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Abstract

Natural and formal languages provide an effective mechanism for humans to specify
instructions and reward functions. We investigate how to generate policies via RL
when reward functions are specified in a symbolic language captured by Reward
Machines, an increasingly popular automaton-inspired structure. We are interested
in the case where the mapping of environment state to a symbolic (here, Reward
Machine) vocabulary – commonly known as the labelling function – is uncertain
from the perspective of the agent. We formulate the problem of policy learning in
Reward Machines with noisy symbolic abstractions as a special class of POMDP
optimization problem, and investigate several methods to address the problem,
building on existing and new techniques, the latter focused on predicting Reward
Machine state, rather than on grounding of individual symbols. We analyze these
methods and evaluate them experimentally under varying degrees of uncertainty in
the correct interpretation of the symbolic vocabulary. We verify the strength of our
approach and the limitation of existing methods via an empirical investigation on
both illustrative, toy domains and partially observable, deep RL domains.

1 Introduction

Language is playing an increasingly important role in Reinforcement Learning (RL). It serves as a
mechanism for expressing human-interpretable reward functions as well as for conveying language-
based advice and instructions (e.g., [Luketina et al., 2019, Tuli et al., 2022, Huang et al., 2022]).
An oft-cited challenge that faces the integration of language and machine learning is the symbol
grounding problem – the problem of associating symbols or words in a language (e.g. “cat” or
“chair”) or properties expressed in a language (e.g, “the robot is holding the cup”) with states of
the world – especially if those states are generated via a different modality such as vision, haptics
or audio. Indeed the association of the symbols and sentences of language with observed state is
contextual, complex and noisy, and it is this observation that broadly motivates the work in this paper.

Our general concern is with learning a policy using RL when language is used to specify reward-
worthy behaviour or task instructions over a vocabulary – a set of symbols – that captures a purposeful
abstraction of the observed environment state. We are specifically concerned with the case where
the interpretation of this vocabulary is noisy or uncertain, and how to perform RL effectively in
this context. This causes the RL agent to be uncertain about whether it is making progress on
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†Also affiliated with the Schwartz Reisman Institute for Technology and Society

Deep Reinforcement Learning Workshop at NeurIPS 2022.



garnering rewards and/or following instructions that have been conveyed via language. For example,
consider that an autonomous vehicle gets negative reward for driving through a red light, but where the
determination of whether "red light" is true in the current state can be compromised by a slush-covered
camera lens, specularities from the sun, or occlusion from a truck in front of the vehicle.

For the purposes of this paper, we examine this problem in the context of Reward Machines (RMs),
automata-like structures that provide a normal-form representation for (non-Markovian) reward
functions, human preferences, and instructions [Toro Icarte et al., 2018, Toro Icarte et al., 2022]. The
virtue of RMs is that they allow for reward specification in a diversity of (formal) languages that have
corresponding automata representations [Camacho et al., 2019], following Chomsky’s hierarchy (e.g.,
Hopcroft et al. [2007]). Further, RMs are typically paired with learning algorithms that exploit the
reward function structure exposed in the automata to significantly improve sample efficiency. RMs
have historically realized symbol grounding via so-called labelling functions that map environment
states into a vocabulary of properties (e.g., “at-location-A”, “light-is-red”) that are propositional –
either true or false in the state. RMs have proven effective when such functions faithfully reflect the
intended interpretation of the propositional symbols, but when environments are partially observable
or when labelling functions reflect uncertainty or sensors are noisy (as many real-world detectors are)
they may not be adequate to determine the truth or falsity of a particular state property with certainty.

The use of formal languages in (deep) RL, including Linear Temporal Logic and Reward Machines,
is a topic of broad interest because of the benefits accrued by exploiting the compositional syntax
and semantics of formal languages, their connections with formal system verification, and correct-
by-construction synthesis from formal specification [e.g., Aksaray et al., 2016, Li et al., 2017, 2018,
Littman et al., 2017, Toro Icarte et al., 2018, Toro Icarte et al., 2019, Hasanbeig et al., 2018, Yuan
et al., 2019, Jothimurugan et al., 2019, Xu and Topcu, 2019, Kuo et al., 2020, Hasanbeig et al., 2020,
Xu et al., 2020, 2021, Furelos-Blanco et al., 2020, Rens and Raskin, 2020, de Giacomo et al., 2020,
Jiang et al., 2021, Neary et al., 2021, Shah et al., 2020, Velasquez et al., 2021, DeFazio and Zhang,
2021, Zheng et al., 2022, Camacho et al., 2021, Corazza et al., 2022, Liu et al., 2022].

The contributions of this paper are as follows:

• We study the problem of learning policies when (non-Markovian) reward functions are expressed in
a symbolic language captured by a Reward Machine, but where the interpretation of the vocabulary
of that language – the symbols – is noisy. We present a novel formulation of this problem as
optimizing a POMDP, where the POMDP state comprises both the concrete observable environment
state and the hidden Reward Machine state.

• We investigate a suite of deep RL methods for our proposed problem formulation and highlight
their limitations under various conditions.

• We propose a novel deep RL algorithm, Reward Machine State Modelling, that makes robust
decisions by being aware of the uncertainty in its interpretation of the vocabulary.

• We verify the strength of our approach and limitations of existing methods via an empirical
investigation using illustrative, toy examples and partially observable, deep RL image domains.

2 Preliminaries

The goal of reinforcement learning is to learn an optimal policy π by interacting with an environment
[Sutton and Barto, 2018]. Typically, the environment is modelled as a Markov Decision Process
(MDP) [Bellman, 1957], a tuple 〈S, T,A, P,R, γ, µ〉. S is the set of states, T ⊆ S is the set of
terminal states, A is the set of actions, P (s′|s, a) is the transition probability distribution, R :
S ×A× S → R is the reward function, γ is the discount factor, and µ is the initial state distribution.

Reward machines are an automata-based representation of (non-Markovian) reward functions [Toro
Icarte et al., 2018, Toro Icarte et al., 2022] that provide a normal-form representation for reward
specification in a diversity of formal languages [Camacho et al., 2019]. Given a vocabulary – a finite
set of propositions AP representing abstract (possibly human interpretable) properties or events in
the environment, RMs specify temporally extended rewards over these propositions while exposing
the compositional reward structure to the learning agent. Formally, Reward Machines, which we take
to mean here simple Reward Machines from Toro Icarte et al. [2022], are defined as follows:
Definition 2.1 (Reward Machine, RM). A simple Reward Machine is a tuple 〈U, u0, F,AP, δt, δr〉,
where U is a finite set of states, u0 ∈ U is the initial state, F is a finite set of terminal states (disjoint
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Figure 1: The Mining Domain. Left: A robot is tasked with digging up a stash of gold (found in any
one of the four right-most squares) and then delivering it to the depot at the bottom left. Visiting the
depot ends the episode. Right: A Reward Machine describing this task. The atomic propositions are
AP = { ,Ï}, where holds when the robot performs a "dig" action in a gold square and Ï
holds when the robot is at the depot. A directed edge between RM states u and v labelled φ/r means
that when φ (a propositional formula over AP) is satisfied while the agent is in RM state u, the agent
gets reward r and transitions to v.

from U ), AP is a finite set of atomic propositions, δu : U × 2AP → (U ∪ F ) is the state-transition
function, and δr : U × 2AP → R is the state-reward function.

Running Example: The Mining domain depicted in Figure 1 (adapted from [Corazza et al., 2022])
illustrates the use of RMs. The agent’s state is its current square on the grid, and its task is to obtain
at least one ore of gold (found at a gold square), then deliver it to the depot. Visiting the depot ends
the episode. Figure 1 (right) shows a possible RM for this task over propositions AP = { ,Ï}.
RMs can be used in place of a standard reward function in an MDP or POMDPM with the help of a
labelling function L : S ×A× S → 2AP . The labelling function grounds abstract propositions from
AP into the environmentM by mapping transitions (st, at, st+1) into the subset of propositions that
hold for that transition. In the Mining example, a labelling function L evaluates to true when the
agent digs at a gold square and evaluates Ï to true when the agent is at the bottom-left square.

At each (non-final) timestep t, if the environment transition is (st, at, st+1) and the RM state is
ut ∈ U (initially set to u0), then the RM state is updated to ut+1 = δu(ut,L(st, at, st+1)) and the
agent receives reward rt = δr(ut,L(st, at, st+1)). This process of using an RM with an MDP is
equivalent to using a larger MDP – which we will call the Reward Machine MDP – that has a standard
(Markovian) reward function but with state space S × U [see Toro Icarte et al., 2022, Observation 1].
Definition 2.2 (Reward Machine MDP, RM-MDP). Given an MDP without a reward function
〈S, T,A, P, γ, µ〉, an RM 〈U, u0, F,AP, δt, δr〉, and a labelling function L : S×A×S → 2AP , the
corresponding Reward Machine MDP is an MDP 〈S′, T ′, A, P ′, R′, γ, µ′〉 where S′ = S × U
is the state space, T ′ = (T × U) ∪ (S × F ) are terminal states, A is the action space,
P ′((st+1, ut+1)|(st, ut), at) = P (st+1|st, at) · 1[δu(ut,L(st, at, st+1)) = ut+1] are the transi-
tion probabilities, R′((st, ut), at, (st+1, ut+1)) = δr(ut,L(st, at, st+1)) is the reward function, γ is
the discount factor, and µ′(s, u) = µ(s)1[u = u0] is the initial state distribution.

RMs are commonly integrated into deep RL algorithms by using the labelling function L to compute
the RM state ut, which is provided as input to the policy along with st. In the Mining example, the
RM state ut acts as salient memory, capturing whether the agent has previously obtained gold.

3 Decision-making under Uncertain Propositions

The majority of existing RL methods that employ structured reward function specifications, such as
RMs, assume perfect labelling functions in their decision-making. By exploiting the ground-truth
propositional values, the true state of the RM is always available to the policy. Unfortunately, faithful
evaluation of these abstracted propositions is unrealistic in many real-world settings; factors such
as sensor noise, modelling errors, partial observability or insufficient data may all lead to incorrect
evaluation of these propositions. Critically, the agent’s estimate of the RM state may rapidly diverge
from reality as a result of such errors, potentially provoking unintended behaviours.

Example continued: Consider again the Mining example in Figure 1 when the agent is unable to
consistently determine if an ore is gold or another less valuable mineral in the absence of a perfect
labelling function. Now, the agent cannot be certain that it has obtained gold, and a false positive
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belief may cause the agent to head to the depot, failing the task. A robust policy should be cognizant of
this uncertainty, perhaps digging at many squares before visiting the depot to maximize its probability
of successfully completing the task. Unfortunately, efficient realization of this behaviour is inherently
non-Markovian, as it requires the agent to remember which squares were previously mined.

Our goal is to investigate how agents can learn these robust behaviours without a perfect labelling
function. We formulate this problem in RM-MDPs as solving a special type of POMDP.

3.1 Problem Formulation

Given an MDP without a reward function 〈S, T,A, P, γ, µ〉 and an RM 〈U, u0, F,AP, δt, δr〉, and
assuming the existence of a (hidden) labelling function L : S × A × S → 2AP , our objective is
to learn a policy that maximizes the expected discounted return according to the corresponding
RM-MDP (Definition 2.2) without having access to L.

We formulate this goal as optimizing a POMDP with state space S × U , and transitions matching
those in the RM-MDP. However, while an RM-MDP treats RM states ut ∈ U as an observable
component of the state, only st ∈ S is observable but not ut, because ut depends on the ground truth
labelling function. We call such a POMDP an Uncertain-Proposition Reward Machine MDP.

Definition 3.1 (Uncertain-Proposition Reward Machine MDP, URM-MDP). Given an MDP without
a reward function 〈S, T,A, P, γ, µ〉, an RM 〈U, u0, F,AP, δt, δr〉, and a labelling function L :
S × A × S → 2AP , the corresponding URM-MDP is a POMDP 〈S′,Ω, T ′, A, P ′, O,R′, γ, µ′〉,
where S′, T ′, A, P ′, γ and µ′ are as in the corresponding RM-MDP (Definition 2.2), Ω = S is the
observation space, and O(s|(st, ut), at) = 1[s = st] are the observation probabilities.

We similarly define an Uncertain-Proposition Reward Machine POMDP (URM-POMDP with
Definition A.1 in the Appendix), where the underlying environment is only partially observable, but
the labelling function L remains a function of S ×A× S.

4 Analysis of Prior Approaches

A number of prior approaches have considered uncertainty in the values of propositions, though
mainly for tabular MDPs. Unfortunately, their effectiveness remains unclear when applied to complex
deep RL settings where the number of states is infinite, high-level events are challenging to perfectly
model, or where the environment is only partially observable.

One type of approach models the true labelling function L with an approximate labelling function,
L̂ : S × A × S × AP → [0, 1] in URM-MDPs, and L̂ : H × A × Ω × AP → [0, 1] in URM-
POMDPs, that assigns probabilities to each proposition. Such an approximate labelling function
might be obtained from external sensors, handcrafted heuristics, offline data, or be trained online
together with the policy. Then, the predicted propositions are used to generate an estimate (or a belief)
of the current RM state using one of the following methods. One appeal of this technique is that the
approximate labelling functions can in principle be transferred to new environments and RMs, so
long as the high-level propositions remain the same.

Thresholding: Inspired by, e.g., da Silva et al. [2019], Ghasemi et al. [2020], and Tuli et al.
[2022], this method discretizes every proposition pi at each timestep t to its most likely value
under L̂. In URM-MDPs, p̂i,t = 1[L̂(st, at, st+1, pi) ≥ 0.5] and the p̂i,t values are then used to
produce a discrete prediction of an RM state ût. The learned policy takes the form π(at|st, ût).
In URM-POMDPs, we simply change the approximate labelling function to the correct form L̂ :
H ×A× Ω×AP → [0, 1] and change the policy to condition on histories ht rather than states st.

Independent Belief Updating: Inspired by, e.g., Ding et al. [2011] and Verginis et al. [2022], this
approach maintains a probabilistic belief ũt over the current RM state under the simplifying assump-
tion that predictions of propositions pi,t are independent of one another and across all timesteps. In
URM-MDPs, ũt is updated each timestep for all u ∈ U , given an experience (st, at, st+1), via

ũt+1(u) =
∑

σt∈2AP ,ut∈U

Pr(σt|st, at, st+1)ũt(ut)1[δu(ut, σt) = u]
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where Pr(σt|st, at, st+1) is the probability of a particular propositional assignment σt under L̂. The
learned policy then takes the form π(at|st, ũt). In URM-POMDPs, we change L̂ to the correct form
and change the policy to condition on histories ht rather than states st.

Recurrent Policy: Following Kuo et al. [2020], we also consider a third approach that directly solves
the URM-MDP or URM-POMDP as a general partially observable RL task by learning a recurrent
policy of the form π(at|s0, a0, ..., st−1, at−1, st) in URM-MDPs and π(at|o0, a0, ..., ot−1, at−1, ot)
in URM-POMDPs. Notice that the policy does not condition on the RM state (or an estimate of
it); the non-Markovian task structure is instead handled by conditioning on the entire history. Thus,
propositional values (either ground-truth, or estimated) are not required for this approach.

4.1 Pitfalls in URM-MDPs

In URM-MDPs, an approximate labelling function L̂ : S × A × S × AP → [0, 1] can in princi-
ple perfectly model the ground-truth labelling function L. In this ideal case, both Thresholding
and Independent Belief Updating correctly estimate the true RM state, inheriting any optimality
guarantees of the RL algorithm used to train the policy [Toro Icarte et al., 2022].

Ï w
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�

Figure 2: Two partially observable RM environ-
ments that challenge existing methods. Shaded
squares are unobservable to the agent. Top: The
Traffic Light domain. The agent must drive through
an intersection to collect a package, and then drive
through again to return home. However, the agent
can only see forwards and must avoid crossing
a red light. Bottom: The Kitchen domain. It’s
the end of the day and a household robot must go
to the kitchen to clean up by ensuring dishes are
washed, the table is cleared, and the garbage is
empty. Some chores might not require the robot’s
attention, e.g. the residents may have not used any
dishes. This occurs with a 1/3 chance for each
chore, and that chore is considered done from the
start. However, the agent cannot observe what
chores remain to be done until entering the kitchen.

Unfortunately, perfectly modelling the labelling
function can be impractical in complex, real-
world settings. Thresholding is resistant to
small errors in L̂, but only estimates a single,
discrete RM state and cannot represent the un-
certainty in its prediction. Independent Belief
Updating aims to address this by estimating a
belief over RM states, but the independence as-
sumption often fails to hold for noisy predictions
under L̂. In the Mining example, repeatedly dig-
ging in a square that is erroneously believed to
contain gold will increase the perceived proba-
bility of having gold under Independent Belief
Updating. However, digging more than once in
any one square is pointless since either all digs
will produce gold, or none will.

Recurrent Policy treats URM-MDPs as gen-
eral POMDPs and avoids approximating the la-
belling function altogether. While it retains any
convergence guarantees afforded by partially ob-
servable RL algorithms, history-based policies
are notoriously hard and sample-inefficient to
train in practice.

4.2 Pitfalls in URM-POMDPs

Significant issues arise with Thresholding and
Independent Belief Updating when the under-
lying environment is partially observable. First,
even the Bayes-optimal approximate labelling
function L̂∗(ht, at, ot, pi) is not necessarily
identical to the ground-truth labelling function
L, since the propositions depend on unobserv-
able states st. Second, the current RM state ut generally cannot be determined with certainty given
the history ht due to the previous remark. Thus, Thresholding may predict an incorrect RM state,
even with this ideal approximate labelling function L̂∗.
The Traffic Light example in Figure 2 highlights how a policy might abuse this, leading to unsafe
behaviour. The agent must safely drive through an intersection with a traffic light, but cannot observe
the light colour when traversing the intersection in reverse. If the light tends to be green more often
than red, Thresholding would predict that the agent did not pass a red light. Hence, the agent would
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Algorithm 1: Reward Machine State Modelling (for URM-MDPs; 1 iteration)
1 Inputs: URM-MDP K, policy πθ, RM belief RNN gφ;
/* Collect on-policy data */

2 D = {} ;
3 for t from 1 to T do
4 Compute RM state belief ũt = gφ(·|s0, a0, . . . , st−1, at−1, st) ;
5 Execute action at ∼ π(·|st, ũt) and observe rt, st+1, ut+1 ;
6 Add (st, at, rt, st+1, ut, ũt) to buffer D ;
7 end
/* Train RM belief RNN */

8 Update φ with SGD on Lφ = Eτ∼πθ,t∼U{1,...,|τ |}[− log gφ(ut|s0, a0, . . . , st−1, at−1, st)]
estimated from D ;

/* Train policy */

9 Update θ with SGA on Jθ = Eτ∼πθ [
∑∞
t=0 γ

trt] estimated from D ;

be incentivized to drive backwards through the intersection while ignoring the light colour, rather
than waiting for a green light.

Independent Belief Updating may similarly fail to model a correct belief over RM states, even with
the ideal L̂∗. We demonstrate this in the Kitchen example in Figure 2, where a cleaning agent cannot
initially observe which chores require its attention from outside the kitchen. The Bayes-optimal
L̂∗ assigns 1/3 probability that each chore is done on each timestep while outside the kitchen. If
the agent wanders outside the kitchen for t timesteps, Independent Belief Updating would predict
that the dishes were washed at some point with probability 1 − (2/3)t. The correct probability is
1/3, since the propositions are linked over time – if the dishes are unwashed now, they will remain
unwashed on the next step unless the agent washes them. Independent Belief Updating ignores
this dependence and eventually predicts that all chores are done with probability close to 1, despite
the agent never entering the kitchen. Unfortunately, modelling the correct temporal dependencies
between propositions is hard – in general, one may need to model the full joint distribution over all
propositions up to time t, i.e. {pi,t′ : 1 ≤ i ≤ |AP|, 0 ≤ t′ ≤ t}, given the history ht.

Finally, we note that Recurrent Policy does not significantly distinguish between URM-POMDPs
and URM-MDPs; a history-based policy is learned in each case. Thus, our remarks from the
URM-MDP setting carry over to URM-POMDPs as well.

5 Proposed Approach

We propose a new approach, Reward Machine State Modelling (RMSM) to address the shortcomings
of prior approaches in URM-(PO)MDPs. Our key observation is that the utility of modelling the
labelling function is to accurately predict the RM state. Thus, we propose to directly learn the belief
over RM states, given the history, using a recurrent neural network (RNN) gφ trained via supervised
learning. The policy πθ then conditions on this predicted belief in place of the ground-truth RM state.

We describe RMSM in detail for URM-MDPs in Algorithm 1. In this setting, the network inputs
are gφ(ut|s0, a0, . . . , st−1, at−1, st) for the RM belief RNN and πθ(at|st, ũt) for the policy, where
ũt = gφ(·|s0, a0, . . . , st−1, at−1, st) is the predicted belief over RM states. Note that ũt can be
compactly represented with a vector of |U | probabilities. In URM-POMDPs, the policy πθ instead
conditions on (ht, ũt), and the RM belief gφ conditions on the observation-action history. RMSM
then concurrently optimizes two independent objectives: prediction of a belief over RM states by
minimizing a negative-log-likelihood loss Lφ and maximization of the policy’s expected return Jθ.

5.1 Theoretical Advantages

RMSM offers a number of intuitive benefits over prior approaches. First, when the objective Lφ is
minimized with respect to φ, gφ returns the Bayes-optimal belief over RM states given the history
Pr(ut|s0, a0, . . . , st−1, at−1, st) for histories with positive probability under πθ. In contrast, recall
that Thresholding and Independent Belief Updating may fail to predict the correct RM state belief
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Figure 3: The Mining toy experiment. We consider two types of errors in predicting whether a square
contains gold: uniform (left), and false positive (right). The parameter ε linearly controls the degree
of error, with ε = 0 representing a ground-truth labelling function. Numbers in the grids represent
the agent’s probabilistic belief that a square yields gold for ε = 1. The graphs report mean final
performances of various baselines along with standard error over 8 runs. Thresholding is robust
to small errors but fails when any square is misclassified, while Independent Belief Updating
performs poorly as it ignores the dependence between propositions.

in URM-POMDPs, even with the Bayes-optimal approximate labelling function L̂∗. Theorem A.1 in
the Appendix further adds that under some assumptions, when both RMSM objectives are simultaneously
optimized, the resultant policy is optimal in the URM-(PO)MDP.

Recurrent Policy, like RMSM, also optimizes an objective aligned with solving the URM-(PO)MDP.
However, RMSM exploits the task structure to reduce the complexity of the RL problem, while
Recurrent Policy treats the problem as a general POMDP. This is evident in the URM-MDP
case, where Recurrent Policy trains a policy conditioned on the entire state-action history, while the
RMSM policy only conditions on the current state st and a compact RM state belief representation. In
URM-POMDPs, both RMSM and Recurrent Policy must train policies conditioned on entire histories,
but nonetheless, exposing the predicted RM belief to the policy may facilitate learning.

6 Experiments

We conduct experiments to investigate the consequences of deploying RL policies without a perfect
labelling function. We focus on three questions: Q1: Are prior methods that rely on approximations
of the labelling function L̂ robust to errors in L̂? Q2: How does RMSM (ours) perform compared to
prior approaches without a perfect labelling function? Q3: How well do RMSM (ours), Thresholding,
and Independent Belief Updating model the true RM state?

6.1 Toy Gridworld Problem

We investigate Q1 on a toy grid domain with handcrafted models of L̂ and controllable levels of error.

Task: Returning to the Mining example in Figure 1, the agent must dig at a square containing gold
and then deliver it to the depot to obtain a reward of 1, but visiting the depot without gold ends the
episode. The agent does not observe when gold was obtained, but instead relies on a probabilistic
belief L̂(s, adig, ·, ) that a state s yields gold. We also introduce a cost of−0.05 for every movement
action so that agents must carefully choose where to dig, instead of simply digging at every square.

Approximate labelling function model: We consider two noisy models L̂(s, adig, ·, ) of whether
each square contains gold shown in Figure 3. The first gold model has a relatively uniform level
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Figure 4: Performance of RMSM (ours) vs various baselines on two partially observable, image-based
domains (averaged over 8 runs, with shaded areas showing standard error). RMSM converges similarly
to when learning with the ground-truth RM state, while prior approaches fail on at least one domain.

of error for each square, while the second has a false positive belief that a single non-gold square
may actually contain gold. For each, we control the degree of error through a parameter ε ∈ [0,∞).
ε = 0 corresponds to the ground-truth probabilities of gold (1 if the square contains gold and 0 if not),
ε = 1 corresponds to the noisy probabilities reported in Figure 3, and the probabilities are linearly
interpolated for other values of ε. L̂ is assumed to model Ï without error.

Baselines: We consider Thresholding and Independent Belief Updating with each of the noisy
gold models at various levels of error ε. For comparison, we report the performance when using
the ground-truth RM state (Perfect RM), and a belief updating approach supplied with the correct
dependencies of the propositions over time (Belief Updating+).

Precisely, Belief Updating+ exploits the fact that the proposition must maintain the same value
each time you dig in state s. In other words, digging multiple times in the same state should not
increase the agent’s belief of having obtained gold. It is important to note that Belief Updating+
cannot easily be applied beyond tabular domains.

Each method uses tabular Q-learning [Sutton and Barto, 2018] to obtain a policy, with a linear
approximation [Melo and Ribeiro, 2007] for methods conditioning on a belief over RM states.
Hyperparameters can be found in the Appendix.

Results: Results are reported in Figure 3. As expected, all methods performed near-optimally
under a perfect labelling function (ε = 0), but both Thresholding and Independent Belief Updating
showed sensitivity to errors in at least one case. Thresholding performed well when errors were small
in all states, but failed anytime an error exceeded the threshold, resulting in a misclassification of the
proposition. Independent Belief Updating showed poor performance overall. We observed that this
approach usually exploited errors in L̂ by repeatedly digging in the same square. However, Belief
Updating+ was significantly more robust to errors in L̂, showing the importance of considering the
dependence between propositions over time.

6.2 MiniGrid Problems

We investigate Q2 and Q3 on two partially observable, image-based MiniGrid environments encoding
the Traffic Light and Kitchen problems from Section 4.2. Experimental details, including the RM
specifications, network architectures, and hyperparameters can be found in the Appendix.

Baselines: We consider RMSM, Thresholding, Independent Belief Updating, Recurrent Policy,
and an RL policy conditioned on the true RM state (Perfect RM). Policies are deep neural networks
trained using PPO. The RM belief predictor gφ (in RMSM) and the approximate labelling function L̂
(in Thresholding and Independent Belief Updating) are learned concurrently with the policy.

Results: We report learning curves in Figure 4. In both domains, RMSM rapidly learned a strong policy
on-par with the policy that exploits ground-truth RM states. While Thresholding and Independent
Belief Updating each made progress in one domain, they completely failed to learn in Traffic Light
and Kitchen, respectively, matching our expectations from Section 4.2. Recurrent Policy, which
does not exploit the structure of the problem, performed poorly despite enjoying similar theoretical
guarantees to RMSM.
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To answer Q3, we compared beliefs over RM states predicted by RMSM, Thresholding, and
Independent Belief Updating against a handcrafted approximation of the ground-truth belief (de-
scribed in the Appendix). The final networks from training (gφ for RMSM and L̂ for Thresholding,
Independent Belief Updating) were used, and for an equal comparison, we conditioned each
method on trajectories sampled under a random policy. Results in Figure 6 (in the Appendix) show
that RM state beliefs produced by RMSM are much closer to ground-truth than those produced by
Thresholding or Independent Belief Updating.

7 Related Work

Many recent works have considered specifying tasks for deep RL using RMs or a formal language,
such as LTL. The vast majority of these assume access to a perfect labelling function (e.g. Vaezipoor
et al. [2021], Jothimurugan et al. [2021], León et al. [2022], Liu et al. [2022], León et al. [2020]). A
few notable works in this vein learn policies that do not rely on a labelling function. Kuo et al. [2020]
handle LTL tasks using a recurrent policy (inspiring the Recurrent Policy baseline), while Andreas
et al. [2017], Oh et al. [2017] and Jiang et al. [2019] learn modular subpolicies that are reusable
between tasks.

Prior works have considered uncertainty in the labelling function, though most of this research comes
from the motion planning literature, rather than the deep RL literature. However, these works typically
assume that the state space is partitioned into discrete regions, resulting in a tabular MDP. Ding et al.
[2011] assumes that propositions in each state occur probabilistically in an i.i.d. manner and propose
an approach exploiting this independence. Ghasemi et al. [2020] and Verginis et al. [2022] consider a
setting where propositions are initially unknown but can be inferred through environment interactions.
Cai et al. [2021] considers learning policies that maximize the probability of satisfying an LTL task
with uncertainties in the labelling function and environment dynamics. Sadigh and Kapoor [2016]
and Jones et al. [2013] propose temporal logics over stochastic or partial observable properties.

More broadly, many prior works have considered the use of RMs or formal languages under uncer-
tainty in the rewards, states, or ground-truth RM structure. Xu et al. [2020, 2021] and Gaon and
Brafman [2020] assume a setting where rewards are known but the RM structure is not, and propose
algorithms to learn the RM. Corazza et al. [2022] learns RMs with stochastic reward emissions while
Velasquez et al. [2021] learns RMs with stochastic rewards and transitions. Toro Icarte et al. [2019]
learns RMs in partially observable environments, but defines the labelling function over observations
rather than states, and thus does not consider uncertainty over propositions. Shah et al. [2020]
expresses the uncertainty over a desired behaviour as a distribution of LTL formulas.

8 Conclusion

In this paper, we studied the problem of learning Reward Machine policies under an interpretation of
the vocabulary that is uncertain. We targeted our investigation towards complex, deep RL settings,
where such uncertainty may naturally arise from sensor noise, modelling errors, or partial observability
in the absence of a perfect labelling function. We first presented novel formulations of this problem
as URM-MDPs and URM-POMDPs. Through illustrative examples and vision-based deep RL
experiments, we then revealed a propensity for existing, naive approaches to exploit errors in their
own model, leading to task failure and unsafe behaviour. To address these shortcomings, we proposed
an algorithm, Reward Machine State Modelling, that is cognizant of its uncertainty over atomic
propositions and that exploits the structure of a URM-MDP or URM-POMDP to model the task-
relevant RM states, rather than individual propositions. Empirical results demonstrated the robust
performance of our approach without access to the ground-truth labelling function.

While we considered the problem of symbol grounding from the viewpoint of Reward Machines, our
insights are further applicable to a diversity of language-inspired abstractions for RL. We leave these
extensions to future work.
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Appendices
A Additional Definitions, Theorems, and Proofs

Definition A.1 (Uncertain-Proposition Reward Machine POMDP (URM-POMDP)). Given a
POMDP (without reward function) M = 〈S,Ω, T, A, P,O, γ, µ〉, a finite set of atomic propo-
sitions AP , a (ground-truth) labelling function L : S × A × S → 2AP , and a reward
machine R = 〈U, u0, F, δu, δr〉, a URM-POMDP is a POMDP 〈S′,Ω, T ′, A, P ′, O′, R′, γ, µ′〉
with state space S′ = S × U , observation space Ω, terminal states T ′ = (T × U) ∪ (S ×
F ), action space A, transition probabilities P ′((st+1, ut+1)|(st, ut), at) = P (st+1|st, at) ·
1[δu(ut,L(st, at, st+1)) = ut+1], observation probabilities O′(ot|(st, ut), at) = O(ot|st, at), re-
ward function R′((st, ut), at, (st+1, ut+1)) = δr(ut,L(st, at, st+1)), discount factor γ, and initial
state distribution µ′(s, u) = µ(s)1[u = u0].

Theorem A.1 (Optimality of RMSM). Let K be an URM-MDP or URM-POMDP, πθ a policy, and gφ
an RM state belief predictor as defined in the RMSM algorithm. Assume that every feasible trajectory
in K occurs with non-zero probability under πθ. For neural networks gφ, πθ of sufficient capacity,
assume that gφ is a global minimum of Lφ and πθ is a global maximum of Jθ. Then πθ, gφ together
form an optimal policy in K, and gφ predicts the ground-truth belief over ut, given the history.

Proof. First, consider whenM is a URM-MDP. For any particular history s0, a0, . . . , st−1, at−1, st
under πθ, Eut∼Pr(·|s0,a0,...,st−1,at−1,st)[− log gφ(ut|s0, a0, . . . , st−1, at−1, st)] is mini-
mized when gφ(ut|s0, a0, . . . , st−1, at−1, st) = Pr(ut|s0, a0, . . . , st−1, at−1, st) for
all ut ∈ U by Gibbs’ inequality. For gφ with sufficient model capacity, minimiz-
ing Lφ = Eπθ [− log gφ(ut|s0, a0, . . . , st−1, at−1, st)] (with respect to φ) requires that
gφ(ut|s0, a0, . . . , st−1, at−1, st) = Pr(ut|s0, a0, . . . , st−1, at−1, st) for all feasible histories
s0, a0, . . . , st−1, at−1, st, since all feasible histories have positive probability under πθ. In
other words, gφ matches the ground-truth belief over RM states given the history. Note that for
URM-MDP’s, the ground-truth belief over RM states assigns all probability mass to the true RM
state at time t.

Now consider πθ(at|st, ũt), where ũt = gφ(·|s0, a0, . . . , st−1, at−1, st). As articulated above, gφ
assigns all probability mass to the ground-truth RM state u∗t at time t and so the inputs to πθ precisely
mimic the transitions in the corresponding RM-MDP (where the true RM state is observable) to K.
Since πθ is an optimal solution to Jθ, it is an optimal policy in this RM-MDP, and hence must be
optimal in K as well.

When M is a URM-POMDP, the proof that gφ matches the ground-truth belief over RM states
given the history remains virtually unchanged. On the policy side, the RMSM policy is of the form
πθ(at|ht, ũt). Note, however, that there even exists an optimal policy in the URM-POMDP of the
form π∗(at|ht). Regardless of gφ, maximizing Jθ (with respect to θ) can always recover an optimal
policy inM by ignoring ũt.

B Experimental Details

B.1 Toy Experiments

In the toy Mining experiments, all baselines were trained using tabular Q-learning. Independent
Belief Updating and Belief Updating+ also used a linear approximation to condition on continuous
beliefs over RM states, where the probability of each RM state was a feature. All methods were
trained for 1 million frames using learning rate 0.01, discount factor γ = 0.97, and random-action
probability ε = 0.2.

B.2 Deep RL Experiments

Task Descriptions: We encode the Traffic Light and Kitchen tasks as MiniGrid environments, as
shown in Figure 5. In the Traffic Light domain, the goal is to collect a package at the end of the
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road (represented by a blue square), and then return home (represented by the green square) without
crossing a red light. The light colour stays green for a random duration, becomes yellow for one
timestep, and then stays red for a random duration before returning to green. The agent can only
observe squares ahead of itself, so the only safe way to cross the intersection is to check that the light
is green before proceeding (at worst, the light becomes yellow while in the intersection, which is
considered safe).

We introduce propositions to determine if the agent is at the package, if the agent is at home, and if
the agent is in the intersection during a red light. The RM state captures two pieces of information:
whether the agent has crossed a red light at any time, and whether the agent has picked up the package.
Reaching the package for the first time always yields a reward of 1. Returning home with the package
ends the episode and yields another reward of 1. However, if the agent has crossed a red light, it
instead receives a traffic ticket in the mail (and a -1 reward).

In the Kitchen domain, the agent must enter the kitchen, perform a set of chores (represented by the
coloured squares in the right room, which turn gray when finished) by visiting them, before returning
to the charging port at the top left. At the start, some chores may not need the agent’s attention (e.g.,
if there are no dirty dishes) and that dish is considered done from the start. This occurs with a 1/3
probability for each chore, but the agent initially cannot observe which chores are done while outside
the kitchen.

Propositions for each chore determine on each timestep whether that chore is currently considered
done, and an additional proposition determines if the agent is at the charging port. The RM for
this task captures the subset of chores completed, resulting in 9 possible RM states (including an
additional terminal state for returning to the charging port). Returning to the charging port ends the
episode, giving a reward of 1 if all chores are complete and 0 otherwise. We also introduce an energy
cost of -0.05 for opening the kitchen door and performing each chore (including if it’s already done,
e.g. if the agent rewashes clean dishes) so that the agent must make careful decisions.

Policy Architectures: Perfect RM, Independent Belief Updating, Thresholding, and RMSM each
learned a policy conditioned on the current observation ot and a belief estimate of the RM state ũt
(or the ground-truth RM state, in the case of Perfect RM). We chose to condition policies on ot rather
than the full history o0, a0, . . . , ot−1, at−1, ot to ensure that policies depended on the estimate ũt to
capture any relevant information from previous states.

Each policy consisted of the following components. Observations ot were encoded by a 16-channel
convolutional layer, a max pooling layer, a 32-channel convolutional layer, and a 64-channel convolu-
tional layer, in that order, each with kernel size 2 × 2 and stride 1. Encoded observations and the
belief over RM states ũt were passed into an actor head with 3 hidden layers of 64 units and ReLU
activations, and a critic head with 2 hidden layers of 64 units and tanh activations.

Recurrent PPO used a similar architecture, except the history of observations were passed through an
LSTM with hidden size 64.

Figure 5: The Traffic Light (left) and Kitchen (right) tasks implemented in MiniGrid.
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Table 1: Hyperparameters for deep RL experiments

PPO Hyperparameters Traffic Light Kitchen

Env. steps per update 16384 16384
Number of epochs 8 8
Minibatch size 256 256
Discount factor (γ) 0.97 0.99
Learning rate 3× 10−4 3× 10−4

GAE-λ 0.95 0.95
Entropy coefficient 0.01 0.01
Value loss coefficient 0.5 0.5
Gradient Clipping 0.5 0.5
PPO Clipping (ε) 0.2 0.2

L̂, gφ Hyperparameters (if applicable)

Env. steps per update 16384 16384
Number of epochs 16 8
Minibatch size 2048 256
Learning rate 3× 10−4 3× 10−4

LSTM Backpropagation Steps 4 4

RM State Belief Prediction Architectures: Independent Belief Updating and Thresholding

each learned an approximation of the labelling function L̂ by predicting |AP| logits (representing the
probabilities of each binary proposition) conditioned on the history of observations. Observations
were encoded by a similar architecture as in the policy, except the final output channel was 16. The
sequence of observation encodings were passed into an LSTM with hidden size 16. Final predictions
were decoded from the LSTM embedding using a single hidden layer of size 16. The predicted
probabilities of propositions were used to derive estimates or beliefs over RM states, as outlined in
Section 4.

RMSM used the same architecture as the approximate labelling function above, except the predicted
outputs were |U | logits, representing a Categorical distribution over |U | reward machine states.

Hyperparameters: All policies were trained using PPO (Schulman et al. [2017]) for a total of 25
million frames in Traffic Light and 10 million frames in Kitchen. Hyperparameters are reported in
Table 1. For Recurrent PPO, the number of LSTM backpropagation steps was 4.

Handcrafted RM State Belief: In Section 6.2, we compared the RM state beliefs of RMSM,
Independent Belief Updating, and Thresholding against a handcrafted approximation of the true
RM state belief. Note that the ground-truth RM state belief can be difficult to determine exactly.

Our approximation in Traffic Light works as follows. Propositions for collecting the package and
returning home can always be determined with certainty. When crossing the intersection, we
sometimes know the light colour with certainty (e.g. if the agent observed the light was green on the
previous timestep, it cannot be red this timestep). We consider all other crossings of the intersection
"dangerous", where the light colour is uncertain. We approximate all "dangerous" crossings to have a
0.36 probability of occurring during a red light, the steady-state probability of the light being red
after sufficient time, absent any other knowledge. Using this model of the propositions, we determine
an approximate belief of the current RM state given a history.

For Kitchen, the agent has no information regarding whether each chore is initially complete while
outside the kitchen. The belief over RM states during this period is easily determined using the
known prior probabilities of each chore being complete. Once the agent enters the kitchen, we
assume the RM state is known with certainty. Note that while this is often the case, the agent may
sometimes enter the kitchen without looking at the state of all chores. We again use this model of the
propositions to derive an approximate belief of the current RM state given a history.

16



To
ta

lv
ar

ia
tio

n
di

st
an

ce

RMSM (Ours) Indep. Belief Updating Thresholding
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Traffic
Kitchen

Figure 6: The accuracy of RM state beliefs learned by RMSM, Thresholding, and Independent Belief
Updating compared against a handcrafted approximation of the ground-truth RM state belief. Beliefs
are conditioned on a history generated by a random policy. We report the Total Variation Distance
between the predicted and (approximate) ground-truth beliefs, averaged over 8 seeds, 5 episodes per
seed, and all possible histories in that episode. Error bars report standard error.
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