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Abstract—The joint retrieval of surface reflectances and at-
mospheric parameters in VSWIR imaging spectroscopy is a
computationally challenging high-dimensional problem. Using
NASA’s Surface Biology and Geology mission as the motivational
context, the uncertainty associated with the retrievals is crucial
for further application of the retrieved results for environmental
applications. Although Markov chain Monte Carlo (MCMC)
is a Bayesian method ideal for uncertainty quantification, the
full-dimensional implementation of MCMC for the retrieval is
computationally intractable.

In this work, we developed a block Metropolis MCMC
algorithm for the high-dimensional VSWIR surface reflectance
retrieval that leverages conditional linearity structure in the
forward radiative transfer model to enable tractable fully
Bayesian computation. We use the posterior distribution from
this MCMC algorithm to assess the limitations of optimal
estimation, the state-of-the-art Bayesian algorithm in operational
retrievals which is more computationally efficient but uses a
Gaussian approximation to characterize the posterior. Analyzing
the differences in the posterior computed by each method, the
MCMC algorithm was shown to give more physically sensible
results and reveals the non-Gaussian structure of the posterior,
specifically in the atmospheric aerosol optical depth parameter
and the low-wavelength surface reflectances.

Index Terms—Remote sensing, imaging spectroscopy, Markov
chain Monte Carlo, Bayesian computation.

I. INTRODUCTION

WHETHER airborne or orbital, all remote sensing mis-
sions face a common challenge of characterizing dis-

tant objects using only measurements made at the sensor. In
the Earth sciences, investigators will often solve this problem
with physics-based models that use the state of the surface or
atmosphere to predict the remote measurement. Investigators
can then retrieve, or determine, the state most consistent
with the remote data. Model inversion methods are used for
diverse sensors ranging from infrared or microwave sounders,
to multiangle imagers, to radiometers. Perhaps one of the most
challenging applications from a computational perspective is
remote Visible/Short-Wave Infrared (VSWIR) imaging spec-
troscopy [1].

VSWIR imaging spectrometers acquire a data cube with
two spatial dimensions and one spectral dimension. In other
words, they produce images in which each pixel contains a
radiance spectrum covering the entire solar reflected interval
from 380 to 2500 nm. This interval is sensitive to diverse
surface and atmospheric processes, making these sensors use-
ful for a wide range of studies from terrestrial and aquatic
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ecology, to geology, to hydrology and cryosphere studies.
These Earth surface studies aim to measure properties of the
surface that create characteristic features in the reflectance
spectra. Roughly speaking, surface reflectance is the fraction
of incident illumination at the surface which is reflected back
in the direction of the sensor. However, imaging spectrometers
observe radiance at the top of the atmosphere, so inference to
remove the effects of the atmosphere is required to estimate
surface reflectance at each pixel. The reflectance can then
be used to further estimate properties of the Earth surface.
Because of the high data volume of these sensors and their
broad spectral range encompassing a wide range of physical
phenomena, VSWIR imaging spectrometers present a partic-
ularly challenging test case for efficient inference algorithms.

Our motivating context for this problem is NASA’s Surface
Biology and Geology mission (SBG) [2], [3]. The objective
of SBG is to track changes in surface properties pertaining
to ecosystems, coastal zones, agriculture, and snow and ice
accumulations over time, for the entire planet, by first re-
trieving the surface reflectances. For these types of scientific
applications, the uncertainty associated with the retrieval is
particularly important. This motivates the need for a Bayesian
method to determine the posterior distribution of the surface
reflectances and related atmospheric parameters.

Markov chain Monte Carlo (MCMC) is a Bayesian sam-
pling method that was introduced in the context of remote
sensing retrievals in [4]–[6]. Recent retrieval problems are
generally high-dimensional and require methods of dimension
reduction to lower the computational complexity. For example,
[7] breaks up the high-dimensional parameter space into low-
dimensional blocks that can be sampled in parallel. [6] and [8]
implement MCMC in a low-dimensional parameter subspace
obtained from principal component analysis (PCA), which
defines the subspace based on the leading directions of an
eigenvalue problem.

More recent methods of dimension reduction such as like-
lihood informed subspace (LIS) have also been considered in
the retrieval context, where MCMC is performed in a specific
low-dimensional subspace, defined by a different eigenvalue
problem, that is determined by the data [9]. [10] uses LIS in
atmospheric methane retrievals, and [11] uses LIS in retrievals
for atmospheric concentrations of carbon dioxide in NASA’s
Orbiting Carbon Observatory-2 (OCO-2) mission. Contrary to
most retrievals where the number of parameters is under 100,
there are over 300 parameters in the SBG retrieval problem,
which makes the problem much more difficult in terms of
computational tractability. Furthermore, since dimension re-
duction methods such as PCA or LIS are low-dimensional
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approximations, significantly reducing the dimension leads to
problems in convergence to the posterior distribution.

Optimal estimation (OE) [12] is the current state-of-the-
art algorithm for an operational setting, such as for NASA’s
EMIT mission [13], [14]. OE is a Bayesian retrieval algorithm
that computes a maximum a posteriori (MAP) estimate of
the parameters and characterizes the posterior distribution
using the Laplace approximation. Although this leads to fast
Gaussian approximations of the posterior, the posterior is not
Gaussian in the general case.

Our objective is to explore how well this approximation
holds. There are two main contributions of this work.

1) We developed a computationally tractable block
Metropolis MCMC algorithm for the VSWIR retrieval
problem. This fully Bayesian algorithm allows for the
characterization of a non-Gaussian posterior and per-
forms exact inference in the limit of infinite samples.

2) We use this algorithm to evaluate the limitations of the
OE method and identify the scenarios in which it is
sufficiently accurate.

In contrast to the PCA and LIS methods mentioned above,
our method that has two conceptual advantages over dimension
reduction. The block Metropolis algorithm that we develop is
asymptotically exact and does not rely on truncation of the
eigenspectrum. In addition, PCA and LIS are methods used
to try and identify underlying problem structure, whereas we
directly enforce structure in the algorithm. We therefore do
not make comparisons with dimension reduction methods in
our results.

We emphasize that we are comparing the fully Bayesian
MCMC algorithm to OE, focusing on the differences in the
posterior distribution characterized by each method. Absolute
performance of the algorithm relative to the ground truth
depends on factors outside the scope of this paper. While we
do not expect MCMC to be used in an operational setting due
to its longer runtime than OE, it can be viewed as a method
to validate and identify shortcomings in OE.

II. SETUP OF THE REMOTE SENSING PROBLEM

The remote sensing retrieval considered in this paper is
modelled as an inverse problem. For each pixel of the image
captured by the imaging spectrometer, the quantities of interest
are the surface and atmospheric parameters that are retrieved
given the radiance at the same pixel. This type of retrieval can
be thought of as a statistical inference problem for one set of
multidimensional parameters with one set of multidimensional
data.

We use the notation y to denote the set of radiance observa-
tions from the imaging spectrometer. The radiances are used to
infer the state x, which consists of the surface and atmospheric
parameters. Incoming solar radiation is reflected off the Earth
surface, and the transfer of radiation through the atmosphere
is modelled by a vector-valued forward function f(·). The full
expression is known and is written in (4). The observations are
represented by the output of the forward model with additive
noise, y = f(x) + ϵ.

The setup of this inference problem and the desire for un-
certainty quantification leads to a Bayesian formulation. Given

the prior and likelihood distributions, the posterior distribution
of the surface and atmospheric parameters conditioned on the
observed radiance, π(x|y), is obtained using Bayes rule:

π(x|y) = π(y|x)π(x)
π(y)

∝ π(y|x)π(x). (1)

This section provides an overview of the elements associ-
ated with the prior and likelihood distributions, including
parameters and data. Formulations to determine the posterior
distribution are described in Section III.

A. Surface and atmospheric parameters

The inversion problem estimates the surface and atmo-
spheric parameters, which are concatenated into one state
vector:

x = [xrefl,xatm]
⊤, (2)

where xrefl ∈ Rn and xatm ∈ R2. There are n = 432 surface
parameters and two atmospheric parameters.

• The surface parameters xrefl are surface reflectances that
describe the proportion of solar radiation that is reflected
off the surface at each of the n wavelengths. The wave-
lengths range from 380 to 2500 nm.

• The two atmospheric parameters are xatm =
[xAOD, xH2O]

⊤, which consist of Aerosol Optical
Depth (AOD) at 550 nm and column precipitable water
vapour (cm).

Aerosol optical depth (AOD) is a measure of the atmo-
spheric concentration of aerosols. Specifically, it is the pro-
portion of radiation that is absorbed by aerosols at wavelength
550 nm. The second atmospheric parameter is the column
precipitable water vapour (cm), which is the volume of water
per vertical column of atmosphere. Other gas concentrations
that affect light transmittance and scattering are accounted for
within the radiative transfer model.

Prior. The prior on the parameters is modelled as a nor-
mal distribution. The surface and atmospheric parameters are
treated independently, giving a block diagonal structure to the
prior covariance:

µpr =
[
µ0

refl,µ
0
atm

]⊤
, Γpr =

[
Γ0

refl 0
0 Γ0

atm

]
(3)

The surface prior is created using a set of over 1400
historical reflectance spectra from the EcoSIS spectral library
[15]. These spectra are fitted to a Gaussian mixture model with
eight components, each corresponding to a different type of
terrain on the Earth surface that have similar characteristics,
such as vegetation or aquatic environments. For a particular
inversion, the component with shortest Mahalanobis distance
to the initial state estimate is used as the Gaussian surface
prior.

For the atmospheric parameters, the priors are chosen to
have large variances to allow relatively unconstrained explo-
ration of the posterior.
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B. Forward model

The forward model, f(·) = [f1(·), . . . , fn(·)]⊤, approxi-
mates the propagation of photons through the Earth atmo-
sphere from the surface to the imaging spectrometer. The
model used in this work consists of two stages to map the
state x to the radiance y.

The first step is the computation of intermediate param-
eters using MODTRAN 6.0, a high-fidelity radiative trans-
fer model [16]. The outputs of MODTRAN given xatm are
three n-dimensional parameters that describe light propaga-
tion through the atmosphere: path reflectance ρa, spherical
albedo s, and atmospheric transmission t. For computational
efficiency, a lookup table is generated for a set of reference
atmospheric conditions.

The second step is to use the intermediate parameters
to calculate the radiance. After linearly interpolating these
parameters in the lookup table, the mechanics of the forward
model for i = 1, . . . , n are given by:

fi(x) =
ϕ0

π
e0,i

[
ρa,i(xatm) +

ti(xatm) · xrefl,i

1− si(xatm) · xrefl,i

]
, (4)

where ϕ0 is the cosine of the solar zenith angle and e0 is the
solar downward irradiance at the top of the atmosphere [17].

C. Noise model

We model the observation uncertainty matrix by combining
covariance matrices from different independent error sources
as in [18]. First, we determine the intrinsic sensor noise,
which includes uncertainty due to discrete photon counts,
electronic uncertainty in the analog-to-digital conversion, and
thermal noise from the instrument itself. These sources are
all independent and uncorrelated in each channel leading to a
diagonal covariance structure. The photon noise contribution
depends on the magnitude of the radiance itself, so we use the
measurement itself to predict its own noise level. Any error
induced by this circularity is acceptable since noise is small
relative to the total magnitude, with a signal-to-noise ratio of
500 or 1000 for typical spectra.

In addition to the instrument noise, we also model several
systematic error sources following [12]. We use a diagonal
matrix to represent a 1% uncertainty in calibration. Another
diagonal matrix represents systematic radiative transfer model
errors due to spectral calibration uncertainty and the intrinsic
uncertainty in the unretrieved components of the atmospheric
model. The covariance matrices from these independent error
sources combine additively to form a final observation error
matrix Γobs. For this work, we set Γobs to be a diagonal matrix
with a signal-to-noise ratio of 50 to account for these error
sources.

D. Retrieval

The prior, forward, and noise models are used to solve the
inversion problem of retrieving the surface and atmospheric
parameters given the observations. From a Bayesian perspec-

Fig. 1. Retrieval flowchart for an example observation over a grassy field.

tive, the retrieval is equivalent to characterizing the posterior
that is given by:

π(x|y) ∝ exp

(
− 1

2

∥∥x− µpr
∥∥2
Γpr

− 1

2

∥∥y − f(x)
∥∥2
Γobs

)
(5)

Methods for inference are described in Section III. An example
of the retrieval process from a pixel in the satellite image to
the surface reflectance is shown in Figure 1. Possible retrieval
algorithms are discussed in the next section. The gaps in the
reflectance represent the wavelengths for which most of the
radiation is absorbed by water droplets in the atmosphere,
rendering the retrieval meaningless in those regions. Ignoring
these wavelengths, there are 324 reflectance parameters of
interest.

III. ESTIMATION AND INFERENCE FORMULATIONS

The existing state-of-the-art Bayesian method used in
VSWIR remote sensing problems is optimal estimation (OE)
[12], which is a computationally efficient way to obtain esti-
mates of the surface and atmospheric parameters. In this work
we place the emphasis on the uncertainty quantification of the
retrieval of these parameters. We consider a sampling-based
Markov chain Monte Carlo (MCMC) approach to characterize
the full posterior distribution.

A. Optimal estimation

Given a Gaussian prior and the forward and noise models,
the OE method solves an optimization problem to estimate the
surface and atmospheric parameters. The negative log posterior
is used as the objective function, and the resulting parameter
estimate is denoted as xMAP = argmaxx c(x), where:

c(x) =
1

2
(x− µpr)

⊤Γ−1
pr (x− µpr)

+
1

2
(y − f(x))⊤Γ−1

obs(y − f(x)).
(6)

The covariance estimate is a Laplace approximation [19]
derived from linear Bayesian inversion theory [20] using the
local linearization of the forward model at the MAP estimate
[21].

ΓL =

(
∇f(xMAP)

⊤Γ−1
obs∇f(xMAP) + Γ−1

pr

)−1

(7)
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Since the OE posterior is characterized using a local Gaussian
approximation, we sometimes refer to OE as the approximate
Bayesian method to contrast with the fully Bayesian MCMC
approach.

B. Fully Bayesian approach

Although the Laplace approximation in optimal estimation
would be accurate if the posterior is approximately Gaussian,
this is not the case in general. Since the forward model
is nonlinear, the posterior shape cannot be determined a
priori, making it impossible to determine whether a normal
approximation is sufficiently accurate. Therefore, a method
of characterizing the full posterior distribution is needed to
obtain an accurate measure of uncertainty associated with the
retrieval.

Markov chain Monte Carlo (MCMC) [22] is a probabilistic
sampling method that addresses the issue of characterizing
the posterior, but is computationally intractable in the high-
dimensional VSWIR retrieval problem. Methods for dimen-
sion reduction such as [9] [23] [24] designed for Bayesian
inverse problems can limit the sampling to a low-dimensional
subspace. However, these methods are considered approximate
inference because they involve truncation of information that
are deemed less important based on the eigenvalues. This
paper presents a technique for exact inference specifically for
the VSWIR retrieval that takes advantage of the conditional
linearity structure of the surface and atmospheric parameters
in the state vector. The next subsection outlines the structure
that we then use to develop the sampling methodology in
Section IV.

C. Linear approximations to the forward model

The structure in the forward model arises from xrefl and
xatm being treated as independent in (4). When the atmospheric
parameters are held fixed, the forward model is approximately
linear. That is, for xatm held constant, we can define a
submodel conditioned on the atmospheric parameters:

frefl(xrefl) ≈ Axrefl + b, (8)

where A, a diagonal matrix with Aii = ϕ0

π e0,iti, and
bi = ϕ0

π e0,iρa,i, i = 1 . . . n, are the deterministic constants
computed from the intermediate parameters computed using
MODTRAN. The denominator of the second term in (4) is
approximately equal to one. The approximately linear structure
in the surface parameters can be exploited to accelerate the
sampling process.

IV. SAMPLING METHODOLOGY

A computationally tractable fully Bayesian algorithm was
developed to obtain samples from the posterior distribution
of the surface and atmospheric parameters. The algorithm,
based on a block Metropolis MCMC algorithm [22] [25],
generates alternating samples of the reflectance and atmo-
spheric parameter blocks. Contrary to algorithms involving
dimension reduction, this algorithm performs exact inference,
meaning that it converges to the true posterior distribution in

Fig. 2. Flowchart for the block Metropolis MCMC retrieval algorithm.

the limit of infinite samples. The algorithm is described in
this section, including the overall structure and the parameter
tuning process.

A. Exploiting structure in the forward model

The forward model is known to be approximately linear in
the reflectances conditioned on fixed atmospheric parameters.
Since the objective is to develop a fully Bayesian algorithm,
the linear model described in Section III-C is not used explic-
itly in the inversion. It is instead used to provide structure to
the sampling algorithm.

The motivation behind the block Metropolis algorithm is to
restrict the “difficult” sampling to the atmospheric parameters.
After obtaining a sample from the atmospheric block, the
sampling within the surface block can converge much faster
thanks to the approximate conditional linearity given a fixed
atmosphere. Without this structure, the algorithm would have
to blindly explore the n-parameter space, which is computa-
tionally infeasible in practice.

The sampling procedure is depicted in Figure 2. Different
initializations for the Markov chain were attempted and re-
sulted in the same stationary distribution with varying burn-
in times. Initializing at the MAP estimate obtained using
optimal estimation led to sufficiently low burn-in for all cases
and was therefore used throughout the experiments. Each
subsequent sample is split into the atmospheric and reflectance
blocks, each with a proposal and acceptance step. The proposal
is a sample from the normal distribution centered at the
previous sample with some proposal covariance. This proposal
covariance is discussed in the next subsection. The proposal
is then accepted or rejected with some acceptance probability
computed based on the posterior density. The new samples
from both blocks are then concatenated and added to the chain.
The acceptance step ensures asymptotic convergence of the
chain. The full algorithm is outlined in Section IV-C.

B. Choice of proposal covariance

Different approaches were taken for the two blocks since
the structure is known for the reflectances conditioned on the
atmospheric parameters but not vice versa. For the atmospheric
block, the proposal covariance follows the update procedure of
the Adaptive Metropolis algorithm [26], in which the proposal
attempts to adapt to the shape of the posterior based on the
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previous samples in attempt to explore the parameter space
more efficiently. For samples i ≤ 1000, the proposal covari-
ance is a diagonal matrix with elements ϵ0. In subsequent
samples i > 1000, the proposal is the sum of the covariance
of all previous samples scaled with parameter γ and an additive
term to prevent singularity. This adaptive scheme is given as:

Γ
(i)
atm =

{
ϵ0 I2 i ≤ 1000

γ cov
(
x
(0)
atm , . . . ,x

(i−1)
atm

)
+ γ ϵAM I2 i > 1000

,

(9)
where I2 is the 2 × 2 identity matrix, γ = 2.382

2 and ϵ0 =
ϵAM = 10−3.

Two methods of obtaining the proposal covariance for the
reflectance block were compared. Both involve computing
some approximation of the posterior covariance of the re-
flectance parameters.

1) Linear inversion theory. Modelling the forward sub-
model as linear, i.e. making (8) an equality, closed form
expressions of the posterior covariance can be derived from
linear Bayesian inversion theory [20]. For the linear model in
(8) and using the same prior and noise model, the posterior
covariance of the reflectances can be expressed as:

Γ
(i)
lin =

(
I− Γpr A

(i)T Γ−1 (i)
y A(i)

)
Γpr, (10)

where Γ
(i)
y = A(i) Γpr A

(i)T +Γobs is the marginal covariance
of the data. A scaled version of this posterior approximation,
ϵ1Γlin, where ϵ1 < 1 is used as the proposal covariance.

2) Laplace approximation. Another method is to directly
use the Laplace approximation, ΓL, obtained from OE [19]
[21]. This can be done as a preprocessing step to avoid
having to compute an inversion problem for every iteration
of the chain. The proposal covariance is the scaled Laplace
approximation, ϵ2ΓL, for some ϵ2 < 1.

The block Metropolis algorithm was implemented to com-
pare the quality of mixing in the chain for each method
of obtaining the proposal covariance. Two million samples
were generated for each chain, which were then thinned by
taking every 10 samples for a total of 2 × 105 samples. The
mixing characteristics were compared by analyzing trace plots
and the effective sample sizes. Both scaling parameters ϵ1
and ϵ2 were tuned to achieve a near-optimal acceptance rate
of approximately 23% [27]. The subsequent results use the
scaling parameters ϵ1 = 0.14 and ϵ2 = 0.11.

The samples from the reflectance block affect the acceptance
in the atmospheric block due to the alternating nature of
the sampling process, so we must evaluate the effect of
this proposal covariance on the parameters in both blocks.
The trace plots for the atmospheric parameters are shown in
Figure 3. While the H2O parameter trace plots are similar
across the two methods, the AOD plots show that the chain
explores the parameter space more efficiently when using the
Laplace approximation. In the proposal from linear inversion
theory, the chain requires more samples to move toward a
different region of the space.

Since MCMC leads to dependent samples, another useful
metric is the autocorrelation time τa, which is the time it
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Fig. 3. Trace plots of the atmospheric parameters using the two methods of
obtaining proposal covariance for the reflectance block.

takes for the samples to become effectively independent. The
effective sample size (ESS) can then be defined as:

ESS =
N

τa
, (11)

where N was taken as 1.8×105 after removing the first 2×104

samples in the chain as burn-in.
The ESS was computed for each of the n + 2 parameters

and summarized in Table I. The median value is around 1000,
indicating that one effectively independent sample is generated
every 180 samples. The proposal covariance obtained from
the Laplace approximation generates greater sample sizes
throughout, suggesting better mixing and greater sampling
efficiency. This method performs particularly better for the
atmospheric AOD parameter, where the ESS is roughly a
factor of 4 greater than the linear inversion method. For
the reflectances, it induces a much better performance for
wavelengths less than 1000 nm, as shown in Figure 4. While
the ESS from the Laplace method remain fairly consistent
throughout all wavelengths, the ESS in low wavelength regions
drop significantly for the linear inversion method.

Another advantage of the Laplace method is that the Laplace
approximation is constant and only needs to be computed
once as a preprocessing step. The linear inversion method
requires the computation of (10) between the two blocks in
the algorithm for each sample. Although this does not make
a noticeable difference in computational time, it simplifies the
algorithm. In the final implementation of the algorithm, the
proposal covariance for the reflectance block is equal to ϵ2ΓL,
where the scaling parameter was tuned to be ϵ2 = 0.11.

C. Block Metropolis Algorithm

Algorithm 1 outlines the final algorithm, which takes ad-
vantage of the forward model structure in which frefl(·) is
approximately linear. By using this property along with the
scaled Laplace approximation as the proposal covariance, we
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TABLE I
EFFECTIVE SAMPLE SIZES FOR MCMC ON BUILDING 177

Proposal from linear inversion Proposal from Laplace
Refl Min 108 120
Refl Med 1278 1375
Refl Max 3294 4399

AOD 166 633
H2O 527 784
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Fig. 4. Effective sample sizes of the reflectance chains.

are able to obtain samples that efficiently explore the parameter
space of both the surface and atmospheric parameters. Note
that in the atmospheric block, zatm is drawn from a truncated
normal distribution with a lower bound of zero.

Algorithm 1 Block Metropolis

1: Initialize x(0) = xMAP
2: for i = 1 . . . N do
3: Sample x

(i)
atm

4: Proposal zatm ∼ N
(
x
(i−1)
atm , Γ

(i)
atm

)
such that zatm ≥ 0

5: Metropolis accept/reject for
[
x
(i−1)
refl , zatm

]
6: Sample x

(i)
refl

7: Proposal zrefl ∼ N
(
x
(i−1)
refl , ϵ2 ΓL

)
8: Metropolis accept/reject for

[
zrefl,x

(i)
atm

]
9: Compute Γ

(i+1)
atm

10: end for

V. RESULTS

The results focus on comparing the posterior distribution
characterized by the fully Bayesian MCMC method with the
posterior approximated by optimal estimation. The MCMC al-
gorithm was executed for four radiance datasets. The datasets,
collected over the JPL campus using the airborne AVIRIS-NG
instrument [28] [29], attempt to include a variety of terrain
types and are named Building 177, Building 306, Mars Yard,
and Parking Lot. The radiance spectra are shown in Figure 5.
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Fig. 5. Radiance measurements for test cases collected over JPL campus.

We reiterate that the scope of this paper is comparing the
posterior distributions characterized by MCMC and optimal
estimation. Comparisons with the ground truth are omitted
since the absolute retrieval accuracy depends on factors outside
this scope such as the accuracy of the physics-based radia-
tive transfer model. In this section, we compare the surface
posterior obtained from both methods using several metrics,
followed by the posterior on the atmospheric parameters. Then,
we evaluate the Gaussianity of the full posterior distribution.

In our implementation of the block Metropolis MCMC
algorithm, two million samples were obtained for each chain,
with the first 2 × 105 discarded as burn-in since the chain
stabilizes by then for most cases, as seen in the trace plots in
Figure 3. The chain was thinned by taking every tenth sample
to reduce storage. The overall acceptance rate for all cases
ranged from 0.2 to 0.3.

A. Surface posterior comparison

We first compare the mean and covariance of the posterior
distribution. Figure 6 plots the posterior mean reflectance
for the four test cases and the MAP estimate from optimal
estimation. Figure 7 plots the relative difference of the two
methods normalized over the values from the MCMC method.
In the first three cases, the greatest differences occur in
the low wavelength regions and all peak around 0.02. The
Parking Lot case begins with a high relative difference at
low wavelength but generally remain below 0.02. The relative
difference between the posterior mean and MAP estimates are
below 6% throughout the spectrum, which gives confidence
in both methods that they converge to a sensible location in
the parameter space. Parking Lot generally follows different
patterns from the other cases in our analysis since it is difficult
to retrieve due to low signal levels and heightened light
scattering from neighbouring buildings [12].

Figure 8 shows the marginal variance of the posterior
distribution in the reflectances obtained using Laplace approx-
imation in optimal estimation and MCMC. For the first three
cases, the Laplace approximation predicts a higher marginal
variance than the MCMC posterior variance, particularly in the
low wavelength regions below 1000 nm. For the Parking Lot
case, the posterior marginal variance is slightly higher than
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Fig. 6. Posterior mean and MAP estimates for reflectances.

the Laplace approximation except for the regions around 380
nm and 550 nm.

In addition to the marginal variances, it is also necessary to
look into the differences in cross-correlations. We compare the
MCMC and OE covariances (ΓM and ΓL) using three metrics
involving trace, Frobenius norm, and Förstner distance, which
are defined below. The first metric is the relative difference
in trace normalized by the trace of the MCMC posterior
covariance:

dtr =

∣∣∣∣ tr(ΓM)− tr(ΓL)

tr(ΓM)

∣∣∣∣. (12)

The second metric is the relative difference in Frobenius norm
normalized by the Frobenius norm of the MCMC posterior
covariance:

dnorm =
∥ΓM − ΓL∥F

∥ΓM∥F
. (13)

The third metric involves the Förstner distance, which is a
metric that measures the distance between two symmetric
positive definite matrices [30]. The Förstner distance between
two SPD matrices ΓA and ΓB is defined by:

df =

√∑
i

ln2(σi), (14)

where σi are the generalized eigenvalues of the eigenpencil
(ΓA,ΓB).The relative difference defined using this metric is
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Fig. 7. Relative difference between posterior mean and MAP estimates.

TABLE II
RELATIVE DIFFERENCE BETWEEN ΓM AND ΓL

Trace Frobenius Norm Förstner Distance
Building 177 0.331 1.820 0.319
Building 306 0.509 2.601 0.282

Mars Yard 0.289 0.758 0.356
Parking Lot 0.063 0.929 0.539

normalized by the distance between the MCMC covariance
and the prior covariance:

dF =
df

(
ΓM ,ΓL

)
df

(
ΓM ,Γpr

) . (15)

The results of these comparisons are shown in Table II for
the four test cases. The relative differences in trace are greater
than 25% with the exception of Parking Lot. While Parking
Lot has one of the lowest differences in trace, it has the highest
relative difference in Förstner distance as defined in (15).
By including the cross-covariances, the relative differences in
Frobenius norm are over 75%. This numerical comparison
using multiple metrics establishes that there is a nontrivial
deviation in the covariances obtained using the approximate
Bayesian and fully Bayesian algorithms, motivating the ex-
ploration of the differences in more detail.
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Fig. 8. Marginal variance in reflectances predicted by MCMC and OE
methods.

B. Eigenanalysis of the surface posterior

Expanding on the eigenvalue problem used in the Förstner
distance metric, we explore the interpretability of eigenprob-
lems to reveal structure in the difference between the two
covariance matrices. We compare them with respect to the
eigendirections of one of the matrices. Specifically, we focus
on the following eigenvalue problem involving the sample
covariance of the Building 177 posterior:

ΓMvM = λMvM, (16)

where λM and vM are the eigenvalues and eigenvectors of ΓM.
The eigenvalue spectrum is shown in Figure 9.

Then, the variance of ΓL in the direction vM,i can be
expressed as v⊤M,iΓLvM,i. This directional variance can be
normalized using the corresponding eigenvalue as follows:

σL
M,i =

v⊤M,iΓLvM,i

v⊤M,iΓMvM,i
=

v⊤M,iΓLvM,i

λM,i
(17)

Figure 10 plots this quotient, ranked in order of highest to
lowest eigenvalue λM,i. A value greater than 1 can be inter-
preted as the Laplace approximation having greater variance
in the vM,i direction, and vice versa. Consistent with Figure 8,
the Laplace approximation overestimates the variance of the
MCMC variance in most directions. The overall pattern is
that the variances are similar along most of the top 25
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10−5

10−4

Ei
ge

nv
al

ue

Eigenvalues of MCMC Covariance

Fig. 9. Eigenvalues of the MCMC covariance matrix.

Fig. 10. Ratio of Laplace approximation variance and MCMC variance in
the eigendirections of the MCMC covariance.

eigendirections, but the MCMC variance becomes smaller than
the Laplace approximation variance as we move into the less
important directions toward the right of the plot.

There are two outliers among the leading eigendirections,
and the corresponding eigenvectors are shown in red in
Figure 10. Comparing the shape to the posterior variance
plot in Figure 8, the first eigenvector (top outlier) resembles
the main reflectance feature in the lower wavelengths. The
Laplace approximation predicts variance three times higher
in this direction. In Section V-D we show how this may be
related to the non-Gaussianity in the low wavelength region,
which makes the Laplace approximation less accurate. The
fifth eigenvector (bottom outlier) describes some of the noisy
features, particularly the spike near 2500 nm, and the MCMC
result predicts a variance around 70% higher than the Laplace
approximation in this direction.

C. Atmospheric posterior comparison

While the reflectances are the quantities of interest ulti-
mately used in subsequent analysis of the Earth surface, their
behaviour is conditioned on the atmospheric parameters.

Figure 11 is a 2D marginal density plot of the poste-
rior for the two atmospheric parameters. The MAP estimate
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Fig. 11. 2D marginal density plot of the atmospheric posterior distribution
for Building 177.

from optimal estimation is plotted in red along with an
ellipse representing one standard deviation obtained using the
Laplace approximation. There are two visible improvements
from characterizing the posterior distribution using MCMC.
First, optimal estimation has no way of ensuring positivity
of the parameters, so the probabilistic interpretation is that
the probability is obtaining a negative AOD parameter is
almost 0.5, for example. The MCMC implementation fixes
the samples to be positive and therefore leads to results that
are more representative of the physical quantities. The second
improvement is that MCMC sampling reveals a non-elliptical
shape to the posterior, suggesting that it is not Gaussian. The
Gaussianity of the posterior for both surface and atmospheric
parameters is further explored in the next subsection.

D. Evaluating Gaussianity

The motivation for turning to a fully Bayesian approach is
that the posterior is non-Gaussian in general. Here, we first
demonstrate the non-Gaussianity of the posterior distribution
qualitatively using normal Q-Q plots, and then quantitatively
using hypothesis testing for individual parameters in one
dimension.

Figure 12 shows the Q-Q plots for the two atmospheric
parameters across all four cases. The red line is the reference
for a truncated normal distribution and the MCMC samples
are plotted in blue. The truncated normal was used since the
samples for the atmospheric block were constrained to positive
values in the algorithm. While the H2O parameters closely
follow the truncated normal, the right tail of the AOD plots
deviate from the red line, especially for the Building 177 and
Parking Lot cases. Qualitatively, these two cases look the least
Gaussian, which is likely related to the absolute value of the
reflectances and radiance being lower. Comparing the overall
brightness levels in Figure 5, Building 177 and Parking Lot
are the darkest. Building 306, the brightest, has a Q-Q plot for
AOE that looks the most Gaussian in Figure 12. This may be
the case because the additive contribution of aerosol scattering
to the observed radiance is smaller in proportion to the large
surface reflected signal.
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Fig. 12. Q-Q plots of atmospheric parameters across all four cases. The red
line is a reference indicating the truncated normal distribution.

Figure 13 shows the Q-Q plots for select reflectance param-
eters across the spectrum for the Building 177 case. Although
the MCMC samples closely follow a normal distribution, the
two plots for 596 nm and 746 nm have tails that deviate
from the reference normal. This is likely due to the effect
of the non-Gaussian AOD parameter. We present a more
comprehensive analysis of the reflectances at all wavelengths
using a hypothesis testing approach.

Treating the reflectances individually, we use the
Kolmogorov-Smirnov test [31] on the empirical marginal
distribution of the MCMC samples with the null hypothesis
being that the reflectances are normally distributed. The p-
values for each reflectance parameter are shown in Figure 14,
with the red line representing p = 0.05. In three of the
cases, the non-Gaussian phenomenon observed in certain
wavelengths in Figure 13 are present in the entire low
wavelength regime, with p ≈ 0. However, the extent of this
regime varies for all three cases, with the low p-value region
in the Mars Yard case extending to nearly 1000 nm.

This is consistent with the findings in Figure 10, which
showed that the largest difference between the OE and
MCMC posterior was in the direction that represents the lower
wavelength regime. The departure from Gaussianity for the
reflectances in this regime may be the reason why the Laplace
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Fig. 13. Q-Q plots of select reflectance parameters for the Building 177 case.

Fig. 14. Kolmogorov-Smirnov test for reflectances across all four cases.

approximation also departs from the posterior characterized by
MCMC.

VI. DISCUSSION

We presented a fully Bayesian MCMC algorithm for the
remote sensing problem that characterizes the posterior dis-
tribution of the surface reflectances and atmospheric param-
eters. This posterior was used to identify and understand
the limitations of optimal estimation, the current state-of-
the-art approximate Bayesian approach. There are three main
takeaways from the results presented in this paper.

• The fully Bayesian solution and Laplace approximation
produce posterior mean reflectance estimates that are
virtually identical for the range of conditions studied.

• The fully Bayesian solution and Laplace approxima-
tion yield very different covariances. We analyzed the
differences in terms of three different metrics and the
eigendirections of the MCMC covariance matrix.

• The posterior distribution of the atmospheric parameters
is more physically sensible than the Laplace approxima-
tion.

• Non-Gaussianity in the posterior is revealed by the fully
Bayesian solution.

We identified regions of the spectrum and in the atmospheric
parameters for which the Laplace approximation would not
be able to sufficiently represent the non-Gaussian distribution.
From the eigenanalysis, the OE posterior covariance was
shown to be the most different from the MCMC posterior
covariance in the low-wavelength region, which is the same
region that was shown to depart from Gaussianity. Any fur-
ther work on non-Gaussian posterior characterizations could
focus on only this regime of the reflectances and the AOD
atmospheric parameter. There is potential to develop a new
combined method that uses MCMC or another non-Gaussian
method for these parts, and OE for the rest of the parameters.

While we based our analysis on four test cases, we expect
MCMC to be just as appropriate in other cases when we
compare using the same forward radiative transfer model.
Regions with heavier aerosol loads are expected to exhibit
more non-Gaussianity, making MCMC even more appealing
than OE in these cases.

In terms of NASA’s Surface Geology and Biology mission,
characterizing the posterior distribution is important for sub-
sequent analysis. The surface reflectances are ultimately used
to further infer properties of the Earth surface pertaining to
themes such as terrestrial and aquatic ecosystems, geology, and
water resources. Accurately quantifying the uncertainty of the
surface properties is especially important for these scientific
applications.

A. Limitations

Although we have created a computationally tractable fully
Bayesian algorithm by exploiting structure in the problem,
it is not computationally feasible in an operational setting.
Generating 2 × 106 posterior samples takes on the order of
hours, whereas the approximate Bayesian approach for one
retrieval is on the order of seconds. However, the two methods
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could be combined for the operational setting. For example,
a fully Bayesian retrieval can be used as a validation step to
verify and potentially correct the Laplace approximation. Or,
since the Laplace approximation is sufficient to approximate
many of the parameters, the algorithm in this work can
be narrowed to solve a smaller subproblem on a subset of
parameters using a fully Bayesian approach while maintaining
the original approximate approach for the other parameters.

The performance of the MCMC algorithm is contingent on
the prior, noise model, and forward model. Since the noise
model dictates the likelihood distribution, the posterior would
change along with changes in the prior distribution and noise
model. The forward model is subject to modelling error, which
affects the interactions between the atmospheric and surface
parameters. This would be one of the main improvements
to the current algorithm when considering operational use,
since ultimately we are interested in matching the ground truth
reflectances.

B. Future work

The retrievals performed in this work are pixel-by-pixel,
meaning that for each radiance vector, there is one correspond-
ing state vector to be inferred. The main efforts for future work
are focused on extending fully Bayesian algorithms to spatial
and temporal fields. Including spatial and temporal correlations
can increase the retrieval accuracy and reduce the number of
retrievals required, which would reduce computational time in
an operational setting.

VII. CONCLUSION

In this work, we developed a computationally tractable fully
Bayesian retrieval method for the high-dimensional VSWIR
retrieval. Leveraging the conditional linearity structure in
the forward radiative transfer model, which is approximately
linear with respect to the surface for a fixed atmosphere,
we implemented a block Metropolis MCMC algorithm that
alternates samples between the atmospheric and surface pa-
rameter blocks. Unlike other algorithms that involve dimension
reduction, the block Metropolis algorithm is asymptotically
exact.

We compared this fully Bayesian algorithm to the current
state-of-the-art optimal estimation method in several ways to
identify limitations of the approximate Bayesian approach. For
the surface parameters, both methods had a similar posterior
mean but the posterior variance was shown to be significantly
different. The eigendirections in which they are different were
analyzed and interpreted. Through hypothesis testing, MCMC
revealed non-Gaussianity in the aerosol parameter and the low-
wavelength regime of the surface reflectances. This work is
the first step in combining the block Metropolis algorithm
with optimal estimation to allow non-Gaussian retrievals to
be performed in an operational setting.
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