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Abstract

This paper investigates the flexibility of Group
Equivariant Convolutional Neural Networks (G-
CNNs), which specialize conventional neural net-
works by encoding equivariance to group trans-
formations. Inspired by splines, we propose new
metrics to assess the complexity of ReLU net-
works and use them to quantify and compare
the flexibility of networks equivariant to differ-
ent groups. Our analysis suggests that the cur-
rent practice of comparing networks by fixing the
number of trainable parameters unfairly affords
models equivariant to larger groups additional ex-
pressivity. Instead, we advocate for comparisons
based on a fixed computational budget—which
we empirically show results in more similar lev-
els of network flexibility. This approach allows
one to better disentangle the impact of constrain-
ing networks to be equivariant from the increased
expressivity they are typically granted in the litera-
ture, enabling one to obtain a more nuanced view
of the impact of enforcing equivariance. Inter-
estingly, our experiments indicate that enforcing
equivariance results in more complex fitted func-
tions even when controlling for compute, despite
reducing network expressivity.

1. Introduction
Convolutional neural networks (CNNs) exploit the trans-
lational symmetry present in virtually all image data of

1Computer Science Division, Stellenbosch University, South
Africa 2National Institute for Theoretical and Computational
Sciences, South Africa. Correspondence to: Lucas Roos
<roosluan@gmail.com>, Steve Kroon <kroon@sun.ac.za>.

Proceedings of the Geometry-grounded Representation Learning
and Generative Modeling at the 41 st International Conference
on Machine Learning, Vienna, Austria. PMLR Vol Number, 2024.
Copyright 2024 by the author(s).

interest to the deep learning community: features are se-
mantically similar regardless of their location in the image.
Instead of learning this symmetry from the training data,
convolutional layers in CNNs are constrained a priori to
be equivariant to translations. Group equivariant convolu-
tional neural networks (G-CNNs) (Cohen & Welling, 2016)
provide a framework for generalizing translational convo-
lutions, allowing for the creation of architectures that are
equivariant to other group transformations. G-CNNs have
shown to be beneficial for a variety of tasks exhibiting sym-
metry, both theoretically (Kondor & Trivedi, 2018; Elesedy
& Zaidi, 2021) and empirically (Walters et al., 2021; Dey
et al., 2021; Lafarge et al., 2021; Bekkers et al., 2018; Zhu
et al., 2022). G-CNNs are straightforward to implement for
discrete groups and have also shown improvements over
regular CNNs on more traditional image recognition tasks
(Cohen & Welling, 2016; Weiler & Cesa, 2019; Hoogeboom
et al., 2018). However, they have yet to enter mainstream
use, with most practitioners still employing regular CNNs.

One drawback of incorporating group equivariance into ar-
chitectures, potentially acting as a barrier to mainstream
adoption, is the added computational expense: when the
number of trainable parameters in a network is fixed, the
computational cost of applying a group convolution scales
linearly with the group size. In order to demonstrate the
efficacy of their models, many works (Cohen & Welling,
2016; Knigge et al., 2022; Hoogeboom et al., 2018; Weiler
& Cesa, 2019; Klee et al., 2023) compare “more-equivariant”
networks—networks equivariant to larger groups—to their
original, “less-equivariant”, counterparts, by adjusting their
layer widths to equate the number of trainable parame-
ters. In this work, we argue that this practice is not well-
motivated, as it does not consider how the symmetries in the
data constrain the learning of models that do not directly en-
force equivariance to these symmetries: if a less-equivariant
network needs to learn to produce equivariant features in
order to achieve a low training error—which is especially
applicable in the presence of data augmentation—then the
less-equivariant network’s trainable parameters will be reg-
ularized towards equivariant solutions. This can be seen in
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the observation that the filters in the first layer of CNNs tend
to learn multiple copies of one another in different poses
(Knigge et al., 2022), mimicking equivariance in order to
minimize the training error. Equivariant networks, on the
other hand, have a priori been constrained to be equivariant,
and so their trainable parameters are unaffected by the soft-
constraints towards equivariance imposed on them by the
data. Thus, in the context of tasks and training procedures
that benefit from encoding symmetries, less-equivariant net-
works have fewer effective parameters than more-equivariant
networks, giving the latter an advantage in terms of model
flexibility, and making comparisons by equating the number
of trainable parameters somewhat unfair.

Recent works (Balestriero & Baraniuk, 2018; 2021) have
investigated the connection between deep networks with
piecewise linear activations and affine spline functions, and
several works (Takai et al., 2021; Hanin & Rolnick, 2019;
Montufar et al., 2014; Novak et al., 2018) have quantified
the expressivity of different networks in terms of the num-
ber of affine regions they can partition their input space
into. Inspired by these works, we measure the number of
affine regions in networks equivariant to different groups,
along with several other spline-inspired complexity met-
rics, and use these as proxies for model flexibility. Based
on these proposed complexity metrics, we empirically ver-
ify that equating the number of trainable parameters gives
more-equivariant networks an advantage in terms of model
flexibility. Instead, we propose comparing networks using
a fixed computational budget—a constraint more relevant
to practitioners—and illustrate that this more fairly equates
model flexibility.

In summary, this work:

• Proposes complexity metrics for piecewise affine neural
networks based on viewing them as affine splines. Using
these, it is shown that equating the number of trainable pa-
rameters affords more-equivariant networks substantially
more flexibility.

• Demonstrates that equating compute more effectively con-
trols for flexibility, allowing one to better disentangle
the impact of enforcing equivariance from the increased
expressivity they are typically granted in the literature.

• Further investigates the impact of enforcing equivariance
on the proposed spline complexity metrics, after more
fairly controlling for model flexibility by equating com-
pute. This uncovers some interesting differences between
networks equivariant to different groups.

2. Background
2.1. Equivariance

A function Φ : X → Y is equivariant to a group G with
respect to group actions · on X , and ◦ on Y , if Φ (g · x) =

g ◦ Φ (x) for all g ∈ G1. Invariance is a special case of
equivariance, where g ◦ y = y for all g ∈ G, y ∈ Y , and
hence Φ (g · x) = Φ (x).

2.2. Equivariant Distributions

In a classification problem, two distributions are of primary
interest: the input distribution p(x), and the conditional
label distribution p(y|x). We say a distribution is invariant to
G if p(g · x) = p(x), for all g ∈ G. Similarly, a conditional
distribution is equivariant to G if p(y|x) = p(g ◦ y|g · x),
and invariant if g ◦ y = y, for all g ∈ G.

2.3. Group Convolution

Cohen & Welling (2016) introduced group convolutional
layers, which are linear neural network layers that generalize
regular convolutions to be equivariant to a specified groupG.
By composing group convolution layers, interspersed with
pointwise nonlinearities, and appropriately designed batch-
norm, dropout, and pooling layers, one obtains a network
that is end-to-end equivariant to the action of G.

When dealing with convolution it is convenient to view
network features as functions rather than vectors. Ev-
ery layer in a neural network can be viewed as a feature
map, F = {fc : c ∈ N; c ≤ C}, consisting of a set of sig-
nals, fc : G → R, stacked over C channels. To prop-
agate a feature map forward through the network, it is
convolved with a filter, Ψk =

{
ψk
c : c ∈ N; c ≤ C

}
, con-

sisting of a set of kernels, ψk
c : G → R, stacked over

C channels. A filter bank consists of K stacked filters
Ψ =

{
Ψk : k ∈ N; k ≤ K

}
, each with C channels.

Let a group H act transitively on a space G, denoted by
juxtaposing symbols. Then the group convolution2 over H
of a feature map, F , with a filter, Ψk, is defined as

[
F ∗Ψk

]
(h) =

C∑
c=1

∑
g∈G

fc (g)ψk
c

(
h−1g

)
. (1)

2.4. Parameters and Compute of Group Convolutions

Inspecting the group convolution in Equation (1) reveals
that the filter bank of a group convolution can be stored
in a tensor of shape (K,C, |G|), where C and K are the
numbers of input and output channels respectively, and |G|
is the order of the incoming group, G3. The KC|G| values

1We use G to refer to both the group as a whole, or its underly-
ing set, depending on the context.

2Although technically correlation, it is commonly referred to
as convolution in the deep learning community.

3The number of elements in the translation group is technically
infinite, but convolutional layers typically assume the signals and
kernels drop off to zero outside a (pre-specified) region.
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stored inside this tensor are referred to as the trainable
parameters of the layer. In order to implement the group
convolution, each filter in the filter bank is transformed |H|
times by the action of the outgoing group H , expanding the
filter bank to dimensions (K, |H|, C, |G|). We refer to this
tensor as the group-expanded filter bank, and to its elements
as the group-expanded parameters. Similarly, we will refer
toK andC as numbers of channels, withK|H| andC|G| as
the corresponding numbers of group-expanded channels—
for G-CNN layers, equating group-expanded channels is
equivalent to equating group-expanded parameters. For
simplicity, we assume going forward that the incoming and
outgoing groups and number of channels are identical. This
is true of all the architectures we use in our experiments,
except for their initial (“lifting”) and output layers.

Suppose one is comparing two architectures that are equiv-
ariant to different groups, G1 and G2, but are otherwise
identical. If one desires to equate the number of trainable
parameters (i.e. the filter bank sizes) between instances
of these architectures, then for every layer, the number of
channels, C1 and C2, must satisfy C1

√
|G1| = C2

√
|G2|.

We refer to this approach of comparing architectures as the
“trainable parameters” approach (TP). However, ignoring
the relatively small cost of expanding the filter bank, the
number of operations and memory requirements for forward
and backward passes through (typical implementations of)
these layers depend on the size of the group-expanded filter
banks. In order to equate computational cost (i.e. equate
group-expanded filter bank sizes) the number of channels
must satisfy C1|G1| = C2|G2|. We refer to this approach
of comparing models as the “group-expanded parameters”
approach (GEP).

2.5. Spline Perspective on Model Complexity

In Section 2.5.1, we describe some properties of neural
networks with continuous piecewise affine (CPWA) activa-
tion functions, and in Sections 2.5.2 and 2.5.3, we propose
complexity metrics based on smoothing splines.

2.5.1. CPWA NETWORKS’ POLYTOPAL COMPLEXES

Because composing CPWA functions results in a CPWA
function, networks consisting of affine layers interspersed
with CPWA nonlinearities are themselves also CPWA.
These networks can be modeled by high-dimensional affine
splines, an idea explored by Balestriero & Baraniuk (2018;
2021). Every affine region in a CPWA network’s input space
has an associated weight matrix and bias vector, and is sup-
ported on a polytope. Collectively, these polytopes partition
the input space into a polytopal complex. Figure 2 provides
an example of such an extracted polytopal complex in two
dimensions, for a ReLU network invariant to horizontal and
or vertical flips.

Although exact methods for extracting the full polytopal
complex from a given neural network exist, their compu-
tational cost suffers from the curse of dimensionality: the
number of polytopes scales exponentially with the input di-
mension (Montufar et al., 2014). A more tractable subprob-
lem is to instead extract the complex on a lower-dimensional
subspace. We extract the polytopal complex of networks
over multiple stitched-together line segments, called a poly-
line. Parameterized over this curve, the network is simplified
to a univariate CPWA function with multivariate output.

2.5.2. SPLINE COMPLEXITY METRICS

When fitting an affine spline with multivariate output on a
given interval of interest, [0, L], there are two main ways of
controlling the flexibility of the model: first, by selecting the
number of knots,K, and their locations (in ascending order),
{t1, . . . , tK}, which partition [0, L] into K + 1 intervals;
second, by choosing how the K + 1 weight vectors, W =
{w0, . . . ,wK}, and bias vector, b, of the affine regions are
fitted. Setting fW,b (0) = b, t0 = 0 and tK+1 = L, the
spline can be written as

fW,b (t) = fW,b (tk) + wk (t− tk) , for tk ≤ t ≤ tk+1.

The model parameters W and b are fit by minimizing a reg-
ularized objective function containing a complexity penalty
term that controls the flexibility of the model. The knot lo-
cations and complexity penalty are hyperparameters of the
model, typically selected using cross-validation. Smoothing
splines use a smoothness penalty as a complexity criterion,
given by S(f) =

∫ L

0
|f ′′ (t)|2 dt, where f is the spline func-

tion. In this form, the penalty isn’t directly applicable to
CPWA functions, as their second derivatives are undefined
at their knots, and zero elsewhere. Instead, we use a dis-
crete analogue, that is also applicable to univariate CPWA
functions with multivariate output, given by

S(W,b) =

K∑
k=0

‖wk+1 −wk‖2.

Novak et al. (2018) measured the expected Frobenius norm
of the Jacobian of trained networks. Similarly, we also
measure the expected gradient norm over the curve,

Sn(W,b) =
1

L

K∑
k=0

‖wk‖ (tk+1 − tk) ,

which we refer to as sensitivity, because it describes how
quickly the function changes when the input is perturbed.
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2.5.3. KNOT COMPLEXITY

In addition to the number of knots, one can also assess
the complexity of the knot distribution. We quantify the
complexity of the knot distribution, F , as the degree to
which it deviates from a uniform distribution, U(t) = t

L ,
using the Cramér–von Mises criterion (Cramér, 1928),

ω2 (F ) =
1

L

∫ L

0

(
F (t)− t

L

)2

dt. (2)

Typically, an empirical cumulative distribution function
(ECDF) is used to estimate F from observed samples, but
for our purposes, we can improve on this by fitting a piece-
wise linear distribution function instead (see Appendix A for
a full discussion). We refer to Equation (2) as a uniformity
criterion and illustrate it in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 Knots
Uniform CDF (U)
Fitted CDF (F)
|F(t) U(t)|
ECDF

Figure 1. The fitted knot distribution and resulting uniformity cri-
terion visualized on the interval [0, 1] for six observed knots. An
ECDF using the number of observations plus one as a normalizing
constant is provided for comparison. Shaded in gray is the differ-
ence between the fitted distribution and the uniform CDF, which is
squared and then integrated to compute the uniformity criterion.

3. Methods
3.1. Locating the Polytopal Complex Boundaries in

One Dimension

When performing a forward pass of a test point x through
a neural network, Φ, one can create a binary string by con-
catenating the sign of every neuron’s pre-activation, denoted
by Φ(i) (x) for the ith neuron, coding positive values with
1. This is called the activation pattern of Φ at x, which we
denote by AΦ (x). If Φ is a ReLU network, then connected
regions with identical activation patterns form convex poly-
topes.

Suppose one would like to find the smallest timestep t > 0,
such that AΦ (x) 6= AΦ (x + vt), for a given location, x,

and direction, v. This coincides with (at least) one neuron’s
pre-activation crossing zero, and in keeping with spline
terminology, we refer to these timestep locations as knots.
Let s(i) (x,v) denote the rate of change, called the velocity,
of the ith neuron’s pre-activation in the (positive) direction
of v, given by

s(i) (x,v) =
∂Φ(i) (x + vt)

∂+t

∣∣∣∣
t=0

,

where ∂+ denotes the derivative from the right. This can
efficiently be calculated for all i using forward-mode auto-
differentiation. The next knot then lies at4

tnext = min
i

{
Φ(i) (x)

s(i) (x,v)
:
(

Φ(i) (x)
)(

s(i) (x,v)
)
< 0

}
,

with no further knots in the direction of v if the set is empty.
Using this formula repeatedly, one can, up to numerical
precision, find every knot of the network on a line segment,
x(t) = x0 + vt, t ∈ [0, 1].

3.2. Selection of Control Points

We focus on describing neural networks’ behavior on the
data manifold, as this is the primary region in which they
are trained and used. For simple, low-dimensional data, this
can be reasonably accomplished by hand, as illustrated in
Figure 2, but for datasets with large input dimension, a more
methodical approach is necessary. Novak et al. (2018) ana-
lyzed the behavior of trained networks over ellipses passing
through sampled triples of datapoints; however, they note
that these trajectories deviate considerably from the data
manifold when the datapoints belong to different classes.

To focus our attention on the data manifold, we instead use
a variational auto-encoder (VAE), independently trained on
the same dataset as the neural networks to be analyzed. First,
we select two points in latent space, such as two latent class
means of the dataset. Next, we uniformly sample many
points on the line between these two points, and decode
them to input space. The resulting sequence of control
points defines a polyline in input space, for which we extract
the univariate CPWA functions of trained networks using
the approach described in Section 3.1.

3.3. Isolating the Impact of Enforcing Equivariance

When comparing flexibility between networks equivariant to
different groups, it is important to consider the impact orien-
tation has on their predictions. For example, distinguishing

4Max-pooling layers can be dealt with similarly, with a transi-
tion occurring when the maximum neuron preactivation changes.
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Figure 2. Left: A moons dataset, augmented with vertical and or horizontal flips. Canonical samples are displayed with a higher opacity
than augmented samples. Right: The (approximate) polytopal complex extracted from a small ReLU network invariant to horizontal
and or vertical flips trained on the (left) moons dataset. Black dashed lines illustrate the polyline over which the polytopal complex is
extracted for our experiments.

between a 6 and a 9 is straightforward if the orientation
of the digit in question is known; if not, one must rely on
identifying the more subtle differences between the way 6’s
and 9’s are typically drawn, which is an inherently more
difficult task. Invariant networks are thus at a disadvantage
when inputs are presented in a canonical orientation, thereby
conveying class information, as they are essentially blind to
orientation. Additionally, invariant networks’ input samples
are effectively augmented with all transformations of the
group, giving invariant networks larger effective training
sets.

By augmenting the training data uniformly at random with
transformations from the group, regular and invariant net-
works obtain identical effective training sets, and any class
information conveyed via orientation is destroyed. This lev-
els the playing field between regular and invariant networks,
enabling one to isolate the impact of enforcing equivariance
on the complexity of their fitted functions.

4. Investigation
This section investigates the impact of constraining net-
works to be equivariant on the complexity of their fitted
functions, for subgroups of the square and discrete transla-
tions. Specifically, we consider the impact on the univariate
CPWA functions extracted from the networks. Empirical

evidence is obtained by studying these extracted functions.
The CPWA functions are extracted over polylines close to
the data manifold, defined by selected sequences of control
points in their input space. For the toy dataset control points
are selected by hand, illustrated in Figure 2, while for image
datasets we use the approach discussed in Section 3.2, inter-
polating between class means in latent space. We analyze
the extracted functions using the complexity metrics de-
scribed in Section 2.5.2, and compare them across networks
equivariant to different groups.

All architectures utilize ReLU nonlinearities and appropri-
ate equivariant batch normalization at every layer, and max
pooling at the end of the network to reduce equivariance to
invariance for the final classification layer. As motivated
in Section 3.3, datasets are made invariant to the desired
group of transformations through online augmentation dur-
ing both training and testing. We use the Adam optimizer
with default hyperparameter settings in PyTorch, training
until the training loss does not improve for three epochs.
Results are aggregated over 50 different random seeds for
each configuration, with each seed producing a different
weight initialization and data training/test split.

Moons K4 We first investigate the impact of enforcing
group equivariance in multilayer perceptrons (MLPs) on an
illustrative toy dataset, shown in Figure 2. This dataset is
the moons dataset augmented with transformations from the
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group of horizontal and or vertical flips, isomorphic to the
Klein four-group, K4. We train MLPs with three different
groups of invariance: the trivial group (order 1), the group
of vertical flips (FlipW—order 2), and the group generated
by both vertical and horizontal flips (K4—order 4). Each
MLP consists of two hidden layers with a constant number
of hidden channels. For every group setting, we sweep the
number of hidden group-expanded channels over the val-
ues {12, 16, 24, 32, 44}. We extract and analyze the CPWA
functions of the trained networks over a polyline lying suit-
ably close to the data manifold, illustrated in Figure 2.

MNIST O(2) As in Weiler & Cesa (2019), we augment
MNIST to be invariant to the orthogonal group (O(2))
by randomly rotating and flipping images during train-
ing and testing. We reproduce the P4CNN architecture5

of Cohen & Welling (2016), which consists purely of
group convolutional layers and pooling operators. P4CNN
is equivariant to discrete translations and a selected sub-
group of the symmetries of the square, which is the
group generated by flips and 90◦ degree rotations. We
sweep over different numbers of group-expanded channels,
{16, 24, 32, 48, 64}, and subgroups of the symmetries of the
square, {Trivial, FlipH, Rot90, FlipRot90}6.

First, we first select a sequence of all 10 digits such that
it minimizes the shortest-traveling salesman tour of their
latent class means, for a VAE trained on the original MNIST
dataset (without augmentation). Next, from this sequence
of latent class means, we generate a polyline in input space
using the approach described in Section 3.2, sampling a
thousand samples between every class mean. This ensures
that every digit is visited exactly once, while keeping the
distance traveled in latent space as short as possible. Finally,
we extract the CPWA functions of the trained networks over
this polyline.

Downsampled MNIST Z2
7 Comparing CNNs to conven-

tional multilayer perceptrons (MLPs) poses additional chal-
lenges. Firstly, CNNs typically use kernel sizes smaller than
the image itself, effectively setting certain weights to zero.
Secondly, creating a CNN with the same number of train-
able parameters as an MLP is expensive, as the equivariance
group of a CNN is much larger than, for example, the sym-
metries of the square, which has order 8—the (cyclic) trans-
lation group on an MNIST image has order 28× 28 = 784.
To address these challenges, we opt to downsample each
MNIST image to 7 × 7 pixels, by averaging 4 × 4 blocks

5We exchanged the strided spatial max-pooling layer at the
second layer of the network with a strided spatial mean-pooling
layer for ease of implementation of knot extraction.

6Note, because the size of the feature maps along the translation
dimensions are constant between different group settings, we omit
it as part of the group-expanded channels calculation. For example,
we report the size of the group FlipRot90 as 8.

of pixels, and then use cyclic convolutions with full 7× 7
kernels for our CNNs. This approach reduces the cyclic
translation group order to a more manageable 7× 7 = 49,
and removes the effective “zero-weights” induced by small
kernel sizes, allowing for direct comparison between CNNs
and MLPs. Further, during both training and testing, sam-
ples are augmented with transformations from the group of
discrete cyclic shifts, isomorphic to Z2

7.

We sweep over different numbers of group-expanded chan-
nels, {49, 147, 343, 931}, and groups: the trivial group (or-
der 1), the group of cyclic horizontal translations (Translate
H—order 7), and the group of both horizontal and or verti-
cal translations (Z2

7—order 49). We extract and analyze the
CPWA functions of the fitted networks over the same poly-
line as for our regular MNIST experiments, downsampled
to 7× 7 pixels.

4.1. Results and Discussion
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Figure 3. The number of knots, smoothness criterion, training loss,
and test loss are recorded over varying numbers of group-expanded
channels for MNIST O(2). The left column shows model metrics
as functions of their number of group-expanded parameters; the
right column shows model metrics as a function of their number
of trainable parameters. The black vertical dashed line indicates
the basis for comparison in Cohen & Welling (2016). Error bars
indicate 95% confidence intervals for the mean; some are too tight
to be visible.

Figure 3 shows the key metrics recorded for MNIST O(2),
with the dashed vertical line in the bottom-right plot show-
ing the basis of comparison used in Cohen & Welling (2016).
We observe that when networks are compared across varying
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numbers of group-expanded parameters (GEP approach—
left column), the trends in their complexity metrics fol-
low similar patterns. In contrast, when networks are com-
pared across varying numbers of trainable parameters (TP
approach—right column), the trends for more-equivariant
networks are accelerated, with more-equivariant networks
using considerably more knots, being much less smooth,
and minimizing the training error to a substantially greater
degree. This suggests that Cohen & Welling’s (2016) results
reflect benefits not solely attributable to the enforced equiv-
ariance constraints, but also to the additional expressivity
granted to their more-equivariant models.

Based on our insights from Figure 3, going forward, we
will group networks using only the GEP approach. Figure 4
plots the proposed metrics for various models trained on the
described tasks. Salient plots are highlighted in different
colors for reference in the following discussion.

Number of Knots We observe that equivariance to dif-
ferent groups results in networks with the same number of
group-expanded channels broadly having similar numbers
of knots: more-equivariant networks usually have slightly
more, despite their fewer trainable parameters. This differ-
ence is more pronounced for Downsampled MNIST, where
the relative group orders vary greatly.

Uniformity Criterion Networks exhibit similar trends in
the uniformity of their knot distributions, all of them becom-
ing more uniform as the layers widen. While MNIST does
show some differences, there do not appear to be substan-
tial across-the-board differences in uniformity induced by
equivariance to different groups.

Sensitivity We observe that more-equivariant networks
exhibit larger expected gradient norms (with regard to their
logits), indicating that these functions are more sensitive
to local perturbations. This phenomenon may be related
to the findings of (Gruver et al., 2023), who observed that
CNNs—which are equivariant to integer translations but
not continuous ones—were less equivariant to “small”, lo-
cal, translations than networks not explicitly constrained to
be equivariant, such as vision transformers. (Gruver et al.,
2023)’s findings could potentially be explained by the obser-
vation that G-CNNs have greater gradient norms in general,
not just in the directions of infinitesimal group transforma-
tions. Novak et al. (2018) reported that smaller expected
Jacobian norms were predictive of greater generalization.
Our results serve as an exception to this: in our case, greater
equivariance led to greater generalization (see Appendix B),
despite greater expected gradient norms.

Smoothness Criterion More-equivariant networks had
significantly larger smoothness criteria, indicating less

smooth fitted functions, which is again most pronounced for
Downsampled MNIST. Noticing that the trends for the ex-
pected gradient norm and smoothness criterion are similar,
we plot the ratio of the square root of the smoothness cri-
terion to the expected gradient norm in Figure 5. This plot
no longer shows statistically significant differences between
networks equivariant to different groups, suggesting that the
increased smoothness criterion values in more-equivariant
networks can largely be explained by their larger gradients.

Training Loss We have seen that more-equivariant net-
works generally exhibited greater complexity. Here we see
that these changes typically also manifest in these mod-
els’ improved capability to minimize the training error. A
notable exception for Downsampled MNIST was that encod-
ing height-wise translational equivariance was detrimental
to performance at the smallest layer width setting. While
this gap in performance vanished at larger layer widths, we
additionally trained models equivariant to width-wise trans-
lational equivariance to further investigate the phenomenon.
Figure 5 includes width-wise translation equivariant mod-
els in the training loss, and shows that, unlike height-wise
translation, encoding width-wise translation equivariance
improves performance even at the smallest layer width. This
suggests that when expressivity is a bottleneck, imposing
equivariance may hinder performance, but can be alleviated
by selecting which group to enforce symmetries to.

4.2. Further Discussion

When group-expanded parameters were equated, more-
equivariant networks exhibited characteristics typical of
the same, or even slightly more flexibility—they usually
had more knots, were less smooth, and were able to fit the
training set to a greater degree, despite having considerably
fewer trainable parameters. However, this increased flexi-
bility cannot be attributed to an increase in the expressivity
of equivariant models: a less-equivariant model with an
equal number of group-expanded channels at every layer
can perfectly emulate more-equivariant network by using
appropriately selected weights. Rather, this improvement
should be attributed to the reduced search space over which
functions are fitted, and the potential impact this has on the
optimization process during training.

We also evaluated other metrics for a more comprehensive
comparison of the qualitative differences of networks equiv-
ariant to different groups. These results run in line with our
main findings, and can be found in Appendix B.

5. Related Work
Equivariant Networks Equivariant neural networks have
been developed for various discrete groups extending be-
yond translational symmetry on images, such as the sym-
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Figure 4. From top to bottom: the number of knots, uniformity criterion, sensitivity, square root of the smoothness criterion,
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metries of the square (Cohen & Welling, 2016), hexagonal
symmetries (Hoogeboom et al., 2018), and subgroups of
E(2) (Weiler & Cesa, 2019), all showing improved per-
formance when number of trainable parameters fixed are
kept fixed. Klee et al. (2023) also found equivariance to be
beneficial for large-scale pre-training on ImageNet, but at
a substantial computational cost when trainable parameters

were matched. Similar to our work, both Weiler & Cesa
(2019) and Klee et al. (2023) report on experiments where
compute was matched in terms of group-expanded param-
eters. Weiler & Cesa (2019) found that more-equivariant
networks could improve classification accuracy, even when
compute was matched. However, this finding did not persist
for the larger-scale tasks performed in Klee et al. (2023),
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where it was speculated that equivariant networks may still
perform better on tasks with equivariant conditional label
distributions (as opposed to invariant ones), as found by
Gerken et al. (2022). Like Cohen & Welling (2016), we
focus on extending CNNs to be equivariant to the symme-
tries of the square, as these are easily implementable and
particularly relevant to images, without the complexities
introduced by other, larger, groups.

Polytopal Complexity Montufar et al. (2014) derived the-
oretical bounds on the maximum number of affine regions in
a ReLU feedforward network, but Hanin & Rolnick (2019)
found that in practice, the number tends to be much lower.
While recent work by Berzins (2023) proposed an improved
algorithm for extracting the polytopal complex, they note
that the problem remains computationally intractable for
high-dimensional inputs. To mitigate the curse of dimen-
sionality, Novak et al. (2018) and Hanin & Rolnick (2019)
restrict the extraction to one- or two-dimensional subspaces.
Our work follows their example, extracting the complex
over one-dimensional curves, but instead uses a VAE to
sample polylines near the data manifold.

G-CNN Expressivity Xiong et al. (2020) derived bounds
on the number of affine regions of ReLU CNNs, and ana-

lytically showed that, when controlling for the number of
trainable parameters, input dimension and number of lay-
ers, ReLU CNNS are asymptotically much more expressive
per parameter than fully-connected ReLU networks, which
our plots corroborate. Takai et al. (2021) showed that, de-
spite clearly being less expressive, permutation-invariant
networks have identical bounds on the number of affine re-
gions as corresponding networks without weight tying, and
thus proposed further grouping the affine regions into equiv-
alence classes which can be counted. Lengyel & Gemert
(2021) observed that trained G-CNN weights become cor-
related across the group dimension, and along with Knigge
et al. (2022) made proposals to exploit this redundancy in
order to ease the computational burden of equivariance to
larger groups. In contrast, our work challenges the idea
that equivariant networks inherently require a scaling of
resources compared to their less-equivariant counterparts.
Rather, more-equivariant networks may reap more bene-
fits from additional compute, by better exploiting the extra
expressivity granted by wider layers.

6. Conclusion
In this work, we have explored the flexibility of G-CNNs
under different computational budgets, in the context of
tasks with invariant input and conditional label distributions.
We proposed multiple metrics for measuring the complexity
of these networks, which allowed us to empirically analyze
the impact of enforcing equivariance on network flexibil-
ity when keeping computational requirements fixed. Our
results demonstrate that in this setting, G-CNNs broadly
exhibit similar, or even slightly more, flexibility, regard-
less of the order of the group to which they are equivariant.
These findings call into question the common practice of
comparing G-CNNs by fixing the number of trainable pa-
rameters, which we argue unfairly grants more-equivariant
additional expressivity. We emphasize that this does not
invalidate any performance gains observed from enforcing
equivariance; rather, it reframes the source of improvement
attributable to utilizing equivariant models: encoding sym-
metries may improve performance, but, somewhat inde-
pendently, more-equivariant models may also benefit from
wider layers. Overall, this paper offers a new perspective on
the impact of equivariance on model flexibility, suggesting
how future work may more fairly compare architectures
equivariant to different groups in a computationally relevant
manner.
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Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.

cc/paper_files/paper/2019/file/
45d6637b718d0f24a237069fe41b0db4-Paper.
pdf.

Xiong, H., Huang, L., Yu, M., Liu, L., Zhu, F., and Shao,
L. On the number of linear regions of convolutional
neural networks. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 10514–10523. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/xiong20a.html.

Zhu, X., Wang, D., Biza, O., Su, G., Walters, R., and Platt, R.
Sample efficient grasp learning using equivariant models.
In Proceedings of Robotics: Science and Systems, New
York City, NY, USA, June 2022. doi: 10.15607/RSS.
2022.XVIII.071.

11

https://proceedings.mlr.press/v80/kondor18a.html
https://proceedings.mlr.press/v80/kondor18a.html
https://www.sciencedirect.com/science/article/pii/S1361841520302139
https://www.sciencedirect.com/science/article/pii/S1361841520302139
https://proceedings.neurips.cc/paper_files/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf
https://openreview.net/forum?id=HJC2SzZCW
https://openreview.net/forum?id=HJC2SzZCW
https://proceedings.mlr.press/v130/takai21a.html
https://proceedings.mlr.press/v130/takai21a.html
https://openreview.net/forum?id=J8_GttYLFgr
https://openreview.net/forum?id=J8_GttYLFgr
https://proceedings.neurips.cc/paper_files/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://proceedings.mlr.press/v119/xiong20a.html
https://proceedings.mlr.press/v119/xiong20a.html


On Fairly Comparing Group Equivariant Convolutional Networks

A. Uniformity Criterion Discussion
A.1. Cramér–von Mises Test

The Cramér–von Mises test is a non-parametric statistical test that allows one to test the hypothesis that a sample of
K observations, t1, . . . , tK , listed in ascending order, comes from a given reference distribution. To do so, it uses the
Cramér–von Mises criterion, which we now state in full:

ω2 =

∫
(F (t)− U(t))

2
dU(t). (3)

Here, U is the CDF of the reference distribution to be tested against, which we selected to be the uniform distribution for
our uniformity criterion in Equation (2). F is set as the ECDF of the sampled observations, given by

ECDF(t) =
1

K

K∑
k=1

I(tk ≤ t). (4)

For some applications using the ECDF, the number of observations plus one is used in the denominator (Coles, 2001). We
refer to this as the adjusted ECDF, given by

ECDFadj(t) =
1

K + 1

K∑
k=1

I(tk ≤ t). (5)

A.2. Piecewise Linear Distribution Estimator

Because we do not intend to use the criterion in Equation (3) as a test statistic for a hypothesis test, but rather as a tool
to measure the complexity of the distribution of knots, we are not restricted to fitting F using the ECDF in Equation (4).
Rather, with a few simple modeling assumptions, we improve on the ECDF to take into account the boundaries of the
interval [0, L] on which the true CDF is supported.

Although the ECDF in Equation (4) is an unbiased estimate of the true CDF, its harsh inductive bias may not be ideal for
our task. To make the harshness of its inductive biases concrete, ECDF(t) = 0 if t < t1, and ECDF(t) = 1 if t > tK .
Intuitively stated, according to a fitted ECDF, it is impossible for a test point to lie outside the range given by the minimum
and maximum training observations.

Defining t0 := 0 and tK+1 := L, the interval (0, L] can be partitioned into K + 1 intervals, {(tk, tk+1] : 0 ≤ k ≤ K}. We
now derive a piecewise linear distribution estimator, based on two inductive biases: firstly, that a test point, T , is equally
likely to lie within any one of the K + 1 intervals, i.e. P (tk < T ≤ tk+1) = 1

K+1 , for all 0 ≤ k ≤ K; and secondly, that
the distribution within an interval is uniform i.e. the rate of change of the CDF is constant between any two consecutive
training observations.

Using the first inductive bias we deduce

F (tk) = P (T ≤ tk)

=

k∑
i=1

P (ti−1 < T ≤ ti)

=
k

K + 1
.

Considering Equation (5), we see that F (tk) = ECDFadj(tk), except when t > tk. Our estimator can thus be seen as a kind
of piecewise linear modification of the adjusted ECDF, which linearly interpolates the adjusted ECDF between training
observations. For conciseness, we define the following.
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Fk := F (tk),

dk := tk+1 − tk,

M :=
1

K + 1
,

mk :=
M

dk
.

From the second inductive bias, it follows that dF (t)
dt = mk for tk < t ≤ tk+1. Thus, we arrive at our piecewise linear

distribution estimator,

F (t) = Fk +mk (t− tk) , for tk ≤ t ≤ tk+1. (6)

A.3. Uniformity Criterion Calculation

Suppose then we wish to compute the uniformity criterion. Substituting our piecewise linear estimator from Equation (6)
into the uniformity criterion given in Equation (2), we get

ω2 (F ) =
1

L

∫ L

0

(
Fk +mk (t− tk)− t

L

)2

dt

=
1

L

K∑
k=0

∫ tk+1

tk

(
Fk +mk (t− tk)− t

L

)2

dt,

splitting the criterion into K + 1 parts which can be computed individually and summed together at the end. We expand
each individual component further, for brevity defining terms along the way using the walrus operator, “:=”, similar to its
use in the Python programming language,

Ik : =

∫ tk+1

tk

(
Fk +mk (t− tk)− t

L

)2

dt

=

∫ tk+1

tk

(
(Ak := Fk −mktk) +

(
Bk := mk −

1

L

)
t

)2

dt

=

∫ tk+1

tk

(Ak +Bkt)
2
dt

=

∫ tk+1

tk

(
A2

k + 2AkBkt+B2
kt

2
)
dt

=

[
A2

kt+AkBkt
2 +

1

3
B2

kt
3

]tk+1

tk

= A2
k

(
d
(1)
k := tk+1 − tk

)
+AkBk

(
d
(2)
k := t2k+1 − t2k

)
+

1

3
B2

k

(
d
(3)
k := t3k+1 − t3k

)
= A2

kd
(1)
k +AkBkd

(2)
k +

1

3
B2

kd
(3)
k .

While this expansion provides a neat algebraic formulation in terms of Ak, Bk and d(·)k , naively computing Ik using
this expansion may suffer numerical instability when d(1)k becomes very small. Alternatively, one can use a midpoint
approximation to the integral,

∫ b

a
g(t)dt ≈ g

(
a+b
2

)
(b− a):
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∫ tk+1

tk

(
Fk +mk (t− tk)− t

L

)2

dt ≈
(
Fk +mk

(
tk + tk+1

2
− tk

)
− tk + tk+1

2L

)2

(tk+1 − tk)

=

(
Fk +

M

2
− tk + tk+1

2L

)2

d
(1)
k .

A.4. Entropy Criterion

We additionally quantify the complexity of the fit piecewise linear distribution F using its entropy. The entropy of F
is similar to the uniformity criterion, in that both are optimized when F is uniform—the entropy is maximized and the
uniformity criterion is minimized. Noting that the density function of F is piecewise constant, given by f(t) = mk = M

dk

for tk < t ≤ tk+1, the entropy of F is given by

H(F ) = −ET∼f [log f (T )]

= −
∫
f(t) log f(t)dt

= −
K∑

k=0

∫ tk+1

tk

(
M

dk

)
log

(
M

dk

)
dt

= −
K∑

k=0

(
M

dk

)
log

(
M

dk

)∫ tk+1

tk

dt

= −
K∑

k=0

M log

(
M

dk

)

= M

K∑
k=0

(log dk − logM)

=
1

K + 1

K∑
k=0

(log dk + log (K + 1))

= log (K + 1) +
1

K + 1

K∑
k=0

log (tk+1 − tk) .

B. Further Results
We report additional statistics to supplement Figure 4 in Figure 6. Included, is the additional entropy criterion for the knot
distribution from Appendix A.4, and its behavior follows a similar trend to the uniformity criterion’s. We also add the square
root smoothness criterion normalized by sensitivity for all datasets, as we did for Downsampled MNIST in Figure 5. Finally,
we include statistics for the test loss of the network: the test loss itself is included, and correlates well with the training
loss, though is slightly higher than the training loss, as one would expect. The amount by which the test loss is higher is
quantified by the generalization gap = test loss− training loss.

Entropy Criterion The entropy criterion behaves similarly to the uniformity criterion—both roughly indicating that the
knot distribution becomes more uniform as layers widen.

Sensitivity Normalized Smoothness
√
S

Sn As initially observed for Downsampled MNIST in Figure 5, normalizing the
square root smoothness by the sensitivity removes the statistically significant differences in smoothness between networks
equivariant to different groups.

Test Loss and Generalization Gap As one would expect, our more-equivariant networks do generalize better than their
less-equivariant counterparts, as evidenced by their lower test errors. Interestingly, while more-equivariant networks typically
attain lower test errors, their generalization gaps are usually larger. This occurrence is known as benign overfitting (Bartlett
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et al., 2020)—the phenomenon where a model overfits to the training data, but still generalizes well to unseen test data.
The presence of benign overfitting corroborates the validity of our complexity metrics as proxies for model flexibility, as it
associates the increased fitted function complexity of more-equivariant networks with a kind of overfitting.
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Figure 6. Additional statistics to supplement Figure 4, with the training loss intentionally repeated to allow for comparison with test loss,
and matching colors for repeated plots. From top to bottom: Knot entropy, square root smoothness normalized by sensitivity, training
loss, test loss, and generalization gap (test loss − training loss) of networks equivariant to various groups, over varying numbers of
group-expanded channels for different datasets. Error bars indicate 95% confidence intervals for the mean; some are too tight to be clearly
visible. Notice how similar trends are broadly displayed, regardless of the group to which the network is equivariant.
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