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Abstract

Recognizing continuous fingerspelling from monocular
RGB video is a highly challenging task due to complex hand
articulation, coarticulation effects, and significant inter-
signer variability. Prior methods use either raw visual
features, which lack structural awareness of fine-grained
finger dynamics, or parallel RGB—pose streams from ex-
plicit pose estimation, which add substantial inference-time
overhead. In this work, we propose a novel knowledge
distillation framework that transfers rich hand articulation
knowledge from HAMER, a foundation model for 3D hand
mesh/pose reconstruction, into a lightweight, RGB-only fin-
gerspelling recognizer. We extract high-level pose embed-
dings from HAMER's Transformer head, which encode de-
tailed hand structure, and distill them into a ResNet34-
based appearance encoder via a dedicated training objec-
tive. Subsequently, the learned pose-aware features are fed
into a I1D-CNN and BiGRU for temporal modeling, with
the full system trained using both connectionist temporal
classification (CTC) and a knowledge distillation loss. No-
tably, our approach does not rely on the teacher model
(HAMER) at inference time, thus enabling real-time per-
formance. We evaluate our method on two American sign
language (ASL) benchmark fingerspelling datasets, as well
as a studio-quality Greek fingerspelling corpus. Our model
achieves state-of-the-art accuracy with over 3x lower infer-
ence time than prior methods, offering an effective trade-off
between accuracy and efficiency for real-time deployment.

1. Introduction

While the majority of prior work in sign language recog-
nition (SLR) has focused on isolated signs or the more
complex task of continuous SLR, the recognition of fin-
gerspelling remains relatively understudied. Fingerspelling

constitutes a fundamental component of sign language com-
munication, as it enables deaf and hard-of-hearing individ-
uals to express names, technical terms, and foreign words
that lack dedicated signs. Automatically recognizing and
transcribing a fingerspelling video into a sequence of let-
ters has the potential to support accessible, real-time com-
munication in scenarios where verbal interaction is not fea-
sible. However, continuous fingerspelling recognition re-
mains an inherently complex task due to the fast and subtle
finger movements, with signed letters often suffering from
high visual similarity. These challenges are further exacer-
bated in real-world settings, where inter-signer variability,
self-occlusion, and degraded video quality introduce addi-
tional ambiguity. Further, unlike gloss-level signs, which
typically exhibit distinctive manual and non-manual move-
ments, continuous fingerspelling offers limited motion con-
trast, relies solely on manual-only articulation, and lacks
explicit temporal segmentation, making its recognition par-
ticularly challenging. As a result, conventional vision mod-
els often struggle to capture the structural nuances required
for accurate fingerspelling recognition, especially when re-
lying solely on appearance-based cues. To address these
limitations, recent works have explored explicit hand mod-
eling techniques that capture the underlying kinematics and
articulatory patterns of the hand.

Several state-of-the-art systems adopt skeletal or mesh-
based hand models to enhance fingerspelling perfor-
mance. For example, Fingerspelling PoseNet [5] uses a
Transformer-based encoder-decoder trained over 3D skele-
tal trajectories with a joint CTC/attention loss, while the
method in [26] combines 3D-CNNs over RGB input with
graph convolutional networks that operate on hand pose-
rotation parameters. Although these systems achieve no-
table gains, especially under signer-independent evaluation,
they require dedicated pose estimation modules during in-
ference, typically as parallel RGB—pose streams. This de-
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Figure 1. Architecture of the proposed fingerspelling recognition system. Given an input video, the signing hand is cropped and passed
through a visual encoder, while a secondary stream extracts high-level structural features for guidance during training. The visual features
are then processed by temporal modeling modules, with supervision applied at both intermediate and final prediction stages. During
inference, only the main visual stream is used, enabling efficient and real-time recognition.

sign increases computational overhead and limits suitability
for real-time deployment. Moreover, pose information is
often treated as an auxiliary input stream rather than being
fully integrated into the feature learning process.

In this work, we propose a new perspective on con-
tinuous fingerspelling recognition by leveraging the struc-
tural representation power of a large 3D hand reconstruc-
tion model without incurring its computational cost at in-
ference time (see also Fig. 1). In particular, instead of
integrating an additional pose/skeleton modality into the
recognition pipeline, we distill pose-aware supervision from
HAMER [31], a powerful off-the-shelf 3D hand reconstruc-
tion model. Given an RGB image of a hand, HAMER pre-
dicts the pose, shape, and camera parameters of a 3D mor-
phable model (MANO [33]), which explains the hand im-
age. These rich pose representations offer valuable struc-
tural priors for fingerspelling recognition. HAMER can be
regarded as a foundation model, trained on large-scale, di-
verse hand instances, capable of generalizing across mul-
tiple downstream tasks (e.g., hand tracking, mesh recov-
ery, gesture understanding) and producing semantically rich
pose representations with strong transferability. During
training, we guide a ResNet34-based [10] visual encoder
using high-level pose embeddings from HAMER’s Trans-
former head, aligning the two modalities in a shared latent
space via a cosine similarity objective. This training scheme
teaches the ResNet34 encoder to learn both fine-grained ap-
pearance and hand pose-aware representations.

To model the temporal structure of fingerspelled se-
quences, the resulting representations are fed into a 1D-
CNN to capture short-term motion patterns between con-
secutive frames, followed by a bidirectional GRU (Bi-
GRU) [40] sequential model to encode long-range depen-
dencies and contextual information. To guide temporal
learning and reinforce alignment at multiple stages, we ap-
ply CTC losses after both the 1D-CNN and the final Bi-
GRU layer, encouraging linguistically meaningful represen-

tations at both the frame-level and sequence-level. Addi-
tionally, we employ a KL-divergence loss between the soft
predictions of the two stages to promote temporal consis-
tency across the model’s intermediate and final outputs. At
inference, the model relies solely on RGB input and operates
in real-time, as the visual encoder has effectively internal-
ized the pose information during training.

To summarize, our key contributions are:

* We propose a novel knowledge distillation framework
that transfers hand articulation features from a state-of-
the-art 3D hand reconstruction model (HAMER) into a
lightweight RGB-only fingerspelling recognizer. This
cross-modal transfer enables the recognizer to internal-
ize rich 3D hand articulation cues, as evidenced by our
ablation studies that demonstrate significant performance
degradation when pose supervision is removed.

* To the best of our knowledge, this is the first approach
to leverage HAMER’s high-level pose embeddings for
fingerspelling recognition. We qualitatively and quan-
titatively evaluate the impact of pose supervision from
HAMER compared to other 3D hand models and demon-
strate that HAMER provides significantly richer guid-
ance.

» The proposed approach constitutes an efficient real-time
recognition system that operates solely on RGB input, re-
moving the need for pose estimation during inference.

We evaluate our proposed approach on two benchmark
ASL fingerspelling in-the-wild datasets, namely Chicago-
FSWild [35] and ChicagoFSWild+ [36], as well as a
smaller, studio-quality Greek fingerspelling dataset [27].
The proposed method achieves state-of-the-art performance
across all datasets, demonstrating the effectiveness of dis-
tilling HAMER pose representations into an efficient RGB-
only recognition model.



2. Related Work

Accurate representation of hand articulation is one of
the core challenges in fingerspelling recognition, as fine-
grained finger movements are critical for conveying letter-
level distinctions. Early methods primarily focused on
appearance-based models, extracting features from raw
RGB videos using CNNs [1, 16, 32, 35, 36], or capturing
motion using optical flow [23, 25]. However, these ap-
proaches are highly susceptible to varying lighting, occlu-
sions, and camera-signer relative positioning.

To overcome such limitations, researchers introduced
skeletal-based representations derived from 2D human pose
estimators like OpenPose [37] and HRNet [38], extracting
keypoints for the hands and body [15, 21, 23]. Although
more robust to visual noise, 2D keypoints cannot capture the
full spatial structure of the hand, especially its depth and ar-
ticulation. To address these shortcomings, 3D skeletal rep-
resentations were adopted [5], often generated by monocu-
lar RGB-based systems such as MediaPipe [20] or learned
projection models [28]. While such methods capture richer
spatial motion, these representations are limited to joint co-
ordinates and typically ignore detailed articulation, such as
joint rotations. In response, the community has turned to
parametric 3D hand models [26], which represent hand ar-
ticulation using pose rotation parameterization. These mod-
els offer a more expressive and anatomically accurate de-
scription of finger configurations, which is especially bene-
ficial for SLR tasks and fingerspelling in particular that re-
lies on manual articulation only [17, 24, 26, 29]. However,
a key limitation is that these models are trained on general-
purpose hand datasets and are not tailored to the unique ar-
ticulation patterns found in signing.

While accurate hand representation is essential, finger-
spelling recognition also demands robust sequence mod-
eling to capture the dynamic nature of letter sequences.
Early work in continuous fingerspelling recognition ad-
dressed these challenges using hybrid approaches that com-
bined frame-wise visual features with probabilistic se-
quence models. The work in [13] introduced a segmen-
tal conditional random field model paired with CNN fea-
tures, enabling lexicon-free recognition of letter sequences
in studio-quality data. Further, the introduction of more
challenging in-the-wild datasets shifted the focus toward
real-time recognition through powerful sequence learners.
In response, the work in [36] proposed an end-to-end ar-
chitecture based on recurrent neural networks (RNNs) and
attention mechanisms for predicting fingerspelled letters
in unconstrained conditions. Their iterative visual atten-
tion model, in particular, demonstrated strong performance
by dynamically refining attention over the signing hand
during decoding. In addition, Transformer-based models
have more recently emerged as the state-of-the-art for fin-
gerspelling recognition, offering greater capacity for long-

range dependencies and improved temporal reasoning. In
particular, the work in [5] proposed a Transformer-based
encoder-decoder trained on 3D hand keypoint trajectories
with a joint CTC/attention loss. While achieving strong
results under signer-independent settings, this architecture
introduces significant computational overhead and requires
pose inference at test time, limiting real-time applicability.
Similarly, the work in [26] proposed a multimodal frame-
work that combines 3D-CNN visual features with pose-
rotation parameters derived from the PIXIE 3D hand recon-
struction model [6]. This design achieves high accuracy but
again relies on parallel streams, increasing inference time.

These approaches underscore the value of pose infor-
mation for fingerspelling recognition, yet highlight a key
limitation in that most methods treat pose as an additional
stream rather than integrating its structure directly into the
visual recognition process.

3. Methodology

Our framework addresses continuous fingerspelling recog-
nition by training an RGB-based model under pose-aware
supervision, as illustrated in Fig. 1. The core idea is to use
the HAMER 3D hand reconstruction model during train-
ing to guide the learning of structural hand representations
while keeping the final model lightweight and RGB-only
for inference.

The overall pipeline involves the following stages: (i)
each video frame is processed by the MediaPipe frame-
work [20] to detect and crop the signing hand, reduc-
ing background interference and isolating the region-of-
interest; (ii) the resulting hand crops are first encoded by a
ResNet34 and then passed through a 1D-CNN and a BIGRU
to capture both local and global motion patterns; and (iii)
the same hand crops are fed into a frozen HAMER model,
extracting high-level pose embeddings from its Transformer
head. These features are used during training to supervise
the visual encoder via a distillation objective.

Notably, the HAMER model is used only during train-
ing, while it is entirely discarded at inference time. As a
result, the system operates solely on RGB input during test-
ing, enabling efficient and real-time recognition. The fol-
lowing subsections describe in detail each component of the
proposed approach.

3.1. Preprocessing

To enable effective continuous fingerspelling recognition,
our preprocessing pipeline focuses on precise localization
and cropping of the signing hand region. For this purpose,
we employ the MediaPipe hand landmark framework [20],
which estimates 21 3D skeletal joint coordinates per de-
tected hand. Although the MediaPipe hand model provides
a handedness label for each detected hand, this classifica-
tion is not stable across frames, as it is not anatomically



grounded and may be unreliable in multi-hand scenarios.
To address this, we group detected hands across consecu-
tive frames based on their spatial proximity, forming land-
mark trajectories for each hand candidate. These trajec-
tories enable the estimation of per-hand motion statistics,
such as temporal variance and cumulative joint displace-
ment, which are subsequently used to distinguish between
signing and non-signing hands. The trajectory exhibiting
the highest aggregate motion is designated as the dominant
(signing) hand.

Once the signing hand is determined, we crop a padded
bounding box around its landmarks, estimated using the
minimum and maximum z and y coordinates, which are
scaled to the image dimensions. This ensures that the
cropped region fully encompasses the signing hand while
minimizing background noise. The resulting cropped hand
region is then propagated to the recognition model.

3.2. Visual Recognition Baseline

As illustrated in Fig. 1, the backbone of the fingerspelling
recognition system consists of three core components: (i) a
visual module; (ii) a sequence learning module; and (iii) an
alignment module. Given an input signing video that con-
sists of T' RGB frames of H x W-pixel size, denoted as
x = {x;}1.; € RT>3XHXW ‘the visual module (ResNet34
and 1D-CNN) extracts discriminative spatio-temporal fea-
tures v = {v;}7_, € RT" ¥4, These features are then fed
into the sequence learning module, which models global
temporal dependencies, generating sequential embeddings
s = {st/}?:l e RT'*d_ Subsequently, the embeddings
are projected through a fully-connected layer followed by a
softmax activation to produce posterior probabilities. Dur-
ing training, CTC losses and an auxiliary loss function are
deployed, collectively forming the alignment module.

3.2.1. Visual Module

The visual module extracts per-frame spatial features from
the input signing video. It is based on a ResNet34 [10]
backbone pretrained on ImageNet [3] and operates on
cropped hand regions resized to 256x256 pixels. Each
frame output feature map is passed through a global average
pooling layer, yielding a 512-dimensional feature vector. To
handle variable-length input sequences and preserve tempo-
ral alignment across the batch, we apply masked batch nor-
malization before convolution. This allows normalization
to operate only on valid (i.e., non-padded) frames, avoiding
distortions caused by padding.

To capture short-range temporal dependencies across
neighboring frames, the sequence of spatial features ex-
tracted by the visual encoder is processed by a 1D-CNN
module. This temporal convolutional block combines 1D
convolutions and max-pooling layers with varying kernel
sizes, designed to capture local motion patterns in the sign-
ing hand. The resulting spatio-temporal features are then

passed to the sequence learning module for higher-level
modeling.

3.2.2. Sequence Learning Module

To capture long-range temporal dependencies across the
signing sequence, we employ a multi-layer BiGRU [40] net-
work. The BiGRU receives the spatio-temporal feature se-
quence produced by the visual module and models both for-
ward and backward temporal context. To handle variable-
length input sequences, we use sequence packing and un-
packing operations [8], which allow efficient processing
without being affected by padding tokens. Our temporal
model consists of four stacked BiGRU layers with hidden
dimensionality of 512. This recurrent structure enables the
network to learn both short- and long-range motion patterns
across time, producing sequence-aware representations for
each frame in the video.

The output of the final BiGRU layer is passed through a
fully-connected classifier, which maps the per-frame rep-
resentations into a set of class logits over the target vo-
cabulary. These logits are subsequently aligned with the
ground-truth letter sequence through the alignment module
described next.

3.2.3. Alignment Module

In continuous fingerspelling recognition, the absence of
frame-level annotations introduces ambiguity in aligning in-
put frames with target letters. To address this, we employ
the CTC loss [9], which enables training without explicit
frame-to-letter alignment. Our baseline architecture pro-
duces predictions from two different processing stages: one
from the visual module and another from the sequence mod-
eling module. Particularly, in addition to the sequence-level
predictions from the BiGRU (described in Sec. 3.2.2), we
apply a separate classifier to the visual features after the
1D-CNN to obtain an auxiliary prediction path, encourag-
ing the visual module to directly learn features that align
with the target sequences. We supervise both with separate
CTC losses on the corresponding logits, i.e., Lsgq and Lyis,
supporting both modules in learning meaningful temporal
alignments to the target letters.

To further ensure consistency between the two prediction
paths, we introduce an auxiliary KL-divergence loss [11],
denoted as Lxp. This loss internally applies a softmax op-
eration with temperature equal to 2 to the raw logits, pro-
ducing smoothed distributions suitable for distillation - this
acts exactly like soft-label distillation. This loss encour-
ages the features extracted from the visual module to ap-
proximate the higher-level temporal dynamics captured by
the sequence model, which serves as a fixed teacher during
training.

The total training objective is a weighted sum of these
three losses:

Ly = AseqLseq + AvisLvis + AkpLkp-



In our experiments, we set the loss weights to Asgq = 1.0,
Avis = 1.0, and Axp = 5.0. The weights are empirically
determined based on the validation performance.

3.3. Pose-Guided Supervision via HAMER

Continuous fingerspelling recognition requires fine-grained
modeling of subtle and dynamic hand articulations in 3D
space. To effectively capture hand motion dynamics, we uti-
lize HAMER [31], a cutting-edge model for 3D hand pose
and shape estimation. HAMER directly infers hand articu-
lation parameters from monocular RGB images without re-
lying on intermediate skeletal representations. Specifically,
it utilizes a Vision Transformer (ViT) [4] feature learner to
capture global spatial context from hand-centric RGB in-
puts. These features are then processed by a Transformer
decoder [39], which maps the visual tokens to pose (),
shape (3), and camera parameters () via the MANO [33]
parametric 3D hand model, which represents hand geome-
try and articulation. The hand configuration is parameter-
ized using 10 shape coefficients and 48 pose parameters,
represented as 6D joint rotations, while camera parameters
ensure accurate 2D-to-3D alignment (3 parameters). The
model outputs a 3D hand mesh with 778 vertices and 21
joint locations, effectively encoding both global configura-
tion and fine-grained finger articulation.

To inject structural pose knowledge into the learning pro-
cess, in our framework, we extract intermediate latent em-
beddings from the Tranformer head just before the MANO
regression module. We could also use lower-level features
directly from the ViT encoder, however we choose the out-
put of the Transformer head, as it provides more refined
and semantically rich representations. These pose-aware
embeddings, with a dimensionality of 1024, encode de-
tailed 3D spatial structure and serve as a source of struc-
tural supervision during training. Specifically, they guide
the RGB recognition stream toward learning articulation-
sensitive representations. Note that HAMER is used only
during training and remains entirely frozen, while at infer-
ence time it is altogether dropped.

3.4. Training Strategy

Our model is trained end-to-end using a multi-objective
strategy that jointly supervises sequence-level recognition
and preserves structural consistency with respect to fine-
grained 3D hand articulation. The training pipeline in-
tegrates two complementary information streams: (i) an
RGB-based visual encoder and (ii) a frozen 3D knowledge
distillation stream driven by HAMER. While each stream
maintains modality-specific representations, their features
are projected into a shared latent space to facilitate cross-
modal alignment. Directly enforcing supervision in the
original feature spaces may introduce noise or unintended
biases into the visual representation. To address this, we

align the RGB and pose features in a shared latent space, al-
lowing the model to extract only the structurally relevant in-
formation. This setup encourages partial alignment between
the two modalities, enabling the visual encoder to benefit
from pose-derived structure while preserving the flexibility
to learn additional modality-specific cues.

In particular, the visual features derived from the
ResNet34 visual encoder are compressed into 256-
dimensional embeddings via a single-layer linear projec-
tion module. Simultaneously, pose-aware representations
extracted from HAMER’s Transformer decoder are linearly
projected into a shared 256-dimensional latent space. We
enforce a cosine similarity loss on these feature vectors,
effectively guiding the RGB encoder to internalize pose-
relevant information through a teacher-student distillation
mechanism. Note, however, that this scheme is susceptible
to collapsing toward a trivial zero solution. To mitigate this,
we introduce an additional cycle-consistency regularization
term that encourages the projected features to retain mean-
ingful information. Specifically, we require that the repre-
sentations in the shared 256-dimensional space be able to
reconstruct the original features via an auxiliary linear pro-
jection. It should be noted that the learned projection layers
are auxiliary modules that are dropped during inference.

In total, the training objective consists of six losses:

* CTC losses (Lyis and Lsgq), applied to both the 1D-
CNN and the BiGRU outputs, supervising frame-to-letter
alignments without requiring explicit annotations.

o Self-distillation loss (Lkp) that aligns the soft predictions
from the classifiers attached to the 1D-CNN and BiGRU
outputs using temperature scaling.

* Cosine similarity loss (Lcog), which enforces consis-
tency between the projected RGB embeddings and the
pose embeddings from HAMER.

* Cycle-consistency regularization loss (Lgrgg), a mean
squared error between the original and reconstructed fea-
tures of both RGB (E%%g) and pose (EE(E)%) modalities.
This regularizer prevents the learned embeddings from
collapsing to a trivial zero solution.

The contribution of each term is controlled by empiri-
cally tuned weights based on validation performance. The
overall training objective is given by:

Liotar = Lar + 0.1 Leos 4 0.01 LREE +0.01 £E9S,.

3.5. Inference

At inference time, the model operates solely on RGB in-
puts, without any reliance on 3D pose embeddings. More
precisely, given a video sequence, the frames are passed
through the ResNet34 backbone and the temporal convo-
lutional encoder to extract spatio-temporal representations.
These are then processed by the sequence modeling module
and a fully-connected classifier, producing frame-wise log-
its over the target vocabulary. A softmax is applied over the



logits to obtain frame-level probability distributions. Final
predictions are generated via beam-search decoding with
beam width 5 over these probabilities. To enhance linguis-
tic coherence, we integrate an RNN-based character-level
language model (LM) into the decoding process.

4. Experimental Framework

4.1. Datasets

We evaluate our method on three publicly available con-
tinuous fingerspelling datasets. The first two, i.e., Chicago
Fingerspelling in the Wild (Chicago-FS-Wild) [35] and
its extended version Chicago-FS-Wild+ [36], are well-
established benchmarks for continuous fingerspelling in
ASL. Both datasets provide official signer-independent (SI)
splits, ensuring that signers in the training, validation, and
test sets do not overlap. In particular, Chicago-FS-Wild
includes 5,455 training video sequences from 87 signers,
981 validation sequences from 37 signers, and 868 test se-
quences from 36 signers. Chicago-FS-Wild+ offers a larger
and more diverse set, including 50,402 training sequences
from 216 signers, 3,115 validation sequences from 22 sign-
ers, and 1,715 test sequences from a separate group of 22
signers. Additionally, we utilize the Greek fingerspelling
(FGSL) dataset [27], which contains a total of 1,554 video
samples from 21 signers (recorded under studio-like visual
conditions) and follows a 7-fold SI cross-validation proto-
col. Each fold uses data from 18 signers for training and
validation (80/20 split), while the remaining 3 signers are
used exclusively for testing. Note that in the ASL datasets,
the average letters per sequence is ~ 5 (maximum 45 let-
ters), whereas in FGSL the average is ~ 3.5 (maximum 6
letters).

4.2. Implementation Details

We train our method for 40 epochs with a batch size of 2.
We use the Adam optimizer [14] with an initial learning rate
of 10~4, which is reduced by a factor of 0.1 at epochs 20 and
35. To improve robustness and generalization, we perform
data augmentation via random cropping and horizontal flip-
ping during the training phase. The system is implemented
in PyTorch [30], and the experiments are carried out on an
Nvidia RTX 3090 GPU.

5. Experimental Results

In this section, we present the experimental evaluation of
our method on the continuous fingerspelling datasets of
Sec. 4.1. Our analysis addresses three main axes: (1) the
benefit of pose supervision via HAMER embeddings, (2)
the impact of architectural and training design choices, and
(3) comparison with state-of-the-art models under SI set-
tings. The system’s performance is assessed in terms of

3D hand reconstruction method \ LAcc (%) T ‘

EXPOSE [2] 89.11
FrankMocap [34] 90.97
PIXIE [6] 94.55
HAMER 96.27

Table 1. Letter accuracy (LAcc, %) of our system evaluated on the
FGSL dataset, when replacing the visual encoder with pose em-
beddings extracted from different 3D hand reconstruction models.

Figure 2. Visualization of 3D hand reconstructions across sam-
ples from the ChicagoFSWild (upper row) and ChicagoFSWild+
(lower row) datasets. The first column presents the cropped hand
region from the input RGB frames. The second column showcases
the reconstructed 3D mesh using the PIXIE model, while the third
column displays the hand articulation as estimated by the HAMER
model, demonstrating its superiority.

letter accuracy (LAcc, %), taking into account letter inser-
tions, deletions, and substitutions when comparing recog-
nized (system output) against ground-truth letter strings.

Pose supervision via HAMER embeddings: To justify
the selection of HAMER as the supervision backbone
in our framework, we conduct a comparative evaluation
against alternative 3D hand reconstruction models, namely
PIXIE [6], FrankMocap [34], and EXPOSE [2]. To ensure
a fair comparison, we extract features consistently from the
internal representations of each model before their final pa-
rameter regression layer. In this analysis, we replace the
visual encoder (ResNet34) output with the extracted hand
embeddings and feed them directly into the temporal con-
volutional block (1D-CNN). This design allows us to as-
sess the discriminative power of each model’s pose repre-
sentation in isolation. All models are evaluated under the
same training and testing protocol on the FGSL dataset. As
shown in Table 1, HAMER-based features yield the highest
accuracy of 96.27%, significantly outperforming the oth-
ers. While models like PIXIE and FrankMocap are pri-
marily designed for full-body or face-body modeling, and
EXPOSE introduces body-hand integration, they fall short
in capturing fine-grained finger articulation. In contrast,
HAMER produces rich and stable representations tailored
specifically for hand pose, which translate into superior per-
formance when used for recognition. These results empir-



Model LAcc (%)
:g RGB-only 63.50
E Pose-only (ViT) 60.50
5 Pose-only (Trans.) 62.00
_5 Early - RGB & Pose (Trans.) 64.30
2 | Late - RGB & Pose (Trans.) 66.32
= | Pose (ViT) - MSE 64.15
2 | Pose (ViT) - Cosine 63.70
= | Pose (Trans.) - MSE 66.24
A Pose (Trans.) - Cosine 65.60
Proj. Pose (Trans.) - MSE 66.95
Proj. Pose (Trans.) - Cosine (Ours) 67.10

Table 2. Ablation study examining the impact of architectural and
training design choices, evaluated on the ChicagoFSWild dataset
in LAcc (%). All models share the same recognition backbone.

ically validate our decision to adopt HAMER as the pose-
aware teacher in our proposed method. To further support
this observation, Fig. 2 presents qualitative comparisons be-
tween HAMER and PIXIE, the two best-performing models
in our evaluation. The figure visualizes the reconstructed
3D hand meshes from both models, revealing that HAMER
produces more detailed and anatomically consistent finger
articulations. This visual evidence reinforces the quantita-
tive results, showcasing HAMER’s superior ability to cap-
ture fine-grained hand structure.

Architectural and training design: Table 2 provides an
ablation study of our model on the ChicagoFSWild dataset,
focusing on the impact of architectural and training de-
sign choices. All models share the same visual recogni-
tion backbone of Sec. 3.2 and differ only in how pose infor-
mation is used. In particular, we examine single-modality
baselines, fusion-based models, and various distillation ap-
proaches that use pose information as an auxiliary train-
ing signal. This analysis helps isolate the contribution of
each design choice to the final recognition performance.
We begin with the unimodal baselines to establish refer-
ence points for RGB and pose modalities. The RGB-only
model achieves 63.50% LAcc, indicating that strong visual
cues alone provide reasonable performance. For pose-only
models, we evaluate two variants using features extracted
from HAMER. Specifically, we use the ViT encoder fea-
tures and the Transformer head output as input to the recog-
nition model. Since the ViT encoder outputs patch-level
tokens for each frame, we apply max-pooling to aggregate
spatial information and obtain a fixed-length feature vector
per frame. In both cases, the standard ResNet34 visual en-
coder is removed from the pipeline. The ViT-based model
reaches 60.50%, while the variant using Transformer output
features improves this to 62.00%.

We next examine fusion-based models that jointly lever-

Model \ Streams \ LAcc (%) 1 ‘
R-CNN-Att [36] FF 45.10
FG-Transformer [7] FF 48.36
CNN-Att [28] H/M & SK 47.93
Siam-LSTM [22] FF 48.00
Iterative-LM [19] FF 49.60
F-ResNet-BiLSTM [12] FF 57.84
3D-CNN-BiGRU [26] H 64.85
F-PoseNet [5] H 66.30
Ours H 67.10

Table 3. LAcc, % comparison of state-of-the-art on the Chicago-
FSWild dataset. Notation: full frame (FF), hand (H), mouth (M),
and skeleton (SK).

Model [ Feature streams [ LAcc (%) 1 ‘
R-CNN-Att [36] FF 46.70
RNN-Att [18] FF 66.20
F-PoseNet [5] H 71.10
3D-CNN-BiGRU [26] H 73.57
Ours H 75.38

Table 4. LAcc, % comparison of state-of-the-art on the Chicago-
FSWild+ dataset. Notation as in Table 3.

age RGB and pose inputs. We compare two standard fusion
strategies: early fusion, where features from both modali-
ties are concatenated prior to the 1D-CNN temporal encoder
and jointly processed; and late fusion, where each modality
is trained separately and their predictions are averaged over
logits. Early fusion yields a modest improvement over the
RGB-only baseline (64.30% vs. 63.50%), suggesting that
the model benefits from complementary pose information.
However, late fusion performs substantially better, achiev-
ing 66.32% LAcc.

We also investigate feature-level distillation, comparing
several variants of this approach. In all cases, pose and
RGB embeddings are linearly projected before computing
the loss, either into the space of one of the two modali-
ties or into a shared latent space. We compare the effect
of the feature source (ViT vs. Transformer head), the loss
function (MSE vs. cosine similarity), and the projection
strategy. Distillation based on Transformer head features
consistently outperforms ViT-based distillation (66.24%
vs. 64.15% with MSE). Regarding losses, MSE seems to
perform slightly better than cosine similarity. However,
once both pose and RGB embeddings are projected into a
shared latent space, cosine similarity becomes more effec-
tive, achieving our best overall performance (67.10%). Note
also that unlike early and late fusion strategies that require
both RGB and pose streams at inference, introducing sig-
nificant runtime overhead, our distillation strategy achieves
superior performance while relying solely on RGB inputs.
This leads to a four-fold improvement in efficiency (14ms
vs. 60ms for late fusion) without sacrificing recognition ac-
curacy.

Comparison with state-of-the-art models: We further as-



Model \ Feature streams \ LAcc (%) 1 ‘
R-CNN-Att [36] FF 65.62
TDCNN [23] FF & SK 84.98
RNN-Att [18] FF 85.12
3D-CNN-BiGRU [27] H 92.49
Ours H 96.70

Table 5. LAcc, % comparison of our model against literature on
the FGSL dataset under the SI setting. Notation as in Table 3.

Model LAcc (%) | #Params | Inference
M) time (ms)
3D-CNN-BiGRU [26] 64.85 190 55
F-PoseNet [5] 66.30 80 43
Ours 67.10 65 14
Table 6. Comparison with state-of-the-art methods on the

ChicagoFSWild dataset, reporting LAcc, number of parameters,
and inference time per frame.

sess the performance of our proposed methodology through
comparative evaluations against state-of-the-art methods
across the considered datasets. Specifically, Tables 3, 4,
and 5 summarize the LAcc (%) results on the ChicagoFS-
Wild, ChicagoFSWild+, and FGSL datasets, respectively.
As it can be observed, on the ChicagoFSWild dataset (Ta-
ble 3), our approach achieves the highest LAcc of 67.12%,
surpassing previous top-performing approaches, including
the recent fingerspelling F-PoseNet system [26]. Specifi-
cally, our method yields an absolute improvement of 0.80%.
Similarly, on the larger-scale ChicagoFSWild+ dataset (Ta-
ble 4), our method achieves state-of-the-art performance
with an LAcc of 75.38%, substantially outperforming by
1.81% absolute the previous state-of-the-art, namely the
3D-CNN-BiGRU method [26] that employs RGB and 3D
hand joint parameters inferred from PIXIE, training the two
streams independently and fusing them during inference.
Evaluating our approach on the FGSL corpus (Table 5), we
also achieve superior performance, obtaining 96.70% LAcc,
significantly exceeding the previously reported best results
of the 3D-CNN-BiGRU method [26] (92.49%). These out-
comes validate our model’s ability to perform well across
different sign languages, as it achieves strong performance
on ASL and Greek datasets. Note that the different LAcc
ranges across datasets are not unexpected. For example, the
FGSL corpus is studio-quality with shorter letter sequences
compared to the two in-the-wild ASL datasets. In contrast,
the ASL datasets (ChicagoFSWild and ChicagoFSWild+)
consist of in-the-wild videos with considerable signer, light-
ing, and viewpoint variability. Among the two, ChicagoF-
SWild+ provides broader signer diversity and more footage,
while ChicagoFSWild includes noisier and more visually
ambiguous signing instances.

Efficiency evaluation: Next, Table 6 provides a unified
comparison of our model against the best-performing ap-

Ground-truth: ECITORS
Fase-only: EMITUIS
Proposed: EDITORS

Ground-truth: JOURNAL
Pose-only: YOIU NL

S Propased: JOURNAL
-

Figure 3. Qualitative comparison of letter sequence predictions
from the pose-only model (HAMER) and our proposed RGB-
based model. For each example, the top row shows rendered
HAMER frames and the corresponding RGB frames below. On
the right, we provide the ground-truth label, the prediction from
the pose-only model, and the one from our proposed model.

proaches on the ChicagoFSWild dataset. We report LAcc,
number of parameters, and inference time per frame to
enable an objective evaluation of both recognition perfor-
mance and computational efficiency. Our model achieves
the highest accuracy, while also being smaller and signifi-
cantly faster than prior work. With an inference time of just
14ms per frame, it is well-suited for real-time deployment
scenarios.

Qualitative Ablation: Finally, although the HAMER-
based pose stream serves as a strong supervisory signal dur-
ing training, it can sometimes produce inaccurate or noisy
predictions when used alone. As illustrated in Fig. 3, such
failure cases do not significantly impact our model’s per-
formance. Thanks to its architectural design and multi-
objective training strategy, our method avoids over-reliance
on the pose modality by aligning features in a shared space
without enforcing hard coupling.

6. Conclusion

In this work, we presented a novel framework for continu-
ous fingerspelling recognition that integrates structural su-
pervision from a powerful 3D hand reconstruction model.
Our approach leverages latent pose-aware embeddings ex-
tracted from the frozen HAMER model, a general-purpose
foundation architecture trained for hand mesh recovery,
and aligns them with RGB-based representations through
a targeted knowledge distillation objective. By guiding the
RGB encoder to internalize pose-sensitive information, our
method benefits from the structural richness of 3D hand ar-
ticulation without requiring any annotations at test time. We
validated our approach on three datasets, including two
in ASL and one in Greek, achieving state-of-the-art re-
sults. Overall, our method highlights the potential of repur-
posing general 3D hand reconstruction models as structural
priors for downstream SLR tasks.
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