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Abstract

Models for human choice prediction in preference
learning and perception science often use binary
response data, requiring many samples to accu-
rately learn latent utilities or perceptual intensi-
ties. The response time (RT) to make each choice
captures additional information about the decision
process, but existing models incorporating RTs for
choice prediction do so in a fully parametric way or
over discrete inputs. At the same time, state-of-the-
art Gaussian process (GP) models of perception
and preferences operate on choices only, ignoring
RTs. We propose two approaches for incorporat-
ing RTs into GP preference and perception models.
The first is based on stacking GP models, and the
second uses a novel differentiable approximation
to the likelihood of the diffusion decision model
(DDM), the de-facto standard model for choice
RTs. Our RT-choice GPs enable better latent value
estimation and held-out choice prediction relative
to baselines, which we demonstrate on three real-
world multivariate datasets covering both human
psychophysics and preference learning.

1 INTRODUCTION

Human binary choice data are widely used to measure la-
tent mental constructs. Key motivating applications are hu-
man psychophysics, the study of human perception [King-
dom and Prins, 2016]; human value-based decision making
[Rangel et al., 2008]; and preference learning [Fürnkranz
and Hüllermeier, 2003]. In all cases, humans give binary
responses about whether they detect a stimulus or can dis-
criminate between two stimuli (in psychophysics), or about
which of two options they prefer (in value-based decision-
making and preference learning). Although binary choice
experiments have been used in psychology for more than a

century [e.g. Fechner, 1860], they have seen recent advances
in the machine learning community, particularly through
nonparametric latent function modeling and active learn-
ing. Since Chu and Ghahramani [2005], Gaussian processes
(GPs) have been a standard approach in preference learning
for modeling latent utility functions from binary prefer-
ences expressed over general multivariate and continuous
feature spaces. Among their many applications, human pref-
erence data has been used to learn robot locomotion policies
[Tucker et al., 2021, 2022, Cosner et al., 2022], personalize
assistive devices [Thatte et al., 2017, Tucker et al., 2020],
and learn a good golf swing [Biyik et al., 2020]. Recent
work in machine learning for psychophysics has similarly
used GP models to learn latent perceptual functions from
binary human feedback, for purposes including audiome-
try [Gardner et al., 2015a,b], measuring visual sensitivity
[Letham et al., 2022], and understanding perception in aug-
mented/virtual reality devices [Guan et al., 2022, 2023].

In these applications, the model assumes that binary re-
sponses derive from a latent function on the input space that
is mapped to choice probability through a sigmoidal link
function. There are two important aspects of the problem
that are detrimental to the sample efficiency of the model.
First, information is lost for large portions of the latent
space that are mapped to choice probabilities very near 1
or 0. Second, areas of the function with high uncertainty,
that is, where preference or detection probability is close
to 0.5, require many samples for accurate estimation since
they have a large Bernoulli variance, p(1− p). These short-
comings are due to the fact that binary responses are a very
coarse measurement of the underlying continuous function
reflecting a human’s decision process. A richer model of the
decision process should allow for discrimination between a
‘yes’ response with choice probability close to 0.5 and one
close to 1.

Psychology and neuroscience provide rich models for the
underlying decision process. These models incorporate ad-
ditional information, notably response times (RTs), as a way
of inferring the latent function underlying the subject’s re-
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Figure 1: A human subject evaluated 1,225 pairs of robot
gaits to select the more natural looking gait. The response
time in making the judgement was longer for pairs that
have a small difference in their latent utilities, reflecting
the increased challenge of judging gaits of similar quality.
Response time is useful auxiliary information for learning
the latent utility function and predicting choices.

sponse [e.g. Laming, 1968, Donders, 1969, Sternberg, 1969,
Clithero, 2018]. One of the most popular such models is
the diffusion decision model, also called the drift-diffusion
model (DDM) [Ratcliff, 1978, Bogacz et al., 2006, Ratcliff
and McKoon, 2008]. Unfortunately, the joint choice-RT
likelihood of the DDM cannot be computed in closed form.
A variety of numerical approaches can be used to approx-
imate it [Voss and Voss, 2008, Navarro and Fuss, 2009],
but none are differentiable. This prevents them from being
incorporated into a modern variational GP approximation
framework in a straightforward way. Our core contribution
is to approximate the DDM using a family of parametric
skewed distributions, which enables for the first time the use
of GP models with DDM-inspired RT-choice likelihoods.

To illustrate the relationship between RTs and choice, Fig. 1
shows RT data from the multivariate robot gait optimiza-
tion task we study in Section 7.1, in which a human subject
watched two simulations of a quadruped robot walking,
each with different gait parameters, and was asked which
gait looked more natural. The figure compares the latent
GP utility estimates for each evaluated pair using the bi-
nary preference data only (‘choice-only’ model), with the
response time of the human subject in judging that pair.
When the difference in latent utility for the pair is 0, they are
equally preferred, and the choice probability is 0.5. Gaits
with closer utility values had both longer and more variable
response times, while those with large differences in utility
were easier to judge and had shorter and less variable re-
sponse times. This is the relationship that we use to improve
latent function estimation and choice prediction.

RTs are particularly valuable as an implicit measure of con-
fidence because they are easily recorded alongside binary

choice decisions in experiments with humans. They allow
us to improve model performance without having to change
from experimental designs already in use, and without bur-
dening the subject with additional questions to elicit explicit
confidence assessments. This is especially valuable in the
human user studies that are the focus of this work, where
minimizing load on the subject is of paramount importance.

Alongside the psychology-driven approach using the DDM
likelihood, we also propose a simple stacking approach
for incorporating RTs into a choice GP, in which a GP
model for RTs is used as an input to a second layer GP
that models choice. We show that the DDM-augmented
model consistently outperforms the choice-only baseline,
but does so far better in the regime where DDMs are conven-
tionally used (accurately-measured, non-deliberative short
decisions). When RT measurements are lower quality or
consistency, the more flexible stacking model can perform
better.

We study the performance of the models using both syn-
thetic data and data from real human subject studies. On
synthetic problems, we show that leveraging RTs provides
more accurate estimation of the latent function than choice-
only models, especially in realistic low-data regimes. On
real data, we show that incorporating RTs into GP models
can substantially improve choice prediction performance rel-
ative to choice-only models. This is the case even when the
choice probability is the only quantity of direct interest and
the RTs are solely used as side information for the modeling,
as in machine learning applications in this domain.

Section 2 provides background on RT modeling and the
DDM. Section 3 introduces the GP classification model
used for modeling human choices. Section 4 then describes
our novel DDM approximation and how we use that to
jointly model RTs and choices in a GP, as well as the stack-
ing model. Section 5 describes the synthetic experiments,
followed by the real-world psychophysics and preference
learning experiments in Sections 6 and 7 respectively. Our
psychophysical dataset is from a high-dimensional visual
psychophysics task. Our first preference learning example
is a novel robotics preference learning dataset1, the robot
gait optimization used for Fig. 1. Our second preference
learning dataset comes from a study of recommender sys-
tem evaluation, containing pairwise evaluations of A/B test
outcomes at an internet company.

1This new dataset, alongside code used to generate
the figures in the paper, is at https://github.com/
facebookresearch/response-time-gps. The core
modeling and estimation code will be available as part of the
AEPsych package for adaptive experimentation for human
experiments (https://aepsych.org/).
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2 BACKGROUND

The DDM is widely used for modeling decision making in
neuroscience and psychology, and can be motivated from
a variety of theoretical perspectives: as a generalization of
classical signal detection theory in psychophysics [Ashby,
1983, Griffith et al., 2021], as a sequential statistical infer-
ence process [Bogacz et al., 2006], as an approximation to
neural firing rates [Gold and Shadlen, 2002, 2007], or as a
mechanistic theory of memory [Ratcliff, 1978]. With just a
few parameters, the model describes the joint distribution of
choices and RTs. The RT is generally understood to reflect
a process of evidence accumulation, sequential statistical in-
ference, or integration over neural noise. When this process
reaches some threshold determined by the desired accu-
racy of the decision maker, a decision is made. The process
completes more quickly when stronger signal is available,
resulting in faster decisions when signal is stronger.

Existing DDM models almost universally estimate parame-
ters independently over a set of discrete experimental con-
ditions, making them incompatible with the general con-
tinuous stimulus spaces that are of interest here. The RT
distribution under the DDM is that of the first-passage time
of a 1-d Wiener process with nonzero drift and nonzero
initial condition to one of two boundaries. While expres-
sions for this distribution are well-known [Feller, 1966],
they take the form of an infinite summation. This sum can
be truncated while controlling approximation error [Navarro
and Fuss, 2009], but naive application of this approximation
is incompatible with modern differentiable programming
frameworks, for two reasons: first, because bounding density
error does not necessarily bound error in gradients; and sec-
ond, because varying term counts per parameter value pre-
clude leveraging standard batched linear algebra operations.
Alternate approaches solve the Kolmogorov backward equa-
tion associated with the DDM process [Voss and Voss, 2008,
Voss et al., 2015, Shinn et al., 2020] or approximate param-
eters by moment-matching to the data [van Ravenzwaaij
et al., 2017]. Given this complexity, standard approaches to
DDM estimation rely on full MCMC using slice sampling
[e.g. Frank et al., 2015] or zeroth-order optimization.

Our focus is not necessarily improving DDM likelihood ap-
proximation or density estimation. Rather, we would prefer
to use a simpler density that is still able to represent the
latent value or signal strength we need for choice predic-
tion in a GP framework or other ML models. Unfortunately,
while other distributions have been used to describe response
times, their parameters do not map to the domain knowl-
edge encoded in the DDM process in a straightforward way
[Matzke and Wagenmakers, 2009]. Instead of using such dis-
tributions directly, we use the fact that closed-form expres-
sions for the conditional moments of the DDM distribution
are known even if the exact density is intractable [Srivastava
et al., 2016]. We use these moments, which are a function

of the DDM parameters, to match the moments of a shifted,
skewed distribution with a known functional form such as
the shifted lognormal or shifted inverse gamma distributions.
We select the parameters of these three-parameter distribu-
tions to uniquely match the mean, variance, and skew of the
DDM distribution [Lo et al., 2014].

3 GP MODELS FOR HUMAN CHOICES

GP models can successfully model both human perception
[Gardner et al., 2015a, Owen et al., 2021, Letham et al.,
2022, Keeley et al., 2023] and preferences [Chu and Ghahra-
mani, 2005, Lin et al., 2022]. Observations are given as
{xn, yn}Nn=1, where xn ∈ Rd are multi-dimensional stim-
ulus configurations, and yn ∈ {0, 1} are subject responses.
The typical GP approach to modeling in this setting is to
assume a latent function z with a GP prior:

z(x) ∼ GP (0, kθ (·, ·)) . (1)

For single choices (e.g. ‘yes’ vs. ‘no’), the kernel kθ(x,x′)
can be a standard GP kernel such as the radial basis func-
tion (RBF), which we use throughout our experiments. For
preference choices between paired inputs (e.g. ‘prefer 1’ or
‘prefer 2’), z(x) models a utility function, and we assume
that the choice probability is determined by the difference
in utility between the two choices [Chu and Ghahramani,
2005]. We do this by using the ‘preference kernel’ given
by Houlsby et al. [2011], which exploits the fact that GPs
are closed under addition to convert a GP prior over the
latent function to a GP prior over the paired differences with
a particular kernel formulation. In both cases we estimate
hyperparameters controlling the amplitude and an indepen-
dent lengthscale per input dimension (i.e., an ARD kernel),
which hyperparameters we denote θG = {ρ, ℓ}.

The observation model is Bernoulli, and assumes that y
is conditionally independent of x, given z. Formally, let
zn = z(xn), and yn ∼ Bernoulli(Φ(zn)), where Φ(·) is
a sigmoid, typically the Gaussian cumulative distribution
function. Prior work has varied the choice of the sigmoid
and the details of the kernel, but has maintained this basic
model structure. We are primarily interested in inferring z,
both for the purpose of predicting y and for extracting useful
information such as detection thresholds and most-preferred
inputs. We refer to this model as the ‘choice-only’ model
since it uses only choice data yn. We now show how this
model can be extended to incorporate RT observations.

4 THE RT-CHOICE MODEL

We augment the GP model above to include a distribution
over RTs. Now, our data are D = {xn, yn, tn}Nn=1 where
xn and yn are as before, and tn ∈ (0,∞) are the RTs. As
before, we assume the corresponding latent function values
zn depend on xn, and put a GP prior on z(x) as in (1).
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Figure 2: A. A graphical depiction of our RT-choice model. The latent variable zn has a GP prior and is a function of xn in
the input space. It is used as the drift parameter in the DDM. Via the DDM, it produces RT distributions for both ‘yes’ and
‘no’ choices as well as a choice probability p. B. Schematic of the diffusion decision model. A stochastic process with an
average drift (red arrow) dictates random movement in a latent space, capturing an underlying decision making process. The
latent accumulator eventually reaches one of two boundaries, representing one of two possible decisions, providing both a
choice and a response time. RT distributions for each choice (top and bottom) are skewed with known moments.

Let y = (y1, . . . , yN ), t = (t1, . . . , tN ), z = (z1, . . . , zN ),
and X = (x1, . . . ,xN ). The joint likelihood of RTs and
choice responses can be written as:

p(t,y | X, θG, θD)

=

∫
p(t | z,y, θD)p(y | z, θD)p(z|X, θG)dz. (2)

Here both RTs t and choices y are assumed to depend on
the input X only via the latent function z; see Fig. 2A for a
graphical representation of the model. The distribution of
the latent function values, p(z|X, θG), will be Gaussian due
to the GP prior on z. The choice distribution, p(y | z, θD),
and the conditional RT distribution, p(t | z,y, θD), are
specified according to a DDM, with parameters θD. We will
now describe the DDM and these distributions in detail.

4.1 THE DIFFUSION DECISION MODEL

The DDM can be simulated as a Wiener process that stochas-
tically moves towards one of two boundaries, the ‘yes’
boundary or the ‘no’ boundary. Whichever boundary is
reached first is the choice made, yn, and the time required
to reach the boundary is the RT, tn. An illustration of the
DDM process is shown in Fig. 2B. The movement towards
a boundary models the accumulation of evidence, and when
the boundary is reached, there is sufficient evidence to make
a judgement. The RT is thus the first-passage time of this
process, a well-studied quantity in stochastic processes.

The DDM contains several parameters: drift rate, the de-
cision threshold level (C), the initial condition (x0), and a
shift (t0). We use the GP latent function value zn as the drift
rate, providing an explicit link between the input xn and the

response produced by the DDM. The remaining parameters,
θD = {C, x0, t0}, will be directly estimated from data.

The DDM process induces different RT distributions for the
‘yes’ and the ‘no’ choices, depending particularly on values
of the initial condition and drift parameters, as they favor
one choice over the other. The evaluation of the likelihood
under these distributions is intractable, but their moments
can be analytically calculated as a function of θD and zn
[Srivastava et al., 2016]. The first three moments of the
RT distributions are denoted in Fig. 2 as (m+, v+, s+)
and (m−, v−, s−) for the mean, variance, and skew of
the ’yes’ and ’no’ distributions, respectively. The DDM
RT moments and choice probabilities are then incorporated
into the full model likelihood in (2) using the exact DDM
choice probability, p(y|z, θD) =

∏N
n=1 p(yn|zn, θD) and a

moment-matching approach for the RT distributions, p(t |
z,y, θD). We elaborate on each below.

4.2 THE CHOICE DISTRIBUTION

The choice distribution in (2), p(y|z, θD), is the probability
of yes / no choices given the DDM parameters and latent
function value. Unlike the response time, it can be computed
exactly. We assume conditional independence across trials,
p(y|z, θD) =

∏N
n=1 p(yn|zn, θD), and have yn|zn, θD ∼

Bernoulli(pn). The DDM process induces the following link
function between the latent function values and the choice
probability [Srivastava et al., 2016]:

pn =
e2Czn − e−2x0zn

e2Czn − e−2Czn
. (3)

Fig. 3 shows how this link function compares to the probit
and logistic sigmoid link functions that have been used in
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Figure 3: The DDM link function closely matches typical
probit and logistic link functions, depending on the process
parameters. The supplementary material includes examples
of link functions fit to real data.

choice-only GP models, for x0 = 0. It can closely match
either depending on the DDM boundary parameter C. There-
fore, instead of invoking standard link functions (e.g. probit
and logistic) in this work, we use the flexible link represen-
tation derived from DDM theory.

4.3 MOMENT MATCHING THE RT
DISTRIBUTION

The conditional RT distributions as a function of choice,
p(t | z,y, θD), are not available in closed form under the
DDM process, however, as discussed above, the moments
are. To obtain a tractable likelihood in (2) we will assume
conditional independence across trials, p(t | z,y, θD) =∏N

n=1 p(tn|zn, yn, θD), and will then use a parametric dis-
tribution for p(tn|zn, yn, θD), whose parameters are set by
moment matching to the DDM RT distribution.

Proposition 1 (Srivastava et al. 2016). Let kz = Czn and
ỹn = kz + x0zn(−1)(1−yn). The RT distribution under the
DDM process has as its moments:

E[tn|zn, yn, θD]

= t0 +
1

z2n

(
2kz coth (2kz)− ỹn coth (3kz − ỹn)

)
,

Var[tn|zn, yn, θD] =
1

z4n

(
4k2z csch

2 (2kz)

+ 2kz coth (2kz)− ỹ2n csch
2 (ỹn)− ỹn coth (ỹn)

)
,

Skew[tn|zn, yn, θD] =
1

z6n

(
12k2z csch

2 (2kz)

+ 16k3z coth (2kz) csch
2 (2kz) + 6kz coth (2kz)

− 3ỹ2n csch
2 (ỹn)− 2ỹ3n coth (ỹn) csch

2 (ỹn)

− 3ỹn coth (ỹn)
)
.

We use these three moments from the DDM to match para-
metric distributions to the DDM RT distribution. Consider-
ing that RT distributions are typically heavy-tailed [Murata
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Figure 4: Example of the real DDM distribution (computed
using the approximation of Navarro and Fuss 2009), and
our moment-matched approximations.

et al., 2014], we focus here on heavily skewed distributions
for our parametric RT forms. In our experiments, we use
the lognormal, shifted lognormal, shifted inverse gamma,
and shifted gamma distributions. In the economics commu-
nity, expressions are available for the parameters of these
distributions as a function of the empirical sample statistics—
specifically the mean, variance, and skew [Lo et al., 2014,
Brignone et al., 2021]. These expressions allow for analytic
moment matching with the known expressions of the DDM
RT moments above. To evaluate the likelihood, we use the
fitted DDM parameters and GP function samples to compute
the mean, variance, and skew of the RT distribution accord-
ing to Prop. 1. The parameters of the desired parametric RT
distribution are then computed from those moments via mo-
ment matching, and we evaluate the likelihood of the RTs
under this parametric distribution. The formulae for comput-
ing the parameters from the moments for each skewed dis-
tribution are provided in the supplementary materials. This
moment-matched parametric distribution is then used as the
RT component of the likelihood in (2), p(tn|zn, yn, θD).

Figure 4 shows how the numerically calculated DDM RT
distribution is captured by each of our parameterized heavy-
tailed distributions via moment-matching Prop. 1 with the
parameter expressions given in the supplement. It is visually
apparent that the approximations do not perfectly match
the gold-standard series truncation approach (which we use
as the ‘real’ DDM distribution). However, they are overall
similar, and we will see below that these approximations
are sufficient to enable RT-choice to outperform the choice-
only model. We additionally consider ‘lapse’ RTs, which are
thought to be stimulus-independent and arise due to distrac-
tion, fatigue, etc. We model such RTs as drawn uniformly
from the empirical range of the observed RTs, and parame-
terize the overall RT distribution as a mixture between the
DDM-derived likelihood and this lapse distribution [Ratcliff
and Tuerlinckx, 2002].

4.4 INFERENCE

Because the marginal likelihood in (2) cannot be computed
in closed form, we use standard variational methods to ap-
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proximate the GP posterior, and obtain point estimates of
{θG, θD}. Importantly, the parametric moment-matched dis-
tributions are all differentiable, so we can compute gradients
of the GP hyperparameters and variational approximation
with respect to the RT likelihood, rendering the full scheme
compatible with modern GP inference tooling. Consistent
with standard approaches, we use Gauss-Hermite quadra-
ture in the expectation term of the traditional evidence lower
bound, and optimize the objective with gradient-based op-
timization [Hensman et al., 2015, Balandat et al., 2020].
Estimation takes on the order of seconds on a standard lap-
top.

4.5 A STACKING APPROACH

In addition to the DDM likelihood, we also introduce a
simple stacking approach for including RTs into a choice GP.
In this approach, we fit two GP models. Let t̃n = log(tn)
be the log RT; the log transform is helpful for enabling
GP modeling of the highly skewed RTs. The first model g
is a GP regression model fit to the log RT data, modeling
t̃n = g(xn). The second model h is a GP choice model
whose input space is augmented with log RT as an additional
feature, so that yn ∼ Bernoulli(Φ(h(xn, t̃n))). The kernel
over the original input space x is combined with an RBF
kernel over t̃ via a product kernel. These models can be fit
independently, but are used together for predicting an input
x for which RTs have not been observed. At prediction time,
we take

y ∼ Bernoulli(Φ(h(x, ḡ(x)))),

where ḡ(·) is a plug-in estimate using the posterior mean
of g. This model is simple to implement and understand,
though there are many real-life properties of RT distributions
and their relationship to choices that it does not capture.

5 SYNTHETIC EXPERIMENT

To demonstrate the benefits of our approach, we begin with
a synthetic data experiment. We use the 2-d detection test
function of Owen et al. [2021], which was designed to eval-
uate models for psychophysics, with the output scaled by a
factor of 0.2 to be in the range of typical drift rates in the
literature [Matzke and Wagenmakers, 2009]. Fig 5A shows
the basic properties of the test function. At every point in
the parameter space, the test function (bottom left) was used
as the drift parameter of a DDM. From this latent function
and the DDM parameters, we can calculate the mean and
standard deviation of the RTs for each stimulus using Prop.
1 (top row). The latent function values generate choice prob-
abilities via (3) (bottom right). The bottom right panel also
shows the locations of 10 observations, at each of which the
choice yn and RT tn were obtained by full simulation of the
DDM process (Sec. 4.1). The simulated choice yn is shown
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Figure 5: A. The mean and standard deviation (top) of RT in
our 2-d test function, the latent function value (bottom left),
and associated choice probabilities (bottom right). B. Mean
squared error in expectation over the posterior of the latent
function under each model fit on 10 observations, for the
choice only model and four DDM-based RT-choice models,
using different parametric forms of the RT distribution. Error
bars show standard error over 10 simulated datasets.

for these observations in the figure, indicated with a ‘+′ for
a correct detection and ‘◦′ for detection failure.

Note that there is only a single negative response (detection
failure) in this example, a common occurrence in the low-
data regime in such problems. In this case, a choice-only
model cannot do much more than separate the space into
broad ‘yes’ and ‘no’ regions, whereas a model taking ad-
vantage of RTs can do much more. Fig. 5B shows error on
recovering the true, latent function from only 10 observa-
tions, in expectation over the GP posterior. All variants of
the RT-choice model, using different moment-matching dis-
tributions, far outperform the choice-only model. Moreover,
the choice-only model’s performance is highly variable as it
strongly depends on the presence of sufficiently balanced
numbers of ‘yes’ and ‘no’ trials. We will see this same sig-
nificant advantage for RT-choice models in the low-data
regime in the real-world problems as well.
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6 REAL-WORLD PSYCHOPHYSICS

As a first evaluation of our model in a real-world setting,
we fit the model to data from a high-dimensional visual
psychophysical task. These data consist of 1,500 trials from
a two-alternative forced choice (2AFC) task provided by
Letham et al. [2022], and we obtained RTs from the au-
thors. For each trial, the subject was shown an animated
Gabor patch, one half of which had been scrambled, with
the scrambled side selected randomly each trial. The subject
was asked to identify which side was not scrambled. The
stimulus in each trial varied along six dimensions (contrast,
background luminance, temporal and spatial frequency, size,
and eccentricity), rendering some trials harder than others in
a high-dimensional space. The purpose of the study was to
determine how visual perception depends on those six stim-
ulus properties, and to extract detection thresholds from the
latent function. Additional dataset details and an example
stimulus are available in the supplementary materials.

We study how the performance of the model varies with
the amount of data. For each training set size, we randomly
selected a training set of that size and used the remaining
data as a test set. We evaluated six models: the choice-only
model, the four DDM-based variants of RT-choice with
different parametric RT distributions, and the stacked RT-
choice model. Model performance was measured using the
expected Brier score, the expectation being over the model
posterior. The Brier score [Brier, 1950] is a proper scoring
rule, equivalent to the mean-squared error of predicted prob-
ability and outcome, and evaluating it in expectation over
the model’s posterior measures the calibration quality of
the model’s predictions. For each training set, performance
was recorded as the difference in Brier score between each
model and the choice-only baseline, to directly measure the
extent to which incorporating RTs can improve the model.
This evaluation was repeated for 20 random train/test folds.

Fig. 6 (left) shows results of the evaluation. All of the
DDM RT-choice models performed significantly better than
the choice only baseline, with the difference especially
pronounced for training set sizes less than 200. The 3-
parameter shifted RT distributions performed better than
the 2-parameter log-normal distribution, showing the impor-
tance of having a flexible RT distribution. The stacked RT-
choice model did not improve over the choice-only model.
This model fails to capture important aspects of the RT dis-
tribution, such as the skew, heteroskedastic variance across
the parameter space, and the presence of lapses. All of these
real-world properties of RTs are captured by the DDM.

7 REAL-WORLD PREFERENCE
LEARNING

We evaluated our model on pairwise data for preference
learning using two real datasets, the first created as part of

this study.

7.1 ROBOT GAIT OPTIMIZATION

This problem explored a 3-d space of gait parameters for
a simulated quadruped robot [Rahme et al., 2020]. Using
OpenAI Gym [Brockman et al., 2016], 10 second videos
were recorded of gait simulations for each of 50 quasiran-
dom points in the parameter space. A single human subject
consented to data collection, and evaluated each of the 1,225
possible pairings of videos to identify which gait appeared
more natural. Videos were shown side-by-side, so the sub-
ject could respond as soon as a judgement had been made.
Response times were recorded for each pairing, as shown in
Fig. 1. See the supplementary material for more details and
example videos. The goal of the experiment was to learn
the most natural-looking gait for the robot, according to the
human subject.

Model evaluation was done in the same way as in the psy-
chophysics task, by measuring the difference of expected
Brier score between each model and the choice-only base-
line, paired across 30 train/test folds for each training set
size. Results are shown in Fig. 6 (right), and are similar to
those of the psychophysics task. DDM RT-choice models
significantly outperformed the choice-only model for small
training sizes. Because of the smaller dimensionality of this
problem (d = 3), the improvement fades at a smaller train-
ing set size, by around 150 observations, as the choice-only
model is able to better capture the latent function in lower
dimensions. The stacked model again failed to improve over
choice-only.

7.2 RECOMMENDER SYSTEM EVALUATION

The data for this task come from a user study reported in
Lin et al. [2022] in which six employees of an internet
company were asked to compare pairs of A/B test results
that showed performance of a recommender system under
different configurations. For each pair, subjects identified
which test had the better outcome, for the purpose of find-
ing the most-preferred configuration. The results for each
A/B test included changes in up to 9 metrics related to the
performance of the recommender system, and the subject
had to weigh the relative benefits of changes in these vari-
ous metrics. The dimensionality of the configuration varied
(5 to 11, median 6). We thought this experiment may help
establish the limits of the benefit of the DDM, as the na-
ture of the decision is deliberative rather than immediate:
subjects reported that they had discussions with team mem-
bers to help decide which option they preferred, and were
evaluating the options in parallel with other tasks such as
responding to messages. Consequently, the response times
were substantially longer (4 seconds to over 7 minutes, me-
dian of 14 seconds—the other datasets had a median below
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Figure 6: Left. Choice prediction performance on the real-world visual psychophysics dataset. Lines show the mean of the
difference between expected Brier score of each model on each train/test fold, and the expected Brier score of the baseline
choice-only model. Error bars show two standard errors. Right. Choice prediction performance measured in the same way,
for the robot gait task. DDM-based RT-choice models significantly improve over the choice-only model, especially for small
training sizes. The stacking approach was not able to improve over choice-only.

4 seconds). Furthermore, response times were quantized to
1s increments due to the implementation of the preference
elicitation system. Additional information about the dataset
is in the supplementary materials.

The amount of data in this study was insufficient to vary
the training set size as in the other experiments (41 to 50
observations depending on subject). Instead, we generated
50 random splits of the data, each time training on 80% and
testing on 20% to compute expected Brier score on the held-
out data. Fig. 7 shows that RT-choice models outperformed
the choice-only model for all six subjects. In contrast to
the other two real-world experiments, our novel stacked
model performed very well, significantly outperforming
both choice-only and the DDM-based models in half of
the subjects, and performing comparably to DDM-based
models in the other half.

8 DISCUSSION

We have demonstrated that GP models that take into ac-
count the RT distribution improve latent function estimation
and held-out predictive accuracy in both psychophysics and
preference learning. By using the moments of the RT dis-
tributions provided in closed form by the DDM, we can
calculate point estimates of parameters of a parametric den-
sity over RTs, and leverage this additional information to
better predict human performance and understand latent
cognitive representations. Our results show that measuring
and modeling with RT data can improve performance across

a wide range of preference and perception learning tasks.
While we focus on binary applications here, GP preference
models with multinomial observation likelihoods would be
a first step in extending this class of models to decision
making settings with more than two options. Additional
work would be necessary to identify RT distributions in a
multiple-choice setting, perhaps derived from a model of
the dynamics of multi-choice decision making [e.g. Roxin,
2019, Krajbich and Rangel, 2011, Tsetsos et al., 2011].

Our results also yield clear guidance for practitioners: if
high-quality RTs are available (i.e. ones that are accurately
measured from focused subjects), augmenting the GP choice
model with the DDM improves choice prediction. If RTs do
not fall into the setting where DDMs are typically produc-
tive, DDM-augmented GP models still outperform choice-
only, but the more flexible stacked model may better lever-
age the RTs. When using the DDM-augmented model, we
see that different moment-match distributions perform simi-
larly, and the best one can be selected by cross-validation
(which is feasible due to model fitting requiring only a few
seconds for the training set sizes used here).

We show results in both a synthetic setting and a broad va-
riety of real-world scenarios: human visual psychophysics,
preferences in recommender system evaluation, and robot
gait tuning. We note improvement specifically when the
number of samples per-subject is small (N < 200 samples),
a regime of practical utility, as it can be time-consuming
and uncomfortable for humans to participate in experiments
for hundreds or thousands of trials. Importantly, our model
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Figure 7: Expected Brier score improvement over choice-
only for choice predictions in the recommender system eval-
uation task. For each subject, the figure shows mean and two
standard errors across random train/test sets. All RT-choice
models improved over choice-only, and the stacked model
performed the best.

improvements are specifically salient in the small-sample
regime, as the model is able to effectively leverage RT infor-
mation to better estimate choice probability. As the number
of samples increases, choice-only models have enough in-
formation to do very well. However, as can be seen in the
left panel of Figure 6, for training sizes that are very small
(e.g. < 50), the performance improvements seen in the RT
model are more modest than when the number of samples
is slightly increased. This suggests a ’sweet spot’ for our
model, where there is enough data to accurately leverage
RT information, but not so much that the choice-only ap-
proaches achieve comparable performance. Incidentally, it
is this regime that is likely of practical utility in many real-
world human choice modelling settings.

Finally, we discuss a number of opportunities for future
work. First, we focus on the benefits of our approximation
for fast, differentiable inference of GP models with RTs but
do not make explicit claims about the quality of approxima-
tion, which may be worse than series truncation approaches
that have explicit error bounds but are challenging to apply
in this setting. The interaction of approximate likelihoods
(in our case, moment matching) and approximate inference
(in our case, variational inference) are closest in spirit to
methods for likelihood-free inference [e.g. Barthelmé and
Chopin, 2014, Beaumont, 2019, Tran et al., 2017], and fu-

ture work could make this connection more explicit and
provide stronger theoretical guarantees.

Second, in the stacked GP model we use a point estimate of
the GP model predicting RTs, discarding the uncertainty of
that model. We made this choice because integrating over
this uncertainty is not possible to do in closed form, and
doing so numerically would likely take our models out of
the realm of practical usage with a human in the loop (an
important goal for this work). Methods for propagating input
uncertainty in GPs [e.g. McHutchon and Rasmussen, 2011,
Villacampa-Calvo et al., 2021] provide a roadmap for the
types of approximations that could be used for propagating
RT uncertainty in the stacked model, but we leave that for
future work.

A final opportunity for future work is pooling or utilizing
of data across multiple subjects [Wiecki et al., 2013]. Com-
bining cross-subject pooling, flexible GP models, and use
of RT distributions may enable future practitioners to even
better predict binary human choices in a few samples.
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A INFERENCE DETAILS

As noted in the main text, we used standard variational methods for approximate GPs [Hensman et al., 2015, Balandat et al.,
2020]. In all cases we used the Adam optimizer [Kingma et al., 2014] with a stepped learning rate beginning at 0.01 and
5000 iterations. Inputs were normalized to [0, 1]. The hyperprior for the lengthscale was InverseGamma(4.6, 1.0), selected
because it restricts approximately 95% of the prior probability mass to be between 0.1 and 0.5 (i.e. excluding very short or
long lengthscales relative to the normalized input domain). The hyperprior for the variance was selected as Uniform(1, 4), as
it restricts the GP output to values that are not saturated by the probit sigmoid, and we wanted to keep priors consistent
between the models. We additionally employed multi-start optimization (with 5 restarts), and clamped the moment-matched
skew to be between 0.1 and 10 to stabilize estimation.

B DATASET DETAILS

B.1 HUMAN PSYCHOPHYSICS DATASET

This dataset was obtained by contacting the authors of Letham et al. [2022] and requesting response time data for the choice
dataset in the original paper. It consists of 1500 observations of a single subject making detection judgments. Stimulus
features were contrast, pedestal (background luminance), temporal frequency, spatial frequency, size, and eccentricity. An
example stimulus is shown in Fig. 8. Response times ranged from 0.16 to 15.87 seconds, with a median of 0.6 seconds.

Figure 8: Example psychophysics stimulus (reprinted from Letham et al. 2022)
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Figure 9: A screenshot of the UI for the robot gait preference learning experiment of Section 7.1. The subject viewed two
videos simultaneously playing side-by-side, and selected the one with the more natural gait. Both choice and response time
were recorded to fit models of gait preference.

B.2 ROBOT GAIT PREFERENCE LEARNING

The simulation framework was from Rahme et al. [2020], and we built on the demo simulation from the package. The
selected parameters and their ranges were taken from the package demo settings. Specifically, SwingPeriod ranged from 0.1
to 0.4; StepVelocity from 0.001 to 3; and ClearanceHeight from 0 to 0.1. All other gait parameters and all settings related to
the simulation itself were fixed to defaults.

A total of 50 simulation videos were recorded for the study, and this supplementary material includes 3: the most-preferred,
least-preferred, and median-preferred, when all videos were ranked according to the latent preference value of a ‘choice-only’
model fit to all of the data. The increasingly natural appearance of the gait with latent preference value is apparent. Fig. 9
shows a screenshot of the UI for the study in which the human subject viewed two gaits side-by-side and selected the more
natural looking. Response times ranged from 1.54 to 9.85 seconds, with a median of 3.6s.

B.3 RECOMMENDER SYSTEMS DATASET

This dataset was obtained by contacting the authors of Lin et al. [2022] and requesting the dataset in that paper. The dataset
consisted of data from seven subjects whose response times ranged from 4 to 429 seconds. Table 1 includes additional
information about this dataset. Data from subject 0 only had 20 observations, so we did not use it, since the test set size
would be 4 instances only.

Table 1: Dataset details for recommender systems dataset.

subject ID Instances Dimensions Minimum RT (s) Maximum RT (s) Median RT (s)
0 20 7 5 46 11
1 41 8 11 429 30
2 41 11 6 250 14
3 43 5 7 159 14
4 50 6 7 118 15
5 50 7 4 157 7
6 50 8 4 35 9
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C MOMENT MATCHING RESULTS

Here we provide the probability density functions of all heavy-tailed reaction time distributions we use in this work. Of
these, the log-normal is the only two-parameter distribution whereas the shifted gamma, shifted inverse gamma and the
shifted log-normal are all three-parameter distributions. The sample statistics calculated from the reaction times, specifically
the mean, variance, and skew, are denoted m∗, v∗, and s∗, respectively. Expressions for the three-parameter distributions
below are adapted from Lo et al. [2014].

C.1 SHIFTED LOG-NORMAL

f(z;µ, σ, η) =
1

σ(z − η)
√
2π

exp

{
− (ln(z − η)− µ)2

2σ2

}
, z > η

with parameter estimates as a function of sample statistics

µ̂ = ln (m∗ − η)− σ2

2
, σ̂2 = ln

∣∣∣∣∣1 + v∗

(m∗ − η)
2

∣∣∣∣∣ , η̂ = m∗ −
√
v∗
s∗

[
1 + (B)

1
3 + (B)−

1
3

]
B ≡ 1

2

(
s2∗ + 2−

√
s4∗ + 4s2∗

)
∈ (0, 1].

C.2 SHIFTED INVERSE GAMMA

f(z;α, β, η) =
βα

Γ(α)

(
1

z − η

)α−1

exp

{
− β

z − η

}
, z > η, β > 0

with parameter estimates as a function of sample statistics

η̂ = m∗ −
√
v∗
s∗

[
2 +

√
4 + s2∗

]
α̂ = 2 +

(m∗ − η)
2

v∗
β̂ = (m∗ − η) (α− 1).

C.3 SHIFTED GAMMA

f(z;α, β, η) =
(z − η)α−1

βαΓ(α)
exp

{
−z − η

β

}
, z > η, β > 0

with parameter estimates as a function of sample statistics

α̂ =
4

s2∗
, β̂ =

√
v∗
α
, η̂ = m∗ − αβ.

D THE DDM LINK FUNCTION

Figure 3 showed that, depending on the parameters, the choice probability link function implied by the DDM can closely
match either the logistic or probit links. Fig. 10 shows a similar comparison using the actual DDM parameters from models
fit to the data in the experiments. For the visual psychophysics and robot gait tasks, we fit a model with a randomly sampled
training set of size 300, and used the shifted log normal matched DDM distribution. The fitted link functions are given in the
figure, alongside the logistic and probit link functions.
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Figure 10: The DDM link function, with parameters fit to the data from the visual psychophysics and robot gait tasks. The
link functions are similar though not identical to the logistic and probit link functions.

E ETHICS STATEMENT AND BROADER IMPACTS

Our work carries low-risk of ethical harm, as it focuses on binary responses in simple decision-making tasks in low-sensitivity
settings. For this work, we only consider de-identified data where subjects provided explicit informed consent, and we
keep our conclusions focused on model performance. We draw no broad conclusions about general human behavior. We
anticipate minimal risk associated with future application of our work.

F COMPUTATIONAL LOAD

The methods developed in this paper are not computationally demanding. All benchmarks were run on a standard laptop
computer. Single model fits, which are most relevant for future practitioners, take on the order of seconds on a typical laptop.
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