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Abstract

Generative Pre-trained Transformer (GPT)
models have achieved remarkable performance
on various natural language processing tasks,
and have shown great potential as back-
bones for audio-and-text large language models
(LLMs). Previous mainstream audio-and-text
LLMs use discrete audio tokens to represent
both input and output audio; however, they suf-
fer from performance degradation on tasks such
as automatic speech recognition, speech-to-text
translation, and speech enhancement over mod-
els using continuous speech features. In this
paper, we propose LauraGPT, a novel uni-
fied audio-and-text GPT-based LLM for au-
dio recognition, understanding, and generation.
LauraGPT is a versatile LLM that can process
both audio and text inputs and generate out-
puts in either modalities. We propose a novel
data representation that combines continuous
and discrete features for audio: LauraGPT en-
codes input audio into continuous representa-
tions using an audio encoder and generates out-
put audio from discrete codec codes. We pro-
pose a one-step codec vocoder to overcome
the prediction challenge caused by the multi-
modal distribution of codec tokens. We fine-
tune LauraGPT using supervised multi-task
learning. Extensive experiments show that
LauraGPT consistently achieves comparable
to superior performance compared to strong
baselines on a wide range of audio tasks re-
lated to content, semantics, paralinguistics, and
audio-signal analysis, such as automatic speech
recognition, speech-to-text translation, text-to-
speech synthesis, speech enhancement, auto-
mated audio captioning, speech emotion recog-
nition, and spoken language understanding.

1 Introduction

Large language models (LLMs) are neural net-
works that generate natural language texts based
on a given context. LL.Ms can learn from mas-
sive amounts of text data and mimic human lan-
guage to acquire human knowledge. LLMs such as

GPT-4 (OpenAl, 2023), PaLM2 (Anil et al., 2023),
LLaMA (Touvron et al., 2023) have demonstrated
impressive capabilities across various domains, ex-
hibiting zero-shot generalization without the need
for task-specific fine-tuning. However, these mod-
els are primarily limited to processing text data.
Recent research aims to seamlessly integrate text
and audio since they are two important modalities
for human communication. These efforts include
Audio-to-Text LLMs (Radford et al., 2022; Zhang
et al., 2023b; Deshmukh et al., 2023; Arora et al.,
2023; Tang et al., 2023; Chu et al., 2023), which
can convert audio input into text and perform tasks
such as automatic speech recognition (ASR) and
spoken language understanding (SLU); Text-to-
Audio LLMs (Yang et al., 2023a; Vyas et al., 2023;
Kreuk et al., 2023; Liu et al., 2023b; Huang et al.,
2023a; Wang et al., 2023a), which can convert text
input into audio and perform tasks such as text-to-
speech synthesis (TTS) and text-to-music synthesis.
An emerging line of research focuses on develop
more universal and comprehensive Audio-and-
Text LLMs (Ao et al., 2022; Chen et al., 2021b;
Zhang et al., 2023a; Wang et al., 2023b; Ruben-
stein et al., 2023; Huang et al., 2023b), which can
support audio-and-text tasks, that is, process and
generate both audio and text and perform tasks such
as speech enhancement (SE) and speech-to-speech
translation (S2ST), in addition to tasks supported
by audio-to-text and text-to-audio LLMs. Audio-
to-text and text-to-audio LL.Ms can be considered
as subsets of audio-and-text LLMs.
Audio-and-Text LLMs can be categorized into
two directions. One direction builds a collabo-
rative Al system using LLMs as controllers to
interface specialized audio models, such as ASR
and TTS models, to support various audio-and-
text tasks (Shen et al., 2023; Huang et al., 2023b).
These methods have serious drawbacks, including
high complexity, significant resource consumption,
and unavoidable error accumulation problems. The



other direction develops a unified Audio-and-Text
LLM leveraging LLMs as the backbone to support
audio-and-text tasks (Ao et al., 2022; Chen et al.,
2021b; Wang et al., 2023b; Rubenstein et al., 2023).
Decoder-only audio-and-text LLMs (Zhang et al.,
2023a; Wang et al., 2023b; Rubenstein et al., 2023)
are the dominant technique under this category.
These models convert continuous audio into dis-
crete tokens and integrate text and audio tokens into
unified vocabulary. These models suffer from in-
formation loss from quantization of speech signals
into discrete tokens, which leads to notable perfor-
mance degradation on ASR compared to models us-
ing continuous speech features (Chen et al., 2023a;
Chang et al., 2023; Yang et al., 2023c; Puvvada
et al., 2023). In this paper, we focus on improv-
ing the second category of unified Audio-and-Text
LLMs. Moreover, recent advances in audio gen-
eration from unified audio-and-text LLMs (Wang
et al., 2023a,b) discretize speech into codec codes,
then use an autoregressive language model (LM)
to predict output tokens from the first quantizer
and use a non-autoregressive model to predict to-
kens from the other quantizers individually. One
limitation of this mechanism is that it needs many
prediction steps (hence called multi-step audio
synthesis scheme) to generate good quality speech.
Another limitation is that predicting the indices
of the other codec groups is challenging due to
the multi-modal distribution nature of codec to-
kens (Jenrungrot et al., 2023).

To overcome the drawbacks of existing unified
audio-and-text LLMs, we propose LauraGPT, a
novel unified Audio-and-Text LLM based on the
GPT framework for audio recognition, understand-
ing, and generation. LauraGPT is a versatile LLM
that can process both audio and text inputs and
generate outputs in either modalities, with a single
model. We propose a novel data representation
that combines continuous and discrete features
for audio: LauraGPT encodes input audio into con-
tinuous representations using an audio encoder and
generates output audio from discrete codec codes.
This data representation improves the performance
of audio-input tasks and also facilitates joint au-
toregressive modeling of audio and text features
for audio generation tasks.

We also propose a one-step codec vocoder in
LauraGPT to address the two limitations of the
popular multi-step audio synthesis scheme. Our
one-step codec vocoder uses a transformer-based
predictor to estimate the sum of all codec token

groups instead of the individual indices, by min-
imizing the reconstruction losses. Our approach
simplifies the audio generation process to a single
feed-forward calculation and also overcomes the
prediction challenge caused by the multi-modal
distribution of codec tokens.

We fine-tune LauraGPT using supervised multi-
task learning on diverse audio tasks, includ-
ing tasks focusing on content, semantics, paralin-
guistics, and audio-signal analysis, such as ASR,
speech-to-text translation (S2TT), TTS, SE, auto-
mated audio captioning (AAC), speech emotion
recognition (SER), and SLU. Comprehensive ex-
periments show that, to the best of our knowl-
edge, LauraGPT' consistently achieves com-
parable to superior performance compared to
strong baselines on the largest and the most di-
verse set of audio recognition, understanding,
and generation tasks among existing decoder-
only unified audio-and-text LL.Ms focusing on
these tasks (Zhang et al., 2023a; Wang et al.,
2023b; Rubenstein et al., 2023). The results are
remarkable since existing general speech models
either focus solely on speech recognition and under-
standing tasks but neglect speech generative tasks,
or support speech generation but suffer from se-
vere performance degradation on speech recogni-
tion and understanding tasks.

2 Related Work

Audio-to-Text LLMs Audio-to-Text LLMs can
generate text from audio inputs. Whisper (Radford
etal.,2022) and USM (Zhang et al., 2023b) can per-
form speech recognition and translation across mul-
tiple languages and domains. Pengi (Deshmukh
et al., 2023) is an audio LM that formulates audio
tasks as text-generation tasks. UniverSLU (Arora
et al., 2023) is a universal SLU model that sup-
ports various speech classification and sequence
generation tasks. SALMONN (Tang et al., 2023)
and Qwen-Audio (Chu et al., 2023) integrate pre-
trained text LLMs with separate speech and audio
encoders into a single multimodal model.

Text-to-Audio LLMs Text-to-Audio LLMs can
convert text input into audio output and per-
form tasks such as TTS or text-to-music syn-
thesis. Recently, two prominent categories of
approaches have emerged for generating audio
from text prompts. In the first category, contin-
uous representations such as utterance-level em-

'Demos are available at https: //lauragpt.github.io
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beddings (Elizalde et al., 2022; Liu et al., 2023a;
Huang et al., 2023a) and Mel-frequency spectro-
grams (Nachmani et al., 2023) are used as the tar-
gets. However, continuous representations present
a challenge for unified modeling of text and audio
within a single LM. In the second category, discrete
codec tokens are employed as audio representations
and generated by diffusion models (Yang et al.,
2023b) or autoregressive LMs (Kreuk et al., 2023;
Borsos et al., 2023; Copet et al., 2023; Wang et al.,
2023a). Among models in the second category, in
models such as AudioGen (Kreuk et al., 2023), Au-
dioLM (Borsos et al., 2023), and MusicGen (Copet
et al., 2023), multiple output heads are used after
the LM to predict synchronized or delayed groups
of codec tokens. However, this mechanism is only
suitable for audio generation and may not be ap-
plicable to diverse audio-and-text tasks. Alterna-
tively, in VALL-E (Wang et al., 2023a), the LM
predicts output tokens of the first quantizer, while
tokens of the remaining quantizers are predicted by
a non-autoregressive model one by one. This mech-
anism requires numerous prediction procedures to
generate acceptable speech quality. Moreover, the
indices of the remaining codec groups are challeng-
ing to predict due to the multi-modal distribution
nature of codec tokens (Jenrungrot et al., 2023).

Audio-and-Text LLMs Audio-and-Text LLMs can
process and generate both audio and text, which
can be categorized into two directions. One direc-
tion uses LLMs as controllers to interface special-
ized audio models, such as ASR and TTS mod-
els, to enable direct audio interaction with LL.Ms
and support various audio-and-text tasks, such
as HuggingGPT (Shen et al., 2023) and Audio-
GPT (Huang et al., 2023b). However, these models
are complex, resource-intensive, and prone to error
accumulation. The second direction uses LLMs
as the backbone for a unified model that handles
audio-and-text tasks (Ao et al., 2022; Chen et al.,
2021b; Wang et al., 2023b; Rubenstein et al., 2023).
SpeechT5 (Ao et al., 2022) and SpeechNet (Chen
et al., 2021b) perform various speech tasks with
an encoder-decoder model, but they require modal-
specific pre-nets and post-nets to deal with differ-
ent input&output modalities. VioLA (Wang et al.,
2023b), AudioPalLM (Rubenstein et al., 2023),
SpeechGPT (Zhang et al., 2023a), and Speech-
Gen (Wu et al., 2023) use decoder-only Transform-
ers to model discrete audio tokens and text tokens
as a shared vocabulary, but they suffer from infor-
mation loss from quantization of audio signals into

discrete tokens (Chen et al., 2023a; Chang et al.,
2023; Yang et al., 2023c; Puvvada et al., 2023).

3 Methodology

Figure 1 depicts the architecture of the proposed
LauraGPT. Section 3.1 describes the audio encoder,
the text tokenizer, and the modified GPT LM for
unified audio-and-text modeling. Section 3.2 elab-
orates the audio tokenizer. Section 3.3 introduces
an efficient one-step codec vocoder for convert-
ing audio tokens into high-quality raw waveforms.
Section 3.4 describes the multi-task fine-tuning and
shows that LauraGPT provides an extensible frame-
work for supporting more complex tasks.

3.1 Modified Language Model for Unifying
Audio-and-Text Modeling

For audio inputs, different from other audio-and-
text LLMs using discrete tokens to represent audio
inputs, we extract the log-compressed Mel spec-
trogram features and convert them into continuous
representations using a Conformer-based audio en-
coder. Text inputs and outputs are tokenized using
the Qwen tokenizer (Bai et al., 2023), which inher-
its the tiktoken tokenizer (Jain, 2022) and incorpo-
rates additional augmentations for commonly used
characters and words in different languages. The
tokenized input text undergoes embedding matrix
transformation to generate dense vectors. The au-
dio representations and text embeddings have the
same dimension D. The Conformer-based encoder
is initialized with weights from a pre-trained ASR
model (Gao et al., 2023). Since batch normaliza-
tion can lead to endless loop decoding, we replace
it with layer normalization in the Conformer-based
encoder (details are in Appendix C.2).

To achieve audio generation capabilities, the au-
dio outputs are discretized into tokens using an
audio tokenizer (Section 3.2) to obtain discrete rep-
resentations and the softmax output layer is aug-
mented with the audio tokens. As a result, the
weight matrix W in the output layer is of size
(N + M + L) x D and is utilized to calculate the
logits for audio and text tokens at each position,
where N, M, and L denote the vocabulary sizes
of text, audio, and task tokens, respectively. Task
tokens are used to inform the model which task
should be performed. Note that in order to con-
trol the sequence length, we perform the low frame
rate (LFR) method (Gao et al., 2020) to downsam-
ple audio inputs to 60ms and only select the first
codec group of the audio outputs.
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Figure 1: The overview of the proposed LauraGPT model. The right part provides an enlarged view of the one-step
Codec Vocoder (Section 3.3) in LauraGPT. The dashed modules are only used in the training stage. ) and () denote
the “start of sequence” and “end of sequence” tokens. We omit the text tokenizer and detokenizer for simplicity.

Based on the aforementioned representations,
the GPT backbone is trained to model various audio
and text tasks by, minimizing the cross-entropy loss:

Ly = 7 Zlogpg (vjlar.m,, Wasks Vij—1)

v jzl

(1)
where u denotes the input embeddings with a se-
quence length T, and v represents the sequence of
target tokens with a length T;,. To specify a task, a
special task-related token uy, s, is inserted between
the input embeddings and output tokens. Note that
only the losses of outputs are taken into account,
while losses on inputs and task token embeddings
are masked out. After the final output layer, audio
tokens are decoded to raw waveforms using a codec
vocoder (Section 3.3). Since it is challenging to
train an LLM from scratch with limited data and
computational resources, we use the open-source
GPT LLM, Qwen (Bai et al., 2023), as the back-
bone. Qwen is pre-trained on a diverse corpus cov-
ering various domains in English and Chinese and
supports 8192 context length. Compared with other
open-source GPT models with similar model sizes,
Qwen models demonstrate impressive competitive-
ness, achieving better performance on widely used
benchmarks, especially on Chinese tasks (Bai et al.,
2023). Within LauraGPT, all parameters including
the Qwen backbone are jointly optimized, except
for the codec vocoder, which is trained indepen-
dently and kept frozen during both training and
inference stages of LauraGPT.

3.2 Audio Tokenizer

For audio generation, we utilize a codec model as
the audio tokenizer to extract discrete representa-

tions. Our codec model shares a similar architec-
ture as EnCodec (Défossez et al., 2022), which
comprises convolutional recurrent encoder and de-
coder (Tagliasacchi et al., 2020) and a residual vec-
tor quantizer (RVQ) (Vasuki and Vanathi, 2006).
We enhance the original EnCodec model with the
following modifications: 1) Add reconstruction
losses in the magnitude spectrum domain to im-
prove the quality of middle- and high-frequency
signals. 2) Stack five strided convolution blocks
with strides of [8, 5, 4, 2, 2] to address the challenge
of long sequence lengths, resulting in a token rate
of 25Hz for each token group. 3) Use 32 quan-
tizers with structured dropout in the RVQ module,
each with vocabulary size 1024. This revision im-
proves speech quality with more quantizers while
preserving most information in the shallow quan-
tizers. The encoder and the first RVQ quantizer are
used as the audio tokenizer, and the outputs of the
first quantizer are used as the audio tokens. The
choice of the first N RVQ quantizers to use is a
tradeoff between performance and sequence length
(hence efficiency). The remaining quantizers and
the decoder are only used when training the codec
model. Details of training and the pre-trained codec
model are in (Du et al., 2023).

3.3 One-step Codec Vocoder for Audio
Generation

We propose a one-step codec vocoder in LauraGPT
to generate waveforms from the audio tokens,
which are extracted from the first quantizer as de-
scribed in Section 3.2. Our vocoder comprises two
components: a transformer-based predictor and a
codec decoder. The predictor is trained to estimate



the summation of codec embeddings from the 32
RVQ quantizers by minimizing the L1 and L2 dis-
tances between the predicted embeddings E and
their corresponding ground truth E:
T,De
Lyre = Z |Eii —Eiili + |Ei —Eiil2 (2)

ti

where T' denotes the total number of frames and D..
denotes the dimension of the codec embeddings.
After obtaining the estimated embeddings, the de-
coder of an pre-trained codec model is utilized to
reconstruct the raw audio waveforms.

Alongside the predicted audio tokens from
the LLM, text and audio inputs are used as con-
ditions and fed to the predictor. For zero-shot
TTS task, the text inputs serve as a condition as
well as the prompt audio features. For SE task, the
input noisy speech features are employed as con-
ditions. Such text and audio conditionings allow
the model to generate high-quality audio signals
by leveraging the diverse information in prompt
audios and noisy speeches, which is lacked in the
discrete tokens (output from the first quantizer).
Therefore, different from existing Text-to-Audio
LLM:s, our approach simplifies the audio genera-
tion process to a single feed-forward calculation
and overcomes the prediction challenge caused
by the multi-modal distribution of codec tokens.

3.4 Multi-task Finetuning

Basic Tasks We unify modeling of the following
basic tasks in the single LauraGPT model and use
these tasks for multi-task fine-tuning: Automatic
Speech Recognition (ASR), Spoken Language Un-
derstanding (SLU), Speech-to-Text Translation
(S2TT), Speech Emotion Recognition (SER), Au-
tomated Audio Captioning (AAC), Speech En-
hancement (SE), and Text-to-speech Synthesis
(TTS). Task definitions are in Appendix A.1.

Unified Task Expression LauraGPT operates
based on a unified task expression: [input
embeddings, task ID, output tokens]. With
the same inputs, the desired outputs can differ
across tasks. For instance, ASR and S2TT tasks
require different outputs even for the same audio
input. Task tokens are included in both input em-
bedding and output weight matrices. The TTS task
takes text embeddings as inputs, while the ASR,
S2TT, SLU, SE, ACC, and SER tasks take audio en-
codings as inputs. The TTS and SE tasks use audio
tokens as the target outputs, while the remaining
tasks use text tokens as the target outputs.

Support More Complex Tasks With its modu-
larized design, LauraGPT provides an extensible
framework to support complex tasks. By breaking
a task into sub-tasks among the basic tasks and
cascading the raw inputs and model outputs of sub-
tasks, LauraGPT can perform more complex tasks.
For example, we demonstrate that LauraGPT is ca-
pable of performing the advanced speech-to-speech
translation (S2ST) task by combining the S2TT and
TTS tasks. Initially, a sequence is constructed to
translate the speech content into the target language
text using the S2TT task token: [audio encoding,
<S2TT>]. Subsequently, the translated text is com-
bined with the TTS task token to synthesize speech:
[text embedding, <TTS>]. If maintaining the
speaker identity is desired, the original inputs and
content can be incorporated to perform personal-
ized TTS. This can be achieved with an input se-
quence as [ASR recognized text embedding,
S2TT translated text embedding, <TTS>,
audio token of input speech], where ASR
recognized text embedding is obtained using
the ASR task: [audio encoding, <ASR>]. This
approach treats the bilingual text as the complete
input and allows the model to generate an output se-
quence of codec tokens while maintaining the same
speaker identity. Audio samples of S2ST can be
found on the demo site. More examples of complex
tasks are in Appendix D.

4 Experimental Settings

Model Architecture The Conformer-based audio
encoder consists of 32 conformer blocks. Each
block consists of a feed-forward module with 1536
units, an attention module with 16 heads and a
dimension of 512, a convolutional module includ-
ing the pointwise and depthwise convolution lay-
ers, and a second feed-forward module with 1536
units. Sinusoidal positional encoding is applied on
the audio inputs. For a trade-off between perfor-
mance and training efficiency, we use Qwen-1.8B2
as the backbone and LauraGPT has 2B parameters.
Qwen-1.8B comprises 24 transformer layers with a
hidden size 2048 and 16 attention heads. Although
Conformer and Qwen-1.8B are selected as the
audio encoder and GPT backbone, they can be
replaced by other encoders and GPT models.

Training Setup In all experiments, we initialize
the Qwen backbone and audio encoder with the pre-
trained checkpoints. We then optimize the model
parameters through multi-task fine-tuning. The

2ht’cps: //github.com/QwenLM/Qwen
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training&test datasets and evaluation metrics are
presented in Appendix A.2 and A.3. Appendix A.4
describes the three-stage training process to address
the significant variation in data volume across dif-
ferent tasks, and details the inference process.

5 Results and Analysis

Section 5.1 presents the main results of perfor-
mance comparison on the basic tasks from the state-
of-the-art (SOTA) model, a comparable baseline,
and our LauraGPT. Ablation studies in Section 5.2
demonstrate the advantages of using continuous
representations for audio inputs in LauraGPT by
comparing to a counterpart with both discrete in-
puts and outputs (denoted Discrete 10), the supe-
riority of our one-step codec vocoder, and effec-
tiveness of multi-task finetuning. Further analy-
ses include comparison with related unified Audio-
and-Text LLMs (Appendix B), more analysis of
multi-task fine-tuning on SER task (Appendix C.1),
comparing batch normalization with layer normal-
ization in the audio encoder (Appendix C.2), and
studying impact of initialization from pre-trained
models (Appendix C.3).

5.1 Results on All Tasks

Table 1 shows the results from the SOTA model,
a comparable baseline, and our LauraGPT?, in
that order, on a variety of speech recognition, un-
derstanding, and generation benchmarks. The
SOTA model yields the best results on each test
set based on our literature review. The base-
line for each task is chosen to facilitate fair com-
parison with LauraGPT: they are comparable to
LauraGPT in model architecture or training data
and are also common competitive baselines in the
literature. We cite the SOTA results to validate
that LauraGPT consistently performs competitively
on all the speech recognition, understanding, and
generation tasks and the baselines are competitive.
However, LauraGPT results cannot be fairly com-
pared to the SOTA results. Specifically, QwenAu-
dio achieves SOTA performance on most speech
understanding tasks, but compared to LauraGPT,
QwenAudio uses a much larger LLM (~7B VS. our
1.8B LLM), and uses the Whisper audio encoder
trained on a large amount of ASR data while we
use a Conformer encoder trained on much less data.
Moreover, QwenAudio does not support speech

30Our results are from single runs due to the stability of the
models and limited computational resources.

generative tasks hence cannot handle SE and TTS
tasks. Paraformer-large and UniverSLU achieve
SOTA results on AISHELL-2 test-ios for Chinese
ASR and on SLURP test for SLU; however, they
only support single tasks and also train on more
data than LauraGPT on the corresponding task.
Appendix B shows that LauraGPT greatly outper-
forms Whisper Large V2 on Chinese ASR test sets
while the gap on English ASR test sets are pri-
marily attributed to the much smaller English data
used for training LauraGPT. For TTS, the SOTA
VALL-E Phone outperforms baseline VALL-E To-
ken*, suggesting the importance of text representa-
tion for TTS. Compared to both VALL-E models,
LauraGPT achieves comparable speaker similar-
ity (SECS) and speech quality (MOSNet). The
degradation in content consistency (WER) from
LauraGPT results from the generalization issue,
since the training data is too limited for LauraGPT
with 2B parameters. Overall, the results show that
LauraGPT consistently achieves comparable to
superior performance than strong baselines on
diverse speech tasks, demonstrating the general
effectiveness of LauraGPT on speech recogni-
tion, understanding, and generative tasks.

5.2 Analysis

Discrete VS. Continuous Representations for
Audio Inputs Existing unified Audio-and-Text
LLMs use discrete tokens to represent audio inputs.
We analyze the efficacy of using continuous repre-
sentations for audio inputs in LauraGPT by compar-
ing to its counterpart Discrete 10 on ASR, S2TT,
and SE tasks, representing audio-input recogni-
tion and understanding, and audio generation
capacities. In Discrete 1O, both audio inputs and
outputs are represented by flattened codec tokens
from the first four quantizers®, resulting in a to-
ken rate of 100Hz. In LauraGPT, audio inputs are
represented by continuous acoustic features, which
are also fed into our one-step vocoder as a condi-
tion to achieve high-quality outputs. Table 2 shows
that LauraGPT consistently outperforms Dis-
crete 10 with remarkable gains on all tasks. For
ASR task, the performance degrades drastically

*We re-implement two VALL-E models with 0.34B train-
able parameters, both trained with the same data as LauraGPT.
VALL-E Phone uses phonemes as the text input representation,
while VALL-E Token uses WordPiece tokens from the text
tokenizer.

5Using outputs of the first quantizer (as in LauraGPT) for
audio tokenizer renders very poor performance for audio-input
tasks with the Discrete IO models. Using more quantizers
improves performance but reduces efficiency.



Table 1: Results from the SOTA, a comparable baseline, and our LauraGPT, in that order, on speech recognition,
understanding, and generation tasks. The better results between the baseline and LauraGPT are in bold.

Task Test Set Metric Model Performance
Qwen-Audio (Chu et al., 2023) 1.3
AISHELL-1 test CER | MMSpeech-large (Zhou et al., 2022) 1.9
LauraGPT 1.8
Paraformer-large (Gao et al., 2023) 2.9
AISHELL-2 test-ios CER | MMSpeech-large (Zhou et al., 2022) 39
ASR LauraGPT 3.2
Qwen-Audio (Chu et al., 2023) 2.0
LibriSpeech test-clean WER | Whisper Large V2 (Radford et al., 2023) 2.5
LauraGPT 4.4
Qwen-Audio (Chu et al., 2023) 4.2
LibriSpeech test-other WER | Whisper Large V2 (Radford et al., 2023) 4.9
LauraGPT 7.7
UniverSLU (Arora et al., 2023) 90.5180.5
SLU SLURP test Intent ACC 1| SLU-F1 1 Wav2Vec 2.0 (Ravanelli et al., 2021) 85.3174.6
LauraGPT 87.9173.5
BSTC dev BLEU t Cascade-System (Zhang et al., 2021) 18.2
(Zh—EN) LauraGPT 17.8
S2TT aurd :
Qwen-Audio (Chu et al., 2023) 41.5
Coigiizztfl;t set BLEU 1 EncDec-Attn (Wang et al., 2020) 25.4
LauraGPT 38.5
Qwen-Audio (Chu et al., 2023) 0.5571-1-
SER MELD test WA 11 UA 1| WF1 1 Vesper-12 (Chen et al., 2023b) 0.53510.268 10.480
LauraGPT 0.507 10.312 1 0.492
Qwen-Audio (Chu et al., 2023) 0.1410.4410.29
AAC Clotho eval SPICE 1 | CIDEr 1 | SPIDEr 1 Ensemble (Koizumi et al., 2020) 0.0910.3210.21
LauraGPT 0.0810.2210.15
Mixup of LibriSpeech WER | | - -
SE test-clean, FSD50K and PESQ 1 | STOI 1 CMGAN (Cao et al., 2022) 12.2912.95191.0
noise-92 LauraGPT 15.9412.97188.0
CER || VALL-E Phone (Wang et al., 2023a) 4.75109113.22
AISHELL-1 SECS 1| MOSNet VALL-E Token (Wang et al., 2023a) 6.5210.9113.19
TTS LauraGPT 6.9110.9013.14
WER | | VALL-E Phone (Wang et al., 2023a) 4.3010.9213.28
LibriTTS SECS 1| MOSNet VALL-E Token (Wang et al., 2023a) 6.5710.9313.28
LauraGPT 8.6210.9113.26

when replacing continuous features with discrete
audio tokens. Although the performance degrada-
tion can be reduced by using more quantizers (more
codec groups), e.g. 32 (Puvvada et al., 2023), more
codec groups always cause higher token rates and
longer sequence and in turn higher computational
demands. For S2TT task, Discrete 10 only yields
BLEU scores of 5.1 and 5.0 on test sets, basically
suggesting lack of translation capability. For SE
task, using codec tokens as inputs cannot improve
the quality and intelligibility of noisy speeches,
suggesting lack of enhancement capability, proba-
bly because the distribution of noisy speech is too
complicated to be accurately represented by four

groups of discrete audio tokens.

Comparison on Audio Synthesis Schemes
VALL-E (Wang et al., 2023a) introduces a com-
monly used scheme formulating audio synthesis
as a classification problem: A neural network is
shared to predict the codec tokens in the follow-
ing group with the previous ones as inputs and
synthesizing target audio requires multiple steps
or iterations to achieve a reasonable speech qual-
ity. In contrast, our one-step codec vocoder for-
mulates audio synthesis as a regression problem.
As described in Section 3.3, our one-step codec
vocoder simplifies audio synthesis into a single
feed-forward calculation and overcomes the pre-



Table 2: Comparison of Discrete IO models and LauraGPT on ASR, S2TT, and SE tasks for analysis of discrete VS.
continuous representations for audio inputs. The best results on each test set are in bold.

Task Dataset Metric  Discrete I0  LauraGPT

AISHELL-1 test CER | 7.1 1.8
ASR AISHELL-2 test-ios CER | 8.6 3.2
LibriSpeech test-clean WER | 9.1 4.4
LibriSpeech test-other WER | 24.0 7.7

S2TT BSTC dev (Zh—EN) BLEU 1 5.1 17.8
CoVOST?2 test set (En—Zh) BLEU 1 5.0 38.5

Mixup of LibriSpeech PESQ 1 1.96 2.97

SE test-clean, FSD50K and STOI 64.0 88.0

noise-92 WER | 53.97 15.94

Table 3: Comparison of our one-step audio synthesis
scheme and the multi-step scheme on the SE task.

Scheme PESQT STOI(%)1T CER] WER]|
Multi-step 2.55 88.0 10.52 19.32
One-step 2.97 88.0 9.05 15.94

diction challenge caused by the multimodal distri-
bution of codec tokens. Table 3 shows that our
one-step codec vocoder greatly outperforms the
multi-step scheme in terms of content consis-
tency (CER, WER) and speech quality (PESQ),
while obtaining the same intelligibility (STOI).

Effectiveness of Multi-task Finetuning The
multi-task fine-tuned LauraGPT (Section 3.4)
could be advantageous over individual single-task
models: (1) Multi-task learning could exploit syn-
ergy between tasks and reduce over-fitting, in
turn yield high performance on diverse tasks and
achieve better performance than single-task train-
ing. (2) Multi-task learning could learn a single
model capable of supporting a wide range of tasks,
hence practical deployment is greatly simplified
through unified model implementation and API.

We investigate whether the multi-task trained
LauraGPT could achieve better performance than
single-task training for tasks with limited training
data. Among the basic tasks (Table 5), AAC, SLU,
and SER tasks all have limited training data. We
initialize the Qwen backbone and the audio encoder
the same as LauraGPT before conducting multi-
task training, then train the single-task model only
using the task-specific training data. The results
are shown in Table 4.

For the AAC task, we find that the multi-
task trained LauraGPT outperforms the single-task
model on SPICE, CIDEr and SPIDEr on the Clotho
evaluation set. For the SLU task, on the SLURP

test set, LauraGPT greatly outperforms the single-
task model on intent accuracy by +2.9 absolute
and on SLU-F1 by +22.5 absolute. For the SER
task, on the MELD test set, LauraGPT substan-
tially outperforms the single-task model in terms
of UA and the primary WF1 metrics, while the
WA result is slightly worse. More analyses in Ap-
pendix C.1 show that multi-task learning dramati-
cally improves accuracies of the minority classes.
In summary, these results verify that multi-task
learning for LauraGPT consistently achieves
better performance than single-task training for
tasks with limited training data.

Table 4: Comparison of single-task finetuning and multi-
task finetuning on the AAC, SLU, and SER tasks.

Task Dataset Metric Single Multi
SPICE 1 0.07 0.08

AAC Clotho eval CIDEr 1 0.16 0.22
SPIDEr 1 0.11 0.15

Intent ACCT  85.0 87.9

SLU  SLURPtest i g+ 510 735
WA 1 0.508 0.507

SER MELD test UA 1 0221  0.312
WF1 t 0.426 0.492

6 Conclusion

We propose LauraGPT that can handle both au-
dio and text inputs and outputs and perform audio
recognition, understanding, and generation. We
propose combining continuous and discrete fea-
tures for audio and a one-step codec vocoder, and
employ multi-task learning. Experiments demon-
strate that LauraGPT achieves comparable to supe-
rior performance compared to strong baselines on
a wide range of speech tasks on content, semantics,
paralinguistics, and audio-signal analysis.



Limitations

In this work, in order to support a wide range
of audio recognition, understanding, and gener-
ation tasks, we choose to train all parameters in
LauraGPT during supervised multi-task finetuning,
including the Qwen backbone, except for the codec
vocoder. This strategy results in substantial compu-
tations for training. In future work, we plan to in-
vestigate parameter-efficient fine-tuning to reduce
computation demands. Also, due to the limited
computation resources, our comparisons between
the multi-task trained LauraGPT and single-task
models are focused on the low-resource tasks, that
is, AAC, SLU, and SER tasks. We find that multi-
task learning for LauraGPT consistently achieves
better performance than single-task training for
tasks with limited training data. Next, we plan
to complete comparisons of LauraGPT and single-
task models on all tasks, including relatively rich-
resource tasks such as ASR. These studies will pro-
mote understandings on where tasks could benefit
from each other, including tasks with even conflict-
ing objectives. We also plan to conduct deeper anal-
ysis on the potential risk of catastrophic forgetting
of the original text capabilities of the pre-trained
text LLM, due to multi-task learning of speech
tasks. Note that exploration of parameter-efficient
fine-tuning may also help preserve the original text
capabilities of the pre-trained text LLMs.
LauraGPT relies on discrete audio tokens for
speech generative tasks. Our research shows that
the performance of this paradigm strongly depends
on the quality of the audio tokenizer. We plan to
systematically analyze the impact of various audio
tokenizers on diverse audio generative tasks. We
plan to develop new audio tokenizers that are more
suitable for unified Auio-and-Text LLMs and pro-
vide desirable representations for generative tasks.
There are great emerging interests in fundamen-
tal speech models that are similar to those in the
field of NLP. This is a tremendously valuable re-
search direction. Our work achieves important
milestone for this research question, as we explore
and provide promising answers to the following
question: How to design more efficient and scal-
able unified GPT-style Audio-and-Text LLMs than
existing approaches that can leverage large-scale
labeled data and achieve highly competitive perfor-
mance on a diverse set of speech tasks, including
speech recognition, understanding and generation,
using a single model? Note that previous general

speech models either focus solely on speech recog-
nition and understanding tasks but neglect speech
generative tasks, or support speech generation but
suffer from severe performance degradation on
speech recognition and understanding tasks.

Inspired by the recent advances of LLMs in NLP,
we envision that the fundamental speech models
should have the following capabilities:

* In-context learning ability like GPT-3, which
can learn from few-shot examples and adapt
to new tasks, such as predicting the age of the
speaker from a speech sample.

* Instruction-following ability like InstructGPT
and ChatGPT, which can perform the ap-
propriate speech-related task given a natural
language instruction, such as synthesizing a
speech with a specific emotion or style.

* General audio modeling abilities, i.e., speech,
non-speech audio, and music, such as music
generation.

Our work demonstrates that the current
LauraGPT has made solid progress and reached
one important milestone toward a speech founda-
tion model. From LauraGPT to the next-generation
speech foundation model we envision, most remain-
ing efforts are in more task data collection and more
self-supervised and/or supervised pre-training and
supervised fine-tuning. There is no need to modify
the model architecture.
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Appendices

A Experimental Details

A.1 Basic Tasks

The following tasks are used in supervised multi-
task learning of LauraGPT and also in evaluations:
Automatic speech recognition (ASR) is a vital
task in the speech processing community. It fo-
cuses on transcribing speech into textual content.
Spoken language understanding (SLU) is a task
of directly deriving high-level semantic meaning
from audio input. It aims to identify the user’s
intent and the relevant entity slots that fill the intent.
An intent is usually composed of a scenario type
and an action type, while slots and fillers are key-
value pairs that specify the details of the intent.
Speech-to-text translation (S2TT) is similar to
machine translation, but it directly translates the
source language speech into the target language
text.

Speech emotion recognition (SER) categorizes
the emotions in speech input. Compared to textual
emotion recognition, speech signals convey addi-
tional information, including tone and speaking
rate, which enhances emotion recognition.
Automated audio captioning (AAC) aims to gen-
erate a natural language sentence that describes the
content of an audio clip.

Speech enhancement (SE) is an audio-to-audio
task that aims to improve speech quality through
noise suppression and dereverberation. In order to
incorporate this task into a unified modeling frame-
work, we reformulate the task as a classification
problem using codec tokens.

Text-to-speech synthesis (TTS) can be considered
as the inverse process of ASR, where it generates
speech that matches the given text.

A.2 Training Datasets

To ensure reproducibility, all training data and test
data for LauraGPT are publicly available datasets,
with licenses of Apache 2.0, CC BY 4.0, CCO, non-
commercial research and education use, etc. The
training data for the basic tasks listed in Section 3.4
and defined in Appendix A.1 are prepared as fol-
lows.

For the ASR task, we utilize open-source Chi-
nese datasets such as AISHELL-1 (Bu et al.,
2017), AISHELL-2 (Du et al., 2018), Wenet-
Speech (Zhang et al., 2022), as well as open-source
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English datasets including LibriSpeech (Panayotov
et al., 2015) and GigaSpeech (Chen et al., 2021a).
For the S2TT task, we employ the commonly
used BSTC (Zhang et al., 2021) and CoVOST
2 (Wang et al., 2020) datasets. Due to the lim-
ited data volumes of BSTC and CoVoST 2, we
further augment the training set by translating
AISHELL-1 and AISHELL-2 datasets into English
and translating LibriSpeech dataset into Chinese us-
ing a publicly available text translation model (Wei
et al., 2022). Consequently, we obtain approx-
imately 2,000 hours of supplementary data for
Chinese-to-English and English-to-Chinese S2TT
tasks. As a supplement of training data for S2TT,
we also add the ParaCrawl v9 dataset (Kocmi
et al., 2022), which consists of 14M parallel text
sentences for Zh—En (Chinese-to-English) and
En—Zh (English-to-Chinese) translations.

For the SER task, we collect corpora includ-
ing MELD (Poria et al., 2018), IEMOCAP (Busso
et al., 2008), RAVDESS (Livingstone and Russo,
2018), TESS (Pichora-Fuller and Dupuis, 2020),
Crema-D (Cao et al., 2014), Emov-DB (Adigwe
et al., 2018), and SAVEE (Jackson and Haq, 2014).
These corpora are recorded in multi-modal formats,
comprising audio or visual data. No other corpora
are used for the SER task.

For the SLU task, we use the multi-domain
Spoken Language Understanding Resource Pack-
age (SLURP) dataset (Bastianelli et al., 2020),
which covers 18 scenarios.

For the AAC task, we use AudioCaps (Kim
et al., 2019), WavCaps (Mei et al., 2023), and
Clotho (Drossos et al., 2020) datasets.

For the SE task, pairs of noisy and clean speech
are required for training. The clean utterances are
extracted from the AISHELL-1, AISHELL-2, Lib-
riSpeech, and WSJ datasets (Paul and Baker, 1992),
while the noisy counterparts are generated by mix-
ing the clean speech with noises from the FSD-50K
dataset (Fonseca et al., 2022) at random signal-to-
noise rates (SNR) ranging from 2 to 15. Besides
the additional noises, we also simulate convolu-
tional noises by convolving the clean speech data
with room impulse responses (Ko et al., 2017). As
a result, we obtain approximately 6000 hours of
paired data for the SE task.

For the TTS task, we use the open-source Lib-
riTTS and 3D-speaker datasets (Zheng et al., 2023).
Further details of the training data for all tasks can
be found in Table 5.

Note that for all the training and test datasets,



our use of the data is consistent with their intended
use. We use all data sets in the same ways as prior
research works, hence we did not check whether
the data that was used contains any information
that names or uniquely identifies individual people
or offensive content.

A.3 Evaluation Datasets and Metrics

Table 6 presents the evaluation datasets and evalua-
tion metrics for various tasks. The metrics used in
our experiments are described below:

* CER stands for Character Error Rate, a com-
monly used metric to evaluate the recognition
performance of Chinese and English utterances.
We also utilize CER to assess the content consis-
tency in TTS task.

¢ WER stands for Word Error Rate, which consid-
ers entire words rather than individual characters.
In our experiments, we use WER to evaluate ASR
recognition performance, content consistency in
TTS, and speech intelligibility in SE.

» SECS, which stands for Speaker Encoder Cosine
Similarity, utilizes speaker embeddings extracted
from a pre-trained speaker verification model °
for both prompt and synthesized speech. The
cosine similarity between the two embeddings is
then employed to measure the speaker similarity
between the prompt speech and the synthesized
speech. Furthermore, the naturalness of the syn-
thesized speech is evaluated using MOSNet, a
non-intrusive score derived from a pre-trained
neural network ”.

* BLEU represent the Bilingual Evaluation Un-
derstudy metric. BLEU is commonly used to
assess the quality of machine-generated text by
comparing it to reference translations. In our
experiments, we use BLEU to evaluate S2TT.

* PESQ represents Perceptual Evaluation of
Speech Quality, while STOI stands for Short-
time Objective Intelligibility. Both metrics
are widely used to assess speech enhancement.
PESQ ranges from —0.5 to 4.5, whereas STOI is
in the range of [0, 1].

¢ SPICE, CIDEr and SPIDEr are metrics bor-
rowed from the image captioning task and em-
ployed for AAC evaluation. SPICE stands for
Semantic Propositional Image Caption Evalua-
tion, CIDEr denotes Consensus-based Image De-

®Code is available at https://huggingface.co/
microsoft/wavlim-base-plus-sv

"Code is available at
lochenchou/MOSNet

https://github.com/
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scription Evaluation, and SPIDEr represents the
average of SPICE and CIDEr.

* WA, UA and WF1 stands for weighted accuracy,
unweighted accuracy and the weighted F1 score.
WA corresponds to the overall accuracy, UA cor-
responds to the average class-wise accuracy, and
WF1 corresponds to the average class-wise F1
score.

* ACC measures the accuracy of predicting the
intent. SLU-F1 is a metric that balances Word-
F1 and Char-F1, computed as the sum of the
confusion matrices.

A.4 Details of Training and Inference

In all experiments, we optimize the model parame-
ters through the following steps: (1) We initialize
the Qwen backbone and the audio encoder with
the pre-trained checkpoints. (2) We then perform
multi-task finetuning.

Due to the significant variation in data volume
across different tasks, the training process is con-
ducted in three stages. In the first training stage, the
model is fine-tuned on all tasks using the complete
training data as shown in Table 5. The AdamW
optimizer is utilized with a peak learning rate of
5 x 10~% and 10K warmup steps. In the second
stage, we further fine-tune the model on tasks that
have small-scale datasets, including TTS, SE, AAC,
SER, and SLU tasks. The AdamW optimizer is uti-
lized with a peak learning rate of 2 x 10~* and
10K warmup steps. In the third training stage, we
fine-tune the model on all tasks using the complete
training data again. The peak learning rate of the
AdamW optimizer for the third stage is reduced by
half as 1 x 10~4, while the warmup step remains
at 10K.

For the codec vocoder, we train the predictor on
the training data of the TTS and SE tasks. We use
the Adam optimizer with a peak learning rate of
0.001 and 25K warmup steps. The decoder of the
codec vocoder is initialized with the pre-trained
checkpoints® and kept frozen during the multi-task
finetuning of LauraGPT.

As stated in Section 3, during the training stage,
the input is converted into input embeddings by the
audio encoder if the input is audio, or converted by
the embedding matrix W if the input is text, while
the output is converted into output embeddings by
the same embedding matrix W for teacher-forcing.
Meanwhile, this matrix W is also used to convert

8https://funcodec.github.io
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Table 5: Statistics of the training data for basic tasks in Section 3.4. CorpusXN means that the training samples in

this corpus are copied N times during training.

Task  Training Data # Samples
ASR  AISHELL-1, AISHELL-2, WenetSpeech, LibriSpeech, GigaSpeech 242 M
SLU SLURP*! 1.2M
S2TT BSTC*?, CoVOST 2*2, AISHELL-1, AISHELL-2, LibriSpeech 22M
x10 x10 x10 x10
GER  MELD > éEMOCAP o RAVDESXSH) , TESS 03 M
Crema-D**Y, Emov-DB**", SAVEE
AAC  Clotho*'9 AudioCaps*19, WavCaps*® 1.3M
SE AISHELL-1*3, AISHELL-2*3, LibriSpeech*?3, WSI*2, FSD-50K %2, RIR 53M
TTS  LibriTTS*2, 3D-Speaker*?, AISHELL-1*2, AISHELL-2*2, LibriSpeech*? 5.0 M

Table 6: Evaluation datasets and metrics for different tasks. 1 indicates that higher values of the metric are desirable,

while | implies the opposite.

Task  Evaluation Datasets Evaluation Metrics

ASR e eneclon & tesoher | CER 4 WER )

SLU  SLURP test ACC 1, SLU-FI1 1

S2TT BSTC dev, En—Zh subset of CoVOST?2 BLEU 1

SER  MELD test WA 1, UA 1, WF1 1

AAC Clotho eval SPICE f, CIDEr 1, SPIDEr 1
SE LibriSpeech test-clean, FSD50K, noise-92 PESQ 71, STOI 1, WER |

TTS  AISHELL-I test, LibriTTS test-clean CER |, WER |, SECS 1, MOS 1

the task-ID token into an embedding. Then, these
embeddings are composed into an embedding se-
quence as [input embeddings, task-ID embedding,
output embeddings], which is taken as the input of
Qwen LLM. To train the model, a masked cross-
entropy loss function is applied, as shown in Eq. 1.
As described in Section 3, in addition to masking
out the losses on inputs, the cross-entropy loss at
the position of the task token is also masked out.

During the inference stage, the input is converted
into input embeddings as done during the train-
ing stage. Then the corresponding task-ID embed-
ding is added at the end of the input embedding
sequence. Next, the Qwen LLM generates output
tokens in an autoregressive manner until the “end
of sequence” token is generated. Finally, for text-
format output, the Qwen tokenizer is employed to
convert tokens into final output, while for audio-
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format output, the codec vocoder is employed to
convert tokens into raw waveforms.

A.5 Details of the SER Evaluation

During the training stage, emotion labels within
different training corpora are unified into the fol-
lowing nine classes: anger, disgust, neutral, like,
sadness, surprise, happiness, joy, and fear. At the
test stage, we map the “like” and “happiness” emo-
tion classes into the “joy” class to match the MELD
test set. LauraGPT uses an autoregressive structure
to generate emotion labels. Out-of-domain outputs
are considered as classification errors, making the
task harder. Both WavLM Base model and WavLM
Large model utilize the weighted sum of multiple
layers with learnable parameters as speech features,
which are fed into a downstream network for clas-
sification.



B Comparison with Related Unified
Audio-and-Text Models

Table 7 compares our LauraGPT against the most
related works, which, similar to LauraGPT, are
all multi-task unified audio-and-text models. Due
to the drastic differences in experimental settings,
datasets used and lack of open source codebase
and checkpoints, it is difficult to conduct a fair
comparison between LauraGPT and these most
related multi-task unified audio-and-text models.
Despite all these difficulties, below we provide the
most relevant results for comparing LauraGPT and
these related models.

Whisper (Radford et al., 2022) is solely stud-
ied on the ASR task in the original paper, hence
we compare LauraGPT to Whisper only on the
ASR task. As shown in Table 8, on the Chinese
test sets AISHELL-1 test and AISHELL-2 test-ios,
LauraGPT greatly outperforms Whisper by -3.9
and -2.3 absolute on CER with much smaller train-
ing data. On the English test sets Librispeech test-
clean and test-other, LauraGPT performs worse
than Whisper Large V2 as Whisper Large V2 uses
much more English training data than LauraGPT.

SpeechT5 (Ao et al., 2022) is evaluated on
ASR, TTS, S2TT, voice conversion (VC), SE, and
speaker identification (SID). Since the training
data of tasks other than ASR for SpeechT5 dif-
fers remarkably from those for LauraGPT, we
compare LauraGPT against SpeechT5 only on
ASR. For SpeechT?5, the model is first pre-trained
with large-scale unlabeled speech and text data.
Then, it is finetuned on the Librispeech-960 cor-
pus via the hybrid cross-entropy and CTC loss. As
claimed in their paper, SpeechT5 achieves a WER
of 7.3% on the Librispeech test-other subset with-
out CTC and LM. Under a fair comparison, our
LauraGPT achieves a comparable WER of 7.7%.
Note that different from SpeechT5, LauraGPT
is directly trained on multi-task labeled datasets
without benefiting from any self-supervised pre-
training.

VioLA (Wang et al., 2023b) is evaluated on
ASR, S2TT, TTS and S2ST tasks. Consider-
ing the substantial differences in training data on
tasks between VioLA and LauraGPT and lack
of open-sourced VioLA codebase and models,
it is difficult to fairly compare LauraGPT with
VioLA. Among the tasks, direct comparison on
ASR is also challenging since VioLA only con-
ducts speech-to-phoneme recognition and reports
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Phoneme Error Rate (PER) rather than recognizing
words/characters and reporting WER/CER as con-
ducted by LauraGPT. According to their paper, Vi-
oL A underperforms their in-house Attention-based
Encoder-Decoder (AED) model (which we also
have no access to) with relative 19.96% phoneme
error rate (PER) degradation from 9.47% to 11.36%
on Mandarin WenetSpeech dev set. Since higher
PER always corresponds to much higher WER as
a word comprises multiple phonemes, it would be
safe to hypothesize that the relative degradation
on WER from VioLA over AED is even greater.
In contrast, compared with the Paraformer base-
line, our LauraGPT achieves comparable CER on
the Mandarin AISHELL-2 test-ios set and out-
performs it on the English Librispeech test-other
set, i.e., overall LauraGPT performs comparably
to Paraformer. Note that Paraformer is a non-
autoregressive AED model performing comparably
to conventional auto-regressive AED model (Gao
et al., 2022). Therefore, through this chain of
comparisons, we are confident to conclude that
LauraGPT notably outperforms VioLA on ASR
task.

AudioPalLM (Rubenstein et al., 2023) is evalu-
ated on ASR, S2TT and TTS tasks. Since the train-
ing and evaluation datasets for AudioPalLM and
LauraGPT are disjoint, their performance results
cannot be directly compared. In addition, the pre-
trained model of AudioPalLM has not been released.
Therefore, empirically comparing LauraGPT to Au-
dioPalLM will require great effort and is not con-
ducted in this work.

C More Analyses of Critical Design
Choices

C.1 Effectiveness of Multi-task Finetuning on
the SER task

Table 4 shows that for the SER task, on the MELD
test set, the multi-task trained LauraGPT substan-
tially outperforms the single-task model in terms
of UA and WF1 metrics, while the WA result is
slightly worse.

To further analyze the results of the SER task,
we conduct a statistical analysis of the number of
samples for each emotion class in both training and
test sets of the MELD dataset, as well as their cor-
responding test accuracy. The results are shown
in Table 10. Compared to the single-task model,
the multi-task trained LauraGPT results in degrada-
tion in accuracy for classes with a larger number of



Table 7: Comparisons with the most related multi-task unified audio-and-text models. The table shows the tasks that

each model is trained and evaluated on.

SpeechT5 Whisper VioLA  AudioPalLM LauraGPT(Ours)
Date 2021.10 2022.12 2023.5 2023.6 2023.9
Organization Microsoft OpenAl  Microsoft Google Ours
Model Size 0.14B 1.5B 0.25B 8B 2.0B
Pair Data (hrs) 0.96K 680K 79K 48K 60K
Unsup. Pretrain N/A N/A N/A PalLM-2 Qwen-1.8B
Audio Input Continuous Continuous  Discrete Discrete Continuous
Audio Output N/A N/A Discrete Discrete Discrete
Languages EN 99 EN/CN 113 EN/CN
ASR
S2TT
TTS X
SE X X X
AAC X X X X
SER X X X X
SLU X X X X

Table 8: Comparison of different models on the ASR task in terms of CER(%) J. for Chinese and WER(%) J. for

English. Data size denotes the number of hours.

Model Model | Data | AISHELL-1 AISHELL-2 Librispeech Librispeech
Size | Size test test-ios test-clean  test-other
Paraformer (CN) | 0.2B | 60K 2.0 2.9 - -
Paraformer (EN) 02B | 20K - - 3.5 8.2
Whisper Large V2 | 1.5B | 680K 5.7 5.5 2.5 4.9
LauraGPT (Ours) | 1.8B | 22K | 1.8 3.2 4.4 7.7

Table 9: Comparison of batch normalization (BN) and
layer normalization (LN) on the SE task in terms of
Loop Ratio (%), PESQ and STOI(%). 1 indicates that
higher values are desired, while | implies the opposite.

Norm Loop Ratio| PESQ7T STOI 1

BN 86.00 1.27 22.0
LN 4.60 297 88.0

training samples, while greatly improving the accu-
racy on classes with fewer training samples. This
explains why WA decreases slightly from multi-
task training while UA and WF1 show remarkable
improvements. Note that WF1 is the primary
metric on the MELD dataset due to sample im-
balance across different emotion classes (Chen
et al., 2023b). That is, on the primary metric WF1,
the multi-task trained LauraGPT greatly outper-
forms the single-task model. Furthermore, the ac-
curacy of the disgust and fear classes from the
single-task model is 0, which aligns with the fact
that these two classes have the fewest training sam-

18

ples in the MELD dataset. Multi-task training not
only remarkably improves the performance of emo-
tion classes with low accuracy (joy, sadness, sur-
prise), but also greatly improves the performance
of classes that cannot be predicted with single-task
training (disgust, fear).

C.2 Batch normalization versus layer
normalization in audio encoder

In the original design, batch normalization is
applied after the convolution module in the
Conformer-based audio encoder. However, we dis-
cover that this choice leads to endless looping de-
coding due to inaccurate estimations of mean and
variance, particularly for tasks with long sequence
lengths. When the issue of endless looping de-
coding occurs, the model generates several fixed
tokens repeatedly and cannot stop the generation
until achieving a pre-defined maximum length. To
address this issue, we replace batch normalization
with layer normalization, which is more robust to
various mini-batch sizes. We validate this design



Table 10: Accuracy on different emotion classes in the SER task from single-task finetuning and multi-task

finetuning.
Model anger disgust neutral joy sadness surprise fear
#Training Samples 1109 271 4710 1743 683 1205 268
#Testing Samples 345 68 1256 402 208 281 50
Single-task 0396 0.000 0.875 0.119 0.029 0.128  0.000
LauraGPT 0.333  0.103 0.708  0.381 0.236 0.381  0.040

by focusing on the SE task, which generally has D Supporting More Complex Tasks

the longest sequence among all the included tasks.
The results are shown in Table 9. BN means batch
normalization while LN means layer normalization.
To evaluate the occurring probability of endless
loop decoding, we define the metric, “loop ratio”,
which represents the fraction of endless decoded
cases among all test cases. The results indicate
that batch normalization causes a significantly high
loop ratio at the inference stage, leading to unac-
ceptable PESQ and STOI scores. In contrast, by
replacing batch normalization with layer nor-
malization, we observe a considerable reduction
in the loop ratio to a very low level, thereby
greatly improving the speech enhancement per-
formance. It should be noted that although the
loop ratio of layer normalization is restricted, fur-
ther research is still desired to explore more general
normalization methods suitable for all audio-and-
text tasks.

C.3 Impact of initialization from pre-trained
models

In LauraGPT, both the GPT backbone and audio en-
coder are initialized with the weights of pre-trained
checkpoints. We investigate how the initialization
affects the performance of LauraGPT. The experi-
mental results for the ASR, S2TT and SE tasks are
presented in Table 11. From the results, we observe
that the initialization has a significant impact on
the performance of ASR and S2TT tasks, while
its influence on the SE task is relatively limited.
This suggests that the prior knowledge learned by
the GPT backbone is crucial for text generation
tasks, but less important for audio generation tasks.
Consequently, we hypothesize that a reasonable
approach to enhance the quality of generated
audios could be to pre-train the GPT backbone
not only with text sequences but also with audio
token sequences.
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As stated in Section 3.4, with its modular and flexi-
ble design, LauraGPT provides an extensible frame-
work to support complex tasks. By breaking a task
into sub-tasks among the basic tasks used in train-
ing and cascading the raw inputs and model outputs
of sub-tasks, LauraGPT can perform more complex
tasks than the basic tasks.

Similar to the speech-to-speech translation
(S2ST) example, LauraGPT can perform more
complex tasks by chaining together basic tasks as
described above. Here are a few examples of other
complex tasks that LauraGPT can support rather
than doing them one by one.

Rich transcription We can extend LauraGPT
to simultaneously transcribe audio into content,
speaker information (speaker identification, etc),
paralinguistic information (emotion, etc.) and high-
level semantic information (intent, slots, etc.) by
including different task IDs at the generation pro-
cess. This approach could avoid error accumulation
in a pipelined approach and is more efficient than
performing these tasks individually.

Noise-robust ASR We can implement noise-
robust ASR by chaining tasks and creating the fol-
lowing input sequence: [noisy speech embedding,
<SE>, embedding of the enhanced speech, <ASR>].
Since SE and ASR are jointly trained for LauraGPT,
LauraGPT could effectively exploit embeddings of
the original noisy speech and enhanced speech for
noise-robust ASR.



Table 11: Impact of initialization on the ASR, S2TT and SE tasks.

Task Dataset Metric w/o init LauraGPT
AISHELL-1 test CER | 43 1.8
ASR AISHELL-2 test-ios CER | 6.0 3.2
LibriSpeech test-clean WER | 8.3 44
LibriSpeech test-other WER | 17.6 7.7
S2TT BSTC dev (Zh—En) BLEU 1 8.4 17.8
CoVOST?2 test set (En—Zh) BLEU 1 12.2 38.5
Mixup of LibriSpeech PESQ 1 2.88 2.97
SE test-clean, FSD50K and STOI 1 85.3 88.0
noise-92 Loop Ratio | 6.00 4.60
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