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Abstract
Value decomposition is widely used in cooper-
ative multi-agent reinforcement learning, how-
ever, its implicit credit assignment mechanism
is not yet fully understood due to black-box net-
works. In this work, we study an interpretable
value decomposition framework via the family
of generalized additive models. We present a
novel method, named Neural Attention Additive
Q-learning (NA2Q), providing inherent intelligi-
bility of collaboration behavior. NA2Q can ex-
plicitly factorize the optimal joint policy induced
by enriching shape functions to model all possi-
ble coalitions of agents into individual policies.
Moreover, we construct identity semantics to pro-
mote estimating credits together with the global
state and individual value functions, where local
semantic masks help us diagnose whether each
agent captures relevant-task information. Exten-
sive experiments show that NA2Q consistently
achieves superior performance compared to dif-
ferent state-of-the-art methods on all challenging
tasks, while yielding human-like interpretability.

1. Introduction
Cooperative multi-agent reinforcement learning (MARL)
has been proven to hold considerable promise for addressing
many challenging real-world problems, e.g., autonomous
driving (Kiran et al., 2021), scene understanding (Chen
et al., 2019), and robotics (Kober et al., 2013; Lillicrap et al.,
2016). Value decomposition (Rashid et al., 2018; Son et al.,
2019; Wang et al., 2021) has witnessed success in handling
the joint action-value function effectively in value-based
MARL methods. This progress has been fueled by black-
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Figure 1. An example of value decomposition via the GAMs family
in MARL, where s ∈ S is the global state, fk ∈ {f1, · · · , f1...n}
denotes the contribution of a shape function to learning individual
or pairwise action values, and Qtot denotes the joint action value.

box neural structures, where the underlying decision process
and credit assignment mechanisms are difficult for humans
to understand and interpret. Hence, explicitly understanding
the decision-making processes and deducing the contribu-
tion of agents is still crucial in the MARL community.

A growing body of work attempts to demystify the decision-
making process of deep reinforcement learning. Instance-
specific approximation methods aim to explain black-box
predictions via the Shapley value (Wang et al., 2020) or clus-
tering (Zahavy et al., 2016) techniques in post-hoc explana-
tion techniques. However, these interpretable methods are
considered computationally expensive (Slack et al., 2021)
and unstable (Ghorbani et al., 2019), i.e., they often misrep-
resent models or agents’ decisions. Other works (Bastani
et al., 2018; Silva et al., 2020) have resorted to imitation
learning to generate post-hoc global explanations aimed at
distilling agent strategies, which lack the transparency of
the original model and do not guarantee performance in
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complex tasks. This landscape has ignited interest in intrin-
sic explanations, particularly in generalized additive models
(GAMs) (Hastie & Tibshirani, 1986). GAMs typically learn
independent shape functions for each feature, whose out-
puts are combined for the final prediction, ensuring isolated
contributions, e.g., NIT (Tsang et al., 2018), NAM (Agar-
wal et al., 2021), and NODE-GAM (Chang et al., 2022).
Moreover, it can model all higher-order feature interactions
with expressive power and easy scalability. These success-
ful interpretable GAMs stimulate our thinking in MARL
domains, i.e., could GAMs facilitate more trustworthy agent
collaboration and efficient credit assignment?

To leverage the benefits of GAM in MARL effectively, we
introduce a unique value decomposition workflow as illus-
trated in in Figure 1. At each timestep t, each agent learns
the decentralized action-value Qi and passes it to the central
GAM while executing the action ui, which then evaluates
the team utility via the joint action-value Qtot. Specifically,
our GAM consists of several independent shape functions,
where each function inputs a marginal or higher-order action
value, outputting the corresponding agent’s team contribu-
tion. We restrict our attention to unary and pairwise shape
functions to maintain interpretability and efficiently infer
credits, helping in isolating individual and pairwise coalition
contributions. However, the causal confounder is correlated
with s and Qtot, creating a spurious correlation among them,
potentially complicating the learning of correct causal rela-
tionships. Drawing inspiration by (Glymour et al., 2016; Li
et al., 2022a), to relieve the spurious correlation between s
and Qtot, we construct local semantics alongside the global
state to compute credits. In this case, it explicitly provides
a perspective on diagnosing whether the individual agent
could effectively avoid the negative influence of focusing on
irrelevant input information. Meanwhile, this brings about
semantic masks that can diagnose agents’ local observations.
We utilize the attention mechanism (Vaswani et al., 2017)
as an intervention term to capture the credit of each shape
function, facilitating effectively capturing credit assignment.
We call this comprehensive solution Neural Attention Addi-
tive Q-learning (NA2Q), which offers a fresh perspective for
interpreting collaboration among agents and understanding
local semantics.

Our contributions are summarized as follows: (1) We pro-
pose a novel value decomposition method, called Neural
Attention Additive Q-learning (NA2Q), which moves a step
towards modeling all possible higher-order interactions and
interpreting their collaboration behavior. We give rigorous
proof that NA2Q guarantees an acceptable regret bound
by enriching the Taylor expansion of Qtot based on the
GAM family. (2) We provide diagnostic insights into what
the agent captured from its observation by maximizing the
observation resemblance and generating masks through en-
coding the local semantics, which is applied to the mixer

to promote credit deduction. (3) Through extensive ex-
periments on challenging MARL benchmarks, NA2Q not
only consistently achieves superior performance compared
to different state-of-the-art methods but also allows for an
easy-to-understand of credit assignment among agents.

2. Preliminaries
2.1. Dec-POMDP

A fully cooperative multi-agent task generally can be formu-
lated as a Dec-POMDP (Oliehoek & Amato, 2016), which
consists of a tuple ⟨N ,S,U ,P, r, O,Ω, γ⟩, where N repre-
sents a finite set of n agents, and s ∈ S describes the global
state of the environment. At each time step, each agent
i ∈ N receives its own observation oi ∈ Ω according to the
partial observation O(s, i) and chooses an action ui ∈ U to
formulate a joint action u = [ui]

n
i=1 ∈ Un. It results in a

next state transition s′ according to the transition function
P(s′|s,u) : S × Un → S and all agents receive a joint
reward r(s,u) : S × Un → R. Moreover, each agent i
learns its own policy πi(ui|τi) : T × U → [0, 1] condi-
tions on its local action-observation history τi ∈ T , and
we define τ ∈ T to denote joint action-observation history.
The formal goal of all agents is to maximize the joint value
function Qπ = E [

∑∞
t=0 γ

trt] that finds an optimal joint
policy π = [πi]

n
i=1, where γ ∈ [0, 1) is a discount factor.

2.2. Credit Assignment in MARL

Value decomposition methods by credit assignment (Sune-
hag et al., 2018; Rashid et al., 2018; Wang et al., 2021)
are the most popular branches in the centralized training
and decentralized execution (CTDE) (Oliehoek et al., 2008)
paradigm. These methods should satisfy the individual-
global-max (IGM) principle (Son et al., 2019) to guarantee
the consistency between local and global greedy actions as

arg max
u∈Un

Qtot(τ ,u) =


arg max

u1∈U
Q1(τ1, u1)

...
arg max

un∈U
Qn(τn, un)

 , (1)

where Qtot ∈ Y is the joint action value for each individual
value function Qi(τi, ui). Under this principle, credit assign-
ment aims to infer the contributions of predecessor value
functions to Qtot (Li et al., 2022a). The decomposition
values [Qi]

n
i=1 ∈ Q are usually transformed into temporal

values [Q̂k]
m
k=1 via a human-designed function fk with the

global state s, where m is the function number. It can rep-
resent a more general formulation as Qtot =

∑m
k=1 αkQ̂k

with the credit αk, and we assume [Qi]
n
i=1 and Qtot are

drawn following a kind of fixed (but unknown) distribution
P : Q → Y . The introduction of representative algorithms
for the above formulation can be referred to in Appendix A.
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3. Theoretical Analysis for Decomposition
Previous value-based studies have achieved great success
in handling the joint action-value function to effectively en-
able CTDE in MARL. However, they often suffer from at
least one of the following limitations: (1) Value decomposi-
tion ideas (Son et al., 2019; Wang et al., 2021; Iqbal et al.,
2021; Rashid et al., 2020) with complex non-linear trans-
formations may often fail to allow us to explicitly model
the contribution of each agent or coalition of agents. (2)
VDN (Sunehag et al., 2018), Qatten (Yang et al., 2020a), and
SHAQ (Wang et al., 2022) measure the importance of each
individual to the team, which ignores potentially all possible
coalitions of all agents. (3) Existing mainstream value de-
composition methods seldom diagnose whether individual
agents can focus on specific information to help the mixer
build a reasonable correlation of credit assignment between
the global state s and the joint value function with a limited
view of their surroundings. To resolve these problems, we
propose a novel interpretable value decomposition method
that uses the neural additive model to learn higher-order
permutation relationships of each agent in terms of the local
expansion of the joint action-value Qtot, which achieves a
better trade-off between performance and interpretability.

Following the general framework of the value decomposi-
tion method, we recall the joint action-value function and
expand it in terms of Qi by the Taylor expansion as

Qtot = f0+

n∑
i=1

αiQi+ · · ·+
n∑

i1,...,il

αi1...il

l∏
j=1

Qij + · · · ,

(2)
where f0 is a constant, all partial derivatives αi = ∂Qtot

∂Qi

of order-1, and αi1...il = 1
l!

∂lQtot

∂Qi1 ...∂Qil
of order-l. In this

term, it can be seen as a simple polynomial GAM expres-
sion (Dubey et al., 2022) with full n order interactions,
which theoretically allows for learning any possible interac-
tion order relationship among all agents. We enrich Eq. (2)
with a general neural additive model (NAM) (Agarwal et al.,
2021), as an extended GAM method, providing more pre-
cise predictions for the contribution of individual agents and
coalitions of agents, which is formulated as

Qtot = f0 +

1⃝ similar to VDN︷ ︸︸ ︷
n∑

i=1

αi fi (Qi)︸ ︷︷ ︸
order-1

+ · · ·+
∑
k∈Dl

αk fk (Qk)︸ ︷︷ ︸
order-l

+ · · ·+

2⃝ e.g., QMIX︷ ︸︸ ︷
α1...n f1...n(Q1, . . . , Qn)︸ ︷︷ ︸

order-n

,

(3)

where fk ∈ {f1, · · · , f1...n}m is a shape function that trans-
forms l local values Qk into a temporal value Q̂k, and Dl

is the set of all non-empty subsets of l ∈ {1, · · · , n} with

order-l interactions, i.e., Dl = {i1 . . . il}. When searching
for a better value decomposition, we are often interested
in this enrichment of the difference. To this end, we in-
troduce the empirical risk minimizer Q̂tot in Eq (3) and
the expected risk minimizer Q⋆

tot in Eq (2) and consider
L(Q̂tot)−L(Q⋆

tot) as a regret bound. The conclusion shows
that an upper bound always exists on our generalization ac-
cording to regret analysis under the 1-Lipschitz loss approx-
imation. We provide approximation guarantees and detailed
derivations for this type of enrichment, which can be found
in Appendix B along with rigorous proofs.

Most existing MARL methods primarily focus on one of the
terms in Eq. (3), aiming to maximize performance while ne-
glecting the different orders of coalition among agents. For
instance, VDN decomposes Qtot into a sum of individual
action values representing only a limited class with order-
1, i.e., it is similar to term 1⃝ with equal credits. QMIX
considers mixing all individual action values as the most
effective value decomposition method falling under term
2⃝, but it does not explicitly show its credit assignment. It

is widely recognized (Lou et al., 2013; Chang et al., 2022)
that it ceases to be interpretable with increasing order in
Eq. (3), e.g., beyond pairwise interactions, albeit with some
advantages to performance. Following this idea, we aim to
maintain both the performance and interpretability of col-
laboration relationships in terms of any order of interaction
by learning each unary and pairwise shape function as

Qtot = f0 +

n∑
i=1

αifi(Qi) +
∑

ij∈D2

αijfij(Qi, Qj). (4)

Furthermore, previous works (Rashid et al., 2018; Iqbal
et al., 2021) typically learn credit αk by the global state s,
with P (Qtot|s) calculated. It brings a spurious association
between s and Qtot that restricts deducing the contributions
of individual agents and sub-teams from the overall suc-
cess (Li et al., 2022a). One possible solution is to impose an
intervention function on s by identifying the local history τi
in an unobservable environment. Moreover, we are unsure
whether the individual agent captures the important informa-
tion that could help the mixer produce the credits from its
observation instead of blindly pursuing performance. To this
end, from the perspective of diagnosing the individual agent,
we explicitly generate an individual semantic zi from τi to
achieve the identity representation, and then decentralized
credit assignment is obtained by calculating

P (Qtot|I(s)) =
∑
z

P (Qtot|s, z)P (z), (5)

where I(·) denotes the intervention function and the joint
semantic z is generated for backdoor adjustment by sam-
pling individual semantics as z = [zi ∼ P (τi)]

n
i=1. It helps

us diagnose whether individual agents focus on the relative
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Figure 2. The overall framework of NA2Q. First, each agent receives its local action-observation history τi and models its individual value
function Qi(τi, ui). Next, we construct the identity semantic zi by encoding τi, and take it together with the global state s to estimate
credits, which provides a captured semantic interpretation. In the mixing network, we transform the local Q-values [Qi]

n
i=1 into temporal

Q-values [Q̂k]
m
k=1 by the shape function fk within order-l, where l ∈ N , which are used to predict the joint Q-value together with credits.

importance of different task-relevant observations during
the decision-making process in a more interpretable manner.

4. Neural Attention Additive Q-learning
Based on the previous analysis in Section 3, we propose a
novel interpretable value decomposition method, called Neu-
ral Attention Additive Q-learning (NA2Q), that explicitly
learns a decomposition mapping for all possible order in-
teractions among agents and captures semantic information
from their observations. Figure 2 illustrates the overall train-
ing procedure. For each agent, NA2Q models a local value
function Qi(τi, ui) and generates the identity semantic zi
by encoding the history τi. In this process, we maximize the
resemblance of observations through decoding to ensure the
accuracy of semantic information and upsample masks as
an interpretation. In the mixer, the local Q-values [Qi]

n
i=1

are transformed into [Q̂k]
m
k=1 by all interactions of shape

functions within order-l among agents, and the united se-
mantics z and the global state s are fed into the intervention
function to estimate credits. The joint value function is pre-
dicted depending on the temporal values [Q̂k]

m
k=1 as well as

credits. It can exactly model the contribution of any agent
or coalition of agents to the overall success by enriching
Eq. (2) with NAM.

Individual Action-Value Function. Following the main-
stream works (Rashid et al., 2018; Wang et al., 2021), we
employ a recurrent Q-function (Hausknecht & Stone, 2015)
with parameter sharing for each agent i. Specifically, each
function takes current local observation oti with previous
action ut−1

i and previous hidden state ht−1
i as inputs, and

then outputs current hidden state ht
i and local Q-value.

Constructing Identity Semantic. For each agent, we con-
sider a general setting in which each agent focuses its ob-
servation on task-relevant regions. To capture this focus, we
construct an underlying latent semantic from a local action
observation of each agent via a variational auto-encoder
(VAE) (Sohn et al., 2015), which can produce semantics cor-
responding to the importance assigned to each input obser-
vation. Over the course of training, the action-observation τi
of each agent i is encoded by the VAE Gω = {Eω1 , Dω2}
to sample its own identity semantic as zi = Eω1

(τi). This
semantic is then used as input for Dω2

and upsampled to
generate an attention mask as Mi = ς(Dω2

(zi)), where
ς(·) represents the sigmoid function. Generally, the mask is
interpreted to show where the agent is “looking” to make a
decision (Shi et al., 2020). To maximize the resemblance
between the identity semantic zi and local observation oi,
the VAE Gω is trained on a loss of the reconstruction obser-
vation along with a KL-divergence as

Lvae =

n∑
i=1

∥oi − õi∥22 +DKL(N (µ, σ)||N (0, I)),

where õi =Mi ⊙ oi and ⊙ represent the overlaid observa-
tion with the mask and the element-wise multiplication, re-
spectively. The normal distribution N (µ, σ) is represented
by deterministic functions, whose introduction is deferred
to Appendix C. Meanwhile, the mask is expected to focus
on as sparse and relevant region information as possible, so
we apply a direct penalty to the mask by L1-norm as

LGω
= Lvae +

n∑
i=1

∥Mi∥1 . (6)
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By training the VAE with parameters ω = {ω1, ω2}, we can
obtain an attention mask to help humans better understand
the local observation and latent identity semantic of each
agent to influence the prediction of its action.

Learning Decomposition with Credit Assignment. To
accomplish the decomposition formation in Eq. (4) and (5),
we let Qtot be decomposed into a neural GAM paradigm
within order-2 by setting l ≤ 2 as

Qtot = f0(s) +

n∑
i=1

αifi(Qi) +

n∑
i=1

n∑
j>i

αijfij(Qi, Qj),

(7)
where f0 is a bias term, univariate and bivariate shape func-
tions fk are nonlinear functions (e.g., lightweight MLPs).
To satisfy the IGM principle in Eq. (1), we restrict all the
network weights to be non-negative by using the absolute in
fk. Considering that more efficient credit assignments can
help local agents predict their actions more precisely, we
also introduce the intervention function to realize decom-
posed training for backdoor adjustment. Specifically, the
credit αk is computed with the identity semantics [zi]

n
i=1

and the global state s through a dot-product attention as

αk = [αi, αij ] =
exp((wzz)

⊤ReLU(wss))∑m
k=1 exp((wzz)⊤ReLU(wss))

, (8)

where ws, wz are the learnable parameters, and ReLU is
employed as the activation function. αk is positive with
softmax operation to ensure monotonicity.

Interpretability. Interpreting decomposition in Eq. (7) is
intuitive as the influence of an individual Q-value on the pre-
diction operates independently of other action values. It is
possible to visualize the mapping relationships by visualiz-
ing the univariate shape function fi, e.g., plotting Qi on the
x-axis and αifi(Qi) on the y-axis. The bivariate shape func-
tion fij is visualized through a heatmap (Lou et al., 2013;
Radenovic et al., 2022), which is commonly used to achieve
interpretation. Note that the visualization of the function
accurately depicts how NA2Q computes a prediction. In
addition, the semantics of individual agents are upsampled
into masks to represent feature importance, increasing the
confidence of local observations on the semantics.

The overall learning objective is to end-to-end train the
whole framework by minimizing the loss L with the mean
squared temporal-difference (TD) error as

L(θ, ω) = ∥Qtot(τ ,u)− y∥22 + βLGω
(9)

where θ, ω are the whole framework parameters and β is
a hyperparameter adjusting the weight of VAE loss. The
target is estimated via Double DQN (Van Hasselt et al.,
2016) as y′ = r + γQtot(τ

′, argmaxu′∈Un Qtot(τ
′,u′)).

We summarize the pseudo-code of the proposed approach
in Appendix D.

5. Experiments
In this section, we demonstrate our experimental results of
NA2Q on challenging tasks over LBF (Christianos et al.,
2020) and SMAC (Samvelyan et al., 2019) benchmarks.
The baselines that we select for comparison are nine popu-
lar value-based baselines, including VDN (Sunehag et al.,
2018), QMIX (Rashid et al., 2018), QTRAN (Son et al.,
2019), Qatten (Yang et al., 2020a), QPLEX (Wang et al.,
2021), Weighted QMIX (Rashid et al., 2020), DVD (Li
et al., 2022a), CDS (Li et al., 2021a), and SHAQ (Wang
et al., 2022). The implementation details of all algorithms
are provided in Appendix F, along with the benchmarks. All
graphs showing performance results for our method, base-
lines, and ablations study are plotted using mean± std with
five random seeds. Further, we present the interpretability
of NA2Q to render empirical evidence about which observa-
tions are of interest to the agents, as well as the contributions
of each agent and coalition. The source code is available at
https://github.com/zichuan-liu/NA2Q.

5.1. Level Based Foraging

We first run the experiments on two constructed LBF tasks,
wherein agents navigate a 10 × 10 grid world and collect
food by cooperating with other agents if needed. Each agent
can observe a 5× 5 sub-grid centering around it. When they
cooperate to eat food that is smaller than their level at each
step, they will receive a positive reward, otherwise, they will
receive a negative reward of −0.002. The action space for
each agent consists of movement in four directions, eating
food, and a “none” action. We evaluate the performance of
various algorithms with two quantities of agents and food.
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Figure 3. Average test return on two constructed tasks of LBF.

Performance on LBF. Figure 3 shows the performance
comparison against baselines on two constructed tasks of
LBF. Our method achieves competitive performance in LBF
tasks, demonstrating its efficiency across a range of sce-
narios. The failure of CDS may be due to the inability of
diverse agents to explore collaborative strategies. VDN,
QMIX, and QTRAN require more steps to discover sophis-
ticated policies, indicating that they are in trouble due to the
limitations of representing spurious relationships between
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1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Qtot = < 0.01 > + < 0.02 + 0.03 + 0.09 + 0.02 > + < 0.10 + + 0.07 >

po
s:

(6
, 4

)

Q1 : 1.83 1f1(Q1) : 0.02

po
s:

(6
, 3

)

Q2 : 1.76 2f2(Q2) : 0.03

po
s:

(8
, 8

)

Q3 : 2.08 3f3(Q3) : 0.09

po
s:

(9
, 2

)

Q4 : 1.44 4f4(Q4) : 0.02

Figure 5. Visualization of the agent’s mask at step 4, and the title
indicates the corresponding credit assignment. The highlighted
areas are the important regions for making decisions.

credits and decomposed Q-values. QPLEX receives a lower
reward than NA2Q before 0.5M timesteps, which may need
more time steps to explore since the complex network ar-
chitecture. Compared to QMIX, DVD obtains improved
performance since it utilizes the de-confounded training
mechanism. NA2Q achieves slightly higher performance
than Qatten. It implies that considering higher-order inter-

actions and fine-grained learning semantics can promote
credit assignment and correctly guide decentralized agents.
Compared to WQMIX and SHAQ, NA2Q achieves nearly
the same performance with better robustness. The reason
may be that providing a reasonable inference path for credit
assignment can assist in improving coordination.

Interpretability of NA2Q. To verify that NA2Q possesses
interpretability, we show its behavior matches that of cor-
responding agents on LBF. Figure 5 illustrates the small
regions that each agent focuses on, and the headings labeled
to show its credits. It is evident that each agent captures
task-relevant semantic information (the highlighted areas in
the heatmaps) to make decisions. Specifically, agents pay
more attention to the food position within their sight range,
and tend to cooperate with teammates when the level of
food is higher than themselves. Agents 1 and 2 only obtain
credit assignments with 0.02 and 0.03, respectively, how-
ever, their pairwise shape function f12 obtains high credit
with 0.10. This implies that they have captured the coopera-
tive skill for eating the food, which should be attributed to
considering the different orders of the coalition of agents
in designing the value decomposition mechanism. Indeed,
this semantic interpretation is also consistent with human
visual patterns (Greydanus et al., 2018) that tend to focus
selectively on parts of the visual space and form collabora-
tive relationships. We likewise show the interpretation for

6



Neural Attention Additive Q-learning

2

3

1

2 3.287  0.982

3 2.473  0.203

1 2.744  0.585

𝑄𝑖 𝛼𝑘𝑓𝑘

0.098

0.013

0.004

1 2

2

31

3

(a) NA2Q: ε-greedy

2

3

1

2 1.257

3 1.337

1 1.464

𝑄𝑖

(b) VDN: ε-greedy

1

2

3

2 0.678

3 0.573

1 0.420

𝑄𝑖

(c) QMIX: ε-greedy

2

2 2.255  1.089

3 3.204  0.317

1 2.917  0.269

3 1

𝑄𝑖 𝛼𝑘𝑓𝑘

0.041

0.485

0.049

1 2

2

31

3

(d) NA2Q: greedy

2

1

3
2 2.806

3 2.766

1 2.811

𝑄𝑖

(e) VDN: greedy

2 0.673

3 0.707

1 0.703

𝑄𝑖

2

3
1

(f) QMIX: greedy

Figure 6. Visualization of evaluation for NA2Q and baselines on 3s vs 5z map. Different
colored circles indicate the corresponding central attack range, while arrows indicate move-
ment or attack direction. Each decomposed Q-value is displayed at the top-right, and for
NA2Q, we report the contribution of its unary and pairwise shape functions to the team. This
shows that the values of VDN and QMIX are difficult to explain, while the Q-values of the
decomposition by NA2Q intend to correspond more clearly to the actions.
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Figure 7. Learned shape function fi by
trained NA2Q on 3s vs 5z scenario. As
expected, individual Q-values increase
with the contribution of the agent.

the whole episode, which can be found in Appendix G.

5.2. StarCraft Multi-Agent Challenge

Further, to broadly compare the performance of NA2Q with
baselines, we conduct experiments on the more challenging
SMAC benchmark, which is a commonly used testbed for
MARL algorithms. At each timestamp, each agent receives
local observations and then obtains a global reward after
making a move or attacking its enemies. We compare the
performance of NA2Q with other baselines on 12 different
scenarios, including easy, hard, and super hard scenarios.
The details of these scenarios can be found in Appendix F.1.

Performance on SMAC. The experimental results for dif-
ferent scenarios are shown in Figure 4. We can find that
NA2Q could consistently gain almost the best performance
on all scenarios, especially on the super hard tasks. QTRAN
does not yield satisfactory performance, which may be due
to the relaxation in practice that is insufficient for challeng-
ing domains. Both baseline VDN and QMIX can achieve
satisfactory performance on some easy or hard maps, such
as 5m vs 6m, but in super hard maps they fail to well solve
the tasks. Intuitively, super hard scenarios require more
coordination skills, while their mixing network hardly cap-
tures the different interaction relationships among agents.
Similarly, QPLEX and WQMIX do not perform well de-
spite relaxed restrictions on the joint value function, which
may contribute to inefficient value decomposition without
considering the local semantics. Qatten falls short in sat-
isfactory performance on super hard tasks, which implies

that the lack of finely learned individual semantics brings
about a spurious correlation between s and Qtot and thus
limits performance. One possible reason for CDS not per-
forming as well as reported by Li et al. (2021a) is that
paying more attention to policy diversity leads to instabil-
ity during the learning stage, especially in less-agent maps,
e.g., 2c vs 64zg. SHAQ only achieves comparable perfor-
mance with NA2Q in the corridor map, which seems to have
difficulty adapting to all scenarios. The reason could be
that SHAQ ignores high-order interactions among agents.
DVD only attains comparable performance with NA2Q on
2c vs 64zg map, and struggles to achieve competitive per-
formance on the other scenarios, probably due to the fact
that it neglects to explicitly consider high-order interactions
among agents. In particular, for super hard task 6h vs 8z,
NA2Q still maintains superior performance, while almost
all the baselines are unable to learn efficient strategies. It
validates that enriching shape functions for estimating cred-
its over each agent and the coalition of agents can boost
efficient value decomposition. In summary, our approach
achieves impressive performance on all scenarios, showing
the advantage of NA2Q with attentive design. More empiri-
cal results can be referred to Figure 12 in Appendix H.

Interpretability and Stability. To intuitively show the
interpretability of NA2Q, we display some keyframes on
3s vs 5z scenario as shown in Figure 6. We first consider the
suboptimal action by ε-greedy. As seen from Figure 6(a),
Agent-3 escapes from its teammates and receives a lower
contribution relative to the allies, which can be understood
as meaning that it does not contribute to the team. Mean-
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Figure 8. Ablation studies of NA2Q on SMAC benchmark.

while, NA2Q can also provide pairwise contributions among
agents, whose contributions are close to 0 when they do not
collaborate. However, it is hard to explicitly understand the
behavior of VDN and QMIX from their Q-values. As for
optimal actions of NA2Q, Agent-2 plays an essential role in
kiting enemies at this time step and obtains a higher contribu-
tion of 1.089, which is a crucial trick to victory that the agent
can learn how to kite the enemies effectively (Samvelyan
et al., 2019). An interesting finding is that Agent-1 and
Agent-3 siege the enemy and their coalition contribution
is remarkably higher than other coalitions. This shows the
advantage of considering different orders of interactions
among agents, which can facilitate deducing the contribu-
tions of each agent in value decomposition. Whereas VDN
produces the same action and does not possess an explicit
interpretation as NA2Q since it only considers order-1 for
credit assignment. For QMIX, the agents’ behaviors are
also difficult to understand because the Q-values are roughly
equal. A detailed description of NA2Q about observation
semantics and agent contributions is deferred to Appendix I.

The interpretability of models is intrinsically coupled to
their stability. To assess stability, we evaluate 10 models
with different random seeds on 3s vs 5z scenario, collecting
32 rounds of interaction data for each model and plotting
the shape functions with semi-transparent lines. As shown

in Figure 7, we display the average contribution of each
shape function, where the blue lines and pink bars indicate
the contribution of each agent to the team and the Q-value
distribution, respectively, where a bar with an intense color
means larger samples located here. As expected, the crim-
son area on the leftmost side represents its Q-value when
an agent died, which means the agent had a lower contri-
bution to the team. Most samples of Agent-1 and Agent-3
are gathered around 3.00 with larger positive contribution
values, which implies that they spend more time step attack-
ing enemies. We also find that most samples of Agent-2 are
gathered with a negative contribution value. The reason may
be that Agent-2 pays more attention to kiting the enemies,
causing deaths to always occur earlier and having more dead
Q-values. Moreover, we compute the standard deviation of
the plotted shape functions to be 0.124, and the shape func-
tions do not appear to deviate significantly, even for a few
data points (white/light areas). This finding attests to the
robustness and resilience of our novel value decomposition
mechanism, further enhancing interpretability.

5.3. Ablation Study

To understand the impact of each component in the pro-
posed method, we conduct ablation studies to answer the

8
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following questions: (a) How does the model’s performance
benefit from the number of interaction orders among agents?
(b) How do identity semantics influence performance? (c)
Whether the intervention function is rational for value de-
composition? To study component (a), we ablate shape func-
tions for different order numbers named NA2Q (order≤ l) in
Eq. (3). Since higher-order interactions will decrease com-
putational efficiency due to permutations, we select three
different order interactions by setting 1 ≤ l ≤ 3. To study
components (b) and (c), NA2Q-w/o-semantic represents re-
placing identity semantics z with global state s in Eq. (8),
and NA2Q-w/o-attention represents ablating attention mech-
anism for credit assignment, respectively. Additionally,
since VDN and Qatten can be seen as special order-1 shape
functions, we take them as a baseline for comparison.

We carry out ablation studies on three hard and super hard
scenarios, and present the results in Figure 8. As shown
in Figure 8(a), NA2Q achieves better performance as the
number of order interactions increases, which validates the
importance of considering higher-order interaction relation-
ships among agents. Why not then have the number of order
interactions as large as possible? A potential drawback is
that an excessive number of order interactions might hurt in-
terpretability, as shape functions beyond pairs are harder to
visualize. Generally, moderate order terms (e.g., l ≤ 2) are
enough for an appropriate trade-off between performance
improvement and interpretability. In Figure 8(b), the ab-
lation of each part of our intervention function brings a
noticeable decrease in performance. Specifically, the perfor-
mance of NA2Q-w/o-attention and VDN decreases, which
indicates that the global state information is beneficial to
estimate the credit assignment. Besides, the performance
of NA2Q-w/o-attention is slightly higher than VDN because
it considers more possible interactions among agents, lead-
ing to more capabilities than linear order-1 interactions.
NA2Q-w/o-semantic performs slightly worse than NA2Q,
which indicates the fine learning identity semantics own the
greater representation ability to keep track of the feature
influence of each agent. Additionally, the performance of
NA2Q-w/o-semantic is consistently superior to Qatten on a
range of tasks, which implies that high-order interactions
among agents can provide more capacity to search for effi-
cient patterns of cooperation. To summarize, NA2Q that is
conditioned on all parts gives the best performance while re-
taining interpretability, which improves flexibility and saves
human labor.

6. Conclusion
In this paper, we present NA2Q in the scope of value de-
composition, which combines the inherent interpretability
of GAMs, opening the door for other advances in the inter-
pretability perspective of MARL. NA2Q allows for end-to-

end training in a centralized fashion and models higher-order
interactions to deduce precise credit for executing decentral-
ized policies. Moreover, we provide local semantic masks as
evidence for decision-making. The empirical results show
that NA2Q enjoys its interpretability and scalability while
maintaining competitive performance. We believe that our
work proves a solid basis for further research and could
catalyze the community’s effort toward understanding co-
operative tasks. A promising direction for future work is
improving the performance of NA2Q by considering higher-
order coalitions of agents. However, they might worsen the
intelligibility of the learned NA2Q with higher-order agent
interactions, especially as the number of agents increases. It
would be interesting to explore an efficient representation
for interpreting a large-scale agent system, such as cluster-
ing similar terms in the NA2Q framework.
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des sciences de Toulouse: Mathématiques, pp. 245–303,
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A. Credit Assignment for Value Decomposition Algorithms
Previous work (Li et al., 2022a) defined the general formula for credit assignment in value decomposition methods as

Qtot =

m∑
k=1

αkQ̂k, (10)

where Q̂k is transformed as a temporal value by fk(·) and αk denotes a credit that expresses the contribution of the temporal
value to the joint action-value Qtot. This formula can be applied for generalization in widely investigated approaches of
mixing networks based on value decomposition, next we introduce these methods in detail1.

The first method is VDN (Sunehag et al., 2018), which seeks to learn a joint value function Qtot(τ ,u) via equal credit
assignment. It represents Qtot as the sum of all individual value functions as Qtot =

∑n
i=1 Qi without the use of additional

state information., where Eq. (10) can be rewritten when m = n, αk = 1, and Q̂i = fi(Qi).

More common algorithms transform the local Q-values into the temporal Q-values via the global state s. For example,
QMIX (Rashid et al., 2018) can be represented by a monotonic neural network f1...n(·) with the global state s as

[Q̂k]
m
k=1 = f1...n(Q1, . . . , Qn),

∂f1...n
∂Qi

> 0,

where k ∈ {1, · · · ,m} denotes the embedding number. Then the credit αk(s) is calculated by another monotonic neural
network and utilized in Eq. (10). Some methods that improve on QMIX, e.g, Qatten (Yang et al., 2020a) replace the neural
network f1...n into an attention mechanism, Weighted QMIX (Rashid et al., 2020) uses different weights on TD error, and
CDS (Li et al., 2021a) improves diversity among agents by constructing intrinsic rewards.

Further, QPLEX (Wang et al., 2021) combines QMIX and VDN in a dueling mixing network as

Qtot =

n∑
i

αiQ̂i + α1...nf1...n(Q1, . . . , Qn),
∂f1...n
∂Qi

> 0,

where Q̂i = Qi represents the local temporal value and f1...n represents the advantage function to get Q̂1...n, which also
uses an attention mechanism. Therefore, it is equivalent to Eq. (10) when m = n+ 1 and αk ∈ {α1, · · · , αn, α1...n}m. It
is straightforward to notice that QPLEX is the sum of term 1⃝ and term 2⃝ in Eq. (3).

The last method SHAQ (Wang et al., 2022) improves the credit assignment of QMIX via Shapley theory for interpretation,
which can also be expressed by Eq. (10).

B. Approximation Guarantees for NA2Q
Inspired by non-linear GAMs, e.g., NAM (Agarwal et al., 2021) and SPAM (Dubey et al., 2022), we modify the decomposi-
tion of Q = [Qi]

n
i=1 ∈ Q in Eq. 3 by rewriting the order number 1 ≤ l ≤ n with the shape functions as

Qtot = f0 + λ1d · ⟨a1d, F1(Q)⟩+
ρ2∑
d=1

λ2d · ⟨a2d, F2(Q)⟩2 + · · ·+
ρn∑
d=1

λnd · ⟨and, Fn(Q)⟩n , (11)

where {λld}ρl

d=1 and {ald}ρl

d=1 are the corresponding eigenvalues and bases for credit matrix αl = {αDl
} to represent

the order-l interactions between all non-empty subsets of l ∈ N , ρl ∈ {1, ρ2, · · · , ρn} denotes the rank of the tensor,
and the function Fl(Q) = [fl1(·), fl2(·), · · · , fln(·)] ∈ Fl is a family of shape functions in the order-l. Next, we present
learning-theoretic and approximation guarantees for this type of enrichment, with a more precise regret bound.

Assumption B.1. (η - Exponential Spectral Decay of Approximation.) For the family of all decomposition Q ∈ Q as
outlined in Eq. (11), we assume that there exist absolute constants C1 < 1 and C2 = O(1) such that λld ≤ C1 exp(−C2 ·dη)
for each l ∈ N and d ≥ 1.

Assumption B.1 provides a soft threshold for singular value decay, i.e., implying that only a few decay degrees of freedom
are sufficient to accurately approximate fk. We consider the general results under the 1-Lipschitz loss approximated by

1For convenience, all bias networks are omitted if existing.
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this enrichment decomposition of the metric regret bound. Let us denote the Taylor expansion decomposition in Eq. (2) as
Qtot(τ ,u) : Q → Y . Thus, we aim to bound the expected risk in Eq. (2) with the empirical risk in Eq. (3) to demonstrate
that learning an enrichment decomposition method does not incur a larger error compared with learning the Taylor expansion.
At a high level, for any function Qtot(τ ,u) : Q → Y and bounded 1-Lipschitz loss ℓ : Y × Y → [0, 1], the empirical risk
over b samples from B as L̂b(Qtot(τ ,u)) =

1
b

∑b
j=1 ℓ(Qtot, y). We donate Q̂tot as the empirical risk minimizer, then,

Q̂tot = argminQtot∈Y L̂b(Qtot(τ ,u)). (12)

Similarly, the expected risk can be given, over the sample distribution P as L(Qtot(τ ,u)) = E([Qi]ni=1,y)∼P[ℓ(Qtot, y)].
Then we have that the optimal expected risk minimizer Q⋆

tot as

Q⋆
tot = argminQtot∈YL(Qtot(τ ,u)). (13)

Our preparation is complete, so we can now discuss the regret bound for our generalization. We state the full Theorem here.
Theorem B.2. Let ℓ be 1-Lipschitz, δ ∈ (0, 1] and Assumption B.1 hold with constants {C1, C2, η}. Then, for L1-norm
models, where ∥ald∥1 ≤ Ba, 1 ≤ l ≤ n, and ∥λ∥1 ≤ Bλ where λ = {{λld}ρl

d=1}nl=1, there exists some absolute constants
{C1, C2} with probability at least 1− δ, δ ∈ (0, 1] that we have

L(Q̂tot)− L(Q⋆
tot) ≤ 2Bλ ·

(
n∑

l=1

(Ba)
l

)√
log(n)

b
+

C1

C2
·

(
n∑

l=1

exp(−ρηl )

)
+ 2(
√
2 + 1) ·

√
log(2/δ)

b
. (14)

Proof. For the expected function Q⋆
tot, we also denote the corresponding eigenvalues as {{λ⋆

ld}
ρl

d=1}nl=1 and bases as
{{a⋆

ld}
ρl

d=1}nl=1. Consider the Q̃tot ∈ Y that is a “truncated” version of the optimal Q⋆
tot. Therefore, we can rewrite the

regret bound as

L(Q̂tot)− L(Q⋆
tot) = L(Q̂tot)− L̂b(Q̂tot)︸ ︷︷ ︸

1⃝
+ L̂b(Q̂tot)− L̂b(Q̃tot)︸ ︷︷ ︸

≤0

+ L̂b(Q̃tot)− L(Q⋆
tot)︸ ︷︷ ︸

2⃝
,

where the middle term L̂b(Q̂tot)− L̂b(Q̃tot) ≤ 0 since Q̂tot minimizes the empirical risk in Eq. (13). Therefore, binding on
terms 1⃝ and 2⃝ can provide us with a proof of the bound. The bound for term 2⃝ is tractable, which can be proved via
Lemma B.3. Hence with probability at least 1− δ, δ ∈ (0, 1], we have that

L̂b(Q̃tot)− L(Q⋆
tot) ≤

n∑
l=1

C1

C2
· exp(−ρηl ) + 2

√
log(2/δ)

b
. (15)

Then inspired by Radenovic et al. (2022), we handle the term 1⃝ via bounding the Rademacher complexity (Wainwright,
2019). The loss function ℓ is Lipschitz and bounded, with probability at least 1− δ for any δ ∈ (0, 1] over samples of length
b. These conditions allow us to apply Theorem 8 and Theorem 12 from Bartlett & Mendelson (2002), whose proof uses
McDiarmid’s inequality. Thus we have that

L(Q̂tot)− L̂b(Q̂tot) ≤ Rb(ℓ ◦ F) +
√

8 log(2/δ)

b
,

where F denotes the set of all joint value functions represented, i.e, ∀Qtot(τ ,u) ∈ F , andRb is the empirical Rademacher
complexity. According to the Theorem 12 from Bartlett & Mendelson (2002),Rb(ℓ◦F) ≤ 2L·Rb(F) ≤ 2L·

∑n
l=1Rb(Fl).

Thus, we can put all the order terms together since ℓ is L-Lipschitz, and rewrite the above equation as

L(Q̂tot)− L̂b(Q̂tot) ≤2L ·
n∑

i=1

Rb(Fi) + 2
√
2 ·
√

log(2/δ)

b
,

where Fl denotes the family of Fl(·) in the order-l. Therefore, since we consider the L1-norm models, there exist eigenvalue
∥λ∥1 ≤ Bλ and base vector ∥ald∥1 ≤ Ba, where ∀l ∈ N and ∀d ∈ {1, · · · , ρl}. Under these constraints, the term 1⃝ can
bound the empirical Rademacher complexity via Lemma 3 from Dubey et al. (2022) and Lemma 5.2 from Massart (2000),
and we have

L(Q̂tot)− L̂b(Q̂tot) ≤ 2Bλ ·

(
n∑

l=1

(Ba)
l

)
·
√

log(n)

b
+ 2
√
2 ·
√

log(2/δ)

b
. (16)

Finally, the bound for combining Eq. (15) and Eq. (16) provides us with the results of the proof.
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Lemma B.3. With probability at least 1− δ for any δ ∈ (0, 1] and some absolute constants {C1, C2}, we have that

L̂b(Q̃tot)− L(Q⋆
tot) ≤

n∑
l=1

C1

C2
· exp(−ρηl ) + 2

√
log(2/δ)

b
.

Proof. Observe,

L̂b(Q̃tot)− L(Q⋆
tot) =L̂b(Q̃tot)− L(Q̃tot) + L(Q̃tot)− L(Q⋆

tot)

≤
∣∣∣L̂b(Q̃tot)− L(Q̃tot)

∣∣∣︸ ︷︷ ︸
2a⃝

+
∣∣∣L(Q̃tot)− L(Q⋆

tot)
∣∣∣︸ ︷︷ ︸

2b⃝

.

To bound 2a⃝, we have sample points ∈ P in a batch b that satisfies L(Q̃tot) = E[ℓ(Q̃tot, y)], where 0 ≤ ℓ(·, ·) ≤ 1. Hence
we employ Azuma-Hoeffding’s inequality (Bercu et al., 2015) and substitute the reproducing Hilbert space (RHS) (Berlinet
& Thomas-Agnan, 2011) probability with 1− δ, which can be rewritten in terms as∣∣∣L̂b(Q̃tot)− L(Q̃tot)

∣∣∣ ≤ 2

√
log(2/δ)

b
.

Since ℓ is L-Lipschitz, we have for some {Q̃tot, Q
⋆
tot, y} ∈ Y ,∣∣∣ℓ(Q̃tot, y)− ℓ(Q⋆

tot, y)
∣∣∣ ≤ ∣∣∣L · |Q̃tot − y| − L · |Q⋆

tot − y|
∣∣∣

=L ·
∣∣∣|Q̃tot − y| − |Q⋆

tot − y|
∣∣∣

≤L ·
∣∣∣Q̃tot −Q⋆

tot

∣∣∣ .
Thus, when L = 1, the bound 2b⃝ is derived as∣∣∣L(Q̃tot)− L(Q⋆

tot)
∣∣∣ ≤ ∣∣∣E([Qi]ni=1,y)∼P[ℓ(Q̃tot, y)− ℓ(Q⋆

tot, y)]
∣∣∣

≤E([Qi]ni=1,y)∼P

[
|ℓ(Q̃tot, y)− ℓ(Q⋆

tot, y)|
]

≤L · E([Qi]ni=1,y)∼P

[
|Q̃tot −Q⋆

tot|
]

≤L · sup
Q∈Q
|Q̃tot −Q⋆

tot|

= sup
Q∈Q
|Q̃tot −Q⋆

tot|.

Observing now that ∀Q ∈ Q, we have

∣∣∣Q̃tot −Q⋆
tot

∣∣∣ =
∣∣∣∣∣∣

n∑
l=1

ρl∑
d=ρl

λ⋆
ld · ⟨a⋆

ld, Fl(Q)⟩l
∣∣∣∣∣∣

≤
n∑

l=1

ρl∑
d=ρl

∣∣∣λ⋆
ld · ⟨a⋆

ld, Fl(Q)⟩l
∣∣∣

≤
n∑

l=1

ρl∑
d=ρl

|λ⋆
ld| ,

when hold on Assumption B.1, we have that λld = C1 exp(−C2 · dη) if obeys the η-exponential spectral decay. Thus,

n∑
l=1

ρl∑
d=ρl

|λ⋆
ld| ≤

n∑
l=1

ρl∑
d=ρl

C1 exp(−C2 · dη) ≤
n∑

l=1

∫ ∞

d=ρl

C1 exp(−C2 · dη).
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Since η ≥ 1, we can bound by the Eq. (E.16) from Yang et al. (2020b) with the RHS as∣∣∣Q̃tot −Q⋆
tot

∣∣∣ ≤ n∑
l=1

∫ ∞

d=ρl

C1 exp(−C2 · dη) ≤
n∑

l=1

C1

C2
exp(−ρηl ).

Therefore, we finish the proof of Lemma B.3.

C. Variational Auto-Encoder Background
A variational auto-encoder (VAE) (Sohn et al., 2015) is a popular generative model to learn an attention mask, e.g., U-
Net (Ronneberger et al., 2015) for semantic segmentation. VAE aims to maximize the marginal log-likelihood log p(T ) =∑b

j=1 log p(τ
j), where T = [τ j ]bj=1 ∈ T denotes the set of local action-observation histories from B, and it is common to

replace the optimized variational lower-bound as

log p(T ) ≥ Eq(T |z) [log p(T |z)] +DKL(q(z|T )||p(z)),

where p(z) generally is a multivariate normal distribution N (0, I) to represent the prior. We define the posterior q(z|T ) =
N (z|µ, σ2(T )I) as the encoder Eω1 and p(T |z) as the decoder Dω2 . It is understood that given a sample τ is fed into the
VAE to produce a latent semantic vector z, and then this vector is reconstructed into the desired sample by training. To
apply gradient descent on the variational lower-bound, we allow the re-parametrization trick (Rezende et al., 2014) to train
on a reconstruction loss with a KL-divergence as

Ez∼N (µ,σ) [f(z)] = Eν∼N (0,I) [f(µ+ σν)] .

Thus µ and σ can be represented by deterministic functions, allowing for back-propagation.

D. Pseudo Code

Algorithm 1 Neural Attention Additive Q-learning
Initialize a set of agents N = {1, 2, · · · , n}
Initialize networks of local agents Qi(τi, ui; θ) and target networks Qi(τ

′
i , u

′
i; θ̂), Gω̂ with θ̂ ← θ

Initialize a VAE Gω = {Eω1
, Dω2

} with parameters ω
Initialize a replay buffer B for storing episodes
repeat

Initialize a history embedding h0
i and an action vector u0

i for each agent
Observe each agent’s partial observation

[
o1i
]n
i=1

for t = 1 : T do
Get τ ti =

{
oti, h

t−1
i

}
for each agent and calculate the individual value function Qi(τ

t
i , u

t−1
i )

Get the hidden state ht
i and select action ut

i via value function with probability ε exploration
Unsampled n identity semantic masks [Mi ∼ Gω(h

t
i)]

n
i=1 as an interpretation

Execute ut
i to receive the reward rt, next state st+1

end for
Store the episode trajectory to B
Sample a batch of episodes trajectories with batch size b from B
for t = 1 : T do

Calculate µ, σ = Eω1
(τ ti ) and identity semantics z = [zi ∼ N (µ, σ)]ni=1

Get õi =Mi ⊙ oi and calculate LGω via Eq. (6)
Get the attention weight αk(z, s) by the intervention function in Eq. (8)
Calculate the joint value function within order-2 interactions via Eq. (7)

end for
Construct the loss function defined in Eq. (9)
Update ω and θ by minimizing the above loss
Periodically update θ̂ ← θ

until Qi(τi, ui; θ) converges
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E. Related work
Value Decomposition in MARL. Since the joint action space grows exponentially in proportion to the number of participat-
ing agents (Yang et al., 2018), the centralized training and decentralized execution (CTDE) (Oliehoek et al., 2008) paradigm
is proposed to relieve this issue and become a mainstream framework in MARL. One of the crucial challenges in CTDE is
credit assignment, which aims to infer how much each agent contributes to the overall success. Under the CTDE framework,
VDN (Sunehag et al., 2018) assumes that any joint action-value function can be decomposed into a linear summation of
individual value functions. Nevertheless, this equivalent factorization limits the credit assignment of the global Q-value.
To mitigate this issue, some implicit credit assignment methods, e.g., QMIX (Son et al., 2019) and QTRAN (Wang et al.,
2021), represent the joint value function into a richer family for value decomposition with complex nonlinear transformation
function. Further, Weighted QMIX (Rashid et al., 2020) proposes a weighted projection to decompose the joint action-value
function, and PMIC (Li et al., 2022b) utilizes more effective mutual information to collaborate better. However, these
methods neglect causal explanations in credit assignment, which may be unreasonable since suboptimal actions lack an
explicit reasoning mechanism. They entangle the interactions at temporal hidden layers for credit assignment. Thus, recent
works (Wang et al., 2022; Li et al., 2021b) apply the Shapley theory to trustworthiness for inferring the credits, where
fairness is achieved by considering the incremental marginal contribution of one of the agents. These methods fail to
interpret the impact of agent observation on decision-making or explicitly present how they cooperate with each other.
Whereas glass-box models in MARL, e.g., mixture soft decision trees (Liu et al., 2022) and visual perception (Blumenkamp
& Prorok, 2021), do not achieve exciting performance. To resolve these problems, we propose a novel interpretable value
decomposition method in this paper.

Generalized Additive Models. GAMs are generally regarded as powerful inherently-interpretable models in the machine
learning community (Hastie & Tibshirani, 1986). It independently learns a shape function for each feature and sums the
outputs of these functions to obtain the final model prediction. Previous work (Lou et al., 2013) has found that standard
forms of GAMs are limited in their representational power due to the absence of learning interactions between inherent
features. As an improvement, Lou et al. (2013) proposed GA2M that incorporates the complexity of pairwise interactions
into GAMs. To improve stability and performance, different variants of shape functions in GAMs have been investigated,
including deep neural networks (Agarwal et al., 2021), polynomial kernel models (Dubey et al., 2022), and oblivious
decision trees (Chang et al., 2022). Further, NIT (Tsang et al., 2018) and pureGAM (Sun et al., 2022) reduce complexity by
adding constraint terms, achieving increased interpretability. Our work falls under the umbrella of the GAM family. We are
the first to develop GAMs in value-based MARL by utilizing them to disentangle the joint action-value function across
different interactions, thereby obtaining intrinsic and interpretable higher-order shape functions of the agents.

F. Experimental Details
F.1. Benchmarks and Settings

In our paper, we introduce two types of testing benchmarks as shown in Figure 9, including Level Based Foraging (LBF)
and StarCraft Multi-Agent Challenge (SMAC). In this section, we will describe the details and settings of these benchmarks.

1

32

2

1

1

(a) Level Based Foraging (b) StarCraft Multi-Agent Challenge

Figure 9. Two benchmarks used in our experiments.
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Table 1. Experimental settings of Level Based Foraging.

HYPERPARAMETER VALUE DESCRIPTION

MAX PLAYER LEVEL 3 MAXIMUM AGENT LEVEL ATTRIBUTE
MAX EPISODE LENGTH 50 MAXIMUM TIMESTEPS PER EPISODE
BATCH SIZE 32 NUMBER OF EPISODES PER UPDATE
TEST INTERVAL 10,000 FREQUENCY OF EVALUATING PERFORMANCE
TEST EPISODES 32 NUMBER OF EPISODES TO TEST
REPLAY BATCH SIZE 5000 MAXIMUM NUMBER OF EPISODES STORED IN MEMORY
DISCOUNT FACTOR γ 0.99 DEGREE OF IMPACT OF FUTURE REWARDS
TOTAL TIMESTEPS 1,050,000 NUMBER OF TRAINING STEPS
START ε 1.0 THE START ε VALUE TO EXPLORE
FINISH ε 0.05 THE FINISH ε VALUE TO EXPLORE
ANNEAL STEPS FOR ε 50, 000 NUMBER OF STEPS OF LINEAR ANNEALING
TARGET UPDATE INTERVAL 200 THE TARGET NETWORK UPDATE CYCLE

Table 2. Introduction of scenarios in SMAC benchmark.

MAP NAME ALLY UNITS ENEMY UNITS TOTAL TIMESTEPS SCENARIO TYPE

8m 8 MARINES 8 MARINES 2M EASY
2s3z 2 STALKERS, 3 ZEALOTS 2 STALKERS, 3 ZEALOTS 2M EASY

2s vs 1sc 2 STALKERS 1 SPINE CRAWLER 2M EASY
3s5z 3 STALKERS, 5 ZEALOTS 3 STALKERS, 5 ZEALOTS 2M HARD

3s vs 5z 3 STALKERS 5 ZEALOTS 2M HARD
2c vs 64zg 2 COLOSSI 64 ZERGLINGS 2M HARD
5m vs 6m 5 MARINES 6 MARINES 2M HARD
8m vs 9m 8 MARINES 9 MARINES 2M HARD

MMM2
1 MEDIVAC, 2 MARAUDERS, 1 MEDIVAC, 3 MARAUDERS,

2M SUPER HARD
AND 7 MARINES AND 8 MARINES

3s5z vs 3s6z 3 STALKERS, 5 ZEALOTS 3 STALKERS, 6 ZEALOTS 5M SUPER HARD
corridor 6 ZEALOTS 24 ZERGLINGS 5M SUPER HARD
6h vs 8z 6 HYDRALISKS 8 ZEALOTS 5M SUPER HARD

Level Based Foraging. Christianos et al. (2020) first uses this implementation of LBF. This environment is a mixed game
of cooperation and competition. Specifically, agents are placed in a 10× 10 grid world and each one is assigned a level. The
observation of an agent has a 5× 5 field of view around it. Their goal is to eat food that is also randomly scattered. Only if
the total level of the agents involved in eating is equal to or higher than the food level does the agents receive a positive
reward, which is the normalized food level. Furthermore, we set the penalty reward for movement to −0.002. On this basis,
we use two task instances with different configurations, of which one is 2 food with 4 agents, and 3 food with 3 agents. We
give other experimental settings in Table 1.

StarCraft Multi-Agent Challenge. The SMAC (Samvelyan et al., 2019) is one of the most popular multi-agent environments
to test the performance of MARL algorithms. All algorithm implementations are based on StarCraft II (SC2.4.10 version)
unit micromanagement tasks, and note that results from different versions are not comparable. We set the built-in AI
difficulty of all enemy units by configuring difficulty=7, and all allied units are controlled by the corresponding RL algorithm.
The allies need to learn a series of strategies to defeat all the enemies and win within the specified exploration length. In this
paper, we evaluate all algorithms on 12 challenging combat scenarios in SMAC, and Table 2 presents a brief introduction
of these scenarios and the maximum training step. Furthermore, the specific environmental settings adhere to the original
setups, as described in Table 3.

F.2. Hyperparameters of Baselines

We compare our method against nine popular value-based baselines, including VDN (Sunehag et al., 2018), QMIX (Rashid
et al., 2018), QTRAN (Son et al., 2019), Qatten (Yang et al., 2020a), QPLEX (Wang et al., 2021), Weighted QMIX (mainly
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Table 3. Experimental settings of StarCraft Multi-Agent Challenge.

HYPERPARAMETER VALUE DESCRIPTION

DIFFICULTY 7 ENEMY UNITS WITH BUILT-IN AI DIFFICULTY
BATCH SIZE 32 NUMBER OF EPISODES PER UPDATE
TEST INTERVAL 10,000 FREQUENCY OF EVALUATING PERFORMANCE
TEST EPISODES 32 NUMBER OF EPISODES TO TEST
REPLAY BATCH SIZE 5000 MAXIMUM NUMBER OF EPISODES STORED IN MEMORY
DISCOUNT FACTOR γ 0.99 DEGREE OF IMPACT OF FUTURE REWARDS
START ε 1.0 THE START ε VALUE TO EXPLORE
FINISH ε 0.05 THE FINISH ε VALUE TO EXPLORE
ANNEAL STEPS FOR EASY & HARD 50,000 NUMBER OF STEPS OF LINEAR ANNEALING ε
ANNEAL STEPS FOR SUPER HARD 100,000 NUMBER OF STEPS OF LINEAR ANNEALING ε
TARGET UPDATE INTERVAL 200 THE TARGET NETWORK UPDATE CYCLE

Table 4. The specific structure of the shape function.

NO. STRUCTURE

1ST LAYER [ABS(LINEAR.WEIGHT), LINEAR(ORDER NUMBER, 8), ELU]
2ND LAYER [ABS(LINEAR.WEIGHT), LINEAR(8, 4), ELU]
3RD LAYER [ABS(LINEAR.WEIGHT), LINEAR(4, 1)]

OW-QMIX, and we rename it WQMIX in our experiments) (Rashid et al., 2020), CDS2 (Li et al., 2021a), DVD (Li
et al., 2022a), and SHAQ3 (Wang et al., 2022), whereas the implementation of baselines is based on PyMARL4. All
hyperparameters follow the code provided by the authors, and are maintained at a learning rate of 0.0005 by the RMSprop
optimizer. Note that the learning rate of SHAQ is fine-tuned to each different scenario, which is unfair to the other baselines,
hence the hyperparameters are set identically to others.

F.3. Hyperparameters of NA2Q

In this paper, we utilize a recurrent style local Q-network with its default hyperparameters, specifically, the individual Q-
function Qi(τi, ui) contains a GRU layer with a 64-dimensional hidden state and a ReLU activation layer. The optimization
for individual Q-functions is conducted using RMSprop with weight decay and a learning rate of 0.0005. Regarding the
generative model Gω , both encoder and decoder are comprised of two fully connected layers with a 32-dimensional hidden
state, optimizing the learnable parameters by Adam with a learning rate of 0.0005. Additionally, we set the weight β of the
loss to 0.1. In the mixing network, we employ a small dimensional MLP for each shape function fk in order-1 and order-2,
whose details are shown in Table 4. Finally, for the attention mechanism, we set the hidden layer size to 64 for ws and wz .

F.4. Infrastructure

Experiments are performed on an NVIDIA RTX 3080Ti GPU and an Intel I9-12900k CPU. We train our approach to run
from 1 to 20 hours per scenario, depending on the complexity and length of the episode for each scenario.

G. Interpretability on LBF
Figure 10 demonstrates the contribution of agents and sub-teams on an episode in the LBF task, as well as showing the
agent’s corresponding mask. It is clear that NA2Q accurately models the contribution of any agent or coalition of agents to
the overall success. Furthermore, unsampled individual semantics can help us diagnose in a more interpretable way the
relative importance of individual agent masks to relevant observations in the decision-making process.

2The code of CDS is from https://github.com/lich14/CDS.
3The code of SHAQ is from https://github.com/hsvgbkhgbv/shapley-q-learning.
4The source code of implementations is from https://github.com/oxwhirl/wqmix.

18

https://github.com/lich14/CDS
https://github.com/hsvgbkhgbv/shapley-q-learning
https://github.com/oxwhirl/wqmix


Neural Attention Additive Q-learning

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Qtot = < 0.06 > + < 0.03 + 0.04 + 0.11 + 0.03 > + < 0.10 + + 0.08 >

po
s:

(4
, 5

)

Q1 : 1.71 1f1(Q1) : 0.03

po
s:

(5
, 5

)

Q2 : 1.73 2f2(Q2) : 0.04

po
s:

(8
, 8

)

Q3 : 2.07 3f3(Q3) : 0.11

po
s:

(1
0,

 2
)

Q4 : 1.57 4f4(Q4) : 0.03

(a) step = 1

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Qtot = < 0.01 > + < 0.01 + 0.02 + 0.09 + 0.02 > + < 0.09 + + 0.06 >

po
s:

(5
, 5

)

Q1 : 1.72 1f1(Q1) : 0.01

po
s:

(5
, 4

)

Q2 : 1.70 2f2(Q2) : 0.02

po
s:

(8
, 8

)

Q3 : 2.03 3f3(Q3) : 0.09

po
s:

(9
, 2

)

Q4 : 1.71 4f4(Q4) : 0.02

(b) step = 2

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Qtot = < 0.01 > + < 0.01 + 0.02 + 0.09 + 0.02 > + < 0.09 + + 0.06 >

po
s:

(6
, 5

)

Q1 : 1.83 1f1(Q1) : 0.01

po
s:

(5
, 3

)

Q2 : 1.55 2f2(Q2) : 0.02

po
s:

(8
, 8

)

Q3 : 2.01 3f3(Q3) : 0.09

po
s:

(9
, 2

)

Q4 : 1.53 4f4(Q4) : 0.02

(c) step = 3

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Qtot = < 0.01 > + < 0.02 + 0.03 + 0.09 + 0.02 > + < 0.10 + + 0.07 >

po
s:

(6
, 4

)

Q1 : 1.83 1f1(Q1) : 0.02

po
s:

(6
, 3

)

Q2 : 1.76 2f2(Q2) : 0.03

po
s:

(8
, 8

)

Q3 : 2.08 3f3(Q3) : 0.09

po
s:

(9
, 2

)

Q4 : 1.44 4f4(Q4) : 0.02

(d) step = 4 (eating)

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Qtot = < 0.04 > + < 0.05 + 0.04 + 0.09 + 0.04 > + < 0.08 + + 0.10 >

po
s:

(6
, 4

)

Q1 : 1.18 1f1(Q1) : 0.05

po
s:

(6
, 3

)

Q2 : 1.67 2f2(Q2) : 0.04

po
s:

(8
, 8

)

Q3 : 2.11 3f3(Q3) : 0.09

po
s:

(9
, 2

)

Q4 : 1.05 4f4(Q4) : 0.04

(e) step = 5

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Qtot = < 0.03 > + < 0.05 + 0.04 + 0.09 + 0.04 > + < 0.04 + + 0.10 >

po
s:

(6
, 4

)

Q1 : 0.93 1f1(Q1) : 0.05

po
s:

(7
, 3

)

Q2 : 1.21 2f2(Q2) : 0.04

po
s:

(8
, 8

)

Q3 : 2.11 3f3(Q3) : 0.09

po
s:

(9
, 3

)

Q4 : 0.77 4f4(Q4) : 0.04

(f) step = 6

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Qtot = < 0.05 > + < 0.07 + 0.04 + 0.09 + 0.05 > + < 0.05 + + 0.10 >

po
s:

(7
, 4

)

Q1 : 0.97 1f1(Q1) : 0.07

po
s:

(7
, 3

)

Q2 : 1.15 2f2(Q2) : 0.04

po
s:

(8
, 8

)

Q3 : 2.10 3f3(Q3) : 0.09

po
s:

(9
, 3

)

Q4 : 0.87 4f4(Q4) : 0.05

(g) step = 7

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Qtot = < 0.04 > + < 0.04 + 0.03 + 0.10 + 0.04 > + < 0.04 + + 0.09 >

po
s:

(7
, 5

)

Q1 : 0.94 1f1(Q1) : 0.04

po
s:

(7
, 3

)

Q2 : 1.10 2f2(Q2) : 0.03

po
s:

(8
, 8

)

Q3 : 2.09 3f3(Q3) : 0.10

po
s:

(1
0,

 3
)

Q4 : 0.79 4f4(Q4) : 0.04

(h) step = 8

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Qtot = < 0.05 > + < 0.06 + 0.04 + 0.09 + 0.04 > + < 0.04 + + 0.10 >

po
s:

(8
, 5

)

Q1 : 0.95 1f1(Q1) : 0.06

po
s:

(8
, 3

)

Q2 : 1.06 2f2(Q2) : 0.04

po
s:

(8
, 8

)

Q3 : 2.08 3f3(Q3) : 0.09

po
s:

(1
0,

 4
)

Q4 : 0.80 4f4(Q4) : 0.04

(i) step = 9

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Qtot = < 0.05 > + < 0.04 + 0.04 + 0.06 + 0.04 > + < 0.06 + + 0.07 >

po
s:

(8
, 6

)

Q1 : 1.90 1f1(Q1) : 0.04

po
s:

(7
, 3

)

Q2 : 0.99 2f2(Q2) : 0.04

po
s:

(8
, 8

)

Q3 : 1.89 3f3(Q3) : 0.06

po
s:

(1
0,

 6
)

Q4 : 1.24 4f4(Q4) : 0.04

(j) step = 10

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Qtot = < 0.07 > + < 0.04 + 0.04 + 0.06 + 0.04 > + < 0.04 + + 0.09 >

po
s:

(8
, 6

)

Q1 : 1.74 1f1(Q1) : 0.04

po
s:

(6
, 3

)

Q2 : 0.91 2f2(Q2) : 0.04

po
s:

(8
, 9

)

Q3 : 1.90 3f3(Q3) : 0.06

po
s:

(1
0,

 7
)

Q4 : 1.30 4f4(Q4) : 0.04

(k) step = 11

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Qtot = < 0.06 > + < 0.03 + 0.04 + 0.07 + 0.03 > + < 0.02 + + 0.09 >

po
s:

(9
, 6

)

Q1 : 1.57 1f1(Q1) : 0.03

po
s:

(5
, 3

)

Q2 : 0.84 2f2(Q2) : 0.04

po
s:

(9
, 9

)

Q3 : 2.18 3f3(Q3) : 0.07

po
s:

(1
0,

 8
)

Q4 : 1.21 4f4(Q4) : 0.03

(l) step = 12 (eating)

Figure 10. Visualization of the agent’s mask on an episode, and the title indicates the contribution of each individual and agent alliance.
The highlighted areas are the important regions for making decisions. As expected, when the environment changes, the attention and
contribution of the agents also change accordingly.
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Figure 11. Visualization of property semantics and agent contributions on the 3s vs 5z scenario.
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Figure 12. Test win rate % for six extra scenarios of SMAC benchmark.

H. Performance Results on Extra SMAC Maps
To thoroughly compare the performance of our method against the baselines, we experiment with six extra scenarios in
Figure 12 on SMAC, including 8m, 2s3z, 2s vs 1sc, 3s5z, 3s vs 5z, and MMM2. The parameter settings are in accordance
with the previous experiments. It is obvious that NA2Q still achieves impressive results on these six scenarios.

I. Additional Interpretability on SMAC
To further clarify the interpretability of NA2Q, we select three properties related to the health of the agents to represent
identity semantics, including own health, available Ally-1 health, and available Ally-2 health, and display the contribution
of the corresponding agent on an episode. As shown in Figure 11(a), the horizontal coordinate represents the number
of steps on the episode, and the two vertical coordinates represent corresponding properties and semantic mask values,
respectively. We find that the importance of the mask increases when the observed agent is harmed. Specifically, the teams
are attacked with the sequence of Agent-2, Agent-3, and Agent-1, and the importance of their features peaked, respectively.
Also, the corresponding mask is elevated when the visible ally receives damage. At the same time, we visualize the agent
contributions to the unary and pairwise shape functions as shown in Figure 11(b), where the steps increase from bottom to
top and the horizontal ordination indicates the contribution id. The results show that the agents have different sensitivities at
different stages of the battle. For example, Agent-2 performs a kiting operation, causing it to have a high contribution at the
beginning stage. Meanwhile, Agent-1 and Agent-3 engage in cooperative attacks, resulting in higher contributions from
sub-teams than from individual agents. In the later stages, agents are attacked separately, leading to higher contributions
from individuals. Notably, the earlier death of Agent-2 leads to the pairwise shape functions associated with it remaining at
depressed values. In summary, the NA2Q can understand complex observations by diagnosing identity semantics and better
explain the sub-spaces within order-2 interactions for the decomposition of the joint action-value function.
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