
A Benchmark of
Medical Out of Distribution Detection

Tianshi Cao
Vector Institute, University of Toronto

Chin-Wei Huang
Mila, University of Montreal

David Yu-Tung Hui
Mila, University of Montreal

Joseph Paul Cohen
Mila, University of Montreal

Abstract
Motivation: Deep learning models deployed on medical tasks can be equipped1

with Out-of-Distribution Detection (OoDD) methods in order to avoid erroneous2

predictions. However it is unclear which OoDD methods are effective in practice.3

Specific Problem: Systems trained for one particular domain of images cannot4

be expected to perform accurately on images of a different domain. These images5

should be flagged by an OoDD method prior to prediction.6

Our approach: This paper defines 3 categories of OoD examples and benchmarks7

popular OoDD methods in three domains of medical imaging: chest X-ray, fundus8

imaging, and histology slides.9

Results: Our experiments show that despite methods yielding good results on10

some categories of out-of-distribution samples, they fail to recognize images close11

to the training distribution.12

Conclusion: We find a simple binary classifier on the feature representation has13

the best accuracy and AUPRC on average. Users of diagnostic tools which employ14

these OoDD methods should still remain vigilant that images very close to the15

training distribution yet not in it could yield unexpected results.16

1 Introduction17

A safe system for medical diagnosis should withhold diagnosis on cases outside its validated expertise18

[1, 2, 3]. For machine learning (ML) systems, the expertise is defined by the validation score on19

the distribution of data used during training, as the performance of the system can be validated on20

samples drawn from the same distribution (as per PAC learning [4]). This restriction can be translated21

into the task of Out-of-Distribution Detection (OoDD), the goal of which is to distinguish between22

samples in and out of the training distribution of the diagnosis system (abbreviated to In and Out data).23

We consider a pipeline where the example is filtered through the OoD detector, and only examples24

predicted as In are passed to the downstream ML predictor.25

In contrast to natural image analysis, medical image analysis must often deal with orientation26

invariance (e.g. in cell images), high variance in feature scale (in X-ray images), and locale specific27

features (e.g. CT) [5]. A systematic evaluation of OoDD methods for applications specific to medical28

image domains remains absent, leaving practitioners blind as to which OoDD methods perform well29

and under which circumstances. This paper fills this gap by benchmarking many OoDD methods30

under various medical image types. More specifically, we conduct four experiments, each on a31

specific medical imaging dataset as In data (frontal and lateral chest X-ray, fundus imaging, and32

histology). Each experiment includes comparisons to three categories of Out data taken from 1433

datasets, and 21 configurations of OoDD methods. Our empirical studies show that these OoDD34

methods perform poorly when detecting correctly acquired images that are not represented in the35

training data (later called use-case 3). We also find that some simple methods such as a binary36

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.



Usecase 3: Outside selection bias

Training data

selection
bias

Usacase 2: 
Incorrectly acquired images

Task domain
Usecase 1: 

unrelated to the task

Unseen conditions
Lateral views Rotated images

Cat pictures

Knee X-ray

Unseen artifacts 

Adults without 
implants

Underexposed Incorrectly cropped

Incorrectly acquired images Correctly acquired images

Figure 1: The three use-cases shown in relation to each other. The training data is sampled iid from
the In data distribution. 1) Inputs that are unrelated to the task. 2) Inputs which are incorrectly
prepared 3) Inputs that are unseen due to a selection bias in the training distribution.

classifier on features trained on In data performed on par with more complex methods (see Figure 4).37

We hope that this work can inspire more discussion and future work on the unique challenges of38

OoDD in medical image domains.39

2 Defining OoD in Medical Data40

Given an In distribution dataset, how should we define what constitutes Out data? To address this, we41

identify three distinct out-of-distribution categories:42

• use-case 1 Reject inputs that are unrelated to the evaluation. This includes obviously-wrong43

images from a different domain (e.g. MRI images processed using a model trained on X-ray44

images) and less obviously-wrong images (e.g. wrist X-ray image processed using a model45

trained with chest X-rays).46

• use-case 2 Reject inputs which are incorrectly prepared. For example, in the case of chest X-ray47

images: blurry images, poor contrast, incorrect view of the anatomy (lateral views processed48

using a model trained with frontal views), images with the incorrect file format or pre-processing49

applied), or changes in data acquisition protocol.50

• use-case 3 Reject inputs that are unseen due to a selection bias in training data (e.g. image with51

an unseen disease or underrepresented demographic), which may yield unexpected results.52

We justify these use-cases by enumerating different types of mistakes or biases that can occur at53

different stages of the data acquisition. This is visually represented in Figure 1. Note that earlier54

use-cases take precedence over later ones, such that if an input meets the definition of use-case 1 OoD,55

it falls under use-case 1 and we do not need to consider whether it’s also incorrectly prepared. We56

construct our experiments to evaluate OoDD methods’ performance on each category. We specifically57

include use-case 1 as a sanity check and for completeness, as the OoD methods should work here.58

Systems can be deployed in settings with natural images. A hospital PACS (Picture Archiving and59

Communication System) may have debugging or phantom images that the model should not make60

predictions for.61

Example 1 As running example, we will use our first evaluation where the In data consists of62

frontal chest X-rays. The In data contains 10 pulmonary conditions in the NIH ChestX-ray14 dataset63

[6]. In use-case 1 we include natural images, images of symbols and text, and skeletal X-ray images.64

Use-case 2 contains lateral view chest x-rays. Finally, use-case 3 include frontal chest X-rays of four65

pulmonary conditions that were not present in In data.66

3 Task Formulation67

In this paper, we will either assume that the downstream task is to perform classification using a deep68

neural network, which we call the task network, or use an auxiliary model designed specifically for69

OoD detection.70

For the auxiliary models, we use the same in-distribution set (i.e. the training set) to train the auxiliary71

model as the one used to train the classifier. This is done so that the auxiliary model is representing72

the same distribution that the classifier was trained on.73

2



In Distribution Data

Tr
ai

n 
(T

as
k 

Tr
ai

ni
ng

)

Out of Distribution 
Data

Va
lid

at
io

n\
C

al
ib

ra
tio

n
 (O

oD
D

 T
ra

in
in

g 
)

In Distribution

Out of 
Distribution

Healthy

Unhealthy

Te
st

 
(O

oD
D

 T
es

tin
g)

Val Split

Test Split

Val Split

Test Split

Train Split

Auxiliary
Process samples with auxiliary 

network and remember

Classifier Based
Process samples with task 

network and remember

In Distribution

Out of 
Distribution

Non-Neural Network
Compute scoring model

Auxiliary
Process sample with 

auxiliary network and score

Classifier Based
Use task network to create 
representation and score

Non-Neural Network
Compare with memorized data and score

Auxiliary
Train an auxiliary 

network generatively

Classifier Based
Train a task network for 

the downstream task

Non-Neural Network
Memorize data

Figure 2: An overview of one experiment which is repeated for multiple seeds. Interplay of In
and Out Data with three steps of OoDD evaluation. The data splits are shown on the left for the
In and Out data. On the right, three parts of the evaluation are shown. At the top the classifier or
auxiliary network is trained. The OoDD method is trained using calibration data in the middle and
then evaluated on test data in the bottom. Also note how data is used differently in different types of
OoDD methods.

To eliminate the bias of our evaluation, we randomize the choice of the in-distribution set (i.e. the74

training set) as well as the datasets in the calibration (validation) set and the test set, by choosing a75

random subset of out-of-distribution datasets for calibration and using the rest for test reporting.76

For each random trial, we use the same data splitting for all models (classifier-based and auxiliary77

models alike). We found that certain models are more sensitive to the calibration set (which is used for78

threshold calibration, for example) than the training split. We believe this is due the limited number of79

validation datasets we are using, for deployment we would prefer to use as many as possible, but for80

this evaluation this can expose differences between methods. To reduce the variance, we conducted81

10 trials to average out the randomness of the data splitting and report the mean and the standard82

error.83

For test evaluation, we compute the accuracy and AUPRC on each test set, and then take the average84

across them all. So the imbalance due to the varying dataset sizes is not an issue.85

Notation: Let us denote a sample of In data used to train the task network as Dtr. Then, an OoDD86

method M is trained on a “calibration set” Dval = Din
val ∪ Dout

val , a union of In and Out samples87

(labeled as “in” or “out”). M may also use the features learned by the task network, thereby also88

making use of Dtr. Finally, M is evaluated on the test set Dtest = Din
test ∪Dout

test, also composed of89

In and Out samples. Each tuple (M,Dtr, D
in
val, D

out
val , D

in
test, D

out
test) constitutes an experiment. This90

three step process is illustrated in Figure 2.91

3.1 Methods of OoDD (M )92

We consider three classes of OoDD methods. Classifier-only methods assume access to a downstream93

classifier trained for classification on In data (Dtr). Methods with auxiliary models requires pre-94

training of a neural network that on In data using other objectives such as image reconstruction. We95

also consider a KNN-based approach that doesn’t require training of neural networks.96

Classifier-only methods Classifier-only methods make use of the downstream classifier for per-97

forming OoDD. Compared to data-only methods they require less storage, however their applicability98

is constrained to cases with classification as downstream tasks.99

• Probability Threshold [7] uses a threshold on the prediction confidence of the classifier to perform100

OoDD.101

• Score SVM [8] trains an SVM on the logits of the classifier as features, generalizing probability102

threshold.103

3



• Binary Classifier trains on the features of the penultimate layer of the classifier. This is equivalent104

to attaching a binary prediction head on the classifier backbone for OoDD. The classification head105

is trained with SGD while weights of the backbone are kept fixed.106

• Feature KNN uses the same features as the binary classifier, but constructs a KNN classifier in107

place of logistic regression.108

• ODIN [9] is a probability threshold method that preprocesses the input by taking a gradient step109

of the input image to increase the difference between the In and Out data. A threshold is applied110

on prediction confidence to discriminate between In and Out data.111

• Mahalanobis [10, 11] models In data in the feature space of the classifier with a mixture of112

Gaussians. To perform OoDD, images are first preprocessed through gradient steping as in ODIN,113

and then their feature representations are computed. Likelihood of each image is computed114

using the feature’s weighted Mahalanobis distance to the mixture of Gaussians. Threshold on the115

likelihood gives prediction for OoDD. The “Mahalanobis” method concatenates the output of116

every dense block to get feature representations of the images, while “Single layer Maha.” uses117

the penultimate layer outputs.118

Methods with auxiliary models OoDD methods in this section require an auxiliary model trained119

on In data. This results in extra setup time and resources when the downstream classifier is readily120

available. However, this could also be advantageous when the downstream task is not classification121

(such as regression) where methods may be difficult to adapt. Autoencoder Reconstruction thresholds122

the reconstruction loss of the autoencoder to achieve OOD detection. Intuitively, the autoencoder is123

only optimized for reconstructing In data, and hence reconstruction quality of Out data is expected124

to be poor due to the bottleneck in the autoencoder [12, 13, 14]. We consider three variants of au-125

toencoders: standard autoencoder (AE) trained with reconstruction loss only, variational autoencoder126

trained with a variational lower bound (VAE) [15], and decoder+encoder trained with an adversarial127

loss such as ALI [16] or BiGAN [17]. Furthermore, we include two different reconstruction loss128

functions in the benchmark: mean-squared error (MSE) and binary cross entropy (BCE). Finally, AE129

KNN [18] constructs a KNN classifier on the features output by the encoder.130

Non-neural-network methods We also compare against KNN which is a strong simple baseline131

that does not utilize neural networks to construct features. This method memorizes samples from132

Dtr to form a k-nearest neighbour (KNN) model, and then uses Dval to learn a SVM using the133

distances to the K nearest neighbours as features. In the KNN-1 case, this SVM distills down to a134

single parameter representing the threshold. The SVM in KNN-8 uses 8 parameters to construct a135

classifier where each parameter acts as a weighting over neighboring samples ordered by proximity.136

Example 1 (cont.) We will use Autoencoder Reconstruction with VAE trained using MSE Loss137

(Reconst. VAEMASE) as the OoDD method of our running example. In the first stage, we train138

the auxiliary VAE on Dtr by maximizing the evidence lower bound (ELBO) under MSE criteria as139

evidence. Then, in the second stage, we compute the reconstruction loss on samples of Dval and140

calibrate a threshold value on reconstruction loss for separating In and Out samples. Finally, we141

evaluate on Dtest by predicting its label (“in” or “out”) according to the reconstruction loss and142

comparing to the ground truth.143

3.2 Description of Datasets144

The following datasets are used in use-case 1 (UC-1) Common which will be introduced in the next145

section:146

• MNIST [19] 28x28 black and white hand written digits data. The original test split is used.147

• notMNIST1 Letters A-J in various fonts. Black and white with resolution of 28x28. The original148

test split is used.149

• CIFAR10 and CIFAR100 [20] 32x32 natural images. The original test split used.150

• TinyImagenet2 96x96 downsampled subset of ILSVRC2012. The original validation split used.151

• FashionMNIST [20] Grayscale 28x28 images of clothes and shoes. The original validation split152

is used.153

• STL-10 [21] Natural image dataset of size 96x96. 8000 testing images are used.154

1http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
2https://tiny-imagenet.herokuapp.com/

4



• Noise White noise generated between 0 and 1 at any desired resolution.155

The following medical imaging datasets are used:156

• ANHIR [22] Automatic Non-rigid Histological Image Registration Challenge. Microscopy157

images of histopathology tissue samples stained with different dyes. 9000 images of intestine and158

9000 images of kidney tissue were used in evaluation 4, use-case 2.159

• DRD [23] 35k retina images from 17k patients with diabetic retinopathy. Each image is labeled160

on a scale of 0 to 4. We convert this into a classification task where 0 corresponds to healthy and161

1-4 corresponds to unhealthy.162

• DRIMDB [24] Fundus images of various qualities labeled as good/bad/outlier. This dataset is163

specifically designed for quality assessment of images. There are 91 images labeled as bad/outlier,164

which we use in evaluation 3, use-case 2.165

• IDC [25, 26] Whole slide images of Invasive Ductal Carcinoma (IDC) tissue regions for diagnos-166

ing breast cancer. The samples are H&E stained and estrogen receptor positive (ER+). 277,524167

crops of 50x50 RGB images are obtained from 162 slides.168

• Malaria [27] 27,558 images of cells in blood smear microscopy collected from healthy persons169

and patients with malaria; used in evaluation 4 use-case 1.170

• MURA [28] MUsculoskeletal RAdiographs is a large dataset (40,561 images total) of skeletal171

X-rays. We use its validation split in evaluation 1 and 2’s use-case 1. Images are grayscale and172

the square cropped.173

• NIH Chest [6] The NIH ChestX-ray14 Dataset is comprised of 112,120 X-ray images with 14174

condition labels. The x-rays images are in frontal view.175

• PadChest [29] This is a large scale chest X-ray dataset comprised of 160k images from 67k176

patients, labeled with 117 radiological findings - we use the subset with correspondence to the177

14 condition labels in the NIH Chest dataset. Images are in 5 different views: posterior-anterior178

(PA), anterior-posterior (AP), lateral, AP horizontal, and pediatric.179

• PCAM [30] The Patch Camelyon consists of 327,680 color images (96x96) extracted from180

histopathologic scans of lymph node sections from the Camelyon dataset [31]. Images are labeled181

for presence of cancerous tissue.182

• RIGA [32] Fundus imaging dataset for glaucoma analysis. It contains 460 images annotated by183

physicians for regions of disease. We use this dataset for evaluation 3, use-case 3.184

3.3 In Datasets (Dtr, D
in
val, D

in
test)185

Domain Eval In data use-case 1 Out data use-case 2 Out data use-case 3 Out data

Chest X-ray
1 NIH

(In split)
UC-1 Common

MURA
PC-Lateral, PC-PED NIH-Cardiomegaly, NIH-Nodule,

NIH-Mass, NIH-Pneumothorax

2 PC-Lateral
(In split)

UC-1 Common
MURA

PC-AP, PC-PED,
PC-AP-Horizontal, PC-PA

PC-Cardiomegaly, PC-Nodule,
PC-Mass, PC-Pneumothorax

Fundus Imaging 3 DRD UC-1 Common DRIMDB RIGA

Histology 4 PCAM UC-1 Common, Malaria ANHIR, IDC None

Table 1: Datasets used in evaluations. UC-1 Common includes datasets such as MNIST, CIFAR-10, and
random noise. PC=PadChest, NIH=NIH ChestX-ray14, DRIMDB=Diabetic Retinopathy Images Database,
RIGA=Retinal fundus images for glaucoma analysis.

For Dtr, we select from four medical datasets ranging over three modalities of medical imaging.186

Each dataset defines a classification task. If there are multiple independent tasks we merge them into187

a single task because it is not clear how to deal with multiple tasks yet and the methods we evaluate188

only expect one task. The In datasets of each evaluation are:189

1. Frontal view chest X-ray images. The task is to predict if 10 of the 14 radiologcal findings190

defined by the NIH ChestX-ray14 dataset [6] are present in the image. The remaining con-191

ditions are held-out for use-case 3. The training, validation, and testing splits accompanying192

the original data are used for Dtr, Din
val, and Din

test.193

2. Lateral view chest X-ray images (PC-Lateral). The task is the same as evaluation 1, but the194

data is from lateral view images in the PadChest (PC) dataset [29]. Remaining conditions195

are also held-out for use-case 3. We randomly split the dataset in 80-10-10 ratio for Dtr,196

Din
val, and Din

test.197

5



3. Fundus/retinal (back of the eye) images. The task is to if the detect diabetic retinopathy198

score is > 0 in the retina defined by the DRD (Diabetic Retinopathy Detection) dataset.199

[23] We randomly split the original training set in 80-10-10 ratio for Dtr, Din
val and Din

test.200

The original test set was not used due to lack of labels.201

4. H&E stained histology slides of lymph nodes. The task is to predict if image patches202

contain cancerous tissue defined by the PCAM dataset [30] from the Camelyon dataset [31].203

Original train, validataion, and test splits are used for Dtr, Din
val, and Din

test.204

3.4 Out Datasets (Dout
val and Dout

test)205

We select Out datasets according to use-cases described in section 2. As users may be independently206

interested in a particular use-case, we evaluate the OoDD methods per use-case. Clearly, characteris-207

tics of each use-case are defined relative to the In distribution, hence we may need to select different208

Out datasets for each In dataset.209

For Dout
val and Dout

test under use-case 1, we take a combination of natural image and symbols datasets210

which we call UC-1 Common. This is used for every In data. For use-case 2, we use datasets of211

the same modality of the In distribution, but incorrectly captured. For example, different views (e.g.212

lateral vs frontal) of the chest area are used as Dout
val and Dout

test for evaluations 1 and 2. Finally, for213

use-case 3, we use images of different conditions/diseases as Out data. For evaluations 1 and 2, the214

four held-out conditions are used as use-case 3 Out data. We did not include a use-case 3 Out dataset215

for histology slides due to lack of available data. Table 1 summarizes our roster of In and Out datasets.216

Each Out dataset is split 50/50 for Dout
val and Dout

test. Subsampling is used to balance the number of In217

and Out samples in Dval and Dtest.218

It remains to be determined how to split Out data between Dval and Dtest. A common but overly219

optimistic assumption is that Out data are similar to each other, hence the OoDD method is trained220

and evaluated on different splits of the same OoD dataset. In our running example, this entails221

calibrating the threshold for reconstruction loss on NIH Chest data vs MNIST training-split, and then222

evaluate on NIH chest data vs MNIST testing split. On the other extreme, the assumption is that we223

have no access to out-of-distribution data, turning the task into that of one-class classification where224

no Out data is used except for testing. In a realistic setting, the developer would train the OoDD225

method on a number of various datasets to cover different modes of OoD data, but the data seen226

at deploy time possesses variability not accounted for by those selected by the developer. Hence,227

for each use-case, we select a subsample of datasets for training the OoDD method, and use the228

remaining datasets for evaluation. In experiments where only one Out dataset is available, separate229

splits of that data is used between Dval and Dtest.230

Example 1. (cont.) For use-case 1 of the running example, we split the Out data in to 14 partitions231

(9 datasets in UC-1 Common, and 5 areas of the body in the MURA skeletal X-ray dataset). We232

sample without replacement 3 partitions for Dout
val , and use the rest in Dout

test. In use-case 2, we have233

lateral-view, pediatric (PED), dorsal-view (AP), and horizontal dorsal-view (AP-Horizontal) as four234

Out splits. We randomly select one as Dout
val and use the remaining for Dout

test. We do the same for235

use-case 3, which also has four Out splits.236

4 Experiments and Results237

In this benchmark, we report the performance of each OoDD method on every evaluation and use-case238

averaged over 10 trials. We measure the accuracy and Area Under Precision-Recall Curve (AUPRC)239

on Dtest, totaling at 11 pairs of performance numbers per method. Since Dtest is class-balanced,240

accuracy provides an unbiased representation of type I and type II errors. AUPRC characterizes241

the separability of In and Out samples in predicted value (the value that we threshold to obtain242

classification). Details of experimental setup are in Appendix A.243

Figures 3, 6, 7, and 8 show the performance of OoDD methods on the four evaluations. Generally,244

we observe that our choice of datasets create a range of simple to hard test cases for OoDD methods.245

While many methods can solve use-case 1 and use-case 2 adequately in evaluations 1-3, use-case 3246

proves difficult for all methods tested. This is reflected in the UMAP visualization of the AE latent247

spaces (column B of figures 3 to 7), in which we observe that the In data points are easily separable248

from Out data in use-cases 1 and 2, but well-mixed with Out data in use-case 3. It is surprising that249

no method achieved significantly better accuracy than random in use-case 3 of evaluations 1 and 2250

6



Figure 3: Visualizations and OoDD results on frontal view chest-xray (Evaluation 1). Each row of figures
correspond to a use-case. Column A shows examples of Out data for each use-case (hand x-ray, lateral view
chest X-ray, and xray of pneumothorax from top to bottom). Column B shows UMAP visualizations of AE
latent space - colors of points represent their respective datasets. Column C plots the accuracy and AUPRC of
OoDD methods in each use-case, averaged across all randomized trials. Bars are sorted by average accuracy
across all use-cases, and coloured according to method’s grouping: green for baseline image space methods,
blue for methods based upon the task specific classifier, and red for methods that use an auxilary neural network.
Error bars represent 95% confidence interval.

Figure 4: Accuracy and AUPRC of OoDD methods aggregated over all evaluations. Sorted by
accuracy from left to right.

across all repeated trials. This illustrates the extreme difficulty of detecting unseen/nouveau diseases,251

which corroborates the findings of [33].252

4.1 Overall Performance253

Across evaluations, the better performing classifier-only methods are competitive with the methods254

that use auxiliary models. When performance is aggregated across all evaluations, in Figure 4, the best255

classifier-only methods (Mahalanobis and binary classifier) outperform auxiliary models in accuracy.256

The performance of binary classifier is strong despite the method’s simplicity. We suspect that this257

strong performance is due to the fact that we randomly sample 3 Out datasets when constructing258

Dval as opposed to selecting a single Out dataset. This added variety in Dval Out data improves259

generalization by enforcing more stable decision boundaries. We performed additional experiments260

7



Figure 5: Overall accuracy of methods plotted over total setup time (left) and per-sample run time
(right).

Figure 6: Lateral X-ray imaging (see Figure 3 for description).

with fewer Out datasets on a subset of methods and tasks. Results in appendix figure 9 shows that the261

gap between the top-4 methods quickly closing with more Out datasets in Dval.262

4.2 Computational Cost263

We consider computational cost of each method in terms of setup time and run time in order to add264

another dimension to compare methods which achieve similar accuracy. The setup time is measured265

as the wall-clock computation time taken for hyperparameter search and training. For methods with266

auxiliary models, the training time of auxiliary neural networks are also included in the setup-time.267

Run time is measured as the per-sample computation time (averaged over fixed batch size) at test time.268

Figure 5 plots the accuracy of models over their respective setup and run time. All methods can make269

predictions reasonably fast, allowing for potential online usage. Mahalanobis and its single layer270

variant take significantly more time to setup and run than other classifier methods. KNN-8 exhibits271

the best time vs performance trade-off with its low setup time and good performance. However, as272

it requires the storage of training images for predictions, it may be unsuitable for use on memory273

constrained platforms (e.g. mobile) or when training data privacy is of concern.274

5 Discussion275

The necessity of OoDD is supported by two considerations. First of which is usability. As we276

transition ML tools from research labs to the hands of the end user, usability of these tools becomes277

pivotal to their success. One common characteristic of good usability is to fail gracefully when278

8



Figure 7: Fundus Imaging (see Figure 3 for description).

Figure 8: Histology Imaging (see Figure 3 for description).

handling user errors. In ML assisted diagnostic tools, this means equipping the tool with the capacity279

to reject predictions on erroneous input data, thereby preventing the “garbage-in, garbage-out”280

scenario. For ML tools facing the general public, this clarity is particularly important. The second281

reason why OoDD is necessary is the requirement for safety. In applications like ML assisted282

diagnosis, the performance of the system is directly tied to the safety of the patients. A well283

documented failure mode for machine learned predictors is when the predictor attempts to extrapolate284

on inputs outside the distribution of its training data. OoDD provides a safety mechanism that285

prevents failures of the predictor from harming the user through inaccurate predictions.286

6 Conclusion287

Overall, the top three classifier-only methods obtain better accuracy than all methods with auxiliary288

models except for fundus imaging. Binary classifier has the best accuracy and AUPRC on average,289

and is simple to implement. Hence, we recommend binary classifier as the default method for OoDD290

in the domain of medical images. The methods we find to work best are almost opposite that of291

[34] despite using the same code for overlapping methods. The main difference between these292

studies is that they evaluate on natural images instead of medical images. We performed an extensive293

hyperparameter search on all methods and conclude that this discrepancy is due to the specific data294

and tasks we have defined. While use-case 1 and 2 are easily solved with non-complicated models,295

the failure of most models in almost all tasks to significantly solve use-case 3 is consistent with the296

finding of [35]. Users of diagnostic tools which employ these OoDD methods should still remain297

9



vigilant that images very close to the training distribution yet not in it (and a false negative for use-case298

3) could yield unexpected results. In the absence of OoDD methods which have good performance299

on use-case 3, another approach is to develop methods which will systematically generalize to these300

examples.301

7 Limitations302

Since we use the downstream task of classifying healthy vs non-healthy for all evaluations, this303

limits our conclusion to this setting. Other vision tasks such as multiclass classification may provide304

more useful features and thus see a shift in performance for classifier-based OoDD methods [36].305

Furthermore, the In and Out datasets used span many image domains common to medical imaging,306

but might not be exactly the challenges faced. While we do not intend our selection of datasets to be307

exhaustive, we justify the choice of the Out data by enumerating different types of mistakes or biases308

that can occur at different stages of the data acquisition, which we refer to as the uses-cases. We kept309

the same network architecture across experiments; future work may study the effect of the choice of310

architecture on OoDD performance.311

8 Related Works312

As our focus is on empirically evaluating the performance of OoDD methods in the medical image313

domain, we refer readers to other review articles [37, 38] for in-depth discussion and meta-analysis314

of OoDD methods. Our work is also related to other benchmarks on out-of-distribution detection.315

Domingues et al. [39] surveyed a large number of unsupervised learning algorithms for outlier316

detection in various data domains. Their formulation of outliers is similar to OoD of use-case317

3 in our definition. In contrast to [39], our data is in the image domain, which necessitates our318

selection of different methods. More recently, Steinbuss et al. [40] proposed to use statistical models319

to synthetically generate (comparatively low dimensional) outlier data for benchmarking OoDD320

methods, in order to isolate different types of outliers. Although it would be difficult to scale their321

method for generating synthetic examples to high resolution images, their proposed framework could322

provide accurate characterization of OoDD performance in each use-case. Our work is most closely323

related to [34], which benchmarks a large number of OoDD methods on natural image data. Similar324

to [34], we also recognize the issue that calibrating and testing OoDD methods on the same Out325

dataset overestimates their performance at generalizing to unknown outliers. Our approach differs in326

that we use multiple disjoint datasets for calibration and testing where possible to better simulate327

real world scenarios. Predictive uncertainty modelling is an adjacent task to OoDD that also aims to328

improve the reliability of ML systems. Ovadia et al. [41] evaluates the predictive uncertainty of deep329

probabilistic models on OoD samples and finds that the quality of uncertainty modelling degrades330

with domain shift. This suggests that OoDD methods based solely on predictive uncertainty (e.g.331

probability threshold) are unlikely to be successful, which is in agreement to our findings. To our332

best knowledge, we are the first benchmark for OoDD in the medical image domain.333

References334

[1] M. A. Gianfrancesco, S. Tamang, J. Yazdany, and G. Schmajuk, “Potential Biases in Machine335

Learning Algorithms Using Electronic Health Record Data,” nov 2018.336

[2] A. Rajkomar, J. Dean, and I. Kohane, “Machine Learning in Medicine,” New England Journal337

of Medicine, vol. 380, pp. 1347–1358, apr 2019.338

[3] L. Seyyed-Kalantari, G. Liu, M. McDermott, and M. Ghassemi, “CheXclusion: Fairness gaps339

in deep chest X-ray classifiers,” in Pacific Symposium on Biocomputing, feb 2021.340

[4] L. G. Valiant, “A theory of the learnable,” in Proceedings of the Annual ACM Symposium on341

Theory of Computing, pp. 436–445, Association for Computing Machinery, dec 1984.342

[5] M. I. Razzak, S. Naz, and A. Zaib, “Deep learning for medical image processing: Overview,343

challenges and the future,” Classification in BioApps, p. 323–350, Nov 2017.344

[6] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “ChestX-ray8: Hospital-scale345

Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization346

of Common Thorax Diseases,” in Computer Vision and Pattern Recognition, 2017.347

[7] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-distribution348

examples in neural networks,” in International Conference on Learning Representations, 2017.349

10



[8] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the350

Support of a High-Dimensional Distribution,” Neural Computation, vol. 13, pp. 1443–1471, jul351

2001.352

[9] S. Liang, Y. Li, and R. Srikant, “Enhancing The Reliability of Out-of-distribution Image353

Detection in Neural Networks,” jun 2017.354

[10] K. Lee, K. Lee, H. Lee, and J. Shin, “A Simple Unified Framework for Detecting Out-of-355

Distribution Samples and Adversarial Attacks,” jul 2018.356

[11] E. Çallı, K. Murphy, E. Sogancioglu, and B. van Ginneken, “FRODO: Free rejection of out-357

of-distribution samples: application to chest x-ray analysis,” in Medical Imaging with Deep358

Learning, jul 2019.359

[12] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsupervised360

Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery,” mar361

2017.362

[13] H. Zenati, M. Romain, C.-S. Foo, B. Lecouat, and V. Chandrasekhar, “Adversarially Learned363

Anomaly Detection,” in International Conference on Data Mining, 2018.364

[14] J. P. Cohen, P. Bertin, and V. Frappier, “Chester: A Web Delivered Locally Computed Chest365

X-Ray Disease Prediction System,” arXiv:1901.11210, 2019.366

[15] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in International Conference367

on Learning Representations, 2014.368

[16] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville,369

“Adversarially Learned Inference,” International Conference on Learning Representations,370

2016.371

[17] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial Feature Learning,” in International372

Conference on Learning Representations (ICLR), 2017.373

[18] J. Guo, G. Liu, Y. Zuo, and J. Wu, “An Anomaly Detection Framework Based on Autoencoder374

and Nearest Neighbor,” in 2018 15th International Conference on Service Systems and Service375

Management (ICSSSM), pp. 1–6, IEEE, jul 2018.376

[19] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document377

recognition,” Proceedings of the IEEE, vol. 86, pp. 2278–2324, nov 1998.378

[20] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a Novel Image Dataset for Benchmarking379

Machine Learning Algorithms,” arXiv, aug 2017.380

[21] A. Coates, H. Lee, and A. Y. Ng, “An Analysis of Single-Layer Networks in Unsupervised381

Feature Learning,” tech. rep., jun 2011.382

[22] J. Borovec, J. Kybic, I. Arganda-Carreras, D. V. Sorokin, G. Bueno, A. V. Khvostikov, S. Bakas,383

E. I.-C. Chang, S. Heldmann, K. Kartasalo, L. Latonen, J. Lotz, M. Noga, S. Pati, K. Punithaku-384

mar, P. Ruusuvuori, A. Skalski, N. Tahmasebi, M. Valkonen, L. Venet, Y. Wang, N. Weiss,385

M. Wodzinski, Y. Xiang, Y. Xu, Y. Yan, P. Yushkevich, S. Zhao, and A. Munoz-Barrutia,386

“ANHIR: Automatic Non-Rigid Histological Image Registration Challenge,” IEEE Transactions387

on Medical Imaging, vol. 39, pp. 3042–3052, oct 2020.388

[23] Kaggle and EyePacs, “Kaggle diabetic retinopathy detection,” jul 2015.389

[24] U. Sevik, C. Köse, T. Berber, and H. Erdöl, “Identification of suitable fundus images using390

automated quality assessment methods,” Journal of Biomedical Optics, vol. 19, p. 046006, apr391

2014.392

[25] A. Janowczyk and A. Madabhushi, “Deep learning for digital pathology image analysis: A393

comprehensive tutorial with selected use cases,” Journal of pathology informatics, vol. 7, 2016.394

[26] A. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore, M. Feldman, S. Ganesan, N. Shih,395

J. Tomaszewski, and A. Madabhushi, “Automatic detection of invasive ductal carcinoma in396

whole slide images with convolutional neural networks,” in Medical Imaging 2014: Digital397

Pathology, vol. 9041, p. 904103, International Society for Optics and Photonics, 2014.398

[27] S. Rajaraman, S. K. Antani, M. Poostchi, K. Silamut, M. A. Hossain, R. J. Maude, S. Jaeger, and399

G. R. Thoma, “Pre-trained convolutional neural networks as feature extractors toward improved400

malaria parasite detection in thin blood smear images,” PeerJ, vol. 2018, p. e4568, apr 2018.401

11



[28] P. Rajpurkar, J. Irvin, A. Bagul, D. Ding, T. Duan, H. Mehta, B. Yang, K. Zhu, D. Laird, R. L.402

Ball, C. Langlotz, K. Shpanskaya, M. P. Lungren, and A. Y. Ng, “MURA: Large Dataset for403

Abnormality Detection in Musculoskeletal Radiographs,” arxiv, 2018.404

[29] A. Bustos, A. Pertusa, J.-M. Salinas, and M. de la Iglesia-Vayá, “PadChest: A large chest x-ray405

image dataset with multi-label annotated reports,” arXiv preprint, jan 2019.406

[30] B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, and M. Welling, “Rotation Equivariant407

CNNs for Digital Pathology,” in Medical Image Computing & Computer Assisted Intervention408

(MICCAI), jun 2018.409

[31] G. Litjens, P. Bandi, B. E. Bejnordi, O. Geessink, M. Balkenhol, P. Bult, A. Halilovic,410

M. Hermsen, R. van de Loo, R. Vogels, Q. F. Manson, N. Stathonikos, A. Baidoshvili, P. van411

Diest, C. Wauters, M. van Dijk, and J. van der Laak, “1399 H&E-stained sentinel lymph node412

sections of breast cancer patients: The CAMELYON dataset,” jun 2018.413

[32] A. A. Almazroa, S. Alodhayb, E. Osman, E. Ramadan, M. Hummadi, M. Dlaim, M. Alkatee,414

K. Raahemifar, and V. Lakshminarayanan, “Retinal fundus images for glaucoma analysis: the415

RIGA dataset,” in Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and416

Applications (J. Zhang and P.-H. Chen, eds.), p. 8, SPIE, mar 2018.417

[33] J. Ren, P. J. Liu, E. Fertig, J. Snoek, R. Poplin, M. A. DePristo, J. V. Dillon, and B. Lakshmi-418

narayanan, “Likelihood ratios for out-of-distribution detection,” 2019.419

[34] A. Shafaei, M. Schmidt, and J. J. Little, “Does Your Model Know the Digit 6 Is Not a Cat? A420

Less Biased Evaluation of ”Outlier” Detectors,” arxiv, sep 2018.421

[35] F. Ahmed and A. Courville, “Detecting semantic anomalies,” in Association for the Advancement422

of Artificial Intelligence, aug 2019.423

[36] A. R. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik, and S. Savarese, “Taskonomy: Disentan-424

gling task transfer learning,” 2018 IEEE/CVF Conference on Computer Vision and Pattern425

Recognition, Jun 2018.426

[37] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for anomaly detection: A427

review,” ACM Computing Surveys (CSUR), vol. 54, no. 2, pp. 1–38, 2021.428

[38] H. Wang, M. J. Bah, and M. Hammad, “Progress in outlier detection techniques: A survey,”429

IEEE Access, vol. 7, pp. 107964–108000, 2019.430

[39] R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, “A comparative evaluation of outlier431

detection algorithms: Experiments and analyses,” Pattern Recognition, vol. 74, pp. 406–421,432

2018.433

[40] G. Steinbuss and K. Böhm, “Benchmarking unsupervised outlier detection with realistic syn-434

thetic data,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 15, no. 4,435

pp. 1–20, 2021.436

[41] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. V. Dillon, B. Lakshminarayanan,437

and J. Snoek, “Can you trust your model’s uncertainty? evaluating predictive uncertainty under438

dataset shift,” arXiv preprint arXiv:1906.02530, 2019.439

[42] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional440

Networks,” in Computer Vision and Pattern Recognition, 2017.441

12



Checklist442

The checklist follows the references. Please read the checklist guidelines carefully for information on443

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or444

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing445

the appropriate section of your paper or providing a brief inline description. For example:446

• Did you include the license to the code and datasets? [Yes] See §3.2.447

• Did you include the license to the code and datasets? [No] The code is open source under an448

MIT License (See https://github.com/caotians1/OD-test-master. All datasets are publicly449

available but the exact licenses are not specified.450

Please do not modify the questions and only use the provided macros for your answers. Note that the451

Checklist section does not count towards the page limit. In your paper, please delete this instructions452

block and only keep the Checklist section heading above along with the questions/answers below.453

1. For all authors...454

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s455

contributions and scope? [Yes]456

(b) Did you describe the limitations of your work? [Yes] See §7457

(c) Did you discuss any potential negative societal impacts of your work? [No] We do not458

believe there are any.459

(d) Have you read the ethics review guidelines and ensured that your paper conforms to460

them? [Yes]461

2. If you are including theoretical results...462

(a) Did you state the full set of assumptions of all theoretical results? [N/A]463

(b) Did you include complete proofs of all theoretical results? [N/A]464

3. If you ran experiments (e.g. for benchmarks)...465

(a) Did you include the code, data, and instructions needed to reproduce the main ex-466

perimental results (either in the supplemental material or as a URL)? [Yes] See467

https://github.com/caotians1/OD-test-master468

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they469

were chosen)? [Yes] This is the majority of the paper as well as the appendix.470

(c) Did you report error bars (e.g., with respect to the random seed after running experi-471

ments multiple times)? [Yes]472

(d) Did you include the total amount of compute and the type of resources used (e.g., type473

of GPUs, internal cluster, or cloud provider)? [Yes] See §4.2474

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...475

(a) If your work uses existing assets, did you cite the creators? [Yes]476

(b) Did you mention the license of the assets? [Yes] The license file for the code is477

maintained in the code.478

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]479

Code is released for this work on GitHub.480

(d) Did you discuss whether and how consent was obtained from people whose data you’re481

using/curating? [Yes] See §3.2482

(e) Did you discuss whether the data you are using/curating contains personally identifiable483

information or offensive content? [No] We only use existing public datasets and do not484

believe there is any PII or offensive content in them.485

5. If you used crowdsourcing or conducted research with human subjects...486

(a) Did you include the full text of instructions given to participants and screenshots, if487

applicable? [N/A]488

(b) Did you describe any potential participant risks, with links to Institutional Review489

Board (IRB) approvals, if applicable? [N/A]490

(c) Did you include the estimated hourly wage paid to participants and the total amount491

spent on participant compensation? [N/A]492

13

https://github.com/caotians1/OD-test-master
https://github.com/caotians1/OD-test-master


A Details of Experimental Procedure493

The code used for all experiments is provided here: https://github.com/caotians1/OD-test-master494

A.1 Network training495

For classifier models, we use a DenseNet-121 architecture [42] with Imagenet pretrained weights. The496

last layer is re-initialized and the full network is finetuned on Dtr. As the NIH and PC-Lateral datasets497

only contain grayscale images, the pretrained weights of features in the first layer are averaged across498

channels prior to finetuning.499

For all of the autoencoders, we use a 12-layer CNN architecture with a bottleneck dimension of 512500

for all evaluations. Due to computational constraints, all images are downsampled to 64× 64 when501

fed to an autoencoder. These AEs are trained from scratch on their respective Dtr with MSE loss and502

BCE loss. We also trained VAEs with the same architectures, except that the bottleneck dimension is503

doubled to 1024 to allow the code to be split into means and variances.504

In addition, we explore the potential benefits of training encoder+decoder using ALI in evaluation505

1. We use the same network architecture as proposed in [16], with weights pretrained on Imagenet506

and finetuned on NIH In classes. Due to the added complexity of training GANs and the lack of507

significant improvements in OoDD performance over regular AEs (see §4), we did not train ALI508

models for the other three evaluations.509

In order to gauge training progress and overfitting, we hold out 5% of Dtr as validation set. We select510

the training checkpoint with the lowest error on Dtr for use in OoDD methods.511

A.2 OoDD Method Training512

When training the OoDD methods for use-case 1, three Out datasets are randomly selected for513

Dval while the rest is used for Dtest. For use-cases 2 and 3, we enumerate over configurations514

where each Out dataset is used as Dval with the rest as Dtest. Dval and Dtest are class-balanced515

by subsampling equal numbers of In and Out samples. Additionally, some methods (ODIN and516

Mahalanobis) require additional hyper-parameter selection. Hence, we further subdivide Dval in to a517

80% ‘training’ split and a 20% ‘validation’ split; methods are trained/optimized on the ‘training’ split518

with early-stopping/calibration on the ‘validation’ split. Hyperparameter sweep is carried out where519

needed. 10 repeated trials, with re-sampled Dval and Dtest, are performed for each evaluation.520

B Additional Results521

Figure 9: Performance of top-4 methods on frontal X-ray imaging, use-case 1, when trained with
fewer datasets in Dval

14

https://github.com/caotians1/OD-test-master


Usecase 1 Usecase 2 Usecase 3
Method Acc. (%) AUPRC (%) Acc. (%) AUPRC (%) Acc. (%) AUPRC (%)

Prob. threshold 56.4± 3.5 51.2± 2.6 43.6± 3.7 41.9± 1.8 49.8± 0.3 49.5± 0.4
Score SVM 59.9± 3.0 60.3± 2.7 57.2± 3.2 57.2± 3.0 51.4± 0.0 51.5± 0.0
Binary classifier 67.7± 3.3 78.0± 4.2 56.7± 2.3 57.2± 3.2 50.4± 0.1 50.5± 0.1
ODIN 79.5± 2.4 87.2± 1.9 72.0± 2.1 81.9± 3.0 51.0± 0.2 51.0± 0.4
Mahalanobis 78.2± 3.1 85.0± 3.2 75.0± 2.8 78.9± 5.1 49.6± 0.2 49.3± 0.9
Single layer Maha. 71.4± 3.5 77.7± 4.2 90.6± 3.0 95.4± 4.4 50.5± 0.1 50.7± 0.6
Feature knn 77.4± 3.3 83.8± 3.8 87.7± 3.7 95.1± 4.4 51.0± 0.1 51.3± 0.0
Reconst. AEBCE 88.9± 1.2 95.1± 0.9 77.9± 2.5 90.2± 1.3 50.0± 0.0 49.9± 0.1
Reconst. AEMSE 82.3± 3.2 88.7± 3.9 92.3± 1.6 98.9± 0.3 50.9± 0.1 51.3± 0.0
Reconst. VAEBCE 79.0± 3.4 86.3± 3.8 94.2± 1.2 99.2± 0.2 51.2± 0.1 51.7± 0.0
Reconst. VAEMSE 80.8± 3.1 91.2± 2.2 96.7± 1.2 99.7± 0.1 50.2± 0.2 51.4± 0.0
Reconst. ALI 85.6± 0.7 89.9± 0.9 89.0± 3.0 94.4± 4.3 50.2± 0.0 50.3± 0.0
KNN-1 83.9± 3.2 95.8± 1.1 93.3± 3.4 99.9± 0.0 50.0± 0.0 51.5± 0.0
KNN-8 93.9± 0.5 97.1± 0.5 81.7± 1.4 92.1± 1.1 50.0± 0.0 50.0± 0.1
VAEMSE-KNN-1 83.3± 2.7 92.5± 1.8 96.2± 3.1 96.6± 4.4 50.6± 0.2 50.0± 0.5
VAEBCE-KNN-1 95.7± 0.7 98.7± 0.3 83.8± 3.0 95.2± 0.7 50.0± 0.0 49.5± 0.0
AEMSE-KNN-1 90.4± 1.0 93.2± 1.2 94.7± 0.4 98.8± 0.2 50.3± 0.0 50.3± 0.0
AEBCE-KNN-1 95.5± 1.3 98.2± 0.4 87.2± 3.2 89.6± 2.7 51.6± 0.3 52.8± 0.5
VAEMSE-KNN-8 90.6± 2.9 95.8± 2.3 94.2± 2.3 99.5± 0.3 50.5± 0.1 50.8± 0.1
VAEBCE-KNN-8 91.9± 1.6 97.6± 0.4 97.5± 0.9 99.9± 0.0 49.7± 0.2 50.0± 0.4
AEMSE-KNN-8 91.8± 1.7 98.2± 0.3 98.9± 0.2 99.9± 0.0 50.8± 0.1 51.1± 0.0
AEBCE-KNN-8 96.4± 1.6 98.0± 1.4 93.4± 2.2 98.7± 0.7 51.4± 0.2 52.8± 0.4
Table 2: OoDD performance with NIHCC as In data. Error margin reflects standard deviation.

Usecase 1 Usecase 2 Usecase 3
Method Acc. (%) AUPRC (%) Acc. (%) AUPRC (%) Acc. (%) AUPRC (%)

Prob. threshold 52.4± 1.2 59.9± 2.2 64.1± 1.9 72.7± 2.3 63.4± 2.5 71.4± 1.5
Score SVM 61.1± 2.5 57.9± 1.8 66.6± 1.5 74.3± 2.5 65.7± 0.9 71.2± 1.1
Binary classifier 62.5± 2.3 59.6± 1.7 64.5± 1.9 72.5± 1.6 65.0± 2.1 70.3± 1.9
ODIN 77.1± 2.2 83.1± 2.3 65.6± 5.3 77.4± 14.1 58.0± 4.5 58.0± 10.4
Mahalanobis 84.3± 2.7 91.8± 1.8 65.0± 7.7 66.0± 15.8 59.0± 4.3 58.2± 8.1
Single layer Maha. 85.0± 2.2 92.6± 1.7 74.4± 3.0 87.7± 1.1 66.7± 0.9 67.1± 1.6
Feature knn 86.6± 3.5 96.5± 1.4 85.9± 7.5 91.1± 12.4 62.5± 5.3 64.3± 11.7
Reconst. AEBCE 86.8± 4.5 89.3± 5.4 81.8± 3.3 87.1± 0.2 68.7± 5.4 71.3± 5.8
Reconst. AEMSE 88.4± 3.0 96.8± 1.4 91.9± 0.9 97.7± 0.4 70.2± 1.7 76.4± 2.1
Reconst. VAEBCE 94.4± 1.2 98.1± 0.9 68.5± 5.4 77.9± 8.2 68.8± 1.6 74.2± 1.9
Reconst. VAEMSE 96.3± 1.3 99.0± 0.2 75.4± 11.4 78.1± 19.1 52.8± 1.0 54.1± 2.8
KNN-1 93.3± 3.7 92.4± 5.2 88.5± 8.0 91.7± 12.5 72.9± 7.2 73.9± 12.9
KNN-8 94.0± 3.3 96.8± 3.3 67.8± 11.5 82.5± 10.4 97.7± 0.7 99.0± 0.7
VAEMSE-KNN-1 99.6± 0.2 100.0± 0.0 82.8± 4.7 98.6± 0.2 50.7± 1.2 63.9± 1.3
VAEBCE-KNN-1 99.3± 0.3 100.0± 0.0 84.6± 6.4 95.6± 0.2 52.4± 1.9 64.5± 0.7
AEMSE-KNN-1 99.3± 0.2 100.0± 0.0 87.5± 3.8 96.0± 0.3 52.2± 1.5 64.1± 1.0
AEBCE-KNN-1 99.3± 0.2 100.0± 0.0 85.8± 7.5 89.3± 11.9 55.8± 2.9 57.0± 6.4
VAEMSE-KNN-8 99.4± 0.1 100.0± 0.0 85.0± 2.7 95.0± 0.1 59.7± 1.4 60.5± 1.4
VAEBCE-KNN-8 99.0± 0.3 99.9± 0.0 89.2± 12.2 86.2± 17.1 74.2± 7.5 75.8± 13.4
AEMSE-KNN-8 98.5± 0.3 99.4± 0.2 92.2± 1.1 98.3± 0.1 77.6± 1.1 80.6± 1.0
AEBCE-KNN-8 98.9± 0.3 99.9± 0.0 97.6± 0.9 99.6± 0.5 79.5± 1.0 84.6± 0.5

Table 3: OoDD performance with DRD as In data. Error margin reflects standard deviation.

15



Usecase 1 Usecase 2 Usecase 3
Method Acc. (%) AUPRC (%) Acc. (%) AUPRC (%) Acc. (%) AUPRC (%)

Prob. threshold 75.3± 4.5 78.8± 6.4 50.6± 1.5 52.6± 2.3 32.2± 2.8 45.4± 5.3
Score SVM 49.7± 4.4 53.2± 5.1 59.5± 1.9 60.6± 2.1 51.3± 0.2 51.3± 0.3
Binary classifier 64.3± 4.8 65.1± 5.7 58.2± 2.1 65.0± 2.9 50.8± 0.2 51.1± 0.2
ODIN 93.7± 0.6 96.6± 0.9 53.2± 1.5 56.9± 2.5 36.7± 5.3 41.0± 4.0
Mahalanobis 84.7± 3.3 90.0± 2.7 62.0± 1.9 65.2± 2.5 29.7± 1.5 37.3± 0.4
Single layer Maha. 80.5± 5.1 78.1± 7.8 63.5± 1.6 67.0± 2.6 45.6± 5.3 58.3± 6.9
Feature knn 71.1± 3.7 72.7± 3.6 66.2± 1.8 58.7± 1.8 53.1± 0.4 52.7± 0.7
Reconst. AEBCE 82.6± 4.2 84.4± 5.0 65.3± 2.8 65.3± 4.0 53.6± 0.2 54.3± 0.2
Reconst. AEMSE 95.0± 1.3 97.4± 0.7 70.5± 1.6 75.5± 1.8 28.7± 2.6 37.8± 1.0
Reconst. VAEBCE 95.7± 0.6 99.6± 0.1 63.6± 2.1 89.4± 0.5 50.0± 0.0 51.4± 0.2
Reconst. VAEMSE 97.0± 1.3 99.8± 0.1 65.8± 3.0 96.5± 0.2 50.0± 0.0 54.6± 0.2
KNN-1 84.2± 4.4 84.7± 6.8 72.0± 1.7 76.1± 2.5 52.4± 1.5 71.2± 5.5
KNN-8 91.3± 3.5 92.5± 5.2 76.1± 1.8 79.7± 3.2 35.4± 3.0 44.4± 3.6
VAEMSE-KNN-1 97.5± 0.5 99.7± 0.1 70.8± 2.1 91.6± 0.3 50.1± 0.1 51.9± 0.2
VAEBCE-KNN-1 94.8± 0.5 98.7± 0.2 75.1± 0.9 80.3± 1.3 42.8± 2.4 44.1± 3.1
AEMSE-KNN-1 93.7± 0.6 98.5± 0.3 78.4± 1.1 83.3± 1.4 45.9± 2.2 47.4± 2.5
AEBCE-KNN-1 93.1± 1.6 98.5± 0.5 84.0± 1.7 90.2± 2.5 38.7± 2.5 46.2± 5.0
VAEMSE-KNN-8 94.1± 1.0 98.3± 0.6 82.0± 1.3 91.0± 0.9 52.6± 0.3 52.9± 0.5
VAEBCE-KNN-8 95.8± 0.4 99.3± 0.2 87.2± 0.5 91.9± 0.2 45.0± 2.0 52.2± 4.7
AEMSE-KNN-8 80.2± 5.3 88.7± 5.3 93.1± 2.1 98.3± 1.5 53.8± 0.2 54.9± 0.2
AEBCE-KNN-8 96.7± 0.7 99.3± 0.2 90.0± 1.0 96.8± 0.3 50.0± 0.2 49.2± 0.4
Table 4: OoDD performance with PadChest as In data. Error margin reflects standard deviation.

Usecase 1 Usecase 2
Method Acc. (%) AUPRC (%) Acc. (%) AUPRC (%)

Prob. threshold 49.0± 1.1 46.3± 1.9 49.7± 0.4 43.9± 0.9
Score SVM 51.8± 0.8 54.1± 1.4 50.1± 0.1 51.5± 1.0
Binary classifier 64.7± 2.8 64.1± 2.4 49.0± 2.8 44.7± 2.4
ODIN 64.9± 4.5 63.6± 5.0 59.5± 2.1 56.0± 0.9
Mahalanobis 66.0± 3.4 74.4± 4.4 59.9± 4.0 61.6± 4.4
Single layer Maha. 65.5± 1.9 64.8± 2.8 67.8± 1.1 69.6± 4.1
Feature knn 70.3± 4.7 71.9± 6.4 57.0± 5.4 58.8± 8.2
Reconst. AEBCE 78.4± 4.3 84.5± 5.2 49.2± 2.0 48.2± 8.4
Reconst. AEMSE 79.0± 4.4 84.6± 5.4 45.0± 6.1 47.6± 7.8
Reconst. VAEBCE 78.8± 4.4 82.4± 6.3 52.4± 8.4 50.9± 8.7
Reconst. VAEMSE 78.5± 4.4 82.2± 6.2 55.1± 5.7 55.6± 8.4
KNN-1 85.6± 2.9 92.9± 1.9 60.7± 3.7 63.7± 4.5
KNN-8 78.8± 3.5 84.1± 4.5 59.0± 5.3 58.2± 8.4
VAEMSE-KNN-1 80.1± 4.4 82.5± 6.3 52.6± 3.8 56.0± 8.9
VAEBCE-KNN-1 80.1± 4.4 82.6± 6.3 53.5± 4.0 51.0± 8.4
AEMSE-KNN-1 87.5± 2.5 94.6± 1.5 61.1± 3.8 62.9± 4.3
AEBCE-KNN-1 85.6± 2.9 92.4± 2.1 60.9± 5.1 57.1± 5.5
VAEMSE-KNN-8 87.6± 2.4 93.9± 1.5 62.3± 8.1 57.9± 8.1
VAEBCE-KNN-8 96.1± 2.5 99.5± 0.3 66.7± 6.3 71.8± 6.9
AEMSE-KNN-8 94.6± 0.5 96.8± 0.8 75.2± 0.3 79.4± 0.5
AEBCE-KNN-8 96.4± 1.3 98.2± 1.3 73.5± 2.8 77.7± 3.2

Table 5: OoDD performance with PCAM as In data. Error margin reflects standard deviation.

16



Figure 10: Comparison of RIGA and DRD images: Top row are images sampled from RIGA, while
bottom row are images sampled from DRD. There are notable visual differences between glaucoma
and diabetic retinopathy.

17


	Introduction
	Defining OoD in Medical Data
	Task Formulation
	Methods of OoDD (M)
	Description of Datasets
	In Datasets (D_tr, D_valîn, D_testîn
	Out Datasets (D_valôut and D_testôut)

	Experiments and Results
	Overall Performance
	Computational Cost

	Discussion
	Conclusion
	Limitations
	Related Works
	Details of Experimental Procedure
	Network training
	OoDD Method Training

	Additional Results

