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Abstract

Contrastive learning has achieved remarkable success in self-supervised learning
by pretraining a generalizable feature representation based on the augmentation
invariance. Most existing approaches assume that different augmented views of
the same instance (i.e., the positive pairs) remain semantically invariant. However,
the augmentation results with varying extent may introduce semantic discrepancies
or even content distortion, and thus the conventional (pseudo) supervision from
augmentation invariance may lead to misguided learning objectives. In this paper,
we propose a novel method called Contrastive Learning with Variable Similarity
(CLVS) to accurately characterize the intrinsic similarity relationships between
different augmented views. Our method dynamically adjusts the similarity based on
the augmentation extent, and it ensures that strongly augmented views are always
assigned lower similarity scores than weakly augmented ones. We provide a theo-
retical analysis to guarantee the effectiveness of the variable similarity in improving
model generalizability. Extensive experiments demonstrate the superiority of our
approach, achieving gains of 2.1% on ImageNet-100 and 1.4% on ImageNet-1k
compared with the state-of-the-art methods.

1 Introduction

Learning effective feature representations [1, 2, 3] is a fundamental task in machine learning, with
profound implications for various applications, including image classification [4, 5], object detection
[6, 7], and segmentation [8, 9]. In recent years, self-supervised learning has emerged as a leading
paradigm for unsupervised visual representation learning [10, 11, 12, 13]. Among various pretext
tasks in self-supervised learning, contrastive learning constructs self-supervisory signals by treating
different augmented views of the same image as positive pairs, enabling the extraction of high-quality
feature representations without extensive labeled data. This paradigm has achieved remarkable
success, demonstrating its potential to bridge the gap between supervised and unsupervised learning.
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Figure 1: Illustration of different similarity mea-
sure in contrastive learning. (a) Fixed maximum
similarity among augmented views of the same
instance. (b) Variable similarity (ours) among
augmented views of the same instance.
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Figure 2: Example of learning framework with
the cropping augmentation in contrastive learn-
ing. Despite the semantic inconsistency between
different augmented views, current contrastive
learning method equally optimize them towards
the direction with the maximum similarity.

As illustrated in Fig. 1(a), the core mechanism of contrastive learning is to maximize the similarity of
embeddings between different views generated by data augmentations. These augmented views share
the same underlying semantic concepts, enabling the model to learn invariant representations and
thereby improving its generalization ability [10, 14, 15]. However, the assumption that all augmented
views are equally valid representations of the original data is still flawed, as the semantic consistency
between these views cannot always be guaranteed. As shown in Fig. 2, over-cropping augmentation
can produce views containing only background, leading to significant semantic discrepancies between
these views and others. This inconsistency may force the model to optimize in the wrong direction,
compromising its ability to learn meaningful representations.

In fact, data augmentations inherently induce a spectrum of semantic consistency between views,
rather than a binary state of similar or dissimilar. As shown in Fig. 2, the progressive loss of critical
features becomes more pronounced as the extent of cropping augmentation increases. This observation
suggests that the similarity usually varies dynamically, rather than remaining fixed. Inspired by the
above observation, we argue that the similarity between augmented views in contrastive learning
should be variable according to the extent of applied data augmentations, as illustrated in Fig. 1(b).
This variability allows the model to reflect the semantic variation introduced by data augmentations.
In particular, the stronger data augmentation leads to more significant information degradation,
resulting in a lower similarity compared with weakly augmented views.

In this paper, we propose Contrastive Learning with Variable Similarity (CLVS), which models the
similarity between views as a variable determined by their augmentation parameters. Specifically, we
first build an augmentation-aware module to predict the variable similarity between two augmented
views based on their augmentation parameters. Then, we introduce an alignment objective that
constrains the similarity between augmented views to align with the predicted variable similarity,
thereby guiding the representations to reflect varying semantic relations. Additionally, the loss
function will penalize cases when the similarity of strongly augmented views exceeds that of weakly
augmented views. To further validate our approach, we provide a theoretical analysis demonstrating
that the generalization error bound of our method can be effectively shrunk through the use of
variable similarity. Our method is a general-purpose technique that can be easily integrated into
many existing contrastive learning frameworks to enhance their performance. When applied to MoCo
[16] and SimSiam [12], our approach achieves significant improvements of 6.1% and 5.9% on the
ImageNet-100 dataset, demonstrating its strong generalizability and practical effectiveness.

In summary, our main contributions are as follows:

• We enhance contrastive learning by introducing the variable similarity to capture variations
between augmented views, supported by an augmentation-aware module that estimates
accurate semantic similarity between these views based on their augmentation parameters.

• We theoretically prove that the statistical variance of similarity decreases with the utilization
of variable similarity, thereby resulting in a reduction in the error bound of the generalization.

• Experimental results conducted on standard benchmarks demonstrate the superiority of our
method, surpassing the state-of-the-art methods by 2.1% on ImageNet-100 and 1.4% on
ImageNet-1k, respectively.
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2 Related Works

2.1 Contrastive Learning

Contrastive learning has recently emerged as a leading paradigm in self-supervised learning [10,
11, 12, 13, 17, 18, 19], gradually closing the performance gap with supervised learning. The core
principle of contrastive learning is to pull together the embedding features of positive pairs, which
are different augmented views of the same instance. This aligns with the broader objective of metric
learning [20, 21, 22, 23, 24, 25], where the goal is to learn representations that preserve semantic
similarity in the embedding space. A crucial challenge in contrastive learning is to prevent the
representation collapse, where all samples are mapped to the same representation, resulting in a loss
of discriminative capability. Several negative-used contrastive methods [10, 11, 26, 16, 27] tackle
this issue using the InfoNCE criterion [28]. This criterion pulls positive pairs together while pushing
negative pairs apart. Negative-free methods [13, 12, 29] mitigate the collapse problem by leveraging
only positive pairs and introducing an asymmetric design, i.e., the stop-gradient mechanism [30].
Additionally, some works [17, 18, 31, 32] aim to alleviate the collapse problem by maximizing the
information content.

2.2 Augmentation Technique

Data augmentation plays a crucial role in many representation learning tasks. It improves the quality
and diversity of positive sample pairs, enhances the robustness of learned representations [14, 33],
and can help mitigate collapse [34]. Recent studies have explored various strategies to leverage
data augmentation more effectively. For instance, AugSelf [35] preserves augmentation-aware
information through an auxiliary model that predicts the difference between augmentation parameters
of augmented views. HAIEV [36] argues that different augmentations should be treated unequally and
proposes computing contrastive loss at different network layers to achieve a broader distribution of
augmentation invariance. LoGo [37] simultaneously incorporates global and local views, encouraging
local views to have distinct representations. EquiMod [38] introduces equivariance into contrastive
learning, aiming to better capture the augmentation information and improve the robustness of
learned representations. Other works focus on leveraging stronger augmentations: CLSA [39] aims to
minimize the distribution divergence between weak and strong augmented views, while RényiCL [40]
generalizes representation learning by utilizing Rényi divergence as the learning objective. CoCor
[41] focuses on exploiting the strength of the composite data augmentation quantified by frequency,
but it does not explicitly model the augmentation parameters. As a result, it cannot ensure the
variation within the same augmentation type or ensure that the similarity between augmented views
aligns with the extent of augmentation.

While these methods typically treat all positive pairs as equally similar, they usually ignore the
fact that different augmented views may preserve varying levels of semantic content. To address
this limitation, we propose the concept of variable similarity, which better captures the nuanced
relationships between views with diverse augmentations.

3 Method

3.1 Preliminaries of Contrastive Learning

Contrastive learning aims to train a generalizable feature encoder f : Rn → Rd that maps input data
from the original n-dimensional space to a d-dimensional feature space. Given an input instance
x ∈ Rn sampled from the dataset D and a distribution of data augmentations T , the training objective
is to maximize the similarity between the embeddings z1 = f(t1(x)) and z2 = f(t2(x)) of two
augmented views t1(x) and t2(x), where t1, t2 ∼ T . This can be formulated as minimizing the
following general objective:

Lcon(f) = Ex∼D,t1,2∼T [ℓ(z1, z2)], (1)

where ℓ(·, ·) is an empirical loss to evaluate the inconsistency between z1 and z2. For the traditional
contrastive methods [10, 11], the InfoNCE criterion [28] is typically used as the loss function:

ℓ(z1, z2) = −log esim(z1·z2)/τ∑N
i esim(z1·zi)/τ

, (2)
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Figure 3: Overview of the CLVS. The encoder f extracts the embedding zi of augmented views. The
augmentation-aware module φ predicts the variable similarity between two augmented views. The
similarity between the embeddings of two augmented views is constrained by Lali to approximate
the predicted variable similarity during training. Lre enforces the similarity to the weakly augmented
view s1,2 larger than that to the strongly augmented view s1,3. By incorporating Ld, the augmentation-
aware module φ gains the ability to perceive augmentations.

where sim(·, ·) is the similarity measurement function, such as cosine similarity. τ is a temperature
hyperparameter and N is the number of negative samples in a mini-batch. This encourages the model
to pull positive pairs closer while pushing negative pairs apart in the embedding space.

3.2 Variable Similarity in Contrastive Learning

To address the limitation of enforcing a fixed similarity for positive pairs in contrastive learning,
we propose CLVS. Unlike traditional methods, CLVS dynamically adjusts the similarity between
augmented views based on the parameters of applied augmentations. This dynamic adjustment
enables the model to better capture semantic relationships and produce more robust representations.

Augmentation-Aware Learning. Our key idea is to make the similarity between augmented views
of an input instance x consistent with the extent of their augmentations. Let wi = (w1

i , ...,w
c
i )

denote the augmentation parameters for transformation twi , where the vector wj
i represents the

parameter of the j-th augmentation type (e.g., cropping, color jittering), and c is the number of
augmentation types. Inspired by [35], we introduce an auxiliary task to predict the differences in
augmentation parameters. Specifically, for the j-th augmentation type, the difference between tw1

and tw2
is defined as dj1,2 = wj

1 − wj
2. To make the learned representations sensitive to these

differences, we build an augmentation-aware module φ = (φ1, ...,φc), where each φj : Rd → Rm

is implemented as a Multi-Layer Perceptron (MLP) for generating augmentation-aware embeddings.
Here, m is the embedding dimensionality. Each φj projects the feature embeddings z1 and z2
(produced by the encoder f ) into an augmentation-aware latent space, yielding hj

1 = φj(z1) and
hj
2 = φj(z2). The concatenated embedding of hj

1 and hj
2 is then fed into a predictor ψj to estimate

the parameter difference d̂
j

1,2. This prediction task encourages the features to retain augmentation-
aware information, allowing them to better reflect the extent of augmentations, and thereby laying
the foundation for variable similarity estimation. The learning process for this auxiliary task is
summarized by:

Ld(f ,φ,ψ) =
∑c

j=1
ℓj(d̂

j

1,2,d
j
1,2) =

∑c

j=1
ℓj(ψ

j(concat(φj(z1),φ
j(z2))),d

j
1,2). (3)

The loss function ℓj dynamically adjusts depending on the type of data augmentation. 3

Variable Similarity Alignment. Building on the above auxiliary task, we calculate the variable
similarity through an adaptive selection mechanism governed by φ. In this paper, we use ŝi,j to
denote the predicted variable similarity, and si,j for the similarity between encoder outputs of two
augmented views. For each augmentation type j, we calculate the similarity between hj

1 and hj
2 as:

3For details, ℓj = ||d̂
j

1,2 − dj
1,2||2 for augmentations with parameters, e.g., cropping, color jittering.

ℓj = dj
1,2 log(d̂

j

1,2)+(1−dj
1,2) log(1−d̂

j

1,2) for augmentations without parameters, e.g., flipping, grayscaling.
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ŝj1,2 = sim(hj
1,h

j
2) = φj(z1) · φj(z2)/(||φj(z1)||2||φj(z2)||2), i.e., sim(·, ·) represents cosine

similarity, where ∥ · ∥2 denotes the ℓ2 normalization. This is motivated by the intuition that smaller
augmentation parameter differences indicate more consistent transformations, and thus a higher
semantic similarity. Since different types of augmentation have varying impacts on the similarity,
we aggregate the similarities across all augmentation types. To ensure that the variable similarity
captures the most significant discrepancies between views, we calculate the minimum similarity
across all augmentation types. The variable similarity between two augmented views is defined as:

ŝ1,2 = min
j∈{1,...,c}

sim(φj(z1),φ
j(z2)). (4)

To integrate the above predicted variable similarity into the contrastive learning framework, we align
the cosine similarity between the embeddings of two augmented views with the predicted variable
similarity via an ℓ2 loss:

Lali(f ,φ)=Ex,tw1,w2
[ℓali(ŝ1,2, s1,2)]=Ex, tw1,w2

[∥∥∥∥ min
j∈{1,...,c}

sim(φj(z1),φ
j(z2))−sim(z1,z2)

∥∥∥∥2

2

]
.

(5)
By minimizing Lali, the model learns to adaptively adjust the similarity objective for each positive
pair based on the predicted variable similarity, addressing semantic inconsistencies caused by data
augmentations.

Relative Similarity Constraint. To ensure the validity of the predicted variable similarity, we
introduce a constraint based on the observation that stronger augmentations cause greater information
degradation, thereby reducing the semantic consistency between augmented views. Specifically, the
similarity between a view and its strongly augmented version should be lower than its similarity to a
weakly augmented view. Given a stronger augmentation tw3

, the relative similarity constraint can be
formalized as follows:
Lre(f ,φ) = Ex,tw1,w2,w3

[ℓcon(ŝ1,2, ŝ1,3)]

= Ex,tw1,w2,w3
{max[0, min

j∈1,...,c
(sim(φj(z1),φ

j(z3)))− min
j∈1,...,c

(sim(φj(z1),φ
j(z2)))]}.

(6)

Here, ŝ1,3 represents the predicted variable similarity between the weakly augmented view tw1(x)
and the strongly augmented view tw3(x). The max operator in Eq. (6) ensures that the loss is only
activated when the similarity to a strongly augmented view exceeds that to a weakly augmented view,
thus enforcing the desired relationship between augmentation strength and semantic consistency.

The overview of CLVS is shown in Fig. 3. The total training loss consists of four components: the
base contrastive loss, the parameter prediction loss, the alignment loss for variable similarity, and the
constraint loss for augmentation consistency. Formally, the total loss is defined as:

Ltotal=Lcon(f) + ωLd(f ,φ,ψ) + λLali(f ,φ) + γLre(f ,φ), (7)

where ω, λ, and γ are positive weight coefficients that balance the contributions of different loss terms.
By combining these losses, our method preserves the core objective of contrastive learning while
addressing the limitation caused by information degradation during data augmentation, resulting in
more robust and semantically meaningful representations.

3.3 Theoretical Analysis of Variable Similarity

In this section, we aim to demonstrate that our proposed learning algorithm enhances the General-
ization Error Bound (GEB) [42] compared to traditional contrastive learning methods. The GEB
typically characterizes how well a model trained on empirical data performs on unseen samples.
For self-supervised learning, although the learned encoders are used in different recognition tasks,
such an error bound of the learning objective can still provide a quantitative result to evaluate the
reliability of the encoder on unseen test data. This is because that the lower generalization error is
expected to bring about the smaller InfoNCE loss on the test data, and thus the corresponding feature
discriminability during test phase can be ensured. Here, we establish that the proposed new loss terms
Ld, Lali, and Lre contribute to tightening the GEB, thereby validating the efficacy of our method.

To provide a more detailed understanding, we consider the underlying data distribution D , and intro-
duce the expected risk, defined as L̂total(f ,φ;D)=E{ti|ti∼D}N

i=1
[Ltotal(f ,φ; {ti}Ni=1)]. The ex-

pected risk represents the true objective we aim to minimize, while the empirical risk Ltotal(f ,φ;D)
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Table 1: Top-1 accuracies of linear evaluation
(%). All compared methods with a ResNet-50
encoder are pretrained for 200 epochs on the
ImageNet-100 dataset.

Method Batch Size Top-1

MoCo [16] 256 78.8
SimSiam [12] 256 79.1
AugSelf [35] 256 80.5
RényiCL [40] 256 82.1
EquiMod [38] 256 83.9
CoCor [41] 256 83.7
GCA [44] 256 72.4
INTL [32] 256 83.9

MoCo+CLVS 256 84.9 (+6.1)

SimSiam+CLVS 256 86.0 (+5.9)

Table 2: Top-1 accuracies of linear evaluation
(%). All compared methods with a ResNet-50
encoder are pretrained for 200 epochs on the
ImageNet-1k dataset.

Method Batch Size Top-1

SimCLR [10] 4096 68.3
MoCo [16] 256 67.5
SimSiam [12] 256 70.0
AugSelf [35] 256 69.4
SwAV [26] 4096 69.1
EquiMod [38] 256 67.6
GCA [44] 256 56.1
INTL [32] 256 69.9

MoCo+CLVS 256 69.9 (+2.4)

SimSiam+CLVS 256 71.4 (+1.4)

Table 3: Linear evaluation accuracies (%) on various datasets. All compared methods with a ResNet-
50 encoder are pretrained for 200 epochs on the ImageNet-100 dataset.

Method CIFAR10 CIFAR100 Caltech101 SUN397 Food Flowers Pets

MoCo [16] 85.81 64.96 85.78 48.73 62.37 84.01 69.15
SimSiam [12] 86.52 65.98 87.21 49.68 62.67 84.09 69.28
AugSelf [35] 88.10 68.48 88.95 50.65 65.56 88.60 71.93
RényiCL [40] 86.60 64.92 87.21 48.45 61.89 85.33 74.87
EquiMod [38] 87.86 69.59 90.37 52.85 65.71 89.88 75.88
CoCor [41] 86.89 66.36 87.85 49.92 62.48 87.95 76.04
GCA [44] 76.69 51.87 72.24 37.20 44.96 68.21 49.55
INTL [32] 87.55 67.79 88.77 51.62 63.05 87.75 75.22

MoCo+CLVS 87.29 (+1.48) 67.22 (+2.26) 88.93 (+3.15) 52.55 (+3.82) 65.07 (+2.70) 87.48 (+3.47) 77.65 (+8.50)

SimSiam+CLVS 89.92 (+3.40) 71.37 (+5.42) 91.73 (+4.52) 54.80 (+5.12) 68.97 (+6.30) 91.12 (+7.03) 77.16 (+7.88)

is computed from a finite dataset. The gap between these two quantities, known as the generalization
error, reflects the model’s ability to generalize beyond the training set.

Theorem 1. For any {f ,φ} learned from the objective Ltotal(f ,φ) and any given constant δ ∈
(0, 1), we have that with probability at least 1− δ,

|Ltotal(f ,φ;D)− L̂total(f ,φ;D)| ≤ C1/(C2 + ω)log(1 + ρ(λ, γ))
√

[ln(2/δ)]/(2N), (8)

where ρ(λ, γ) =
∑

i<j(sij − s)/C2
N > 0 is monotonically decreasing w.r.t. λ and γ. Here

C1/(C2 + ω) is monotonically decreasing w.r.t. ω, where C1, C2 > 0 are constants that independent
of f and φ.

From the result presented in the existing work [43], which highlights the relationship between larger
data volumes and improved model generalization. This decrease reflects the statistical principle that
larger datasets provide more reliable approximations of the underlying data distribution, thereby
reducing the generalization gap. Meanwhile, we observe that the error bound becomes tighter as
the parameter ω increases. This is because that the augmentation-specific loss effectively constrains
the consistency between similarities, thereby enhancing the model generalization ability. More
importantly, we can find that such an error bound becomes tighter as λ and γ increase. Actually,
this is due to the further decrease of the variance ρ(λ, γ) =

∑
i<j(sij − s)/C2

N induced by the
parameters λ and γ. Intuitively, since the similarity values are constrained to be floats between 0 and
1 rather than those extreme values of either 0 or 1, they are more likely located in the central area of
[0, 1], and thus the variance is naturally reduced. Notably, our theoretical analysis is task-agnostic
and focuses on the generalization behavior of the training objective itself, rather than any specific
downstream application.

In summary, the above theorem demonstrates that our method successfully improves the generalization
performance of conventional contrastive learning algorithms by leveraging both increased data and
the new loss terms.
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Table 4: Transfer learning results on VOC and COCO object detection tasks. All compared methods
with a ResNet-50 encoder are pretrained for 200 epochs on the ImageNet-100 dataset.

Method
VOC07+12 COCO

AP AP50 AP75 AP AP50 AP75 APs APm APl

MoCo [16] 40.87 69.78 41.41 37.29 56.36 40.14 20.63 41.63 51.54
SimSiam [12] 39.83 67.27 40.09 37.24 56.61 40.25 21.21 41.78 50.26
Augself [35] 46.96 73.88 50.27 37.91 57.10 41.03 21.58 42.44 51.36
RényiCL [40] 41.59 72.76 41.63 37.82 57.16 40.46 21.90 42.37 51.31
EquiMod [38] 32.24 63.17 28.05 35.30 54.95 37.82 18.11 39.65 49.03
CoCor [41] 54.31 80.60 59.58 34.80 56.29 37.05 17.53 39.88 51.74
GCA [44] 30.80 60.80 27.39 34.93 54.04 37.17 20.09 39.05 48.34
INTL [32] 50.47 78.64 54.95 38.14 57.05 41.07 20.46 42.00 52.01

MoCo+CLVS 52.22 (+11.35) 79.43 (+9.65) 56.87 (+15.46) 39.35 (+2.06) 58.90 (+2.54) 42.91 (+2.77) 22.06 (+1.43) 44.02 (+2.39) 54.75 (+3.21)

SimSiam+CLVS 53.20 (+13.37) 79.13 (+11.86) 58.39 (+18.30) 38.24 (+1.00) 57.51 (+0.90) 41.37 (+1.12) 21.71 (+0.50) 42.58 (+0.80) 52.52 (+2.26)

Table 5: Few-shot classification accuracy with 95% confidenceinterval averaged over 2000 episodes
on FC100, CUB200 and Plant Disease. (N,K) denotes N-way K-shot task. All compared methods
with a ResNet-50 encoder are pretrained for 200 epochs on the ImageNet-100 dataset.

Method
FC100 CUB200 Plant

(5, 1) (5, 5) (5, 1) (5, 5) (5, 1) (5, 5)

MoCo [16] 38.84±0.39 54.53±0.38 41.63±0.46 55.96±0.46 68.42±0.49 86.22±0.34
SimSiam [12] 36.04±0.37 53.83±0.39 39.31±0.43 55.14±0.47 71.00±0.50 88.39±0.33
Augself [35] 40.73±0.41 58.41±0.39 42.50±0.44 59.97±0.45 73.66±0.49 90.23±0.31
RényiCL [40] 37.79±0.36 55.75±0.39 42.30±0.47 58.79±0.46 73.51±0.46 89.67±0.31
EquiMod [38] 44.83±0.41 62.76±0.40 44.81±0.46 62.92±0.46 77.21±0.45 91.16±0.25
GCA [44] 30.34±0.33 44.68±0.37 37.61±0.41 52.68±0.45 64.63±0.51 86.03±0.33
INTL [32] 44.96±0.40 62.49±0.40 44.79±0.48 62.27±0.48 77.05±0.46 91.92±0.28

MoCo+CLVS 40.28±0.40 (+1.44) 56.26±0.39 (+1.73) 42.77±0.47 (+1.14) 57.98±0.46 (+2.02) 71.16±0.49 (+2.74) 88.54±0.32 (+2.32)

SimSiam+CLVS 45.30±0.42 (+9.26) 62.97±0.39 (+9.14) 47.23±0.48 (+7.92) 63.57±0.47 (+8.43) 78.70±0.45 (+7.70) 92.11±0.28 (+3.72)

4 Experiments

In this section, we first present the implementation details of the experiments. Then, we perform
extensive experiments on downstream tasks and compare our method with existing state-of-the-art
methods. Finally, we provide ablation studies of the proposed method.

4.1 Implementation Details

We pretrain the standard ResNet-50 [4] encoder on the ImageNet-100 and ImageNet-1k [45] datasets.
The encoder is pretrained for 200 epochs with the batch size of 256. Each model in φ is implemented
with 2 fully connected layers, and each predictor in ψ consists of a single fully connected layer.
We set ω = 0.5 following [35], λ = 0.5, and γ = 1 in the training loss, respectively. To evaluate
the effectiveness of CLVS in modeling variable similarity between positive samples, we adopt both
the negative-used contrastive method MoCo [16] and the negative-free method SimSiam [12] as
baselines.

For weak augmentations, we employ standard augmentation strategies [12], including random
cropping, color jittering, horizontal flipping, grayscale conversion, and gaussian blurring. For strong
augmentations, we integrate RandAugment [46] into the weak augmentation, which automates the
selection of augmentation types and their magnitudes. The parameters of augmentations are set
according to [35].

4.2 Main Results

In this subsection, we present experimental results on various downstream tasks. We compare CLVS
with state-of-the-art contrastive learning methods. For clarity, the best results are highlighted in bold,
while the second-best results are underlined.

Comparison on Linear Evaluation. We initially pretrain CLVS and perform linear evaluation on the
ImageNet-100 and ImageNet-1k datasets. The linear evaluation protocol follows the approach of [12].
The experimental results are shown in Tab. 1 and Tab. 2, respectively. Our proposed method achieves
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Table 6: Comparison with methods using stronger augmentations. Top-1 linear evaluation accuracies
(%) and few-shot classification accuracy (%) are reported. All compared methods with a ResNet-50
encoder are pretrained for 200 epochs on the ImageNet-1k dataset.

Method
Linear evaluation 5-way 1-shot 5-way 5-shot

ImageNet Caltech101 FC100 Plant FC100 Plant

CLSA [39] 72.2 91.21 34.46 67.39 49.16 86.15
RényiCL [40] 72.6 94.04 36.31 80.68 53.39 94.29
CLVS 72.9 94.60 53.33 81.04 73.14 95.17

Query Nearest Neighbors

AugSelf Ours

Query Nearest Neighbors

Figure 4: Visualization of retrieval results on the flowers and cars datasets. Red boxes indicate
incorrect retrieval results, and green boxes indicate correct retrieval results.

Top-1 accuracy of 86.0% and 71.4% on the ImageNet-100 and ImageNet-1k datasets, significantly
surpassing state-of-the-art methods. We also provide a comparison of training time among CLVS and
other methods in Appendix C.

We further evaluate the performance of CLVS in transfer learning. We utilize the encoder pretrained
on the ImageNet-100 dataset and conduct linear evaluation on 7 datasets: CIFAR10/100 [47],
Caltech101 [48], SUN397 [49], Food [50], Flowers [51], and Pets [52]. The experimental results are
presented in Tab. 3. CLVS achieves the best performance across all datasets, demonstrating its strong
generalization ability and robustness.

Comparison on Object Detection. We also evaluate our method on the object detection task.
The encoder pretrained on the ImageNet-100 dataset is converted to a generalized R-CNN detector
following [11] and fine-tuned on the PASCAL VOC [53] and COCO [54] datasets. As shown in
Tab. 4, CLVS demonstrates competitive performance on both datasets. Although CLVS performs
slightly worse than CoCor on the smaller VOC dataset, where CoCor’s strict similarity ordering is
particularly effective in regularizing feature learning, it demonstrates a clear advantage on the larger
and more complex COCO dataset. The performance improvement suggests that our proposed variable
similarity can learn more generalizable feature representations.

Comparison on Few-shot Classification. In this experiment, we evaluate the performance of
different contrastive learning methods on the few-shot classification task. We conduct experiments
on FC100 [55], CUB200 [56], and Plant [57] datasets. Following the experimental setting of [35],
we freeze the encoder pretrained on the ImageNet-100 dataset and employ logistic regression for
classification. Tab. 5 presents the results of different methods under the 5-way 1-shot and 5-way
5-shot settings. In particular, the CUB and Plant datasets contain fine-grained labels, requiring models
to have a strong generalizability to discern subtle differences. CLVS achieves excellent performance
across all datasets, which can be attributed to the variable similarity mechanism that enables the
model to capture fine-grained features, thereby significantly improving its generalization ability.

Comparison on Retrieval. We validate the effectiveness of our proposed method through visualiza-
tion experiments. The image features are extracted by the encoder pretrained on the ImageNet-100
dataset, and the top-4 nearest neighbors are retrieved based on the cosine similarity metric. Fig. 4
presents the image retrieval results on the Flowers [51] and Cars [58] datasets. The retrieved images
of flowers exhibit a smooth transition in color, starting with light-colored flowers and gradually
transitioning to darker shades. Similarly, the retrieved results of cars show a progressive variation
in object structure, ranging from close-up views to distant perspectives. These reflect the ability of
our variable similarity framework to capture fine-grained visual attributes, ensuring that the retrieval
results are not only semantically relevant but also visually coherent.
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Lcon Ld Lali Lre IN-100 CIFAR10 CIFAR100

✓ 79.1 86.5 66.0
✓ ✓ 80.5 (+0.6) 88.1 (+1.6) 68.7 (+2.7)

✓ ✓ ✓ 85.5 (+5.4) 89.8 (+3.3) 71.1 (+5.1)

✓ ✓ ✓ 85.0 (+4.9) 89.4 (+2.9) 70.8 (+4.8)

✓ ✓ ✓ ✓ 86.0 (+5.9) 89.9 (+3.4) 71.4 (+5.4)

Table 7: Ablation studies for different loss terms
of CLVS. All results are reported on linear eval-
uation accuracy (%).

Figure 5: Top-1 accuracies of linear evaluation
(%) with different batch sizes.

Table 8: Top-1 accuracies of linear evaluation (%) on various baselines. All methods with a ResNet-50
encoder are pretrained for 200 epochs on the ImageNet-100 dataset.

Method ImageNet-100 CIFAR10 CIFAR100 Caltech101 SUN397 Food Flowers Pets

SimCLR [10] 80.30 85.89 64.31 86.82 48.59 61.95 83.59 68.36
SimCLR + CLVS 83.48 (+3.18) 88.15 (+2.26) 68.45 (+4.14) 89.18 (+2.36) 52.63 (+4.04) 66.13 (+4.18) 88.03 (+4.44) 73.15 (+4.79)

BYOL [13] 83.24 87.32 66.95 87.27 49.97 63.89 85.31 75.01
BYOL + CLVS 85.80 (+2.56) 89.86 (+2.54) 71.27 (+4.32) 89.92 (+2.65) 53.42 (+3.45) 67.83 (+3.94) 89.88 (+4.57) 77.62 (+2.61)

SwAV [26] 75.48 83.87 60.70 84.52 44.81 58.39 79.83 62.58
SwAV + CLVS 81.08 (+5.60) 86.84 (+2.97) 66.76 (+6.06) 88.42 (+3.90) 51.14 (+6.33) 64.13 (+5.74) 87.27 (+7.44) 68.96 (+6.38)

Comparison with Methods Using Stronger Augmentations. To validate the capability of our
proposed method in handling stronger augmentations, comparative experiments are conducted
with several methods that employ stronger augmentations. Specifically, the proposed method is
implemented using RényiCL as the baseline, with the encoder pretrained on the ImageNet-1k
dataset. We perform the linear evaluation on the ImageNet-1k and Caltech101 datasets, and few-shot
classification on FC100 and Plant datasets. The experimental results shown in Tab. 6 demonstrate
that the proposed variable similarity can effectively mitigate the semantic inconsistency caused by
stronger augmentations, resulting in a significant boost in linear evaluation performance.

4.3 Ablation Studies

In this subsection, we conduct ablation studies to evaluate the robustness of our method. All encoders
are pretrained for 200 epochs on the ImageNet-100 dataset.

Effect of Training Loss. To evaluate the improvement contribution of each loss term, we conduct
ablation studies on the ImageNet-100 dataset. The experimental results are shown in Tab. 7.
First, we introduce a prediction loss based on the difference in augmentation parameters, which
encourages the model to perceive augmentations, which yields a slight improvement. Second,
the alignment loss Lali drives the model to adjust embedding similarities in accordance with the
semantic differences induced by data augmentations. This leads to a substantial performance gain,
as it directly aligns feature similarities with semantic similarity. Third, the consistency loss Lre

constrains the similarity between strongly and weakly augmented views. This further enhances
the model’s representation consistency under diverse augmentations. Combining all these loss
terms leads to the best performance, demonstrating their complementary effects and validating the
effectiveness of our proposed method. We also conduct experiments to validate the effectiveness of
the augmentation-aware module, which can be found in Appendix C.

Compatibility with Other Baselines. We further integrate our proposed method into additional
baseline models, including SimCLR [10], BYOL [13], and SwAV [26]. These methods are pretrained
on ImageNet-100 and perform linear evaluation on the datasets mentioned in subsection 4.2. The
experimental results in Tab. 8 demonstrate that our method consistently improves performance across
all baseline models.

Effect of Batch Size. Given that contrastive learning is typically sensitive to batch size [10], we
further investigate the impact of batch size on the performance of our proposed method. The
experimental results are shown in Fig. 5. When the batch size increases, the accuracy of linear
evaluation also improves. Even with a small batch size, our method maintains strong performance,
demonstrating its good robustness.
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5 Conclusion

In this paper, we introduced a variable similarity mechanism to extend the contrastive learning
framework, which dynamically adjusts the similarity between views based on the extent of data
augmentation. The variable similarity is estimated as the similarity between the refined features
encoded by the augmentation-aware module, so that the variations induced by augmentations can
be fully considered. By introducing an alignment loss for similarity and a relative similarity con-
straint between strong and weak augmentations, our method successfully addresses the semantic
inconsistency caused by data augmentations. We also provided a theoretical analysis demonstrating
that the variable similarity enhances the generalization error bound, validating its effectiveness.
Experimental results indicated that the variable similarity enables the model to learn more robust
feature representations. However, our method is limited to positive samples and does not incorporate
negative samples into the variable similarity mechanism. In the future, we plan to extend the variable
similarity to all samples to further optimize the contrastive learning framework.
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paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions and scope of this paper are accurately reflected in the abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: In section 5, we discuss the limitations of our work and identify them as
valuable future work.
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• The answer NA means that the paper has no limitation while the answer No means that
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• The proofs can either appear in the main paper or the supplemental material, but if
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We claim the details of methods and the experiments settings in our paper.
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• The answer NA means that the paper does not include experiments.
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well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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material?
Answer: Code [Yes] DATA [No]
Justification: We will soon open-source the code, and the datasets used are publicly available
for download by anyone.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All detailed specifications are presented in the section 4 and Appendix B.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We lack sufficient computational resources to calculate error bars for every
experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix C.7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that our research conducted in the paper conforms with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper don’t have obvious societal impacts currently.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite and comply with the licenses of the public datasets we use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve the usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof

In this section, we present the proof for theory in the paper. We first introduce the following lemma
for proving Theorem 1.
Lemma 1. For independent random variables t1, t2, . . . , tn ∈ T and a given function ω : T n → R,
if ∀v′i ∈ T (i = 1, 2, . . . , n), the function satisfies

|ω(t1, . . . , ti, . . . , tn)− ω(t1, . . . , t
′
i, . . . , tn)| ≤ ρi, (9)

then for any given µ > 0, it holds that P{|ω(t1, . . . , tn) − E[ω(t1, . . . , tn)]| > µ} ≤
2e−2µ2/

∑n
i=1 ρ2

i .

Proof. We prove Theorem 1 by analyzing the perturbation (i.e., ρi in the above Eq. (9)) of the loss
function Lemp.

We denote that

ω = Lemp(f ,φ;X ) =
1

N

N∑
i=1

−log
esim(z1, z2)/γ∑n
j=1esim(z1, zj)/γ

, (10)

and

ω̃r =
1

N

 N∑
i̸=r

−log
esim(z1, z2)/γ∑n
j=1esim(z1, zj)/γ

,

− log
esim(ẑ1, ẑ2)/γ∑n
j=1esim(ẑ1, ẑj)/γ

 , (11)

where (x̂, {x̂bj}nj=1) is an arbitrary mini-batch from the sample space. Then we have that

|ω − ω̃r|

=
1

N

∣∣∣∣∣log
esim(ẑ1, ẑ2)/γ∑n
j=1esim(ẑ1, ẑj)/γ

− log
esim(z1, z2)/γ∑n
j=1esim(z1, zj)/γ

∣∣∣∣∣
≤ 1

N
log

[
esim(ẑ1, ẑ2)/γ(esim(z1, z2)/γ+

∑n
j=1esim(ẑ1, ẑj)/γ)

esim(z1, z2)/γ(
∑n

j=1esim(ẑ1, ẑj)/γ+esim(ẑ1, ẑ2)/γ)

]

≤
(C1/(C2 + ω))log(1 +

∑
i<j(sij − s)/C2

N )

2N
, (12)

where C1, C2 > 0 are constants. Meanwhile, we have

1

N

N∑
i=1

−log
esim(z1, z2)/γ∑n
j=1esim(z1, zj)/γ

−E

(
−log

esim(z1, z2)/γ∑n
j=1esim(z1, zj)/γ

)
= Lemp(f ,φ;X )− L̃emp(f ,φ;D). (13)

By Lemma 1, we let that for all i = 1, 2, . . . , N

ρi =
(C1/(C2 + ω))log(1 +

∑
i<j(sij − s)/C2

N )

2N
, (14)

so that we have

P

∣∣∣Lemp(f ,φ;X )− L̃emp(f ,φ;D)
∣∣∣ < (C1/(C2 + ω))log(1 +

∑
i<j

(sij − s)/C2
N )

√
ln(2/δ)
2N


= 1− 2e−2µ2/

∑N
i=1 ρ2

i

≥ 1− 2e
−2N(η

√
[ln(2/δ)]/(2CλN))2

(C1/(C2+ω))log(1+
∑

i<j(sij−s)/C2
N

)

= 1− 2e−2N
(√

[ln(2/δ)]/(2CλN)
)2

= 1− 2e−ln(2/δ)

= 1− δ, (15)

where η =
(C1/(C2+ω))log(1+

∑
i<j(sij−s)/C2

N )

2N and µ =
√

[ln(2/δ)]/(2N). The proof is completed.
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B Pretraining Setup and Evaluation Protocols

B.1 Pretraining Setup

In the experiments, we integrate CLVS into MoCo and SimSiam. Here, we provide the detailed
pretraining setup used for each method:

• MoCo. The learning rate is set to 0.03 and the temperature parameter for contrastive loss is
0.2. The projector consists of 2 MLP layers with an output dimension of 128. The memory
queue size is 65536 and the exponential moving average (EMA) parameter is 0.999.

• SimSiam. The learning rate is set to 0.05. The projector and predictor consist of 3 MLP
layers and 2 MLP layers with an output dimension of 2048, respectively.

B.2 Linear Evaluation

The linear evaluation protocol on ImageNet-100 and ImageNet-1k datasets follows [12]. Specifically,
we freeze the backbone and train a classifier by minimizing the cross-entropy loss using the LARS
[59] optimizer.

The linear evaluation protocol for transfer learning follows [35]. The training datasets are split into
a train set and a validation set, with 90% for training and the remaining 10% for validation. The
representation of 224×224 center-cropped images are extracted by the frozen backbone. The classifier
is trained by minimizing the L2-regularized cross-entropy loss using a L-BFGS [60] optimizer.

B.3 Object Detection

The object detection protocol follows [11]. We train the Faster R-CNN [61] detector with a backbone
of ResNet-50-C4 [62]. The detector is fine-tuned end-to-end on all layers for 24000 iterations on the
VOC dataset and 180000 iterations on the COCO dataset. During training, the image scale is resized
to [480, 800] pixels for VOC and [640, 800] pixels for COCO, while a fixed scale of 800 pixels is
used during inference.

B.4 Few-Shot Classification

The few-shot classification protocol follows [35]. We conduct logistic regression using representation
extracted by the frozen backbone from 224× 224 images in an N -way K-shot episode.

C Additional Experimental Results

C.1 Effect of Augmentation-Aware Module

We conduct experiments with the augmentation-aware module φ. The experimental results in Tab.
9 demonstrate the effectiveness of φ, which benefits the representation robustness via reasonably
predicting the similarity between views caused by different augmentations.

C.2 Effect of Minimum Similarity Strategy

We conduct experiments with different strategies of similarity selection in variable similarity. The ex-
perimental results in Tab. 10 demonstrate the effectiveness of the minimum similarity strategy. These
results support our hypothesis that focusing on the most challenging cases enhances representation
robustness.

C.3 More Epochs

In the aforementioned experiments, we adopt the setup of 200 training epochs from prior work [41].
To comprehensively evaluate model performance at convergence, we conduct experiments with more
training epochs. Specifically, we pretrain both CLVS and comparative methods on the ImageNet-100
dataset for 800 epochs and perform linear evaluation. As shown in Tab. 11, our method consistently
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Table 9: Effect of the augmentation-aware mod-
ule in CLVS to the linear evaluation accuracy
(%). All methods are pretrained for 200 epochs
on the ImageNet-100 dataset.

Method Baseline w/o φ w φ

MoCo+CLVS 78.8 83.1 84.5
SimSiam+CLVS 79.1 84.5 86.0

Table 10: Top-1 accuracies of linear evalua-
tion (%) with different strategies. All methods
with a ResNet-50 encoder are pretrained for 200
epochs on the ImageNet-100 dataset.

Method Min Max Mean

MoCo+CLVS 84.5 84.0 83.8
SimSiam+CLVS 86.0 85.4 85.7

outperforms comparative methods. These extended results further corroborate and align with the
findings presented in Table 3, reinforcing the robustness and superiority of our proposed method.

Table 11: Top-1 accuracies of linear evaluation (%). All methods with a ResNet-50 encoder are
pretrained for 800 epochs on the ImageNet-100 dataset.

Method ImageNet-100 CIFAR10 CIFAR100 Caltech101 SUN397 Food Flowers Pets

MoCo [16] 85.7 87.5 67.0 89.1 51.3 62.8 84.9 76.6
SimSiam [12] 81.6 88.1 68.7 89.7 52.1 64.6 88.0 75.3
AugSelf [35] 83.3 89.7 71.7 91.4 53.2 68.3 90.5 77.0
RényiCL [40] 86.6 90.0 69.8 90.5 55.4 65.6 89.9 77.9
EquiMod [38] 86.2 88.6 70.0 89.6 54.0 66.7 89.3 79.7
GCA [44] 74.0 75.2 49.7 78.0 37.3 43.6 70.6 52.2
INTL [32] 86.5 88.3 69.5 89.9 53.6 64.5 89.0 79.0

MoCo+CLVS 88.7 88.4 68.3 90.6 54.9 66.7 88.9 78.7
SimSiam+CLVS 87.6 91.0 73.4 92.1 56.6 69.6 91.3 79.2

C.4 ViT Backbone

To further validate the effectiveness of our proposed method, we conduct experiments using the ViT
[63] backbone. Recently, MoCo-v3 [64] explores training ViT backbone in self-supervised learning
framework. Therefore, we implement our method into MoCo-v3. We pretrain the ViT-Small encoder
on the Imagenet-100 dataset for 200 epochs with the batch size of 1024. We follow the experimental
settings in MoCo-v3, including AdamW optimizer [65] with a linear learning rate warm-up for the
first 40 epochs, a momentum of 0.9, and a weight decay of 0.1. A cosine learning rate schedule is
applied to the encoder and predictor. The learning rate is set to 1.5e-4 and temperature is 0.2. The
experimental results are shown in Tab. 12. The proposed method with the ViT backbone exhibits
better performance across all datasets. This reveals the effectiveness of the variable similarity, which
is applicable of the ViT backbone.

Table 12: Top-1 accuracies of linear evaluation (%). All methods with a ViT-Small encoder are
pretrained for 200 epochs on the ImageNet-100 dataset.

Method ImageNet-100 CIFAR10 CIFAR100 Caltech101 SUN397 Food Flowers Pets

MoCo-v3 [16] 78.4 86.2 66.4 82.2 47.1 60.5 83.7 66.9
MoCo-v3 + CLVS 80.7 86.9 68.5 85.3 49.5 63.9 86.8 69.7

C.5 Impact of Individual Data Augmentations

To better understand how different data augmentations contribute to variable similarity estimation,
we perform an ablation where each augmentation type is applied in isolation within the SimSiam
framework. Specifically, we consider Random Cropping, Color Jittering, Gaussian Blurring, and
Horizontal Flipping, and evaluate the similarity prediction using only the parameter difference from
the chosen augmentation. As shown in Table 13, cropping and color jittering yield the strongest
performance, indicating that view differences along spatial and color dimensions provide more
informative cues for similarity estimation. In contrast, blurring and flipping lead to slightly lower
accuracy, likely because they have limited impact on semantic content: flipping only changes
orientation and blurring mainly suppresses low-level details. This suggests that augmentations that
alter semantically relevant aspects of the image are more effective for guiding similarity estimation.
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Table 13: Linear evaluation accuracy (%) with individual augmentations. The method uses a ResNet-
50 encoder pretrained for 200 epochs on ImageNet-100, with only one augmentation type applied
during similarity estimation.

Method Random Cropping Color Jittering Gaussian Blurring Horizontal Flipping

SimSiam + CLVS 85.1 84.9 84.4 84.2

C.6 Parametric Sensitivity

We systematically analyze the sensitivity of the loss hyperparameters ω, λ and γ by varying each in
0.1, 0.5, 1. As shown in Table 14, ω exhibits the clearest trend, i.e., intermediate values consistently
lead to the best results, while both small and large values reduce accuracy. The effect of λ is similar,
where performance peaks at 0.5 and slightly declines at 1. In contrast, γ shows relatively stable
behavior across different values, with a marginal gain at γ = 1, indicating lower sensitivity. Overall,
these findings suggest that CLVS is robust to hyperparameter variations within a reasonable range,
with optimal performance typically achieved at moderate settings.

Table 14: Parametric sensitivity of different hyperparameters in the training loss. Linear evaluation
accuracy (%) of ResNet-50 backbone encoder pretrained for 200 epochs on the ImageNet-100 dataset.

Parameter Value MoCo+CLVS SimSiam+CLVS

ω
0.1 84.1 85.4
0.5 84.9 86.0
1 83.9 85.1

λ
0.1 84.4 85.8
0.5 84.9 86.0
1 84.5 85.2

γ
0.1 84.1 85.8
0.5 84.7 85.8
1 84.9 86.0

C.7 Training Time Comparison

We provide experiments to record the training time of our method and the compared methods.
Specifically, we use 4 NVIDIA A100-SXM4-40GB GPUs to train these methods, where the batch
size is set to 256. As shown in Tab. 15, although our method introduces an extra module φ, it only
increases the time by around 5% compared to the baseline. This demonstrates competitive efficiency
in terms of training time.

Table 15: Time comparison of our pro-
posed method and compared methods on the
ImageNet-1k dataset (in minutes).

Method Time / 1 epoch

SimSiam [12] 24.22
RényiCL [40] 24.72
EquiMod [38] 38.83
INTL [32] 29.17
CLVS 25.78

Table 16: NMI score of our methods and com-
pared method to quantify the class separation on
the ImageNet-100 dataset.

Method NMI

SimSiam 0.69
Augself 0.74
RényiCL 0.68
CLVS 0.76

C.8 Visualization of Learned Representations

We show the t-SNE [66] visualizations of the representations learned by our proposed method and
several methods on the ImageNet-100 dataset. As shown in Fig. 6, our proposed method leads to
better class separation. This indicates that variable similarity facilitates the model to learn more
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discriminative feature representations. Furthermore, we also provide the NMI (Normalized Mutual
Information) score to quantify the class separation in Tab. 16. Our method achieves the highest NMI
score, aligning with the trends observed in t-SNE visualizations.

(a) SimSiam (b) AugSelf (c) RényiCL (d) CLVS

Figure 6: t-SNE visualizations of image representations from randomly selected 10 classes in the
ImageNet-100 validation set.
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