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Abstract

The exponential moving average (EMA) is a com-
monly used statistic for providing stable estimates
of stochastic quantities in deep learning optimiza-
tion. Recently, EMA has seen considerable use
in generative models, where it is computed with
respect to the model weights, and significantly im-
proves the stability of the inference model during
and after training. While the practice of weight
averaging at the end of training is well-studied
and known to improve estimates of local optima,
the benefits of EMA over the course of training
is less understood. In this paper, we derive an
explicit connection between EMA and a damped
harmonic system between two particles, where
one particle (the EMA weights) is drawn to the
other (the model weights) via an idealized zero-
length spring. We then leverage this physical
analogy to analyze the effectiveness of EMA, and
propose an improved training algorithm, which
we call BELAY. Finally, we demonstrate theoreti-
cally and empirically several advantages enjoyed
by BELAY over standard EMA.

1. Introduction

First-order stochastic gradient optimizers are widely em-
ployed in the modern deep learning literature to train large
models, and are often motivated by physical analogies such
as momentum (Polyak, 1964), curvature (Ypma, 1995), pro-
jections (Hestenes et al., 1952; Beck & Teboulle, 2003), and
molecular dynamics (Bussi & Parrinello, 2007; Welling &
Teh, 2011).

We turn our attention to another common motif in first-order
optimization methods, model stabilization via the exponen-
tial moving average (EMA). Applied to the gradient of the
loss function, EMA is well-understood as a physical approx-
imation of momentum, and this concept is extensively used
in many popular adaptive algorithms (Kingma & Ba, 2014;
Hinton et al., 2012; Zeiler, 2012; Zhuang et al., 2020) to
stabilize gradient descent. We instead focus on EMA ap-
plied directly to the model weights. This type of averaging
is frequently used in deep learning, especially in generative
modeling (Yazici et al., 2018; Ho et al., 2019; Song & Er-
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Figure 1. A visualization of the BELAY update step. The back-
ground color corresponds to the true full-batch loss function, and
g is sampled using an optimizer on a minibatch.

mon, 2020). Weight-based EMA is related to the general
idea of weight averaging (Ruppert, 1988; Polyak & Judit-
sky, 1992), which is known to improve the generalization
properties of stochastic algorithms at the end of training
(Izmailov et al., 2018). However, a physical analogy for
weight averaging has, to our knowledge, not been explored.

In this paper, we establish a clear connection between the
weight-based EMA update and the discrete time Euler up-
date of a damped harmonic oscillator. In other words, EMA
can be modeled by an idealized zero-length spring that is
attached on one end to the model weights, and on the other
to the EMA weights. This analogy allows us to highlight
several distinct theoretical properties of the weight-based
EMA. Finally, we propose BELAY, which explores a variant
of EMA where the model weights can also be updated by
the EMA weights, and find that BELAY confers increased
robustness of the optimization algorithm to the learning rate.
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2. Background

For a deep neural network with parameters w € R”, we
aim to minimize some loss function £ : w — R. For
applications of generative modeling, £ is often negative
log-likelihood (Salimans et al., 2017; Dinh et al., 2014)
or a score matching loss (Hyvérinen & Dayan, 2005; Vin-
cent, 2011; Song et al., 2020a; Ho et al., 2020). First-order
stochastic gradient optimizers iteratively sample an estimate
for VL(w) and update w with this information. In this
work, we refer to this "update’ for an optimizer as a function
g(w) € R™.

2.1. The Exponential Moving Average

Using the time-averaged parameters of a model over the
course of training is a commonly used technique in genera-
tive modeling across GANs (Salimans et al., 2016; Yazict
et al., 2018), normalizing flows (Ho et al., 2019), autore-
gressive models (Salimans et al., 2017; Child et al., 2019),
and diffusion models (Song & Ermon, 2020; Song et al.,
2020b; Ho et al., 2020). The exponential moving average
(EMA) of a set of parameters w over time can be described
recursively in terms of the time update

wEMA(t 4+ 1) = aw*(t) + (1 —
w(t) = w(t) + g(w(t))

a)wEMA(t)

ey

where o € [0, 1]. Weighted-based EMA has been shown to
improve model stability over the course of training (Song &
Ermon, 2020; Yazici et al., 2018).

2.2. Damped Harmonic Oscillators

Let wy, ws : [0, 7] — R™ denote the positions of two point
particles with masses m1, mo, connected by an idealized
zero-length spring. In a damped harmonic system, the force
exerted by ws on w; can be written as

F = k(ws — w1) — 1wy, )
———— N
FS FD

where Fs is the spring force given by Hooke’s Law and
spring constant k, and F'p is the damping force. External
forces on w; may be modeled with a function f : R™ x
[0,T] — R™. Applying Newton’s second law of motion
provides the ODE

.. k c1 . 1
W = — (wy — w1) — —by + — f(wi,b).  (3)
ma miq mq

Using the second kinematics equation and discretizing ¢
with time-steps of size At, we have

wi (t+ AL) = wi (£) + by (1) AL+ %wl ()AL

= 11]1(t) + %f(wl(t)7t)

2 “
S (walt) - wi (1)

2
+ (At - af ) i (t)

mi

+

The position of the other mass, ws can be similarly derived.
For the purposes of this work, ws is not subject to any
external force. We thus have

kAt?
wo (t + At) = w2 (t) + 911

(w1(t) — wa(?))
+ (At - c;At2> o (t),

ma

&)

where c; € R* is a damping constant analogous to c;.
Together these two equations can be used to describe to
perform Euler integration and solve an initial value problem
when w1 (0), w2 (0) are known.

3. EMA as Damped Harmonic Motion
We relate Egs. 4 and 5 to weight-based EMA, described in

Eq. 1, by choosing tzhe damping parameter ¢; = 2251 , and
setting 8 =1 — %. Thus, we can rewrite Equation 4 as
1

wy(t+ At) = wi(t) + B (wi(t)) + (1 — B)(wa(t) — wi (1))

= Bwi(t) + By (wi(t)) + (1 — Bwa(t)
= fwi(t) + (1 - Blwa(t),
(6)

where ¢’ =

AEF(-,t), and wh (1) = wi (8) + g’ (wi(t)).

. _ 2ma _ 1 _ kA#? :
Selecting c2 = =% 2 anda =1 3my > We can also rewrite

Equation 5 as

w(t + At) = awi (t) + (1 — a)ws(t).  (7)

Taking the point-masses w1, we to be the model weights
w and wPM4 respectively, we obtain a weight averaging
method that is precisely EMA when 5 = 1. This occurs
when m; — oo. In this case, § — 1 and Eq. 6 becomes
w1 (t + At) = w™*, which follows line 2 of Eq. 1 (and
therefore Eq. 5 follows line 1 of Eq. 1). This implies that
EMA has a physical interpretation as a damped harmonic
oscillator.

According to our physical interpretation of the standard
EMA scheme, w* is not affected by w4 during training
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since it has infinite mass. In the next section, we explore
the possibility of finite m;. This allows us to harness the
strong model stability properties of EMA to guide parameter
updates during training, which we evaluate in Section 4.

BELAY Weintroduce BELAY: (B)ridging (E)xponentia(L)
moving (A)verages with spring s(Y)stems, a novel class of
optimization methods that generalizes weight averaging by
re-expressing each step as a forward Euler integration update
to a damped harmonic oscillator. BELAY is parameterized
by (k, m1,ma, 1, c2), and weight update function g(w, t)
provided by some existing optimizer. We add the parameter
n € RT to designate learning rate for the optimizer. The
physical interpretation of each parameter is described in
Table B.1. We formalize the BELAY algorithm in Algorithm
1, and visualize one update step in Figure 1. We note that
when c1, co, are set as described above, the implementation
can be simplified to avoid storing or computing momen-
tum terms (¢). Even with a non-trivial set of damping
parameters, the time and memory overhead of BELAY is
negligible compared to conventional training, as is the case
in (Izmailov et al., 2018).

Algorithm 1 BELAY
Input: Parameters (k, m1, ms, c1, c2), weight update
function g, learning rate 7).
Initialize ¢ = 0
Initialize w1 (0), w2 (0) with small random values
Initialize 2 (0) = 0, w2 (0) =0
while stopping criterion not met do
Compute weight-update g(w1(t), t) {see Table B.1 for
details}
Compute optimizer step w} = w; + ng(w1(t),t)

Compute momentum M7 = (1 — 52— )w (¢)
Compute momentum My = (1 — 572-)ws(t)
a=1- 27];1
B=1-—
Updatew ( 1) = awi(t) + (1 — a)wa(t) + M,
Update w(t + 1) = Bws(t) + (1 — Blwi(t) + Mo
ovy = mil(ﬂb —wi) — b (t) + ghg(wi(t),1) !
6’02 %('Iﬂl ) — %’lj)g(t)
Update w1 (t + ) w1 + dvy
Update wa(t + 1) = Wy + dvo
t=t+1

end while

"We scale g by - 5= because we earlier re-expressed 3 Zamy Y
as ng to simplify the update to w1 (t) (since At = 1). Since
dvr = @1 (1) = ;2= (wo — wi) — b (t) + -g(wi(t), 1),

my ( mi
and we would like to retain scaling by 7 as a parameter, we can

o
use 5.

3.1. Connection to Optimizers with Momentum

In BELAY, the damping coefficients ¢; and ¢, explicitly con-
trol the momentum term in every weight update step. Even
when these coefficients are set to cancel the momentum (as
described in Section 3) however, BELAY still uses momen-
tum information. When running SGD with momentum, the
weights are updated with the step,

v(t) = AVL(w(t)) + (1 — Nv(t—1)
w(t+1) =w(t) + av(t)

t) + aZ(l -
s=0

where L is the loss function being optimized and « € [0, 1].
In the case where £ is linear,

> aVL(w(t—s)) =VL <Z asw(t — s))
s=0 )]

s=0
=VL (wEMA(t)) ,

®

A AVL(w(t — s))

where as = (1 — A\)®\. Given specific parameter choices,
this is an update for BELAY. We have shown that the lin-
earization of a BELAY update VL(w®MA(t)) is therefore
equivalent to the momentum update term v(¢). This rela-
tionship is analogous to that of SWA and FGE documented
by (Izmailov et al., 2018).

3.2. Deriving the Spring Constant %

One caveat of vanilla EMA is its sensitivity to «, which
governs the exponential decay of the moving average. Pick-
ing « too large causes the average to converge too slowly,
which can drastically extend the training time of a learning
algorithm. Conversely, too small « will overly favor the
present iterate, which at best increases model variance at
evaluation-time, and at worst defeats the intended purpose
of the moving average. The challenge of choosing a proper
« is further complicated by its dependence on the total run-
time of the training protocol, in terms of the number of
gradient steps 7.

We leverage our physical analogy to harmonic oscillators
to choose k such that the system is invariant to 7. We
achieve this by examining the closed form solution of an
overdamped spring system:

w(t)=C L (FHVER) L (VR ()
1

where § = £;. Using the initial conditions w(0) = 0
and w(0) = xp, we may obtain integration constants C
and Cs, and then solving for the function k(7') such that
w(T) = w(Ty), we obtain k ~ kgL2. In our experiments,
we let kg = 1 and Ty = 1e6. From this, we obtain our
proposed T-invariant spring constant k(1') = =, where
C = 1eb.
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4. Numerical Experiments

In this section, we evaluate BELAY on a set of synthetic and
real optimization tasks, and demonstrate several empirical
properties of the convergence behavior of BELAY.
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Figure 2. Comparisons between BELAY or EMA + Adam, BELAY
or EMA + SGD, Adam and SGD at different learning rates run
on the Rosenbrock function. Parameter and function details are
located in Appendix C.1.

Robustness to Learning Rate First, we compare the per-
formance of BELAY to EMA, Adam, and SGD on a set
of ill-conditioned 2D examples. Figure 2 shows how the
stability of each optimizer varies w.r.t. the learning rate.

As expected, we find that Adam is generally much more
stable than SGD across different learning rates. In the high-
learning rate regime, only BELAY and EMA, applied to
Adam, are capable of converging without serious instabil-
ity. In the medium learning rate regime, we see that weight
averaging also reduces the tendency of the SGD update to
diverge. Overall, weight averaging is better suited to stabi-
lizing the trajectory of an optimizer than momentum alone,
especially with higher learning rates.

This analysis is highly applicable to training deep neural
networks due to the inherent link between learning rate, and
loss function smoothness (Bottou et al., 2018; Wu et al.,
2018). Because the latter quantity may vary across weight
values, it is important for an optimizer to be robust to learn-
ing rate, so that it is able to provide a stable minimizing
trajectory across different levels of smoothness without sac-
rificing speed of convergence.

Faster Convergence We further analyze speed of conver-
gence of the above algorithms in Figure 3. We find that
BELAY with either Adam or SGD is able to consistently
be among the fastest algorithms to converge. Note that in
certain examples, such as the Beale function, momentum-
based methods may struggle due to the existence of a nearby
saddle-point (off to the left of the field of vision), however
weight-averaging is able to remedy this.
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Figure 3. Comparison of trajectories and speed of convergence for
BELAY, EMA, and no weight averaging with both Adam and SGD.
Each run is stopped near where BELAY has converged. Parameter
and function details are located in Appendix C.2
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Generative Modeling Finally, we compare BELAY
against EMA on a generative modeling task, on two datasets:
CIFAR10 and MNIST. More experiments with generative
modelling are located in Appendix C.4. We see that BELAY
compares favorably with respect to competing algorithms.
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Figure 4. Comparison between loss curves (top) and FID score
across training iterations (bottom) of BELAY and EMA, trained to
generate MNIST. Details in Appendix C.3

Method | Train Loss | Test Loss | FID
BELAY 0.042 0.040 15.2
EMA 0.056 0.061 18.1

Table 4.1. Comparison of final losses and FID scores of BELAY
and EMA, run to generate MNIST digits. Details in Appendix C.3.

5. Conclusion and Future Work

In this work, we have presented BELAY: a simple to imple-
ment and efficient weight-averaging method that uses physi-
cal systems to bridge the understanding between EMA and
momentum based methods. We have shown how BELAY

adds a new set of parameters to EMA, each with a strong
and intuitive physical meaning, and in turn have shown how
EMA uses momentum information, even when run on a non-
momentum based method. Furthermore, we have shown
empirically, that BELAY may outperform EMA in certain
cases, implying that the choice of parameters is non-trivial.
We have suggested some ways to set parameters to achieve
desired behaviours.

With the basis outlined in this work, many future directions
are apparent. First, by leveraging our newfound physical
intuition, new theoretical guarantees for momentum-based
methods as well as weight averaging could be drawn, by
proving convergence bounds on BELAY. A deeper dive into
the damping parameter, and the interplay between the spring-
based momentum term along with the classical heavy-ball
momentum term of the loss function can be investigated to
come up with what could be a more guaranteed “critically-
damp” regime. Furthermore, large-scale empirical analysis
could be performed to select optimal parameters for BELAY,
and determine strong heuristics for practitioners interested
in large-scale learning tasks.
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A. Derivations
A.1. Derivation of &

Letting w(0) = wy and wo = 0, we see that Eq. 10 reduces
to

woy = Cq + Oy (11)

0:01<—6+\/62—k>+02<—6— 62—k>.
m m

(12)

Substituting Eq. 11 into Eq. 12, we obtain

1
S RN
52— &k 2
1 )
Co=wy | 5 — ————
2 52—k

Now we see that the general solution of the harmonic oscil-
lator takes the form

w(t) = wo 0 1 e(_5+ﬂ)t
-
+ wy 1 0 6(757 627%)t.
2 52— Kk

Since all terms in our method are functions of At, we may
letd = A% = 1 without loss in generality. Letting t = T,
we have

w(T) = Wo —_— —
6(717 177’;;)T'

We would like to choose k = k(T such that w(T) =
w(Ty) for some reference time Ty. We have found Ty =
1,000, 000 to be a reasonable default parameter. We see
that we approximately satisfy this condition when k = %

B. Parameters

We describe all the parameters of BELAY in detail with in-
tuitive physical explanations, and appropriate units assigned
in Table B.1. We note that, outside of the optimizer g(w, t)
and learning rate 7, only ms is left as a free parameter
in EMA. In BELAY, we additionally have m; < oo as a
tunable parameter.

Param. | Description SI
Units
k spring constant, scales the | N/m
force bringing both masses
together. This force can also
be controlled by changing
both m; and ms simultane-
ously.
my mass of first point-mass, | g

scales force on point-mass
inversely. Implicitly built
into ¢’, and scales momen-
tum term if ¢; is not chosen
to remove momentum.

ma mass of second point-mass. | g
Analogous to m; but on wo,
but does not have an effect
on g’

damping coefficients for both
masses. Can be set to %”Z in
order to fully dampen the sys-
tem and ensure a return to 0
velocity between time-steps.
Deviating will retain velocity
and add a momentum term in
an optimization sense.
weight update function, inter- | N
pretable as a force applied to
ws. This value is provided
by an existing optimization
algorithm. For example for
full-batch gradient descent
the value is (—V f) for some
loss function f.

n scale of weight update, learn-
ing rate for gradient descent
based methods.

C1,C2 Ns/m

g(w,1)

s?/m

Table B.1. Physical parameters of BELAY and interpretations

C. Implementation Details
C.1. Learning rate robustness experiment

We state all the parameter choices for all runs displayed in
Figure 2 here. Since we separately observe in Figure 2 that
different methods are robust to different learning rates, we
run each optimizer at the highest learning rate that optimizer
can handle while producing a stable converging trajectory
across all runs.

1. BELAY + Adam is run with the parameter set, k = 1,
m1 = 10, me = 20. Damping coeff. ¢, c; are set to
zero out the velocity term as stated in Section 3
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2. BELAY + SGD is run with the parameter set, k = 1,
m1 = 10, me = 20. Damping coeff. c;, c; are set to
zero out the velocity term as stated in Section 3

3. EMA + Adam is run with the parameter o = 0.95.
4. EMA + SGD is run with the parameter o = 0.95.
5. Adam is run with default parameters.

The Rosenbrock function was chosen with parameters a =
0, b = 100 for easy visualization:

fla.y) = (a—2)* +blz - (y*))*.

The following version of the Beale function was used, cen-
tering the global minima at (0,0) for easy visualization:

flz,y) = (15— (x+3)+ (z+3) * (y +0.5))?
+(2.25 — (x +3) + (z +3) * (y + 0.5)%)?
+(2.625 — (4 3) + (z + 3) * (y + 0.5)%)?

C.2. Convergence trajectory experiments

We state all the learning rate choices for all runs displayed
in Figure 3 here. The values for all parameters except for
learning rate were the same as those described in Appendix
C.1.

1. BELAY + Adam is run with learning rate n = 5% 1072,
. BELAY + SGD is run with p = 1072,

. EMA + Adam is run with n = 1072,

2
3
4. EMA + SGD is run with n = 1073,
5. Adam is run with ) = 1073

6

. SGD is run with = 1073

C.3. MNIST Experiment

BELAY is run with parameters £ = 1, m; = 2000,
mg = 500, and damping c¢;, cg, to zero out the velocity
term as described in Section 3. The Adam optimizer is used
with learning rate 7 = 5 * 1072, Both methods are run
to optimize the score-based diffusion model described in
(Song & Ermon, 2020) on MNIST digits.

C.4. CIFAR Experiment

BELAY is run with parameters (k = 1, m; = 20000, mo =
2000), and damping c¢;, ¢, to zero out the velocity term as
described in Section 3. Both methods are run to optimize
the score-based diffusion model described in (Karras et al.,
2022) on CIFAR-10 images.

Method | Train Loss | Test Loss | FID
BELAY 0.176 0.170 1.99
EMA 0.175 0.168 1.98

Table C.1. Comparison of final losses and FID scores of BELAY
and EMA, run to generate CIFAR-10 images.
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Figure 5. Comparison of train (top) and test loss (bottom) across
training iteration of BELAY at parameters m; = 2000, 2% 10*, 2 x
10° and EMA, trained to generate MNIST with the score-based
diffusion model from (Song & Ermon, 2020)



Exponential weight averaging as damped harmonic motion

Figure 6. Images from an unconditional diffusion model with EMA trained on the CIFAR10 dataset.
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