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Abstract
Generative Pre-trained Transformer (GPT)001
models have achieved remarkable performance002
on various natural language processing tasks,003
and have shown great potential as back-004
bones for audio-and-text large language models005
(LLMs). Previous mainstream audio-and-text006
LLMs use discrete audio tokens to represent007
both input and output audio; however, they suf-008
fer from performance degradation on tasks such009
as automatic speech recognition, speech-to-text010
translation, and speech enhancement over mod-011
els using continuous speech features. In this012
paper, we propose LauraGPT, a novel uni-013
fied audio-and-text GPT-based LLM for au-014
dio recognition, understanding, and generation.015
LauraGPT is a versatile LLM that can process016
both audio and text inputs and generate out-017
puts in either modalities. We propose a novel018
data representation that combines continuous019
and discrete features for audio: LauraGPT en-020
codes input audio into continuous representa-021
tions using an audio encoder and generates out-022
put audio from discrete codec codes. We pro-023
pose a one-step codec vocoder to overcome024
the prediction challenge caused by the multi-025
modal distribution of codec tokens. We fine-026
tune LauraGPT using supervised multi-task027
learning. Extensive experiments show that028
LauraGPT consistently achieves comparable029
to superior performance compared to strong030
baselines on a wide range of audio tasks re-031
lated to content, semantics, paralinguistics, and032
audio-signal analysis, such as automatic speech033
recognition, speech-to-text translation, text-to-034
speech synthesis, speech enhancement, auto-035
mated audio captioning, speech emotion recog-036
nition, and spoken language understanding.037

1 Introduction038

Large language models (LLMs) are neural net-039

works that generate natural language texts based040

on a given context. LLMs can learn from mas-041

sive amounts of text data and mimic human lan-042

guage to acquire human knowledge. LLMs such as043

GPT-4 (OpenAI, 2023), PaLM2 (Anil et al., 2023), 044

LLaMA (Touvron et al., 2023) have demonstrated 045

impressive capabilities across various domains, ex- 046

hibiting zero-shot generalization without the need 047

for task-specific fine-tuning. However, these mod- 048

els are primarily limited to processing text data. 049

Recent research aims to seamlessly integrate text 050

and audio since they are two important modalities 051

for human communication. These efforts include 052

Audio-to-Text LLMs (Radford et al., 2022; Zhang 053

et al., 2023b; Deshmukh et al., 2023; Arora et al., 054

2023; Tang et al., 2023; Chu et al., 2023), which 055

can convert audio input into text and perform tasks 056

such as automatic speech recognition (ASR) and 057

spoken language understanding (SLU); Text-to- 058

Audio LLMs (Yang et al., 2023a; Vyas et al., 2023; 059

Kreuk et al., 2023; Liu et al., 2023b; Huang et al., 060

2023a; Wang et al., 2023a), which can convert text 061

input into audio and perform tasks such as text-to- 062

speech synthesis (TTS) and text-to-music synthesis. 063

An emerging line of research focuses on develop 064

more universal and comprehensive Audio-and- 065

Text LLMs (Ao et al., 2022; Chen et al., 2021b; 066

Zhang et al., 2023a; Wang et al., 2023b; Ruben- 067

stein et al., 2023; Huang et al., 2023b), which can 068

support audio-and-text tasks, that is, process and 069

generate both audio and text and perform tasks such 070

as speech enhancement (SE) and speech-to-speech 071

translation (S2ST), in addition to tasks supported 072

by audio-to-text and text-to-audio LLMs. Audio- 073

to-text and text-to-audio LLMs can be considered 074

as subsets of audio-and-text LLMs. 075

Audio-and-Text LLMs can be categorized into 076

two directions. One direction builds a collabo- 077

rative AI system using LLMs as controllers to 078

interface specialized audio models, such as ASR 079

and TTS models, to support various audio-and- 080

text tasks (Shen et al., 2023; Huang et al., 2023b). 081

These methods have serious drawbacks, including 082

high complexity, significant resource consumption, 083

and unavoidable error accumulation problems. The 084
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other direction develops a unified Audio-and-Text085

LLM leveraging LLMs as the backbone to support086

audio-and-text tasks (Ao et al., 2022; Chen et al.,087

2021b; Wang et al., 2023b; Rubenstein et al., 2023).088

Decoder-only audio-and-text LLMs (Zhang et al.,089

2023a; Wang et al., 2023b; Rubenstein et al., 2023)090

are the dominant technique under this category.091

These models convert continuous audio into dis-092

crete tokens and integrate text and audio tokens into093

unified vocabulary. These models suffer from in-094

formation loss from quantization of speech signals095

into discrete tokens, which leads to notable perfor-096

mance degradation on ASR compared to models us-097

ing continuous speech features (Chen et al., 2023a;098

Chang et al., 2023; Yang et al., 2023c; Puvvada099

et al., 2023). In this paper, we focus on improv-100

ing the second category of unified Audio-and-Text101

LLMs. Moreover, recent advances in audio gen-102

eration from unified audio-and-text LLMs (Wang103

et al., 2023a,b) discretize speech into codec codes,104

then use an autoregressive language model (LM)105

to predict output tokens from the first quantizer106

and use a non-autoregressive model to predict to-107

kens from the other quantizers individually. One108

limitation of this mechanism is that it needs many109

prediction steps (hence called multi-step audio110

synthesis scheme) to generate good quality speech.111

Another limitation is that predicting the indices112

of the other codec groups is challenging due to113

the multi-modal distribution nature of codec to-114

kens (Jenrungrot et al., 2023).115

To overcome the drawbacks of existing unified116

audio-and-text LLMs, we propose LauraGPT, a117

novel unified Audio-and-Text LLM based on the118

GPT framework for audio recognition, understand-119

ing, and generation. LauraGPT is a versatile LLM120

that can process both audio and text inputs and121

generate outputs in either modalities, with a single122

model. We propose a novel data representation123

that combines continuous and discrete features124

for audio: LauraGPT encodes input audio into con-125

tinuous representations using an audio encoder and126

generates output audio from discrete codec codes.127

This data representation improves the performance128

of audio-input tasks and also facilitates joint au-129

toregressive modeling of audio and text features130

for audio generation tasks.131

We also propose a one-step codec vocoder in132

LauraGPT to address the two limitations of the133

popular multi-step audio synthesis scheme. Our134

one-step codec vocoder uses a transformer-based135

predictor to estimate the sum of all codec token136

groups instead of the individual indices, by min- 137

imizing the reconstruction losses. Our approach 138

simplifies the audio generation process to a single 139

feed-forward calculation and also overcomes the 140

prediction challenge caused by the multi-modal 141

distribution of codec tokens. 142

We fine-tune LauraGPT using supervised multi- 143

task learning on diverse audio tasks, includ- 144

ing tasks focusing on content, semantics, paralin- 145

guistics, and audio-signal analysis, such as ASR, 146

speech-to-text translation (S2TT), TTS, SE, auto- 147

mated audio captioning (AAC), speech emotion 148

recognition (SER), and SLU. Comprehensive ex- 149

periments show that, to the best of our knowl- 150

edge, LauraGPT1 consistently achieves com- 151

parable to superior performance compared to 152

strong baselines on the largest and the most di- 153

verse set of audio recognition, understanding, 154

and generation tasks among existing decoder- 155

only unified audio-and-text LLMs focusing on 156

these tasks (Zhang et al., 2023a; Wang et al., 157

2023b; Rubenstein et al., 2023). The results are 158

remarkable since existing general speech models 159

either focus solely on speech recognition and under- 160

standing tasks but neglect speech generative tasks, 161

or support speech generation but suffer from se- 162

vere performance degradation on speech recogni- 163

tion and understanding tasks. 164

2 Related Work 165

Audio-to-Text LLMs Audio-to-Text LLMs can 166

generate text from audio inputs. Whisper (Radford 167

et al., 2022) and USM (Zhang et al., 2023b) can per- 168

form speech recognition and translation across mul- 169

tiple languages and domains. Pengi (Deshmukh 170

et al., 2023) is an audio LM that formulates audio 171

tasks as text-generation tasks. UniverSLU (Arora 172

et al., 2023) is a universal SLU model that sup- 173

ports various speech classification and sequence 174

generation tasks. SALMONN (Tang et al., 2023) 175

and Qwen-Audio (Chu et al., 2023) integrate pre- 176

trained text LLMs with separate speech and audio 177

encoders into a single multimodal model. 178

Text-to-Audio LLMs Text-to-Audio LLMs can 179

convert text input into audio output and per- 180

form tasks such as TTS or text-to-music syn- 181

thesis. Recently, two prominent categories of 182

approaches have emerged for generating audio 183

from text prompts. In the first category, contin- 184

uous representations such as utterance-level em- 185

1Demos are available at https://lauragpt.github.io
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beddings (Elizalde et al., 2022; Liu et al., 2023a;186

Huang et al., 2023a) and Mel-frequency spectro-187

grams (Nachmani et al., 2023) are used as the tar-188

gets. However, continuous representations present189

a challenge for unified modeling of text and audio190

within a single LM. In the second category, discrete191

codec tokens are employed as audio representations192

and generated by diffusion models (Yang et al.,193

2023b) or autoregressive LMs (Kreuk et al., 2023;194

Borsos et al., 2023; Copet et al., 2023; Wang et al.,195

2023a). Among models in the second category, in196

models such as AudioGen (Kreuk et al., 2023), Au-197

dioLM (Borsos et al., 2023), and MusicGen (Copet198

et al., 2023), multiple output heads are used after199

the LM to predict synchronized or delayed groups200

of codec tokens. However, this mechanism is only201

suitable for audio generation and may not be ap-202

plicable to diverse audio-and-text tasks. Alterna-203

tively, in VALL-E (Wang et al., 2023a), the LM204

predicts output tokens of the first quantizer, while205

tokens of the remaining quantizers are predicted by206

a non-autoregressive model one by one. This mech-207

anism requires numerous prediction procedures to208

generate acceptable speech quality. Moreover, the209

indices of the remaining codec groups are challeng-210

ing to predict due to the multi-modal distribution211

nature of codec tokens (Jenrungrot et al., 2023).212

Audio-and-Text LLMs Audio-and-Text LLMs can213

process and generate both audio and text, which214

can be categorized into two directions. One direc-215

tion uses LLMs as controllers to interface special-216

ized audio models, such as ASR and TTS mod-217

els, to enable direct audio interaction with LLMs218

and support various audio-and-text tasks, such219

as HuggingGPT (Shen et al., 2023) and Audio-220

GPT (Huang et al., 2023b). However, these models221

are complex, resource-intensive, and prone to error222

accumulation. The second direction uses LLMs223

as the backbone for a unified model that handles224

audio-and-text tasks (Ao et al., 2022; Chen et al.,225

2021b; Wang et al., 2023b; Rubenstein et al., 2023).226

SpeechT5 (Ao et al., 2022) and SpeechNet (Chen227

et al., 2021b) perform various speech tasks with228

an encoder-decoder model, but they require modal-229

specific pre-nets and post-nets to deal with differ-230

ent input&output modalities. VioLA (Wang et al.,231

2023b), AudioPaLM (Rubenstein et al., 2023),232

SpeechGPT (Zhang et al., 2023a), and Speech-233

Gen (Wu et al., 2023) use decoder-only Transform-234

ers to model discrete audio tokens and text tokens235

as a shared vocabulary, but they suffer from infor-236

mation loss from quantization of audio signals into237

discrete tokens (Chen et al., 2023a; Chang et al., 238

2023; Yang et al., 2023c; Puvvada et al., 2023). 239

3 Methodology 240

Figure 1 depicts the architecture of the proposed 241

LauraGPT. Section 3.1 describes the audio encoder, 242

the text tokenizer, and the modified GPT LM for 243

unified audio-and-text modeling. Section 3.2 elab- 244

orates the audio tokenizer. Section 3.3 introduces 245

an efficient one-step codec vocoder for convert- 246

ing audio tokens into high-quality raw waveforms. 247

Section 3.4 describes the multi-task fine-tuning and 248

shows that LauraGPT provides an extensible frame- 249

work for supporting more complex tasks. 250

3.1 Modified Language Model for Unifying 251

Audio-and-Text Modeling 252

For audio inputs, different from other audio-and- 253

text LLMs using discrete tokens to represent audio 254

inputs, we extract the log-compressed Mel spec- 255

trogram features and convert them into continuous 256

representations using a Conformer-based audio en- 257

coder. Text inputs and outputs are tokenized using 258

the Qwen tokenizer (Bai et al., 2023), which inher- 259

its the tiktoken tokenizer (Jain, 2022) and incorpo- 260

rates additional augmentations for commonly used 261

characters and words in different languages. The 262

tokenized input text undergoes embedding matrix 263

transformation to generate dense vectors. The au- 264

dio representations and text embeddings have the 265

same dimension D. The Conformer-based encoder 266

is initialized with weights from a pre-trained ASR 267

model (Gao et al., 2023). Since batch normaliza- 268

tion can lead to endless loop decoding, we replace 269

it with layer normalization in the Conformer-based 270

encoder (details are in Appendix C.2). 271

To achieve audio generation capabilities, the au- 272

dio outputs are discretized into tokens using an 273

audio tokenizer (Section 3.2) to obtain discrete rep- 274

resentations and the softmax output layer is aug- 275

mented with the audio tokens. As a result, the 276

weight matrix W in the output layer is of size 277

(N +M + L)×D and is utilized to calculate the 278

logits for audio and text tokens at each position, 279

where N , M , and L denote the vocabulary sizes 280

of text, audio, and task tokens, respectively. Task 281

tokens are used to inform the model which task 282

should be performed. Note that in order to con- 283

trol the sequence length, we perform the low frame 284

rate (LFR) method (Gao et al., 2020) to downsam- 285

ple audio inputs to 60ms and only select the first 286

codec group of the audio outputs. 287
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Figure 1: The overview of the proposed LauraGPT model. The right part provides an enlarged view of the one-step
Codec Vocoder (Section 3.3) in LauraGPT. The dashed modules are only used in the training stage. S⃝ and E⃝ denote
the “start of sequence” and “end of sequence” tokens. We omit the text tokenizer and detokenizer for simplicity.

Based on the aforementioned representations,288

the GPT backbone is trained to model various audio289

and text tasks by minimizing the cross-entropy loss:290

291 LLM = − 1

Tv

Tv∑
j=1

log pθ (vj |u1:Tu ,utask,v1:j−1)

(1)292

where u denotes the input embeddings with a se-293

quence length Tu and v represents the sequence of294

target tokens with a length Tv. To specify a task, a295

special task-related token utask is inserted between296

the input embeddings and output tokens. Note that297

only the losses of outputs are taken into account,298

while losses on inputs and task token embeddings299

are masked out. After the final output layer, audio300

tokens are decoded to raw waveforms using a codec301

vocoder (Section 3.3). Since it is challenging to302

train an LLM from scratch with limited data and303

computational resources, we use the open-source304

GPT LLM, Qwen (Bai et al., 2023), as the back-305

bone. Qwen is pre-trained on a diverse corpus cov-306

ering various domains in English and Chinese and307

supports 8192 context length. Compared with other308

open-source GPT models with similar model sizes,309

Qwen models demonstrate impressive competitive-310

ness, achieving better performance on widely used311

benchmarks, especially on Chinese tasks (Bai et al.,312

2023). Within LauraGPT, all parameters including313

the Qwen backbone are jointly optimized, except314

for the codec vocoder, which is trained indepen-315

dently and kept frozen during both training and316

inference stages of LauraGPT.317

3.2 Audio Tokenizer318

For audio generation, we utilize a codec model as319

the audio tokenizer to extract discrete representa-320

tions. Our codec model shares a similar architec- 321

ture as EnCodec (Défossez et al., 2022), which 322

comprises convolutional recurrent encoder and de- 323

coder (Tagliasacchi et al., 2020) and a residual vec- 324

tor quantizer (RVQ) (Vasuki and Vanathi, 2006). 325

We enhance the original EnCodec model with the 326

following modifications: 1) Add reconstruction 327

losses in the magnitude spectrum domain to im- 328

prove the quality of middle- and high-frequency 329

signals. 2) Stack five strided convolution blocks 330

with strides of [8, 5, 4, 2, 2] to address the challenge 331

of long sequence lengths, resulting in a token rate 332

of 25Hz for each token group. 3) Use 32 quan- 333

tizers with structured dropout in the RVQ module, 334

each with vocabulary size 1024. This revision im- 335

proves speech quality with more quantizers while 336

preserving most information in the shallow quan- 337

tizers. The encoder and the first RVQ quantizer are 338

used as the audio tokenizer, and the outputs of the 339

first quantizer are used as the audio tokens. The 340

choice of the first N RVQ quantizers to use is a 341

tradeoff between performance and sequence length 342

(hence efficiency). The remaining quantizers and 343

the decoder are only used when training the codec 344

model. Details of training and the pre-trained codec 345

model are in (Du et al., 2023). 346

3.3 One-step Codec Vocoder for Audio 347

Generation 348

We propose a one-step codec vocoder in LauraGPT 349

to generate waveforms from the audio tokens, 350

which are extracted from the first quantizer as de- 351

scribed in Section 3.2. Our vocoder comprises two 352

components: a transformer-based predictor and a 353

codec decoder. The predictor is trained to estimate 354
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the summation of codec embeddings from the 32355

RVQ quantizers by minimizing the L1 and L2 dis-356

tances between the predicted embeddings Ê and357

their corresponding ground truth E:358

Lpre =

T,Dc∑
t,i

|Et,i − Êt,i|1 + |Et,i − Êt,i|2 (2)359

where T denotes the total number of frames and Dc360

denotes the dimension of the codec embeddings.361

After obtaining the estimated embeddings, the de-362

coder of an pre-trained codec model is utilized to363

reconstruct the raw audio waveforms.364

Alongside the predicted audio tokens from365

the LLM, text and audio inputs are used as con-366

ditions and fed to the predictor. For zero-shot367

TTS task, the text inputs serve as a condition as368

well as the prompt audio features. For SE task, the369

input noisy speech features are employed as con-370

ditions. Such text and audio conditionings allow371

the model to generate high-quality audio signals372

by leveraging the diverse information in prompt373

audios and noisy speeches, which is lacked in the374

discrete tokens (output from the first quantizer).375

Therefore, different from existing Text-to-Audio376

LLMs, our approach simplifies the audio genera-377

tion process to a single feed-forward calculation378

and overcomes the prediction challenge caused379

by the multi-modal distribution of codec tokens.380

3.4 Multi-task Finetuning381

Basic Tasks We unify modeling of the following382

basic tasks in the single LauraGPT model and use383

these tasks for multi-task fine-tuning: Automatic384

Speech Recognition (ASR), Spoken Language Un-385

derstanding (SLU), Speech-to-Text Translation386

(S2TT), Speech Emotion Recognition (SER), Au-387

tomated Audio Captioning (AAC), Speech En-388

hancement (SE), and Text-to-speech Synthesis389

(TTS). Task definitions are in Appendix A.1.390

Unified Task Expression LauraGPT operates391

based on a unified task expression: [input392

embeddings, task ID, output tokens]. With393

the same inputs, the desired outputs can differ394

across tasks. For instance, ASR and S2TT tasks395

require different outputs even for the same audio396

input. Task tokens are included in both input em-397

bedding and output weight matrices. The TTS task398

takes text embeddings as inputs, while the ASR,399

S2TT, SLU, SE, ACC, and SER tasks take audio en-400

codings as inputs. The TTS and SE tasks use audio401

tokens as the target outputs, while the remaining402

tasks use text tokens as the target outputs.403

Support More Complex Tasks With its modu- 404

larized design, LauraGPT provides an extensible 405

framework to support complex tasks. By breaking 406

a task into sub-tasks among the basic tasks and 407

cascading the raw inputs and model outputs of sub- 408

tasks, LauraGPT can perform more complex tasks. 409

For example, we demonstrate that LauraGPT is ca- 410

pable of performing the advanced speech-to-speech 411

translation (S2ST) task by combining the S2TT and 412

TTS tasks. Initially, a sequence is constructed to 413

translate the speech content into the target language 414

text using the S2TT task token: [audio encoding, 415

<S2TT>]. Subsequently, the translated text is com- 416

bined with the TTS task token to synthesize speech: 417

[text embedding, <TTS>]. If maintaining the 418

speaker identity is desired, the original inputs and 419

content can be incorporated to perform personal- 420

ized TTS. This can be achieved with an input se- 421

quence as [ASR recognized text embedding, 422

S2TT translated text embedding, <TTS>, 423

audio token of input speech], where ASR 424

recognized text embedding is obtained using 425

the ASR task: [audio encoding, <ASR>]. This 426

approach treats the bilingual text as the complete 427

input and allows the model to generate an output se- 428

quence of codec tokens while maintaining the same 429

speaker identity. Audio samples of S2ST can be 430

found on the demo site. More examples of complex 431

tasks are in Appendix D. 432

4 Experimental Settings 433

Model Architecture The Conformer-based audio 434

encoder consists of 32 conformer blocks. Each 435

block consists of a feed-forward module with 1536 436

units, an attention module with 16 heads and a 437

dimension of 512, a convolutional module includ- 438

ing the pointwise and depthwise convolution lay- 439

ers, and a second feed-forward module with 1536 440

units. Sinusoidal positional encoding is applied on 441

the audio inputs. For a trade-off between perfor- 442

mance and training efficiency, we use Qwen-1.8B2 443

as the backbone and LauraGPT has 2B parameters. 444

Qwen-1.8B comprises 24 transformer layers with a 445

hidden size 2048 and 16 attention heads. Although 446

Conformer and Qwen-1.8B are selected as the 447

audio encoder and GPT backbone, they can be 448

replaced by other encoders and GPT models. 449

Training Setup In all experiments, we initialize 450

the Qwen backbone and audio encoder with the pre- 451

trained checkpoints. We then optimize the model 452

parameters through multi-task fine-tuning. The 453

2https://github.com/QwenLM/Qwen
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training&test datasets and evaluation metrics are454

presented in Appendix A.2 and A.3. Appendix A.4455

describes the three-stage training process to address456

the significant variation in data volume across dif-457

ferent tasks, and details the inference process.458

5 Results and Analysis459

Section 5.1 presents the main results of perfor-460

mance comparison on the basic tasks from the state-461

of-the-art (SOTA) model, a comparable baseline,462

and our LauraGPT. Ablation studies in Section 5.2463

demonstrate the advantages of using continuous464

representations for audio inputs in LauraGPT by465

comparing to a counterpart with both discrete in-466

puts and outputs (denoted Discrete IO), the supe-467

riority of our one-step codec vocoder, and effec-468

tiveness of multi-task finetuning. Further analy-469

ses include comparison with related unified Audio-470

and-Text LLMs (Appendix B), more analysis of471

multi-task fine-tuning on SER task (Appendix C.1),472

comparing batch normalization with layer normal-473

ization in the audio encoder (Appendix C.2), and474

studying impact of initialization from pre-trained475

models (Appendix C.3).476

5.1 Results on All Tasks477

Table 1 shows the results from the SOTA model,478

a comparable baseline, and our LauraGPT3, in479

that order, on a variety of speech recognition, un-480

derstanding, and generation benchmarks. The481

SOTA model yields the best results on each test482

set based on our literature review. The base-483

line for each task is chosen to facilitate fair com-484

parison with LauraGPT: they are comparable to485

LauraGPT in model architecture or training data486

and are also common competitive baselines in the487

literature. We cite the SOTA results to validate488

that LauraGPT consistently performs competitively489

on all the speech recognition, understanding, and490

generation tasks and the baselines are competitive.491

However, LauraGPT results cannot be fairly com-492

pared to the SOTA results. Specifically, QwenAu-493

dio achieves SOTA performance on most speech494

understanding tasks, but compared to LauraGPT,495

QwenAudio uses a much larger LLM (∼7B VS. our496

1.8B LLM), and uses the Whisper audio encoder497

trained on a large amount of ASR data while we498

use a Conformer encoder trained on much less data.499

Moreover, QwenAudio does not support speech500

3Our results are from single runs due to the stability of the
models and limited computational resources.

generative tasks hence cannot handle SE and TTS 501

tasks. Paraformer-large and UniverSLU achieve 502

SOTA results on AISHELL-2 test-ios for Chinese 503

ASR and on SLURP test for SLU; however, they 504

only support single tasks and also train on more 505

data than LauraGPT on the corresponding task. 506

Appendix B shows that LauraGPT greatly outper- 507

forms Whisper Large V2 on Chinese ASR test sets 508

while the gap on English ASR test sets are pri- 509

marily attributed to the much smaller English data 510

used for training LauraGPT. For TTS, the SOTA 511

VALL-E Phone outperforms baseline VALL-E To- 512

ken4, suggesting the importance of text representa- 513

tion for TTS. Compared to both VALL-E models, 514

LauraGPT achieves comparable speaker similar- 515

ity (SECS) and speech quality (MOSNet). The 516

degradation in content consistency (WER) from 517

LauraGPT results from the generalization issue, 518

since the training data is too limited for LauraGPT 519

with 2B parameters. Overall, the results show that 520

LauraGPT consistently achieves comparable to 521

superior performance than strong baselines on 522

diverse speech tasks, demonstrating the general 523

effectiveness of LauraGPT on speech recogni- 524

tion, understanding, and generative tasks. 525

5.2 Analysis 526

Discrete VS. Continuous Representations for 527

Audio Inputs Existing unified Audio-and-Text 528

LLMs use discrete tokens to represent audio inputs. 529

We analyze the efficacy of using continuous repre- 530

sentations for audio inputs in LauraGPT by compar- 531

ing to its counterpart Discrete IO on ASR, S2TT, 532

and SE tasks, representing audio-input recogni- 533

tion and understanding, and audio generation 534

capacities. In Discrete IO, both audio inputs and 535

outputs are represented by flattened codec tokens 536

from the first four quantizers5, resulting in a to- 537

ken rate of 100Hz. In LauraGPT, audio inputs are 538

represented by continuous acoustic features, which 539

are also fed into our one-step vocoder as a condi- 540

tion to achieve high-quality outputs. Table 2 shows 541

that LauraGPT consistently outperforms Dis- 542

crete IO with remarkable gains on all tasks. For 543

ASR task, the performance degrades drastically 544

4We re-implement two VALL-E models with 0.34B train-
able parameters, both trained with the same data as LauraGPT.
VALL-E Phone uses phonemes as the text input representation,
while VALL-E Token uses WordPiece tokens from the text
tokenizer.

5Using outputs of the first quantizer (as in LauraGPT) for
audio tokenizer renders very poor performance for audio-input
tasks with the Discrete IO models. Using more quantizers
improves performance but reduces efficiency.
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Table 1: Results from the SOTA, a comparable baseline, and our LauraGPT, in that order, on speech recognition,
understanding, and generation tasks. The better results between the baseline and LauraGPT are in bold.

Task Test Set Metric Model Performance

ASR

AISHELL-1 test CER ↓
Qwen-Audio (Chu et al., 2023) 1.3

MMSpeech-large (Zhou et al., 2022) 1.9
LauraGPT 1.8

AISHELL-2 test-ios CER ↓
Paraformer-large (Gao et al., 2023) 2.9

MMSpeech-large (Zhou et al., 2022) 3.9
LauraGPT 3.2

LibriSpeech test-clean WER ↓
Qwen-Audio (Chu et al., 2023) 2.0

Whisper Large V2 (Radford et al., 2023) 2.5
LauraGPT 4.4

LibriSpeech test-other WER ↓
Qwen-Audio (Chu et al., 2023) 4.2

Whisper Large V2 (Radford et al., 2023) 4.9
LauraGPT 7.7

SLU SLURP test Intent ACC ↑ | SLU-F1 ↑
UniverSLU (Arora et al., 2023) 90.5 | 80.5

Wav2Vec 2.0 (Ravanelli et al., 2021) 85.3 | 74.6
LauraGPT 87.9 | 73.5

S2TT

BSTC dev
(Zh→EN)

BLEU ↑
- -

Cascade-System (Zhang et al., 2021) 18.2
LauraGPT 17.8

CoVOST2 test set
(En→Zh)

BLEU ↑
Qwen-Audio (Chu et al., 2023) 41.5

EncDec-Attn (Wang et al., 2020) 25.4
LauraGPT 38.5

SER MELD test WA ↑ | UA ↑ | WF1 ↑
Qwen-Audio (Chu et al., 2023) 0.557 | - | -
Vesper-12 (Chen et al., 2023b) 0.535 | 0.268 | 0.480

LauraGPT 0.507 | 0.312 | 0.492

AAC Clotho eval SPICE ↑ | CIDEr ↑ | SPIDEr ↑
Qwen-Audio (Chu et al., 2023) 0.14 | 0.44 | 0.29

Ensemble (Koizumi et al., 2020) 0.09 | 0.32 | 0.21
LauraGPT 0.08 | 0.22 | 0.15

SE
Mixup of LibriSpeech

test-clean, FSD50K and
noise-92

WER ↓ |
PESQ ↑ | STOI ↑

- -
CMGAN (Cao et al., 2022) 12.29 | 2.95 | 91.0

LauraGPT 15.94 | 2.97 | 88.0

TTS

AISHELL-1
CER ↓ |

SECS ↑ | MOSNet ↑

VALL-E Phone (Wang et al., 2023a) 4.75 | 0.91 | 3.22
VALL-E Token (Wang et al., 2023a) 6.52 | 0.91 | 3.19

LauraGPT 6.91 | 0.90 | 3.14

LibriTTS
WER ↓ |

SECS ↑ | MOSNet ↑

VALL-E Phone (Wang et al., 2023a) 4.30 | 0.92 | 3.28
VALL-E Token (Wang et al., 2023a) 6.57 | 0.93 | 3.28

LauraGPT 8.62 | 0.91 | 3.26

when replacing continuous features with discrete545

audio tokens. Although the performance degrada-546

tion can be reduced by using more quantizers (more547

codec groups), e.g. 32 (Puvvada et al., 2023), more548

codec groups always cause higher token rates and549

longer sequence and in turn higher computational550

demands. For S2TT task, Discrete IO only yields551

BLEU scores of 5.1 and 5.0 on test sets, basically552

suggesting lack of translation capability. For SE553

task, using codec tokens as inputs cannot improve554

the quality and intelligibility of noisy speeches,555

suggesting lack of enhancement capability, proba-556

bly because the distribution of noisy speech is too557

complicated to be accurately represented by four558

groups of discrete audio tokens. 559

Comparison on Audio Synthesis Schemes 560

VALL-E (Wang et al., 2023a) introduces a com- 561

monly used scheme formulating audio synthesis 562

as a classification problem: A neural network is 563

shared to predict the codec tokens in the follow- 564

ing group with the previous ones as inputs and 565

synthesizing target audio requires multiple steps 566

or iterations to achieve a reasonable speech qual- 567

ity. In contrast, our one-step codec vocoder for- 568

mulates audio synthesis as a regression problem. 569

As described in Section 3.3, our one-step codec 570

vocoder simplifies audio synthesis into a single 571

feed-forward calculation and overcomes the pre- 572

7



Table 2: Comparison of Discrete IO models and LauraGPT on ASR, S2TT, and SE tasks for analysis of discrete VS.
continuous representations for audio inputs. The best results on each test set are in bold.

Task Dataset Metric Discrete IO LauraGPT

ASR

AISHELL-1 test CER ↓ 7.1 1.8
AISHELL-2 test-ios CER ↓ 8.6 3.2

LibriSpeech test-clean WER ↓ 9.1 4.4
LibriSpeech test-other WER ↓ 24.0 7.7

S2TT BSTC dev (Zh→EN) BLEU ↑ 5.1 17.8
CoVOST2 test set (En→Zh) BLEU ↑ 5.0 38.5

SE
Mixup of LibriSpeech

test-clean, FSD50K and
noise-92

PESQ ↑ 1.96 2.97
STOI ↑ 64.0 88.0
WER ↓ 53.97 15.94

Table 3: Comparison of our one-step audio synthesis
scheme and the multi-step scheme on the SE task.

Scheme PESQ ↑ STOI(%) ↑ CER ↓ WER ↓

Multi-step 2.55 88.0 10.52 19.32
One-step 2.97 88.0 9.05 15.94

diction challenge caused by the multimodal distri-573

bution of codec tokens. Table 3 shows that our574

one-step codec vocoder greatly outperforms the575

multi-step scheme in terms of content consis-576

tency (CER, WER) and speech quality (PESQ),577

while obtaining the same intelligibility (STOI).578

Effectiveness of Multi-task Finetuning The579

multi-task fine-tuned LauraGPT (Section 3.4)580

could be advantageous over individual single-task581

models: (1) Multi-task learning could exploit syn-582

ergy between tasks and reduce over-fitting, in583

turn yield high performance on diverse tasks and584

achieve better performance than single-task train-585

ing. (2) Multi-task learning could learn a single586

model capable of supporting a wide range of tasks,587

hence practical deployment is greatly simplified588

through unified model implementation and API.589

We investigate whether the multi-task trained590

LauraGPT could achieve better performance than591

single-task training for tasks with limited training592

data. Among the basic tasks (Table 5), AAC, SLU,593

and SER tasks all have limited training data. We594

initialize the Qwen backbone and the audio encoder595

the same as LauraGPT before conducting multi-596

task training, then train the single-task model only597

using the task-specific training data. The results598

are shown in Table 4.599

For the AAC task, we find that the multi-600

task trained LauraGPT outperforms the single-task601

model on SPICE, CIDEr and SPIDEr on the Clotho602

evaluation set. For the SLU task, on the SLURP603

test set, LauraGPT greatly outperforms the single- 604

task model on intent accuracy by +2.9 absolute 605

and on SLU-F1 by +22.5 absolute. For the SER 606

task, on the MELD test set, LauraGPT substan- 607

tially outperforms the single-task model in terms 608

of UA and the primary WF1 metrics, while the 609

WA result is slightly worse. More analyses in Ap- 610

pendix C.1 show that multi-task learning dramati- 611

cally improves accuracies of the minority classes. 612

In summary, these results verify that multi-task 613

learning for LauraGPT consistently achieves 614

better performance than single-task training for 615

tasks with limited training data. 616

Table 4: Comparison of single-task finetuning and multi-
task finetuning on the AAC, SLU, and SER tasks.

Task Dataset Metric Single Multi

AAC Clotho eval
SPICE ↑ 0.07 0.08
CIDEr ↑ 0.16 0.22
SPIDEr ↑ 0.11 0.15

SLU SLURP test
Intent ACC ↑ 85.0 87.9

SLU-F1 ↑ 51.0 73.5

SER MELD test
WA ↑ 0.508 0.507
UA ↑ 0.221 0.312

WF1 ↑ 0.426 0.492

6 Conclusion 617

We propose LauraGPT that can handle both au- 618

dio and text inputs and outputs and perform audio 619

recognition, understanding, and generation. We 620

propose combining continuous and discrete fea- 621

tures for audio and a one-step codec vocoder, and 622

employ multi-task learning. Experiments demon- 623

strate that LauraGPT achieves comparable to supe- 624

rior performance compared to strong baselines on 625

a wide range of speech tasks on content, semantics, 626

paralinguistics, and audio-signal analysis. 627
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Limitations628

In this work, in order to support a wide range629

of audio recognition, understanding, and gener-630

ation tasks, we choose to train all parameters in631

LauraGPT during supervised multi-task finetuning,632

including the Qwen backbone, except for the codec633

vocoder. This strategy results in substantial compu-634

tations for training. In future work, we plan to in-635

vestigate parameter-efficient fine-tuning to reduce636

computation demands. Also, due to the limited637

computation resources, our comparisons between638

the multi-task trained LauraGPT and single-task639

models are focused on the low-resource tasks, that640

is, AAC, SLU, and SER tasks. We find that multi-641

task learning for LauraGPT consistently achieves642

better performance than single-task training for643

tasks with limited training data. Next, we plan644

to complete comparisons of LauraGPT and single-645

task models on all tasks, including relatively rich-646

resource tasks such as ASR. These studies will pro-647

mote understandings on where tasks could benefit648

from each other, including tasks with even conflict-649

ing objectives. We also plan to conduct deeper anal-650

ysis on the potential risk of catastrophic forgetting651

of the original text capabilities of the pre-trained652

text LLM, due to multi-task learning of speech653

tasks. Note that exploration of parameter-efficient654

fine-tuning may also help preserve the original text655

capabilities of the pre-trained text LLMs.656

LauraGPT relies on discrete audio tokens for657

speech generative tasks. Our research shows that658

the performance of this paradigm strongly depends659

on the quality of the audio tokenizer. We plan to660

systematically analyze the impact of various audio661

tokenizers on diverse audio generative tasks. We662

plan to develop new audio tokenizers that are more663

suitable for unified Auio-and-Text LLMs and pro-664

vide desirable representations for generative tasks.665

There are great emerging interests in fundamen-666

tal speech models that are similar to those in the667

field of NLP. This is a tremendously valuable re-668

search direction. Our work achieves important669

milestone for this research question, as we explore670

and provide promising answers to the following671

question: How to design more efficient and scal-672

able unified GPT-style Audio-and-Text LLMs than673

existing approaches that can leverage large-scale674

labeled data and achieve highly competitive perfor-675

mance on a diverse set of speech tasks, including676

speech recognition, understanding and generation,677

using a single model? Note that previous general678

speech models either focus solely on speech recog- 679

nition and understanding tasks but neglect speech 680

generative tasks, or support speech generation but 681

suffer from severe performance degradation on 682

speech recognition and understanding tasks. 683

Inspired by the recent advances of LLMs in NLP, 684

we envision that the fundamental speech models 685

should have the following capabilities: 686

• In-context learning ability like GPT-3, which 687

can learn from few-shot examples and adapt 688

to new tasks, such as predicting the age of the 689

speaker from a speech sample. 690

• Instruction-following ability like InstructGPT 691

and ChatGPT, which can perform the ap- 692

propriate speech-related task given a natural 693

language instruction, such as synthesizing a 694

speech with a specific emotion or style. 695

• General audio modeling abilities, i.e., speech, 696

non-speech audio, and music, such as music 697

generation. 698

Our work demonstrates that the current 699

LauraGPT has made solid progress and reached 700

one important milestone toward a speech founda- 701

tion model. From LauraGPT to the next-generation 702

speech foundation model we envision, most remain- 703

ing efforts are in more task data collection and more 704

self-supervised and/or supervised pre-training and 705

supervised fine-tuning. There is no need to modify 706

the model architecture. 707
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Appendices1103

A Experimental Details1104

A.1 Basic Tasks1105

The following tasks are used in supervised multi-1106

task learning of LauraGPT and also in evaluations:1107

Automatic speech recognition (ASR) is a vital1108

task in the speech processing community. It fo-1109

cuses on transcribing speech into textual content.1110

Spoken language understanding (SLU) is a task1111

of directly deriving high-level semantic meaning1112

from audio input. It aims to identify the user’s1113

intent and the relevant entity slots that fill the intent.1114

An intent is usually composed of a scenario type1115

and an action type, while slots and fillers are key-1116

value pairs that specify the details of the intent.1117

Speech-to-text translation (S2TT) is similar to1118

machine translation, but it directly translates the1119

source language speech into the target language1120

text.1121

Speech emotion recognition (SER) categorizes1122

the emotions in speech input. Compared to textual1123

emotion recognition, speech signals convey addi-1124

tional information, including tone and speaking1125

rate, which enhances emotion recognition.1126

Automated audio captioning (AAC) aims to gen-1127

erate a natural language sentence that describes the1128

content of an audio clip.1129

Speech enhancement (SE) is an audio-to-audio1130

task that aims to improve speech quality through1131

noise suppression and dereverberation. In order to1132

incorporate this task into a unified modeling frame-1133

work, we reformulate the task as a classification1134

problem using codec tokens.1135

Text-to-speech synthesis (TTS) can be considered1136

as the inverse process of ASR, where it generates1137

speech that matches the given text.1138

A.2 Training Datasets1139

To ensure reproducibility, all training data and test1140

data for LauraGPT are publicly available datasets,1141

with licenses of Apache 2.0, CC BY 4.0, CC0, non-1142

commercial research and education use, etc. The1143

training data for the basic tasks listed in Section 3.41144

and defined in Appendix A.1 are prepared as fol-1145

lows.1146

For the ASR task, we utilize open-source Chi-1147

nese datasets such as AISHELL-1 (Bu et al.,1148

2017), AISHELL-2 (Du et al., 2018), Wenet-1149

Speech (Zhang et al., 2022), as well as open-source1150

English datasets including LibriSpeech (Panayotov 1151

et al., 2015) and GigaSpeech (Chen et al., 2021a). 1152

For the S2TT task, we employ the commonly 1153

used BSTC (Zhang et al., 2021) and CoVOST 1154

2 (Wang et al., 2020) datasets. Due to the lim- 1155

ited data volumes of BSTC and CoVoST 2, we 1156

further augment the training set by translating 1157

AISHELL-1 and AISHELL-2 datasets into English 1158

and translating LibriSpeech dataset into Chinese us- 1159

ing a publicly available text translation model (Wei 1160

et al., 2022). Consequently, we obtain approx- 1161

imately 2,000 hours of supplementary data for 1162

Chinese-to-English and English-to-Chinese S2TT 1163

tasks. As a supplement of training data for S2TT, 1164

we also add the ParaCrawl v9 dataset (Kocmi 1165

et al., 2022), which consists of 14M parallel text 1166

sentences for Zh→En (Chinese-to-English) and 1167

En→Zh (English-to-Chinese) translations. 1168

For the SER task, we collect corpora includ- 1169

ing MELD (Poria et al., 2018), IEMOCAP (Busso 1170

et al., 2008), RAVDESS (Livingstone and Russo, 1171

2018), TESS (Pichora-Fuller and Dupuis, 2020), 1172

Crema-D (Cao et al., 2014), Emov-DB (Adigwe 1173

et al., 2018), and SAVEE (Jackson and Haq, 2014). 1174

These corpora are recorded in multi-modal formats, 1175

comprising audio or visual data. No other corpora 1176

are used for the SER task. 1177

For the SLU task, we use the multi-domain 1178

Spoken Language Understanding Resource Pack- 1179

age (SLURP) dataset (Bastianelli et al., 2020), 1180

which covers 18 scenarios. 1181

For the AAC task, we use AudioCaps (Kim 1182

et al., 2019), WavCaps (Mei et al., 2023), and 1183

Clotho (Drossos et al., 2020) datasets. 1184

For the SE task, pairs of noisy and clean speech 1185

are required for training. The clean utterances are 1186

extracted from the AISHELL-1, AISHELL-2, Lib- 1187

riSpeech, and WSJ datasets (Paul and Baker, 1992), 1188

while the noisy counterparts are generated by mix- 1189

ing the clean speech with noises from the FSD-50K 1190

dataset (Fonseca et al., 2022) at random signal-to- 1191

noise rates (SNR) ranging from 2 to 15. Besides 1192

the additional noises, we also simulate convolu- 1193

tional noises by convolving the clean speech data 1194

with room impulse responses (Ko et al., 2017). As 1195

a result, we obtain approximately 6000 hours of 1196

paired data for the SE task. 1197

For the TTS task, we use the open-source Lib- 1198

riTTS and 3D-speaker datasets (Zheng et al., 2023). 1199

Further details of the training data for all tasks can 1200

be found in Table 5. 1201

Note that for all the training and test datasets, 1202

14



our use of the data is consistent with their intended1203

use. We use all data sets in the same ways as prior1204

research works, hence we did not check whether1205

the data that was used contains any information1206

that names or uniquely identifies individual people1207

or offensive content.1208

A.3 Evaluation Datasets and Metrics1209

Table 6 presents the evaluation datasets and evalua-1210

tion metrics for various tasks. The metrics used in1211

our experiments are described below:1212

• CER stands for Character Error Rate, a com-1213

monly used metric to evaluate the recognition1214

performance of Chinese and English utterances.1215

We also utilize CER to assess the content consis-1216

tency in TTS task.1217

• WER stands for Word Error Rate, which consid-1218

ers entire words rather than individual characters.1219

In our experiments, we use WER to evaluate ASR1220

recognition performance, content consistency in1221

TTS, and speech intelligibility in SE.1222

• SECS, which stands for Speaker Encoder Cosine1223

Similarity, utilizes speaker embeddings extracted1224

from a pre-trained speaker verification model 61225

for both prompt and synthesized speech. The1226

cosine similarity between the two embeddings is1227

then employed to measure the speaker similarity1228

between the prompt speech and the synthesized1229

speech. Furthermore, the naturalness of the syn-1230

thesized speech is evaluated using MOSNet, a1231

non-intrusive score derived from a pre-trained1232

neural network 7.1233

• BLEU represent the Bilingual Evaluation Un-1234

derstudy metric. BLEU is commonly used to1235

assess the quality of machine-generated text by1236

comparing it to reference translations. In our1237

experiments, we use BLEU to evaluate S2TT.1238

• PESQ represents Perceptual Evaluation of1239

Speech Quality, while STOI stands for Short-1240

time Objective Intelligibility. Both metrics1241

are widely used to assess speech enhancement.1242

PESQ ranges from −0.5 to 4.5, whereas STOI is1243

in the range of [0, 1].1244

• SPICE, CIDEr and SPIDEr are metrics bor-1245

rowed from the image captioning task and em-1246

ployed for AAC evaluation. SPICE stands for1247

Semantic Propositional Image Caption Evalua-1248

tion, CIDEr denotes Consensus-based Image De-1249

6Code is available at https://huggingface.co/
microsoft/wavlm-base-plus-sv

7Code is available at https://github.com/
lochenchou/MOSNet

scription Evaluation, and SPIDEr represents the 1250

average of SPICE and CIDEr. 1251

• WA, UA and WF1 stands for weighted accuracy, 1252

unweighted accuracy and the weighted F1 score. 1253

WA corresponds to the overall accuracy, UA cor- 1254

responds to the average class-wise accuracy, and 1255

WF1 corresponds to the average class-wise F1 1256

score. 1257

• ACC measures the accuracy of predicting the 1258

intent. SLU-F1 is a metric that balances Word- 1259

F1 and Char-F1, computed as the sum of the 1260

confusion matrices. 1261

A.4 Details of Training and Inference 1262

In all experiments, we optimize the model parame- 1263

ters through the following steps: (1) We initialize 1264

the Qwen backbone and the audio encoder with 1265

the pre-trained checkpoints. (2) We then perform 1266

multi-task finetuning. 1267

Due to the significant variation in data volume 1268

across different tasks, the training process is con- 1269

ducted in three stages. In the first training stage, the 1270

model is fine-tuned on all tasks using the complete 1271

training data as shown in Table 5. The AdamW 1272

optimizer is utilized with a peak learning rate of 1273

5 × 10−4 and 10K warmup steps. In the second 1274

stage, we further fine-tune the model on tasks that 1275

have small-scale datasets, including TTS, SE, AAC, 1276

SER, and SLU tasks. The AdamW optimizer is uti- 1277

lized with a peak learning rate of 2 × 10−4 and 1278

10K warmup steps. In the third training stage, we 1279

fine-tune the model on all tasks using the complete 1280

training data again. The peak learning rate of the 1281

AdamW optimizer for the third stage is reduced by 1282

half as 1× 10−4, while the warmup step remains 1283

at 10K. 1284

For the codec vocoder, we train the predictor on 1285

the training data of the TTS and SE tasks. We use 1286

the Adam optimizer with a peak learning rate of 1287

0.001 and 25K warmup steps. The decoder of the 1288

codec vocoder is initialized with the pre-trained 1289

checkpoints8 and kept frozen during the multi-task 1290

finetuning of LauraGPT. 1291

As stated in Section 3, during the training stage, 1292

the input is converted into input embeddings by the 1293

audio encoder if the input is audio, or converted by 1294

the embedding matrix W if the input is text, while 1295

the output is converted into output embeddings by 1296

the same embedding matrix W for teacher-forcing. 1297

Meanwhile, this matrix W is also used to convert 1298

8https://funcodec.github.io
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Table 5: Statistics of the training data for basic tasks in Section 3.4. Corpus×N means that the training samples in
this corpus are copied N times during training.

Task Training Data # Samples

ASR AISHELL-1, AISHELL-2, WenetSpeech, LibriSpeech, GigaSpeech 24.2 M

SLU SLURP×10 1.2 M

S2TT BSTC×5, CoVOST 2×2, AISHELL-1, AISHELL-2, LibriSpeech 2.2 M

SER MELD×10, IEMOCAP×10, RAVDESS×10, TESS×10

Crema-D×10, Emov-DB×10, SAVEE×10 0.3 M

AAC Clotho×10, AudioCaps×10, WavCaps×5 1.3 M

SE AISHELL-1×3, AISHELL-2×3, LibriSpeech×3, WSJ×2, FSD-50K×2, RIR 5.3 M

TTS LibriTTS×2, 3D-Speaker×2, AISHELL-1×2, AISHELL-2×2, LibriSpeech×2 5.0 M

Table 6: Evaluation datasets and metrics for different tasks. ↑ indicates that higher values of the metric are desirable,
while ↓ implies the opposite.

Task Evaluation Datasets Evaluation Metrics

ASR AISHELL-1 test, AISHELL-2 test-ios,
Librispeech test-clean & test-other

CER ↓, WER ↓

SLU SLURP test ACC ↑, SLU-F1 ↑

S2TT BSTC dev, En→Zh subset of CoVOST2 BLEU ↑

SER MELD test WA ↑, UA ↑, WF1 ↑

AAC Clotho eval SPICE ↑, CIDEr ↑, SPIDEr ↑

SE LibriSpeech test-clean, FSD50K, noise-92 PESQ ↑, STOI ↑, WER ↓

TTS AISHELL-1 test, LibriTTS test-clean CER ↓, WER ↓, SECS ↑, MOS ↑

the task-ID token into an embedding. Then, these1299

embeddings are composed into an embedding se-1300

quence as [input embeddings, task-ID embedding,1301

output embeddings], which is taken as the input of1302

Qwen LLM. To train the model, a masked cross-1303

entropy loss function is applied, as shown in Eq. 1.1304

As described in Section 3, in addition to masking1305

out the losses on inputs, the cross-entropy loss at1306

the position of the task token is also masked out.1307

During the inference stage, the input is converted1308

into input embeddings as done during the train-1309

ing stage. Then the corresponding task-ID embed-1310

ding is added at the end of the input embedding1311

sequence. Next, the Qwen LLM generates output1312

tokens in an autoregressive manner until the “end1313

of sequence” token is generated. Finally, for text-1314

format output, the Qwen tokenizer is employed to1315

convert tokens into final output, while for audio-1316

format output, the codec vocoder is employed to 1317

convert tokens into raw waveforms. 1318

A.5 Details of the SER Evaluation 1319

During the training stage, emotion labels within 1320

different training corpora are unified into the fol- 1321

lowing nine classes: anger, disgust, neutral, like, 1322

sadness, surprise, happiness, joy, and fear. At the 1323

test stage, we map the “like” and “happiness” emo- 1324

tion classes into the “joy” class to match the MELD 1325

test set. LauraGPT uses an autoregressive structure 1326

to generate emotion labels. Out-of-domain outputs 1327

are considered as classification errors, making the 1328

task harder. Both WavLM Base model and WavLM 1329

Large model utilize the weighted sum of multiple 1330

layers with learnable parameters as speech features, 1331

which are fed into a downstream network for clas- 1332

sification. 1333
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B Comparison with Related Unified1334

Audio-and-Text Models1335

Table 7 compares our LauraGPT against the most1336

related works, which, similar to LauraGPT, are1337

all multi-task unified audio-and-text models. Due1338

to the drastic differences in experimental settings,1339

datasets used and lack of open source codebase1340

and checkpoints, it is difficult to conduct a fair1341

comparison between LauraGPT and these most1342

related multi-task unified audio-and-text models.1343

Despite all these difficulties, below we provide the1344

most relevant results for comparing LauraGPT and1345

these related models.1346

Whisper (Radford et al., 2022) is solely stud-1347

ied on the ASR task in the original paper, hence1348

we compare LauraGPT to Whisper only on the1349

ASR task. As shown in Table 8, on the Chinese1350

test sets AISHELL-1 test and AISHELL-2 test-ios,1351

LauraGPT greatly outperforms Whisper by -3.91352

and -2.3 absolute on CER with much smaller train-1353

ing data. On the English test sets Librispeech test-1354

clean and test-other, LauraGPT performs worse1355

than Whisper Large V2 as Whisper Large V2 uses1356

much more English training data than LauraGPT.1357

SpeechT5 (Ao et al., 2022) is evaluated on1358

ASR, TTS, S2TT, voice conversion (VC), SE, and1359

speaker identification (SID). Since the training1360

data of tasks other than ASR for SpeechT5 dif-1361

fers remarkably from those for LauraGPT, we1362

compare LauraGPT against SpeechT5 only on1363

ASR. For SpeechT5, the model is first pre-trained1364

with large-scale unlabeled speech and text data.1365

Then, it is finetuned on the Librispeech-960 cor-1366

pus via the hybrid cross-entropy and CTC loss. As1367

claimed in their paper, SpeechT5 achieves a WER1368

of 7.3% on the Librispeech test-other subset with-1369

out CTC and LM. Under a fair comparison, our1370

LauraGPT achieves a comparable WER of 7.7%.1371

Note that different from SpeechT5, LauraGPT1372

is directly trained on multi-task labeled datasets1373

without benefiting from any self-supervised pre-1374

training.1375

VioLA (Wang et al., 2023b) is evaluated on1376

ASR, S2TT, TTS and S2ST tasks. Consider-1377

ing the substantial differences in training data on1378

tasks between VioLA and LauraGPT and lack1379

of open-sourced VioLA codebase and models,1380

it is difficult to fairly compare LauraGPT with1381

VioLA. Among the tasks, direct comparison on1382

ASR is also challenging since VioLA only con-1383

ducts speech-to-phoneme recognition and reports1384

Phoneme Error Rate (PER) rather than recognizing 1385

words/characters and reporting WER/CER as con- 1386

ducted by LauraGPT. According to their paper, Vi- 1387

oLA underperforms their in-house Attention-based 1388

Encoder-Decoder (AED) model (which we also 1389

have no access to) with relative 19.96% phoneme 1390

error rate (PER) degradation from 9.47% to 11.36% 1391

on Mandarin WenetSpeech dev set. Since higher 1392

PER always corresponds to much higher WER as 1393

a word comprises multiple phonemes, it would be 1394

safe to hypothesize that the relative degradation 1395

on WER from VioLA over AED is even greater. 1396

In contrast, compared with the Paraformer base- 1397

line, our LauraGPT achieves comparable CER on 1398

the Mandarin AISHELL-2 test-ios set and out- 1399

performs it on the English Librispeech test-other 1400

set, i.e., overall LauraGPT performs comparably 1401

to Paraformer. Note that Paraformer is a non- 1402

autoregressive AED model performing comparably 1403

to conventional auto-regressive AED model (Gao 1404

et al., 2022). Therefore, through this chain of 1405

comparisons, we are confident to conclude that 1406

LauraGPT notably outperforms VioLA on ASR 1407

task. 1408

AudioPaLM (Rubenstein et al., 2023) is evalu- 1409

ated on ASR, S2TT and TTS tasks. Since the train- 1410

ing and evaluation datasets for AudioPaLM and 1411

LauraGPT are disjoint, their performance results 1412

cannot be directly compared. In addition, the pre- 1413

trained model of AudioPaLM has not been released. 1414

Therefore, empirically comparing LauraGPT to Au- 1415

dioPaLM will require great effort and is not con- 1416

ducted in this work. 1417

C More Analyses of Critical Design 1418

Choices 1419

C.1 Effectiveness of Multi-task Finetuning on 1420

the SER task 1421

Table 4 shows that for the SER task, on the MELD 1422

test set, the multi-task trained LauraGPT substan- 1423

tially outperforms the single-task model in terms 1424

of UA and WF1 metrics, while the WA result is 1425

slightly worse. 1426

To further analyze the results of the SER task, 1427

we conduct a statistical analysis of the number of 1428

samples for each emotion class in both training and 1429

test sets of the MELD dataset, as well as their cor- 1430

responding test accuracy. The results are shown 1431

in Table 10. Compared to the single-task model, 1432

the multi-task trained LauraGPT results in degrada- 1433

tion in accuracy for classes with a larger number of 1434
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Table 7: Comparisons with the most related multi-task unified audio-and-text models. The table shows the tasks that
each model is trained and evaluated on.

SpeechT5 Whisper VioLA AudioPaLM LauraGPT(Ours)

Date 2021.10 2022.12 2023.5 2023.6 2023.9
Organization Microsoft OpenAI Microsoft Google Ours
Model Size 0.14B 1.5B 0.25B 8B 2.0B
Pair Data (hrs) 0.96K 680K 79K 48K 60K
Unsup. Pretrain N/A N/A N/A PaLM-2 Qwen-1.8B
Audio Input Continuous Continuous Discrete Discrete Continuous
Audio Output N/A N/A Discrete Discrete Discrete
Languages EN 99 EN/CN 113 EN/CN

ASR ✓ ✓ ✓ ✓ ✓

S2TT ✓ ✓ ✓ ✓ ✓

TTS ✓ ✗ ✓ ✓ ✓

SE ✓ ✗ ✗ ✗ ✓

AAC ✗ ✗ ✗ ✗ ✓

SER ✗ ✗ ✗ ✗ ✓

SLU ✗ ✗ ✗ ✗ ✓

Table 8: Comparison of different models on the ASR task in terms of CER(%) ↓ for Chinese and WER(%) ↓ for
English. Data size denotes the number of hours.

Model Model
Size

Data
Size

AISHELL-1
test

AISHELL-2
test-ios

Librispeech
test-clean

Librispeech
test-other

Paraformer (CN) 0.2 B 60K 2.0 2.9 - -
Paraformer (EN) 0.2 B 20K - - 3.5 8.2
Whisper Large V2 1.5 B 680K 5.7 5.5 2.5 4.9

LauraGPT (Ours) 1.8 B 22K 1.8 3.2 4.4 7.7

Table 9: Comparison of batch normalization (BN) and
layer normalization (LN) on the SE task in terms of
Loop Ratio (%), PESQ and STOI(%). ↑ indicates that
higher values are desired, while ↓ implies the opposite.

Norm Loop Ratio ↓ PESQ ↑ STOI ↑

BN 86.00 1.27 22.0
LN 4.60 2.97 88.0

training samples, while greatly improving the accu-1435

racy on classes with fewer training samples. This1436

explains why WA decreases slightly from multi-1437

task training while UA and WF1 show remarkable1438

improvements. Note that WF1 is the primary1439

metric on the MELD dataset due to sample im-1440

balance across different emotion classes (Chen1441

et al., 2023b). That is, on the primary metric WF1,1442

the multi-task trained LauraGPT greatly outper-1443

forms the single-task model. Furthermore, the ac-1444

curacy of the disgust and fear classes from the1445

single-task model is 0, which aligns with the fact1446

that these two classes have the fewest training sam-1447

ples in the MELD dataset. Multi-task training not 1448

only remarkably improves the performance of emo- 1449

tion classes with low accuracy (joy, sadness, sur- 1450

prise), but also greatly improves the performance 1451

of classes that cannot be predicted with single-task 1452

training (disgust, fear). 1453

C.2 Batch normalization versus layer 1454

normalization in audio encoder 1455

In the original design, batch normalization is 1456

applied after the convolution module in the 1457

Conformer-based audio encoder. However, we dis- 1458

cover that this choice leads to endless looping de- 1459

coding due to inaccurate estimations of mean and 1460

variance, particularly for tasks with long sequence 1461

lengths. When the issue of endless looping de- 1462

coding occurs, the model generates several fixed 1463

tokens repeatedly and cannot stop the generation 1464

until achieving a pre-defined maximum length. To 1465

address this issue, we replace batch normalization 1466

with layer normalization, which is more robust to 1467

various mini-batch sizes. We validate this design 1468
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Table 10: Accuracy on different emotion classes in the SER task from single-task finetuning and multi-task
finetuning.

Model anger disgust neutral joy sadness surprise fear

#Training Samples 1109 271 4710 1743 683 1205 268
#Testing Samples 345 68 1256 402 208 281 50
Single-task 0.396 0.000 0.875 0.119 0.029 0.128 0.000
LauraGPT 0.333 0.103 0.708 0.381 0.236 0.381 0.040

by focusing on the SE task, which generally has1469

the longest sequence among all the included tasks.1470

The results are shown in Table 9. BN means batch1471

normalization while LN means layer normalization.1472

To evaluate the occurring probability of endless1473

loop decoding, we define the metric, “loop ratio”,1474

which represents the fraction of endless decoded1475

cases among all test cases. The results indicate1476

that batch normalization causes a significantly high1477

loop ratio at the inference stage, leading to unac-1478

ceptable PESQ and STOI scores. In contrast, by1479

replacing batch normalization with layer nor-1480

malization, we observe a considerable reduction1481

in the loop ratio to a very low level, thereby1482

greatly improving the speech enhancement per-1483

formance. It should be noted that although the1484

loop ratio of layer normalization is restricted, fur-1485

ther research is still desired to explore more general1486

normalization methods suitable for all audio-and-1487

text tasks.1488

C.3 Impact of initialization from pre-trained1489

models1490

In LauraGPT, both the GPT backbone and audio en-1491

coder are initialized with the weights of pre-trained1492

checkpoints. We investigate how the initialization1493

affects the performance of LauraGPT. The experi-1494

mental results for the ASR, S2TT and SE tasks are1495

presented in Table 11. From the results, we observe1496

that the initialization has a significant impact on1497

the performance of ASR and S2TT tasks, while1498

its influence on the SE task is relatively limited.1499

This suggests that the prior knowledge learned by1500

the GPT backbone is crucial for text generation1501

tasks, but less important for audio generation tasks.1502

Consequently, we hypothesize that a reasonable1503

approach to enhance the quality of generated1504

audios could be to pre-train the GPT backbone1505

not only with text sequences but also with audio1506

token sequences.1507

D Supporting More Complex Tasks 1508

As stated in Section 3.4, with its modular and flexi- 1509

ble design, LauraGPT provides an extensible frame- 1510

work to support complex tasks. By breaking a task 1511

into sub-tasks among the basic tasks used in train- 1512

ing and cascading the raw inputs and model outputs 1513

of sub-tasks, LauraGPT can perform more complex 1514

tasks than the basic tasks. 1515

Similar to the speech-to-speech translation 1516

(S2ST) example, LauraGPT can perform more 1517

complex tasks by chaining together basic tasks as 1518

described above. Here are a few examples of other 1519

complex tasks that LauraGPT can support rather 1520

than doing them one by one. 1521

Rich transcription We can extend LauraGPT 1522

to simultaneously transcribe audio into content, 1523

speaker information (speaker identification, etc), 1524

paralinguistic information (emotion, etc.) and high- 1525

level semantic information (intent, slots, etc.) by 1526

including different task IDs at the generation pro- 1527

cess. This approach could avoid error accumulation 1528

in a pipelined approach and is more efficient than 1529

performing these tasks individually. 1530

Noise-robust ASR We can implement noise- 1531

robust ASR by chaining tasks and creating the fol- 1532

lowing input sequence: [noisy speech embedding, 1533

<SE>, embedding of the enhanced speech, <ASR>]. 1534

Since SE and ASR are jointly trained for LauraGPT, 1535

LauraGPT could effectively exploit embeddings of 1536

the original noisy speech and enhanced speech for 1537

noise-robust ASR. 1538
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Table 11: Impact of initialization on the ASR, S2TT and SE tasks.

Task Dataset Metric w/o init LauraGPT

ASR

AISHELL-1 test CER ↓ 4.3 1.8
AISHELL-2 test-ios CER ↓ 6.0 3.2

LibriSpeech test-clean WER ↓ 8.3 4.4
LibriSpeech test-other WER ↓ 17.6 7.7

S2TT BSTC dev (Zh→En) BLEU ↑ 8.4 17.8
CoVOST2 test set (En→Zh) BLEU ↑ 12.2 38.5

SE
Mixup of LibriSpeech

test-clean, FSD50K and
noise-92

PESQ ↑ 2.88 2.97
STOI ↑ 85.3 88.0

Loop Ratio ↓ 6.00 4.60
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