video sequences. This information is then
integrated with visual tokens and input into the MLLM. Extensive experiments
have shown that our method has achieved substantial improvements in various
tasks related to 3D scene understanding and spatial reasoning, all directly learned
from video sources. Impressively, our 4B model, which does not rely on explicit
3D data inputs, achieves competitive results compared to existing state-of-the-art
methods, and even surpasses the Gemini-1.5-Pro in the VSI-Bench evaluations.

1 Introduction
Rapid advancements and impressive performance of Multimodal Large Language Models (MLLMs)
[2, 24, 26, 29, 32, 39, 40, 43] have driven their applications in various fields, such as 3D scene
understanding [11, 20, 21, 22, 35, 58, 63], vision-language-action models [3, 25, 36, 47], embodied
navigation [55, 59, 61], and learning 3D knowledge from videos [35, 55, 58].

Efforts [35, 41, 58] have been made to improve the 3D spatial understanding capability of MLLMs by
considering scenes as video sequences. For example, Video-3D LLM [41, 58] injects 3D coordinates
into visual features at patch level to improve 3D perception. GPT4Scene [35] leverages BEV
maps [28] rendered from reconstructed 3D point clouds for global awareness. However, a shared
limitation of these approaches is their dependence on dense 3D data input (e.g., depth maps and
point maps), which are often hard to acquire in certain real-world scenarios. Although estimating 3D
attributes directly from images is possible [38, 42], it can introduce estimation errors and therefore
degrade the performance, thus restricting their practical applicability. This naturally leads to the
question: “Can MLLMs understand the 3D world directly from videos without any explicit 3D data
input?”

Recent research [50] has shown that MLLMs face difficulties in understanding 3D geometry from
encoded visual representations. This issue arises because these MLLMs process video frames as
separate tokens through a visual encoder, which fails to capture crucial 3D geometric information,
such as correspondences across frames [30]. Consequently, the MLLM backbone has to infer the
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3D structure from the visual tokens to comprehend spatial relationships, which is both challenging
and resource-intensive. This process often requires extensive supervision [6, 14, 54] and meticulous
design to prevent issues such as catastrophic forgetting during fine-tuning [52]. These challenges
highlight the critical need for methods that can incorporate 3D geometry priors into MLLMs.

In this work, we propose Video-3D Geometry LLM (VG LLM), a novel framework designed to
explicitly integrate 3D visual geometry priors into MLLMs. To achieve this, we introduce a 3D
visual geometry encoder that enriches input visual sequences with additional geometric information.
Specifically, input images are processed by both a conventional visual encoder and the newly
integrated 3D visual geometry encoder. The features extracted by these encoders are fused at the
patch level and subsequently passed to the MLLM backbone. As the 3D visual geometry encoder
is pre-trained on tasks such as point map prediction on pairs or sequences of images [38, 42, 44], it
embeds strong 3D perception prior knowledge and is able to capture correspondences across frames.
By doing so, VG LLM can effectively incorporate 3D geometry priors into the model and become
more robust to viewpoint transformations, significantly improving its spatial reasoning abilities.

Extensive experiments have been conducted on various 3D scene understanding and spatial reasoning
tasks, where the model accepts video input. These 3D scene understanding tasks include 3D visual
grounding [7], 3D dense captioning [8], and 3D video object detection [45]. For spatial reasoning
tasks, we evaluate our model on VSI-Bench [50] and CV-Bench [40]. The experiments show that our
fine-tuned model outperforms larger spatial-enhanced models by a substantial margin. The results
uncover several interesting findings: (1) Without explicit dense 3D inputs, our approach outperforms
many leading 3D input-based models, underscoring its effective 3D geometric understanding. (2) By
implicitly modeling inter-frame correspondences within the visual representation, our 8B model has
learned strong egocentric-allocentric transformation capabilities, leading to significant improvements
of precision by 11.9% and F1 by 10.7% on 3D video object detection. (3) On tasks that require
complex spatial reasoning skills, i.e., VSI-Bench [50], our 4B model attains an impressive average
score of 47.3%, surpassing even the best proprietary model, Gemini-1.5-Pro [39]. Furthermore, our
8B model sets a new state-of-the-art performance with a score of 50.7%. This highlights the great
utility of 3D geometry modeling in broader scenarios.

2 Related Work
Multimodal Large Language Models (MLLMs). MLLMs [2, 24, 26, 29, 32, 39, 40, 43] have
achieved significant progress in 2D image and video understanding. However, recent findings [31, 50]
indicate a critical limitation: current MLLMs still struggle with complex visual spatial reasoning
tasks. To address this challenge, some research efforts [2, 40, 43] have focused on enhancing the
models’ ability to perceive and process spatial relationships through improved model representation.
For example, Cambrian-1 [40] integrates self-supervised 2D visual representations with semantically
rich features, aiming to provide a more comprehensive understanding of visual content that could
benefit spatial reasoning. These methods focus on enriching the representation of each individual
image, neglecting the 3D geometry information inherent in the continuous frames of a video. In
contrast, our approach integrates 3D geometry priors from the video into the MLLM.

3D Large Language Models. Recent efforts [11, 13, 18, 20, 35, 58] have focused on enabling
MLLMs to better understand 3D scenes. Previous work develops comprehensive 3D scene rep-
resentations by using different types of 3D data. These include point cloud features [11, 13, 49],
lifted multi-view image features [18, 20, 63], treating multi-view images as video sequences [35, 58].
The most closely related approaches are Video-3D LLM [58], which integrates positional informa-
tion into the visual representation, and GPT4Scene [35], which constructs BEV maps through 3D
reconstruction. In contrast to these methods, our model does not require any explicit dense 3D inputs.

Spatial Reasoning. Some work [5, 6, 14] has enhanced spatial understanding through large-scale
synthesized VQA datasets for improved depth estimation. However, these methods primarily focus on
static images, overlooking the dynamic and relational aspects inherent in complex spatial reasoning
scenarios. To address this limitation, the Visual-Spatial Intelligence Benchmark (VSI-Bench) [50]
was introduced, explicitly evaluating relational reasoning and egocentric-allocentric transformation
abilities. Recognizing the scarcity of data for such complex scenarios, subsequent works like SAT
[37] and SPAR [54] have proposed data generation pipelines to synthesize spatial QA datasets for
supervised fine-tuning. In contrast, our model elicits 3D geometry information from the video and
injects it into the model architecture, improving its spatial reasoning capabilties.
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The shoe cabinet is in the right back. 

🔥

Question: How does the relative position of the shoe cabinet change 
from the observer’s original viewpoint to when the observer moves to 
the center of the office chair and faces the bed?

Latent 3D Geometry Tokens 2D Visual Tokens
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Figure 1: The architecture of our VG LLM. The 3D visual geometry encoder processes a sequence
of images to produce globally geometry-aware visual features, while the 2D visual encoder extracts
semantic-aware visual features from each individual image. vividly shows that the latent 3D
geometry tokens are able to recover the 3D scene if with a dense prediction head [42].

3 Method
We aim to model the 3D visual geometry in MLLMs without relying on explicit dense 3D input. To
achieve this, as illustrated in Figure 1, we introduce a 3D visual geometry encoder to extract rich
visual-geometric features from multiple images and feed them into the MLLM backbone. Section 3.1
outlines the architecture design of our model, and Section 3.2 details the training process.

3.1 Architecture

Preliminary. Given a sequence of RGB images {Ii}ni=1 and a natural language question Q, a
conventional MLLM utilizes a 2D visual encoder to encode these images into image tokens TV

i ∈
R⌊

h
p ⌋×⌊w

p ⌋×c first, where Ii ∈ Rh×w×3 and p is the patch size. Then an MLLM backbone accepts
{TV

i }ni=1 as its input and outputs the response. In this work, we choose Qwen2.5-VL [2] as the
MLLM backbone. Note that Qwen2.5-VL additionally compresses the image tokens to reduce the
computational cost. Qwen2.5-VL groups spatially adjacent 2× 2 patches into a single image token,
resulting in a smaller set of image token input to MLLM backbone, TV ′

i ∈ R⌊
h
2p⌋×⌊ w

2p⌋×c.

3D Visual Geometry Encoder. To model 3D geometric information like inter-frame correspon-
dences within input frames, we employ a 3D visual geometry encoder to extract such information.
This 3D visual geometry encoder produces 3D visual geometry features TG

i ∈ R⌊
h
p ⌋×⌊w

p ⌋×c from
all input images {Ii}ni=1 jointly. 3D visual geometry models [44, 38, 42] are natural candidates
for the 3D visual geometry encoder, as they are trained to capture inter-frame correspondences and
reconstruct 3D scenes without relying on additional 3D priors. These 3D visual geometry models
comprise three key components: an encoder for per-image feature extraction, a fusion decoder for
cross-frame interaction, and task-specific prediction heads for 3D attributes. Since we focus on feature
extraction, which embeds 3D geometry prior information, rather than directly outputting 3D attributes,
we leverage the encoder and the fusion decoder as our 3D visual geometry encoder. Specifically, we
choose VGGT [42] to extract 3D visual geometry features given its superior performance in 3D tasks.

Visual Feature Fusion. We fuse both the image tokens {TV ′

i }ni=1 and the 3D visual geometry
features {TG

i }ni=1 before passing them into the MLLM backbone. We first transform each TG
i

into TG′

i ∈ R⌊
h
2p⌋×⌊ w

2p⌋×c, which has the identical shape of TV ′

i , and then generate the geometry-
augmented visual features TS

i = TG′

i + TV ′

i . The transformation of TG
i aligns with the spatial

merging strategy in Qwen2.5-VL, where we concatenate spatially adjacent 2× 2 features in TG
i and

pass them to a two-layer MLP to output a single feature in TG′

i .
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To this end, the final visual features {TS
i }ni=1 are concatenated with the text embeddings of the

question Q into the MLLM backbone to produce the response.

3.2 Training

Our VG LLM offers a versatile framework designed to integrate 3D vision priors into MLLMs for
various 3D tasks. In this work, we demonstrate the application of VG LLM to 3D scene understanding
and spatial reasoning tasks.

3.2.1 Applying VG LLM to 3D Scene Understanding

To validate the efficacy of the model in understanding and reasoning about 3D scenes, we adapt it
to several 3D scene understanding tasks, i.e., 3D visual grounding, 3D dense captioning, and 3D
video object detection. In contrast to previous work on understanding 3D scenes, our model relies
solely on RGB images as input during both training and inference, without any 3D scene data as
prerequisites. For 3D dense captioning, while we utilize pre-detected 3D proposals as the input, our
model itself operates solely on RGB images. We directly learn all 3D scene understanding tasks
through text generation, which obviates the need for task-specific heads while maintaining a simple
next-token prediction objective during training. The unified text generation objective allows us to
mix all tasks into a combined dataset for multi-task training. The detailed data format can be found
in the appendix.

Coordinate System and Representation. Since we do not utilize any ground truth information of
the 3D scene, we follow VGGT [42] to employ the coordinate system of the first frame as the base
coordinate system. All coordinates are transformed into this base coordinate system (except for 3D
visual grounding, which represents the bounding box in each frame’s coordinate system). All the
numbers are expressed in plain text with 2 decimal places.

3D Visual Grounding. We follow previous work [54] to formulate the 3D visual grounding task as
a 3D video grounding problem, which involves locating the frame index where the object appears
and its 3D bounding box in the corresponding frame’s coordinates in one feed-forward pass. Unlike
SPAR [54], which generates axis-aligned boxes, our method directly predicts 3D-oriented bounding
boxes, making it more suitable for real-world scenarios. Specifically, given the 3D scene represented
by frames {I1, I2, · · · , In}, and a natural language query Q, our model is designed to output both the
frame index and the bounding box in the form (x, y, z, w, h, d, ψ, θ, ϕ), where (x, y, z) is the center
coordinate, (w, h, d) is the object size, and (ψ, θ, ϕ) is the rotation angles.

3D Dense Captioning. We follow the recent work [58, 63] that decomposes the 3D dense captioning
task into two phases, i.e., detecting 3D object proposals with an off-the-shelf detector and generating
object descriptions based on object coordinates. Specifically, given a frame sequence {I1, I2, · · · , In},
we prompt our model to “describe the object located at (x, y, z) in detail”, where (x, y, z) is the
box center of the object to be described. This setup ensures a fair comparison with prior work and
effectively evaluates the model’s ability to understand positional and spatial relationships.

3D Video Object Detection. To investigate the capability of handling egocentric-allocentric trans-
formation, we set up a 3D video object detection task based on the ScanNet [15]. Unlike previous
benchmarks that focus on monocular or multi-view detection [45], our task requires models to detect
all objects throughout the video in a unified coordinate system, without relying on explicit camera
parameters or depth information. Since some objects aren’t visible in the first frame, the model must
track changes between frames, estimate camera movement, and convert object locations from a global
view to the camera’s perspective. Specifically, given continuous video frames {I1, I2, · · · , In}, the
model is tasked to detect all objects {(b1, c1), · · · , (bm, cm)} that appear in this video, where each bi
in the form (x, y, z, w, h, d, ψ, θ, ϕ) represents its bounding box in the unified coordinate system and
ci is its category.

3.2.2 Instruction Tuning for Enhanced Spatial Reasoning.

Previous work [53, 62] has highlighted that existing pre-training and instruction tuning datasets
often lack sufficient spatial-related phrases in their annotations, consequently hindering the spatial
reasoning capabilities of MLLMs. To overcome this limitation, we leverage the SPAR-7M [54] dataset
for instruction tuning. SPAR-7M is a comprehensive spatial reasoning dataset curated from three
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richly annotated 3D datasets: ScanNet [15], ScanNet++ [51], and Structure3D [60]. It encompasses
33 diverse tasks, ranging from fundamental perception to mid-level viewpoint transformation and
high-level scene imagination. As some work has shown that post-training on specific datasets can
sometimes degrade the original performance on general benchmarks, we also incorporate a visual
instruction tuning dataset, the LLaVA-Video-178K’s LLaVA-Hound split [57], into our training
pipeline to preserve the generalization capability.

4 Experiments
In this section, we first present the implementation details of our model, followed by an evaluation
of our model’s performance on 3D scene understanding tasks in Section 4.1, including 3D visual
grounding, 3D dense captioning, and 3D multi-view detection. Next, we provide a comprehensive
comparison with state-of-the-art methods on spatial reasoning benchmarks and generic multimodal
benchmarks in Section 4.2. 3D scene understanding emphasizes 3D perception, while spatial
reasoning focuses on interpreting and reasoning about spatial relationships in video. We train two
models for 3D scene understanding and spatial reasoning tasks separately for fair comparison. Finally,
we conduct a comprehensive analysis in Section 4.3 to reveal the effectivess of our model’s core
aspects: the integration of 3D geometry, the feature fusion strategy, and the data composition.

Implementation and Training Details. Our models are built upon two sizes of Qwen2.5-VL—3B
and 7B [2], and integrated with VGGT-1B [42] as the 3D geometry encoder. We trained our models
for one epoch on a mixed dataset, detailed as followed in this section, and employed Adam with
a batch size of 64 and a warmup ratio of 0.03. During the warmup phase, the learning rate was
gradually increased to 1e-5 before linearly decaying to 0. In each training step, a batch was randomly
sampled from a single source from the mixed dataset. During training, the MLLM’s visual encoder,
the integrated 3D geometry encoder, and the multimodal connector are frozen, while the MLLM
backbone remains unfrozen. All experiments were conducted on 8 H100 80G GPUs. For the 4B and
8B models, the training took 9 and 12 hours for 3D scene understanding, and 7 and 9 hours for spatial
reasoning, respectively.

4.1 3D Scene Understanding Tasks

4.1.1 Setting

Datasets and Benchmarks. To evaluate the versatility of our model across diverse 3D scene
understanding tasks, we employ a multi-task learning approach on a combination of datasets.

• 3D Visual Grounding. We leverage the ScanRefer [7] dataset, which provides 36,665 object de-
scriptions paired with axis-aligned bounding boxes across 562 indoor scans. We follow SPAR [54]
to reformulate 3D visual grounding as 3D spatial-temporal video grounding, aiming to locate the
target object’s bounding box in camera coordinates along with its corresponding frame index. To
determine the relevant appearance frame, we utilize the visible object annotations from Embodied-
Scan [45]. We match the target 3D bounding box with those in EmbodiedScan based on their IoU
and subsequently pick the optimal frame by comparing the 2D projection areas.

• 3D Dense Captioning. We utilize the Scan2Cap benchmark [8] for 3D dense captioning, which
requires generating descriptive captions for all objects within a scene. Following prior work
[22, 58, 63], we use Mask3D-detected object proposals extracted by LEO [22] and task our model
with generating captions conditioned on their center coordinates. To better leverage the visual
geometry, we transform all object center coordinates to the coordinates of the first captured frame.

• 3D Video Object Detection. For 3D video object detection, we curated a dataset from EmbodiedScan
[45] consisting of consecutive frames and their corresponding visible object annotations in indoor
scenes. Each sample comprises four consecutive frames sampled at 1 FPS, with all associated object
instances transformed to the coordinate system of the initial frame. Consistent with EmbodiedScan,
we divide the data into 958 training and 243 evaluation scenes. Within each scene, we randomly
select 150/10 samples for training/evaluation.

Comparison Baselines. For the tasks of 3D visual grounding and dense captioning, our evaluation
includes comparisons with both task-specific expert models and general-purpose 3D models. Specifi-
cally, for expert models, we compare our method against ScanRefer [7], MVT [23], and ViL3DRel
[10] on ScanRefer [7]. On the Scan2Cap dataset [8], we include Scan2Cap [8], 3DJCG [4], D3Net
[9], and Vote2Cap-DETR [12] for comparison. Furthermore, we compare our approach with the
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generalist models, including Chat-3D v2 [21], Grounded 3D-LLM [13], LL3DA [11],LEO [22],
LLaVA-3D [63], and Video-3D LLM [58]. For 3D video object detection, we compare our method
with a baseline (Qwen2.5-VL-3B [2]) that does not incorporate 3D geometry information.

Evaluation Metrics. For ScanRefer [7], we report the accuracy at IoU thresholds of 0.25 and 0.5.
For Scan2Cap [8], we use CIDEr (C), BLEU-4 (B-4), METEOR (M), and ROUGE (R) scores. The
“@0.5” suffix indicates that these metrics are computed only for objects detected with an IoU of 0.5 or
higher against the ground truth. Lastly, for 3D video object detection, we report the accuracy, recall,
and F1 score for 20 common object classes at an IoU threshold of 0.25.

4.1.2 Results on 3D Visual Grounding

Model 3D Scene
Input Acc@0.25 Acc@0.5

ScanRefer [7] ✓ 37.3 24.3
MVT [23] ✓ 40.8 33.3
ViL3DRel [10] ✓ 47.9 37.7
3D-LLM [20] ✓ 30.3 -
Chat-3D v2 [21] ✓ 35.9 30.4
Grounded 3D-LLM [13] ✓ 47.9 44.1
ChatScene [21] ✓ 55.5 50.2
LLaVA-3D [63] ✓ 54.1 42.4
Video-3D LLM [58] ✓ 58.1 51.7
SPAR [54] ✗ 31.9 (48.8) 12.4 (43.1)
VG LLM-4B (Ours) ✗ 36.4 (53.5) 11.8 (47.5)
VG LLM-8B (Ours) ✗ 41.6 (57.6) 14.9 (50.9)

Table 1: The quantitative results on Scan-
Refer. The content in “()” indicates results
with proposal refinement3.

Model 3D Scene
Input C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑

Scan2Cap [8] ✓ 39.1 23.3 22.0 44.8
3DJCG [4] ✓ 49.5 51.0 24.2 50.8
D3Net [9] ✓ 62.6 35.7 25.7 53.9
Vote2Cap-DETR [12] ✓ 61.8 34.5 26.2 54.4
LL3DA [11] ✓ 65.2 36.8 26.0 55.0
Chat-3D-v2 [21] ✓ 63.9 31.8 - -
Grounded 3D-LLM [13] ✓ 70.2 35.0 - -
LEO [22] ✓ 72.4 38.2 27.9 58.1
Chat-Scene [21] ✓ 77.1 36.5 - -
LLaVA-3D [63] ✓ 79.2 41.1 30.2 63.4
Video-3D LLM [58] ✓ 80.0 40.2 28.5 61.7

VG LLM-4B (Ours) ✗ 78.6 40.9 28.6 62.4
VG LLM-8B (Ours) ✗ 80.0 41.5 28.9 62.6

Table 2: The performance on Scan2Cap. VG LLM
captions 3D object proposals using RGB cues only.

There	are	two	black	chairs,in	the	middle	between	six	brown	chairs	and	black	couches.	this	black	chair	is	the	one	next	to	the	brown	chairs.

This is a black chair. it is pushed away from the desk.

The table is on the opposite side from the refrigerator. the table is brown and a hollow rectangle.

Figure 2: Qualitative results for 3D visual grounding. The ground truth and prediction are masked
in blue and green, respectively. The predicted boxes are directly generated by our model without the
refinement process.

In addition to the directly predicted bounding boxes, we also follow SPAR [54] to calculate the
refined results with a proposal refinement process3.

VG LLM demonstrates strong 3D grounding capabilities from monocular RGB videos. The
performance on ScanRefer is shown in Table 1. Our 8B model achieves an accuracy of 41.6%
at an IoU threshold of 0.25, significantly outperforming SPAR’s 31.9% by 9.7 percentage points.
Moreover, with the integration of a proposal refinement technique, Acc@0.25 increases substantially
to 57.6%, making our results highly competitive with state-of-the-art methods like Video-3D LLM.
This demonstrates that 3D visual grounding can be effectively approached in a video grounding
manner.

Qualitative results for 3D visual grounding. Figure 2 illustrates the qualitative results on the
3D visual grounding task. For visualization purposes, the predicted and ground-truth 3D bounding
boxes are projected onto their respective 2D image planes. Our method effectively handles spatial

3For proposal refinement, we compare the predicted box against all proposals detected by Mask3D and select
the one with the highest IoU.
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relationships between objects (e.g., away, opposite, next to), accurately identifying the corresponding
frame index and generating the 3D-oriented bounding box.

4.1.3 Results on 3D Dense Captioning
Our model processes 3D object proposals generated by an off-the-shelf 3D object detector.
Once these objects are localized, the model generates descriptions using only the RGB images and
the center coordinates of the detected objects, without requiring explicit depth or geometric data as
additional inputs. This approach achieves a score of 80.0 C@0.5 and 41.5 B-4@0.5, comparable to
previous state-of-the-art methods such as LLaVA-3D and Video-3D LLM. These results validate the
effectiveness of our model for 3D dense captioning when conditioned on 3D proposals.

4.1.4 Results on 3D Video Object Detection

Model chair cabinet table bin couch bed bathtub toilet 20 Common Classes

P25 R25 F125

4-Frame Setting

Qwen2.5-VL-3B 37.7 10.2 35.0 23.1 39.0 64.8 32.4 68.8 32.6 27.9 30.0
+ Visual Geometry (VG LLM-4B) 49.7 13.1 41.3 39.2 44.6 71.2 33.5 83.4 41.7 35.7 38.2
△ Improvement +12.0 +2.9 +6.3 +16.1 +5.6 +6.4 +1.1 +14.6 +9.1 +7.8 +8.2

Qwen2.5-VL-7B 41.2 11.6 36.5 30.2 41.1 68.2 36.6 68.7 34.6 31.0 32.5
+ Visual Geometry (VG LLM-8B) 54.0 17.1 46.5 39.8 47.0 74.1 42.1 82.5 43.4 39.6 41.2
△ Improvement +12.8 +5.5 +10.0 +9.7 +5.9 +5.9 +5.5 +13.8 +8.8 +8.6 +8.7

6-Frame Setting

Qwen2.5-VL-3B 32.8 7.8 31.3 20.9 32.2 58.8 36.5 66.1 27.8 24.1 25.7
+ Visual Geometry (VG LLM-4B) 41.6 12.4 39.8 33.1 45.0 70.2 33.8 80.6 39.7 34.0 36.4
△ Improvement +8.8 +4.6 +8.5 +12.2 +12.8 +11.4 -2.7 +14.5 +11.9 +9.9 +10.7

Qwen2.5-VL-7B 36.1 10.6 32.7 25.0 40.7 64.6 38.4 68.6 31.8 28.0 29.6
+ Visual Geometry (VG LLM-8B) 48.7 17.9 44.8 38.5 46.4 75.8 40.4 83.2 43.5 38.7 40.8
△ Improvement +12.6 +7.3 +12.1 +13.5 +5.7 +11.2 +2.0 +14.6 +11.7 +10.7 +11.2

Table 3: The results on 3D video detection. The reported object categories follow the monocular
detection in EmbodiedScan, and we report the average F1 score per category.
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Figure 3: Qualitative results for 3D video object detection.

As shown in Table 3, we follow the monocular detection of EmbodiedScan [45] to evaluate the
performance for categories that are common in daily life.

3D geometry significantly boosts cross-frame detection performance. Qwen2.5-VL [2], upon
being fine-tuned on detection data, achieves promising performance on common object categories.
Incorporating 3D geometry [42] yields a substantial improvement across all evaluation metrics. In
the 4-frame setting, this approach elevates the average F1 score for the 4B model by 8.2% (from
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30.0% to 38.2%) and for the 8B model by 8.7% (from 32.5% to 41.2%). This performance gain is
attributed to the model’s improved ability to comprehend the egocentric-allocentric transformation
between frames through the utilization of 3D geometry. Figure 3 provides qualitative results on the
3D video object detection task.

Integrating 3D geometry enhances the model’s robustness to variations in frame count. Table
3 shows that our method, although trained on 4-frame sequences, maintains strong performance
when evaluated on longer sequences during inference. In contrast, the baseline’s performance drops
noticeably, underscoring the robustness of our approach to variations in the number of frames.

4.2 Spatial Reasoning Benchmarks

Obj. Count

Abs. Dist.

Obj. Size

Room Size

Rel. Dist.

Rel. Dir.

Route Plan

Appr. Order

Model Avg. Numerical Answer Multiple-Choice Answer
Proprietary Models (API)

GPT-4o 34.0 46.2 5.3 43.8 38.2 37.0 41.3 31.5 28.5
Gemini-1.5-Flash 42.1 49.8 30.8 53.5 54.4 37.7 41.0 31.5 37.8

Gemini-1.5-Pro 45.4 56.2 30.9 64.1 43.6 51.3 46.3 36.0 34.6
Open-source Models

InternVL2-8B 34.6 23.1 28.7 48.2 39.8 36.7 30.7 29.9 39.6
InternVL2-40B 36.0 34.9 26.9 46.5 31.8 42.1 32.2 34.0 39.6
LongVILA-8B 21.6 29.1 9.1 16.7 0.0 29.6 30.7 32.5 25.5
VILA-1.5-40B 31.2 22.4 24.8 48.7 22.7 40.5 25.7 31.5 32.9

LongVA-7B 29.2 38.0 16.6 38.9 22.2 33.1 43.3 25.4 15.7
LLaVA-NeXT-Video-72B 40.9 48.9 22.8 57.4 35.3 42.4 36.7 35.0 48.6

LLaVA-OneVision-72B 40.2 43.5 23.9 57.6 37.5 42.5 39.9 32.5 44.6
Spatial-Enhanced Models

SAT-LLaVA-Video-7B - - - - 47.3 41.1 37.1 36.1 40.4
SPAR-8B 41.1 - - - - - - - -

VG LLM-4B (Ours) 47.3 66.0 37.8 55.2 59.2 44.6 45.6 33.5 36.4
VG LLM-8B (Ours) 50.7 67.9 37.7 58.6 62.0 46.6 40.7 32.4 59.2

Table 4: The comparison with state-of-the-art models on VSI-Bench. Spatial-Enhanced Models are
models that are specialized for spatial reasoning.

4.2.1 Setting

Datasets and Benchmarks. To fully leverage the 3D knowledge inherent in the 3D visual geometry
encoder, we train our model on a dataset sampled from SPAR-7M [54] and the LLaVA-Hound split
of the LLaVA-Video-178K [57]. In our work, we sample only 234K and 63K data points from
SPAR-7M and the LLaVA-Hound split of LLaVA-Video-178K, respectively, which constitute 3%
and 25% of the original datasets.

We first evaluate our method on a video spatial reasoning benchmark, VSI-Bench [50], which
evaluates the egocentric-allocentric transformation and relational reasoning capabilities of MLLMs.
Then we test our model on an image spatial-related benchmark i.e., CV-Bench [40]. CV-Bench [40]
assesses 2D understanding through spatial relationships and object counting, while its 3D evaluation
focuses on depth ordering and relative distance perception.

Comparison Baselines. We compare our model with state-of-the-art proprietary and open-source
MLLMs (e.g., GPT-4o, Gemini-1.5-Pro, LLaVA-NeXT-Video) [1, 24, 26, 27, 32, 34, 39, 40, 46, 57].
We also include two spatial-enhanced MLLMs, SAT-LLaVA-Video-7B [37] and SPAR-8B [54],
which are fine-tuned on datasets targeted for spatial reasoning.

Evaluation Metrics. For VSI-Bench, we adopt accuracy for multiple-choice tasks and Mean
Relative Accuracy (MCA) for numerical tasks. MCA calculates the average accuracy across a range
of confidence thresholds, where a prediction is considered correct if its relative error is within a
specified threshold. For CV-Bench and other generic multimodal benchmarks, we report accuracy.

4.2.2 Results on Spatial Reasoning Tasks
VG LLM achieves state-of-the-art performance on VSI-Bench. A detailed comparison with
leading models is presented in Table 4. As shown in the table, our 4B model achieves an impressive
average accuracy of 47.3%, outperforming all competitors, including the leading proprietary model,
Gemini-1.5 Pro. Futhermore, our 8B model sets a new state-of-the-art performance with an average
accuracy of 50.7%. These results underscore the model’s strong capability in understanding and
reasoning from monocular videos.
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Model 2D (%) 3D. (%) Avg. (%)
Proprietary Models (API)

GPT-4V [34] 64.3 73.8 69.1
GPT-4o [24] 74.8 83.0 78.9

Gemini-1.5-Flash [39] 70.9 71.8 71.4
Gemini-1.5-Pro [39] 77.1 77.6 77.3

Open-source Models
Mini-Gemini-HD-34B [27] 71.5 79.2 75.4

LLaVA-NeXT-34B [26] 73.0 74.8 73.9
Cambrian-1-34B [40] 74.0 79.7 76.9

SAT-LLaVA-Video-7B [37] 73.0 83.8 78.4
SPAR-8B [54] 72.3 89.1 80.7

VG LLM-4B (Ours) 71.3 87.7 79.5
VG LLM-8B (Ours) 72.2 91.1 81.7

Table 5: The comparison with state-of-
the-art methods on CV-Bench.

Benchmark Qwen2.5-VL-3B

VG LLM-4B

Qwen2.5-VL-7B

VG LLM-8B

Video-MMEw/o sub. [17] 60.1 57.4 62.9 59.3
Video-MMEw/ sub. [17] 60.9 59.8 61.1 63.9

BLINK [19] 46.6 48.9 55.9 51.5
TempCompassMC 62.2 63.9 71.8 67.8
NextQAMC [48] 77.3 74.8 81.4 79.3

Table 6: Comparison of model performance on
generic multimodal benchmarks. To ensure a fair
comparison, we evaluate Qwen2.5-VL with the resolu-
tion and sampling rate matched to those of VG LLM.

Our model demonstrates generalization across distinct data sources. To access the general-
ization capability of our method, we evaluate our approach on a spatial reasoning benchmark with
different data sources, CV-Bench. This benchmark is constructed by repurposing the traditional CV
datasets (i.e., ADE20K, COCO, and Omni3D) to a vision-centric MLLM benchmark. As illustrated
in Table 5, our method achieves the highest accuracy on 3D tasks at 91.1%. These results demonstrate
our model can also generalize well across the spatial reasoning benchmarks with out-of-the-domain
data sources.

4.2.3 Results on Generic Multimodal Benchmarks
Enhancing spatial understanding incurs negligible loss on general multimodal performance.
Our model integrates 3D geometry information and is fine-tuned on spatial reasoning datasets to
bolster its spatial understanding capabilities. As presented in Table 6, these enhancements slightly
compromise VG LLM’s performance on general multimodal benchmarks when compared to the
baseline model. VG LLM-4B even achieves improvements on BLNK (+2.3%) and TempCompassMC
(+1.7%). This suggests that augmenting spatial reasoning capabilities can not only preserve but also
enhance performance on specific multimodal tasks.

4.3 Analysis

4.3.1 3D Scene Understanding

Type ScanRefer Scan2Cap 3D Video Detection
Acc@0.25 Acc@0.5 CIDEr@0.5 BLEU-4@0.5 P25 R25 F125

No Additional Info. (Baseline) 31.9 (49.9) 9.3 (43.8) 58.0 36.3 32.6 27.9 30.0

Cross-Attn (1 Layer) 33.7 (51.3) 10.7 (45.2) 74.7 40.1 38.0 33.6 35.4
Cross-Attn (3 Layers) 34.4 (51.3) 10.5 (45.2) 75.7 40.2 38.5 44.0 35.4

Concat+MLP 27.7 (47.0) 6.8 (41.3) 75.7 39.9 37.1 32.5 34.4
Add (Ours) 36.4 (53.5) 11.8 (47.5) 78.6 40.9 41.7 35.7 38.2

Pred Camera Info. 32.1 (50.0) 9.9 (43.9) 56.8 36.3 33.3 28.1 30.3
Pred Depth Info. 32.3 (49.7) 9.7 (43.7) 57.1 36.1 32.1 27.3 29.3
Pred Point Info. 31.7 (49.7) 9.6 (43.8) 67.7 38.2 33.0 28.5 30.4

Pred (Depth + Camera) Info. 32.6 (49.8) 9.8 (43.7) 58.2 36.6 31.7 27.1 29.1
Latent 3D Geometry (Ours) 36.4 (53.5) 11.8 (47.5) 78.6 40.9 41.7 35.7 38.2

Table 7: Ablation study of the effects of 3D visual geometry modeling. All models are fine-tuned
using the same training data and built upon Qwen2.5-VL-3B.

In this section, we conduct a further analysis on the feature fusion strategies and the types of added
signals. To investigate the effect of feature fusion strategies, we have experimented with several
feature fusion strategies, including 1) “Cross-Attn”, which consists of multiple blocks of cross-
attention modules and MLPs with skip connections. 2D visual tokens serve as queries, while 3D
visual tokens serve as keys and values. 2D positional embeddings are added to both the queries and
keys; 2) “Concat+MLP” first concatenates the 2D and 3D visual tokens along the feature dimension,
followed by an MLP to transform them into the text embedding space; 3) “Add” is the strategy
employed in our paper, which directly adds the 2D and 3D visual tokens at a patch level.
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Besides the visual geometry feature adopted in our model, VGGT can also directly predict the camera
poses (Pred Camera Info.), the depth maps (Pred Depth Info.), and the point maps (Pred Point Info.)
of each image frame. For these predicted spatial signals, we adopt a two-layer MLP to transform
them and add to the corresponding 2D visual token. All models are trained and evaluated following
the datasets and benchmarks in Section 4.1.

Directly adding the geometry features obtains the best results among all compared feature fusion
strategies. As Table 7 illustrates, the “Cross-Attn” strategy significantly improves performance
over the baseline. Moreover, increasing the number of layers to three yields even greater performance
gains. While “Concat+MLP” performs worse than the baseline on ScanRefer, it outperforms it
on Scan2Cap and 3D video object detection. Nevertheless, “Add” surpasses all other comparison
methods despite its simplicity.

Incorporating point maps enhances 3D scene understanding, while camera or depth information
offers no clear benefits. After fine-tuning on 3D downstream tasks, the baseline model Qwen2.5-
VL shows enhanced 3D scene understanding. However, it continues to struggle with accurately
localizing and describing 3D objects, as well as learning spatial transformations across different
frames. As illustrated in Table 7, incorporating predicted camera or depth information alone provides
no clear benefit. In contrast, the inclusion of predicted point information demonstrates a significant
advantage for the 3D dense captioning task, boosting the CIDEr@0.5 score on Scan2Cap from 58.0
to 67.7 and the BLEU-4@0.5 from 36.3 to 38.2. It also provides a marginal improvement in 3D video
object detection. These results indicate that current MLLMs still lack adequate spatial modeling in
both data curation and architectural design.

Visual geometry features are more helpful than predicted spatial information. Although the
point maps predicted directly by VGGT can enhance the spatial understanding ability of Qwen2.5-
VL, these signals are relatively sparse and may contain errors. In contrast, directly using the visual
geometry features provided by VGGT not only incorporates these spatial signals simultaneously but
also reduces the impact of noise on performance, thereby achieving better results.

4.3.2 Spatial Reasoning

# Data Model VSI-Bench CV-Bench (3D)
Obj. Count Abs. Dist. Obj. Size Room Size Rel. Dist. Rel. Dir. Route Plan Appr. Order Avg Depth Distance Avg

1 ∅ Qwen2.5-VL-7B 25.4 10.4 36.4 29.1 38.2 37.9 30.9 27.5 29.5 84.5 76.5 80.5

2 S1 Qwen2.5-VL-7B 68.6 36.0 57.9 59.7 45.8 38.9 30.4 60.2 49.8 87.0 87.2 87.1
3 VG LLM-8B 67.9 37.7 58.6 62.0 46.6 40.7 32.4 59.2 50.7 92.3 89.8 91.1
4 S2 Qwen2.5-VL-7B 71.3 48.3 68.5 65.5 65.1 77.5 40.2 16.7 56.6 66.8 74.5 70.7
5 VG LLM-8B 71.7 53.8 68.8 62.1 63.8 83.0 44.3 18.4 58.2 66.8 73.3 70.1

6 S1+S2 Qwen2.5-VL-7B 70.2 51.0 69.8 64.4 67.0 79.1 45.4 31.6 59.8 87.0 83.8 85.4
7 VG LLM-8B 71.4 56.8 69.0 69.1 67.9 83.2 47.4 32.5 62.2 92.0 89.5 90.8

Table 8: Ablation study on spatial reasoning tasks. ∅ indicates testing in a zero-shot setting. S1 is
the training data detailed in Section 4.2.1, and S2 refers to the VLM-3R dataset.

We then investigate the effects of fine-tuning and visual geometry in Table 8. The table illustrates
that fine-tuning on our mixed dataset (S1) leads to a substantial performance gain in measurement
estimation (rows 1 vs. 2). In addition to the data used in this paper (S1), the VLM-3R dataset [16]
(S2), which is specially curated for the task types in VSI-Bench, is also incorporated in our analysis.
After incorporating the 3D geometry into the model architecture, the results show consistent gains
with the different data compositions, i.e., S1, S2 and S1+S2.

5 Conclusion
We present a novel framework to enhance MLLMs’ 3D spatial understanding capability, which
incorporates a 3D visual geometry encoder to provide latent 3D geometric information given only
video inputs. While being straightforward, our extensive experiments show that our model can
outperform larger spatial-enhanced models on various 3D scene understanding tasks and spatial
reasoning benchmarks, without relying on any explicit 3D scene input.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction clearly state our main contributions. Our
experimental results also support our claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a section to discuss the limitations of our work. Please refer to Appx.
E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have included the detailed model design (Sec. 3.1), implementation details
(Sec. 4) and evaluation details (Appx. A.1)

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided instructions on data access and preparation, including how
to access the raw, preprocessed, intermediate, and generated data. Please refer to Appx. B.
The data and model weights will be publicly available upon paper publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have included detailed experimental setup in Appx. A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we report the type of computing resources, memory, and time required to
reproduce our results in Sec. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms in every respect with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have dedicated a section to discuss the societal impact of our work. Please
refer to Appx. F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our research builds upon existing datasets rather than creating new ones from
the internet. So our work does not pose such risks to the best of our knowledge.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets used in our work are commonly used datasets with open access.
We have adhered to their licenses and provided citations to give them credit.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: The data and model weights will be publicly available upon paper publication.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method in our research does not involve LLMs as any components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experimental Setting and Details

A.1 Evaluation Details.

We utilize the LMMs-Eval [56] to evaluate our method. LMMs-Eval offers flexible functionalities that
support the customization of specific tasks and model interfaces, thereby standardizing the evaluation
process of MLLMs. For inference, we employed greedy sampling to generate model outputs.

Spatial Reasoning and General Multi-modal Benchmarks. For benchmarks already integrated
into LMMs-Eval, e.g., VSI-Bench [50], Video-MME [17], and TempCompass [33], we utilize their
original default configurations. For benchmarks not yet implemented in LMMs-Eval, i.e., BLINK
[19] and CV-Bench [40], we customize the task configurations and metrics according to their official
implementations. For each input video in video-based benchmarks, we uniformly sample 32 frames
from the entire duration.

3D Visual Grounding. For 3D visual grounding, the model is tasked with locating the frame index
where the target object appears and the oriented bounding box within its coordinate system. Given a
predicted frame index and bounding box, we first transform the bounding box to the world coordinate
system. Then, the ground truth bounding box is extended to an oriented bounding box by appending
(0, 0, 0) to represent its orientation. Finally, we calculate the Intersection-over-Union (IoU) between
the predicted and ground truth bounding boxes. In the proposal refinement process, we utilize the
Mask3D-detected object proposals extracted by LEO [22], and select the proposal that has the highest
IoU with the predicted box.

3D Dense Captioning. For 3D dense captioning, we follow previous work [63, 58] to decompose
the task into two stages, i.e., detecting all object proposals and generating object descriptions based
on object center coordinates. Specifically, we first leverage the Mask3D-detected object proposals
extracted from LEO [22] to obtain the box’s center coordinates within the coordinate system of the
reference frame. This can be achieved by multiplying the coordinates by the extrinsic matrix [45].
Then, the model is asked to generate descriptions based on the coordinates through greedy sampling.
Lastly, we calculate the CIDEr, BLEU, Rouge, and METEOR scores utilizing the COCO caption
evaluation toolkit4.

3D Video Object Detection. For each predicted bounding box, we find its best match among the
unused ground truth boxes of the same category through greedy matching. Specifically, we calculate
the IoU with all unused ground truth boxes of that category and select the one with the highest IoU if
it exceeds a threshold (e.g., 0.25). Once a ground truth is matched, it is marked as used and cannot be
matched again. Finally, for each category, the precision, recall, and F1 score are calculated based on
the number of true positives, false positives, and false negatives.

Additionally, we provide the prompt for 3D scene understanding tasks in Table 9.

B Data preparation

All datasets used in this research are publicly available, and we will provide the details for the data
preparation in this section.

SPAR-7M. We follow the official codebase5 to mix data and draw visual markers on the input
images. Since the navigation type contains images of varying lengths, we discard annotations of this
type for simplicity.

LLaVA-Video-178K (LLaVA-Hound Split). For each input video, we sample frames with a
sampling rate of 2 FPS, while constraining the total frame count between 4 and 8 through adaptive
sampling.

3D Scene Understanding. For both ScanRefer and Scan2Cap, we uniformly sample 32 frames
for each scene. For 3D video object detection, each entry in the training set contains 4 consecutive
frames sampled at 1 FPS.

4https://github.com/tylin/coco-caption
5https://github.com/fudan-zvg/spar
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3D Visual Grounding
XUser: Frame-0: <image>Frame-1:<image>Frame-2: <image>Frame-3: <image>· · ·
Localize the first clear frame in the video showing the object described in the text.
Text: There is a beige wooden bookshelf. placed next to another bookshelf.
Output a JSON dictionary with the frame index in "frame" and its 3D bounding box in "box_3d" in the frame’s
coordinates.
XAgent:

```json
{"frame": 12, "bbox_3d": [-0.63, -0.83, 2.43, 3.0, 0.59, 2.35, -2.32, 1.18, 3.05]}
```

3D Dense Captioning
XUser: <image><image><image><image>· · ·
Carefully watch the video and describe the object located at [-0.89, -0.74, 2.45] in detail.
XAgent: A white cabinet in the corner of the room. in the direction from the door and from the inside. it will be
on the left, there is a small brown table on the left side of the cabinet and a smaller table on the right side of the
cabinet.

3D Video Object Detection
XUser: <image><image><image><image>· · ·
Detect the 3D bounding boxes in the camera coordinate system of the first frame.
Output a json list where each entry contains the object name in "label" and its 3D bounding box in "box_3d".
The 3D bounding box format should be [x_center, y_center, z_center, x_size, y_size, z_size, yaw, pitch, rolll].
XAgent:

```json
[

{"label": "bag", "bbox_3d": [0.0, -0.3, 1.0, 0.26, 0.26, 0.15, 1.67, 0.96, -2.98]},
· · ·

]
```

Table 9: The prompt for 3D scene understanding tasks. For 3D visual grounding and 3D video
object detection, the output should be in JSON format, while for 3D dense captioning, it should be a
natural language description.

C Detailed Results on 3D Video Object Detection

Detailed quantitative results for our 3D video object detection are presented in Table 10 and 11.
As illustrated in the table, our method significantly outperforms the baseline that does not utilize
visual geometry across most categories. Nevertheless, we observe that detecting small objects such
as pillows, lamps, and backpacks remains challenging.

D More Visualization

Figure 4 shows more visualization results for 3D visual grounding. The first three examples are
positive cases where our model successfully locates the 3D bounding boxes for different categories
like chair, cabinet, and document organizer. While the model correctly identifies these objects,
we notice that it still struggles with accurately predicting their orientation. The last two examples
are negative cases. While the predictions might appear correct in the 2D projection, the model’s
inaccurate depth estimation causes some discrepancies in 3D space.

We provide more visualization results on 3D video object detection in Figure 5. From this figure, we
observe that while the baseline performs decently in detecting objects in a given video, incorporating
3D geometry significantly improves both detection precision and recall. For instance, in the first
example, the baseline’s prediction for the desk mismatches the ground truth, whereas our approach
improves the prediction box of the desk.
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Object Qwen2.5-VL-3B VG LLM-4B Qwen2.5-VL-7B VG LLM-8B
chair 32.8 41.6 36.1 48.7
pillow 11.4 15.9 12.4 18.9
cabinet 7.8 12.4 10.6 17.9
table 31.3 39.8 32.7 44.8
lamp 5.6 15.6 8.0 15.9
couch 32.2 45.0 40.7 46.4
desk 31.6 38.5 34.4 32.3
stand 20.6 41.4 31.3 47.3
bed 58.8 70.2 64.6 75.8
backpack 28.9 37.5 28.6 40.4

bathtub 36.5 33.8 38.4 45.2
ottoman 0.0 2.8 2.7 5.3
dresser 31.2 41.1 36.4 44.5
bin 20.9 33.1 25.0 38.5
toilet 66.1 80.6 68.6 83.2
refrigerator 28.9 64.3 33.2 62.0
stove 37.8 68.5 55.9 69.5
microwave 11.5 21.1 7.8 25.8
monitor 15.5 22.1 20.3 31.7
computer 4.4 3.1 5.2 11.6

Table 10: The detailed results on 3D video object detection in 6-frame setting. We report the F1
score for all categories.

Object Qwen2.5-VL-3B VG LLM-4B Qwen2.5-VL-7B VG LLM-8B
chair 37.7 49.7 41.2 54.0
pillow 11.9 17.9 13.2 22.9
cabinet 10.2 13.1 11.6 17.1
table 35.0 41.3 36.5 46.5
lamp 4.4 16.4 9.0 18.9
couch 39.0 44.6 41.1 47.0
desk 33.7 39.0 34.5 41.0
stand 23.3 37.9 33.7 46.1
bed 64.8 71.2 68.2 74.1
backpack 27.4 42.0 33.3 41.4
bathtub 32.4 33.5 36.6 42.1
ottoman 3.2 3.8 0.0 0.0
dresser 33.1 40.3 38.2 49.2
bin 23.1 39.2 30.2 39.8
toilet 68.8 83.4 68.7 82.5
refrigerator 32.2 57.3 38.5 53.6
stove 62.5 68.8 61.2 68.6
microwave 25.9 32.1 21.3 33.3
monitor 22.3 29.1 21.3 34.0
computer 6.8 3.8 12.0 11.4

Table 11: The detailed results on 3D video object detection in 4-frame setting. We report the F1
score for all categories.

E Limitations

While our model is built upon 3B and 7B MLLM backbones, its capabilities remain constrained by
the model’s inherent capacity. Scaling up the model size could potentially enhance both fundamental
abilities and generalization performance. Furthermore, this work focuses exclusively on supervised
fine-tuning, whereas emerging research demonstrates that reinforcement learning can significantly
enhance model reasoning capabilities. Since VGGT is trained on commonly used 3D scene datasets,
evaluating it on benchmarks built from that same data (such as ScanNet) poses a greater risk of
overestimating its performance compared to evaluating it on out-of-distribution benchmarks. We
leave these for future work.
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F Broader Impact

VG LLM is built upon Qwen2.5-VL and consequently shares many common challenges associated
with multi-modal large language models (MLLMs). These challenges include hallucinations in visual
understanding, inherited biases from the base models, and susceptibility to adversarial inputs. Despite
these limitations, releasing VG LLM to the research community would be highly beneficial, as it
could catalyze further advancements in 3D world understanding by leveraging Video LLMs and 3D
vision geometry priors.
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The office chair is next to the wooden table and next to the bed. the office chair has a curved backside and four 
legs.

The cabinet is in the middle of the room. the cabinet is a white box with a blue rectangular top.

There is a door in the middle of the northern wall next to a metal cabinet. the door is shaped like a brown 
rectangle and as a dark yellow colored doorknob.

A small document organizer with shelves. there is a door entry near it.

Figure 4: Visualization of 3D visual grounding. The first three examples are positive, whereas the
last two are negative cases.
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Figure 5: Visualization of 3D video object detection results.
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