
Under review as a conference paper at ICLR 2024

VC DIMENSIONS FOR DEEP NEURAL NETWORKS WITH
BOUNDED-RANK WEIGHT MATRICES

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks (DNNs) have seen immense success in the past decade,
yet their lack of interpretability remains a challenge. Recent research on the VC
(Vapnik-Chervonenkis) dimension of DNNs has provided valuable insights into
the underlying mechanisms of deep learning’s powerful generalization capabili-
ties. Understanding the VC dimension offers a promising path toward unraveling
the enigma of deep learning, ultimately leading to more interpretable and trust-
worthy AI systems. In this paper, we study the VC dimensions for DNNs with
piecewise polynomial activations and bounded-rank weight matrices. Our main
results show that the VC dimensions for DNNs with weight matrices that have
bounded rank r are at most O(nrL2 log(nrL)), where n is the width of the net-
work, and L is the depth of the network. We also construct a ReLU DNN with
bounded rank r that can achieve the VC dimension Ω(nr), which confirms that
the upper bound we obtain is nearly tight for large n. Based on these bounds, we
compare the generalization power in terms of VC dimensions for various different
DNN architectures.

1 INTRODUCTION

In the past decade, deep neural networks (DNNs) have achieved remarkable success across a wide
range of applications, such as image classification, natural language processing, and autonomous
driving (see Hinton et al., 2012; Goodfellow et al., 2013; Abdel-Hamid et al., 2014; Silver et al.,
2016; Vaswani et al., 2017; Devlin et al., 2018; Dosovitskiy et al., 2020). These deep learning mod-
els, inspired by the structure of the human brain, have demonstrated an unprecedented capacity to
learn complex patterns and representations from vast amounts of data. This has led to breakthroughs
in fields such as computer vision, speech recognition, and recommendation systems, revolutionizing
industries and reshaping our daily lives.

One of the most impressive aspects of deep neural networks is their ability to generalize from the
data they have been trained on to make accurate predictions on unseen examples (White, 1992; An-
thony et al., 1999; Goodfellow et al., 2016; Allen-Zhu et al., 2019). This phenomenon, known as
generalization, is at the core of the deep learning success story. Despite the staggering performance
of these models, there remains a significant challenge in understanding how and why they work so
effectively in practical tasks. This challenge is rooted in the lack of interpretability and transparency
of deep neural networks. The black-box nature of deep learning models is a well-acknowledged
issue. While we can feed them data and obtain predictions, it is often difficult to discern why a
particular decision was made. This lack of transparency has raised concerns, especially in appli-
cations where interpretability is crucial, such as healthcare and autonomous vehicles (Alzubi et al.,
2018; Bashar, 2019; Azghadi et al., 2020). Researchers and practitioners have been diligently work-
ing to unravel the mysteries of deep learning, striving to make these models more interpretable and
transparent.

One avenue of research that has gained prominence in recent years is the study of VC (Vapnik-
Chervonenkis) dimension (Vapnik, 1968) and its relationship with the generalization capabilities of
deep neural networks (Sontag et al., 1998; Anthony et al., 1999; Goodfellow et al., 2016; Allen-Zhu
et al., 2019). VC dimension is a concept from statistical learning theory that measures the capacity of
a model to fit a wide variety of datasets while avoiding overfitting. It provides insights into the trade-
off between model complexity and generalization performance. Understanding the VC dimension

1

Under review as a conference paper at ICLR 2024

of deep learning architectures can shed light on why these models generalize so well despite their
complexity (see Baum & Haussler, 1988; Karpinski & Macintyre, 1997; Vapnik & Chervonenkis,
2015; Anthony & Bartlett, 2009; Bartlett et al., 1998; 2019; Wang & Scott, 2021).

The study of VC dimensions of DNNs goes back to the 1980s. For instance, In 1989, Baum and
Haussler derived a bound for the VC dimension for linear threshold neural networks (Baum &
Haussler, 1988). Later in 1997, several polynomial bounds for VC dimensions of sigmoidal and
general Pfaffian NNs were given in (Karpinski & Macintyre, 1997). In 1998, Sontag established
various elementary results of the VC dimensions of some simple networks in (Sontag et al., 1998).
He found out that the VC dimensions of the perceptrons and single hidden layer networks with fixed
input weights and activation function tanh are exactly equal to the number of parameters in the
networks. Finally, they also derived a tight upper bound of the class of functions computed by DNNs
with the Heaviside activation function. Recently, Bartlett and Harvey studied the VC dimension of
DNNs with piecewise polynomial activation functions in (Bartlett et al., 2019) and derived several
sharp lower and upper bounds. The network studied in (Sontag et al., 1998) is a special case of that
in (Bartlett et al., 2019) since the Heaviside function is a special case of the piecewise polynomial
with degree equal to 0.The VC dimension has also been extensively studied in various network
architectures. In 1997, Koiran and Sontag studied the order of growth of the VC dimensions of
recurrent neural networks for different activation functions in (Koiran & Sontag, 1997). In 2018,
Scarselli, Tsoi and Hagenbuchner studied the upper bound of the VC dimension for the set of graph
neural networks for different activation functions (polynomials, piecewise polynomials and tanh) in
(Scarselli et al., 2018). However, currently, there are no results on the VC dimension of DNNs with
low-rank weight matrices, while a recent result (Galanti et al., 2022) shows that the weight matrices
after training are often very close to low-rank weight matrices in practice. This makes it important
to study the VC dimension of DNNs with bounded-rank weight matrices, and our paper aims to fill
this gap.

Our Contributions. In this paper, we study the VC dimension of DNNs with bounded-rank weight
matrices and piecewise polynomial activation functions. To the best of our knowledge, our paper is
the first work on calculating the lower and upper bounds of VC dimensions for DNNs with bounded-
rank weight matrices. The main contributions of this work are:

• We derive some upper bounds for the VC dimension of DNNs with bounded-rank weight
matrices and piecewise polynomial activation functions.

• Furthermore, by construction, we show that there exists such type of DNNs that can achieve
the VC dimension close to the upper bounds we derived, which shows that our upper bound
is nearly tight.

• Based on these bounds, we compare the generalization power in terms of VC dimensions
for various different DNN architectures.

The rest of this paper is organized as follows. In Section 2, we introduce some important concepts
and fix some notations that will be used in this paper. In Sections 3 and 4, we provide some upper
and lower bounds for VC dimensions of fully connected neural networks with bounded rank weight
matrices. In section 5, we construct a class of DNNs that can achieve the VC dimension close to the
upper bounds we obtained, thus verifying that our upper bound is nearly tight. Finally, we provide
the conclusion and discuss several future directions in Section 6. Most of the proofs of our results
are given in the Appendix.

2 PRELIMINARY

In this section, we introduce introduce some concepts and fix some notations.
Definition 1 (Asymptotic Notations O(·),Ω(·) and Θ(·)). For two functions f(n) and g(n), we
write f(n) = O(g(n)) if there exists some positive constant c > 0 such that f(n) ≤ cg(n) for
all n larger than some constant; f(n) = Ω(g(n)) if there exists some positive constant c such that
f(n) ≥ cg(n) for all n large enough; and f(n) = Θ(g(n)) if there exists some positive constants
c1, c2 such that c1g(n) ≤ f(n) ≤ c2g(n) for all n large enough.
Definition 2 (Sign Patterns and VC-Dimensions). (Vapnik, 1968) Let F denote a class of functions
from the input set X to {−1,+1}. Let x1, . . . ,xm ∈ F . For any non-negative integer m and

2

Under review as a conference paper at ICLR 2024

f ∈ F , a length m sign vector
(f(x1), . . . , f(xm))

denotes as a sign pattern generated by f . We define the number of sign patterns generated by F on
{x1, . . . ,xm} as

γF ({x1, . . . ,xm}) := |{(f(x1), . . . , f(xm)) : f ∈ F}| .

We say {x1, . . . ,xm} is shattered by F if and only if

γF ({x1, . . . ,xm}) = 2m.

The VC (Vapnik–Chervonenkis) dimension of F is defined as

V CD(F) := sup{m ∈ N : ∃ (x1, . . . ,xm) ∈ Xm such that {x1, . . . ,xm} is shattered by F}.

Remark 1. Intuitively, {x1, . . . , xm} is shattered by F means that for each length m sign pattern,
there must exist a function f ∈ F maps this m points to this sign pattern. The largest cardinality
of shattered sets of F is the VC dimension of F . Notice that V CD(F) = m does not mean any
arbitrarily m points can be shattered by F , it only means that there exist m points that can be
shattered by F and any n points can not be shattered by F for n ≥ m+ 1.
Definition 3 (Fully Connected Neural Networks with Bounded-Rank Weight Matrices). In this
paper, we consider a fully connected neural network (FCNN) which can be seen as a function from
the input space X to {−1, 1}. To be more specific, an FCNN can be structurally defined by a directed
acyclic graph G, an activation function ψ : R → R and a set of parameters (weights and biases). Let
L be an integer greater than 1. We say that the FCNN has L layers when the acyclic graph has L+1
distinct sets of nodes that form L+ 1 layers of the FCNN. The set ℓ0 is called the set of input nodes
(input layer) with in-degree 0 and ℓL is called the set of output nodes (output layer) with out-degree
0. For 1 ≤ i ≤ L, all nodes in ℓi−1 only connect to all nodes in ℓi to form edges of G. We use ki
to denote the number of nodes in layer i. For example, k0 denotes the dimension of the input vector
and kL denotes the dimension of the output vector. In this paper, we fix kL = 1 for convenience.
The weights of this FCNN are a set of real values w = (w1, w2, . . . , wW) ∈ RW associated with
each edge in G. We call all the nodes in ℓ1, . . . , ℓL the computational units. let U be the number of
computational units and each of them associates with a bias in b = (b1, b2, . . . , bU) ∈ RU and an
activation function. The activation function for the output unit is the sign function defined as

f(x) =

{
+1, x > 0

−1, x ≤ 0.

The activation function for other units is ψ, which is a given piecewise polynomial function with p
pieces and of degree no more than d. The computational rule for FCNN proceeds as follows. Let xi

be the output ki × 1 vector of the layer i and Wi+1 be the ki+1 × ki weight matrix and bi+1 be a
ki+1 × 1 bias vector for the input of layer i+ 1. Then the input of layer i+ 1 is given by

gi+1(xi) := Wi+1xi + bi+1.

The output of layer i+ 1 is given by

Ψi+1(z) := (ψ(z1), . . . , ψ(zki+1
))T .

For the last layer, the output is equal to

sgn ◦ gL−1(xL−1) = sgn(WLxL−1 + bL).

Hence the function represented by such FCNN can be viewed as the following function from Rk0 to
{−1,+1}:

fw,b(x0) := sgn ◦ gL−1 ◦ . . . ◦Ψ2 ◦ g2 ◦Ψ1 ◦ g1(x0).

We call a fully connected neural network with bounded-rank weight matrices a BRFCNN. We denote
the rank of the weight matrix for the input of layer i as ri for 1 ≤ i ≤ L. Thus 1 ≤ ri ≤
min(ki, ki−1). In this paper, we use F to denote the set of BRFCNNs. For example, the set of
BRFCNNs with L layers and the rank of all the weight matrices at most r can be defined as:

{fw,b(·) : w ∈ RW , b ∈ RU , ri ≤ r, ∀ 1 ≤ i ≤ L}.

We use the notation wi to denote the number of network parameters from layer 1 to layer i.

3

Under review as a conference paper at ICLR 2024

3 UPPER BOUNDS OF VC DIMENSIONS FOR BRFCNNS

In this section, we first recall Lemma 1 in (Bartlett et al., 2019) that was used to find the VC dimen-
sion of the upper bound of an FCNN. After that, we will briefly explain why this lemma can not
be directly applied to the study of the upper bound for the VC dimension of BRFCNNs. Instead,
motivated by Lemma 1, we derive Theorem 1 to adapt the rank constraint of the weight matrices.
According to our method, we need to solve two counting problems in order to apply Theorem 1. The
first one is the counting problem for the number of free variables in a bounded rank matrix, which
will be studied in Section 3.2. The second problem is a degree counting problem of the degrees of
polynomials and rational fractions that appear in the functions of BRFCNNs, which will be solved
in Section 3.3. After that, we derive the VC upper bounds for BRFCNNs with bounded rank weight
matrices and piecewise polynomial activation functions in Theorem 2 and Theorem 3. Finally, in
Section 3.5, we compare the VC dimensions for various different DNN architectures.

3.1 SOME PRELIMINARY RESULTS FOR STUDYING VC DIMENSIONS OF DNNS

In this subsection, we provide some preliminary results for studying VC Dimensions of DNNs. The
first result is from (Bartlett et al., 2019).

Lemma 1. (Bartlett et al., 2019) Let p1, . . . , pm be polynomials of degree at most d in n ≤ m
variables. Define

K := |{(sgn(p1(x)), . . . , sgn(pm(x)) : x ∈ Rn}|,
i.e. K is the number of possible sign vectors given by the polynomials. Then K ≤ 2(2emd/n)n.

Lemma 1 is a useful technique to find the upper bounds for the VC dimensions of FCNNs with
piecewise polynomial activations. However, this result can not be directly applied to the study of the
upper bound for the VC dimension of BRFCNNs with bounded rank weight matrices. Therefore,
we modify Lemma 1 to adapt the weight matrices rank constraint, and derive the following theorem
that can solve this problem. The proof is given in Appendix A.1.

Theorem 1. Let f1, . . . , fm be rational fractions in n ≤ m variables. They are functions of the
same variables and the degrees of their denominators and numerators are at most dden and dnum
respectively. Define

K := |{(sgn(f1(x)), . . . , sgn(fm(x)) : x ∈ Rn}|,

i.e. K is the number of possible sign vectors given by the rational fractions. Then K ≤
2(2em(dden + dnum)/n)n.

3.2 FREE VARIABLES COUNTING

In this subsection, we derive the following results, which can solve the counting problem for the
number of free variables in a bounded rank matrix.

Lemma 2. Let M be an n×m matrix with rank r. Then it has (n+m− r)× r free variables.

Lemma 2 is used as a tool to count the number of free variables(parameters) in BRFCNN. The proof
is given in Appendix A.2.

3.3 DEGREE COUNTING

In this subsection, we derive the following lemmas, which can be used to count the degrees of
polynomials and rational fractions that appear in the functions of BRFCNNs.

Lemma 3. Let M be an n×m matrix with rank r. Then all the non-free variables can be expressed
as a ratio of two polynomials of free variables with numerator degree at most r+1 and denominator
degree r.

Remark 2. According to the proof in Appendix 3, we know that when replacing all the non-free
variables with free variables in BRFCNN, the input for each unit, in each layer and and each network
input will become a rational fraction of the free variables. That is the reason why we need to
introduce Theorem 1 in Section 3.1.

4

Under review as a conference paper at ICLR 2024

Lemma 4. Let N be an L-layer FCNN with piecewise polynomial activation function of degree at
most d. Let 0 ≤ i ≤ L. The input of any unit in layer i for a fixed network is a polynomial function
of network parameters with degree at most

∑i−1
t=0 d

t. (The proof is given in Appendix A.4.)

Lemma 5. Let N be an L-layer FCNN with piecewise polynomial activation function of degree at
most d. Let 1 ≤ i ≤ l ≤ L and vi be a weight in layer i. Then the input of any unit in layer l for a
fixed network input x0 is a polynomial function of vi of degree no more than dl−i. (Proof is given in
Appendix A.5)

Lemma 6. Let N be an L-layer BRFCNN with piecewise polynomial activation function of degree
at most d. Let 1 ≤ i, l ≤ L, and the weight matrix in layer i has rank ri. Then the input of any unit
in layer l is a ratio of two polynomials of network parameters of degrees at most

∑l
i=1(ki−1−ri)×

(ki − ri)× dl−i × ri and
∑l−1

t=0 d
t +
∑l

i=1(ki−1 − ri)× (ki − ri)× dl−i × ri, respectively. (The
proof is given in Appendix A.6).

3.4 UPPER BOUNDS OF VC DIMENSIONS OF BRFCNNS

In this section, we first introduce a lemma in (Bartlett et al., 2019), which is used for finding the
upper bounds of the VC dimensions for DNNs. Then we derive Theorem 2, which gives upper
bounds of VC dimensions for BRFCNNs. Finally, in Theorem 3, we give the upper bounds of the
VC dimensions for ReLU BRFCNNs.

Lemma 7. (Bartlett et al., 2019) Suppose that 2m ≤ 2t(mr/w)w for some r ≥ 16 and m ≥ w ≥
t ≥ 0. Then, m ≤ t+ w log2(2r log2 r).

Theorem 2. Let F be a BRFCNN with L > 1 layers and the piecewise polynomial activation
function ψ. In addition, ψ has degree at most d > 1 and p ≥ 0 breakpoints t1, . . . , tp ∈ R. For all
f ∈ F , the weight matrix in layer i has rank ri, and the number of computation units in layer i is
ki. Let wi be the number of network parameters from layer 1 to layer i. Then V CD(F) is at most

O

(
L+

(
L∑

l=1

wl

)
log(pR)

)
,

where

R :=

L∑
l=1

kl

(
l−1∑
t=0

dt + 2

l∑
i=1

(ki−1 − ri)(ki − ri)d
l−iri

)
.

Proof. For input x ∈ X and the network parameter vector a ∈ RW , let f(x;a) denote the input of
the last layer of the network. So we can write the function class as

F := {sgn(f(x;a))|a ∈ RW }.

Our goal is to determine an upper bound of V CD(F). If we can find the upper bound of the number
of signs patterns γF (x1, . . . , xm)UB generated by F , then we can get an upper bound for V CD(F).
Since if m = V CD(F) we have

2m ≤ γF (x1, . . . ,xm)UB . (1)

By solving Inequality (1) with respect to m, we can derive an upper bound for m. Due to the rank
constraint for the weight matrices, f(xj ;a) are not necessarily polynomials, instead they could be
rational fractions. Hence we can apply Theorem 1 to bound the number of sign patterns for any
given Pα. After that, by adding up all the number of sign patterns for all regions, we can find an
upper bound for γF (x1, . . . ,xm). The partition S is constructed layer by layer, through a sequence
S0, S1, S2, . . . , SL−1, which is given below. Let gh,i,xj ,S′(a) and fh,i,xj ,S′(a) be the input and
output of function of unit h in layer i with respect to parameters a vary in region S′ for input xj .
Let gi,S′(a) and fi,S′(a) be two vector functions of parameters a in region S′ which defined as:

gi,S′(a) := (g1,i,x1,S′(a), . . . , gkii,x1,S′(a), . . . , gki,i,xm,S′(a))T ;

fi,S′(a) := (f1,i,x1,S′(a), . . . , fkii,x1,S′(a), . . . , fki,i,xm,S′(a))T .

5

Under review as a conference paper at ICLR 2024

There are ki × m elements for the input and output vectors gi,S′(a) and fi,S′(a). We set S0 =
RW , then the function f0,S0

is a constant vector since it is the input of the network. Now suppose
S0, . . . , Sn−1 have been defined and each region Pi ∈ Si corresponds to a fixed vector function
fi,Pi(a). We also want Sn to satisfy this property, which also means that fn,Pn(a) is a fixed vector
function for all Pn in the partition Sn. Let Pn−1 ∈ Sn−1 be one of the regions of the partition
Sn−1. By assumption, fn−1,Pn−1(a) is a fixed vector function and by Definition 3, gn,Pn−1(a)is
also a fixed vector function with respect to a. Hence, we can further divide Pn−1 such that each
new region determines which pieces of activation function does gn,Pn−1

(a) in. The knmp× 1 sign
pattern vectors

An,Pn−1(a) :=
(
sgn(gn,Pn−1(a)− t1), . . . , sgn(gn,Pn−1(a)− tp)

)T
can tell us which pieces of ψ do all the gh,n,xj ,Pn−1

(a) fall in. For example, if there are 5 breakpoints
for ψ and we get

(gh,n,xj ,Pn−1(a)− t1, . . . , gh,i,xj ,Pn−1(a)− t5) = (+,+,+,−,−),

then we can say gh,n,xj ,Pn−1
(a) is between breakpoints t3 and t4. Now, dividing Rw such that

each region corresponds to one sign pattern An,Pn−1
(a) and intersect these regions with Pn−1.

The intersections will replace Pn−1. Performing the same operation for all regions of Sn−1, we
get Sn which satisfies the property we need. We also can determine how many sign patterns does
An,Pn−1(a) can get for a vary in Pn−1. By Lemma 6, we can get that each of gh,n,xj ,Pn−1(a) − t
are rational fractions with denominator and numerator degree at most

n∑
i=1

(ki−1 − ri)× (ki − ri)× dn−i × ri

and
n−1∑
t=0

dt +

n∑
i=1

(ki−1 − ri)× (ki − ri)× dn−i × ri.

By Theorem 1, we have
#{An,Pn−1

(a)|a ∈ Pn−1} ≤ Γn :=

2(2e(knmp)(

n−1∑
t=0

dt + 2

n∑
i=1

(ki−1 − ri)(ki − ri)d
n−iri)/wn)

wn

and the number of new regions for the partition Sn is at most

Γn × Card(Sn−1).

We also know that the size of S0 is 1, thus the size of SL−1 is at most

L−1∏
l=1

(2(2e(klmp)(

l−1∑
t=0

dt + 2

l∑
i=1

(ki−1 − ri)(ki − ri)d
l−iri)/wl)

wl). (2)

Let PL−1 ∈ SL−1, the sign patterns for

{(sgn(f(xj ; a)), . . . , sgn(f(xm; a)) : a ∈ PL−1}

is at most

2(2em(

L−1∑
t=0

dt + 2

L∑
i=1

(ki−1 − ri)(ki − ri)d
L−iri)/wL)

wL . (3)

Therefore γ(x1, . . . , xm) is upper bounded by the product of Eq(2) and Eq(3):

γF (x1, . . . , xm) ≤
L∏

l=1

(
2

(
2eklmp

(
l−1∑
t=0

dt + 2

l∑
i=1

(ki−1 − ri)(ki − ri)d
l−iri

)
/wl

)wl)
.

6

Under review as a conference paper at ICLR 2024

By weighted AM-GM inequality we get

γF (x1, . . . , xm) ≤ 2L+1·(
2emp

L∑
l=1

kl

(
l−1∑
t=0

dt + 2

l∑
i=1

(ki−1 − ri)(ki − ri)d
l−iri

)
/

L∑
l=1

wl

)∑L
l=1 wl

.

Similar to (Bartlett et al., 2019), we can define

R :=

L∑
l=1

kl

(
l−1∑
t=0

dt + 2

l∑
i=1

(ki−1 − ri)(ki − ri)d
l−iri

)
.

Then we get

γF (x1, . . . , xm) ≤ 2L · (2empR∑L
l=1 wl

)
∑L

l=1 wl .

Let V CD(F) = m. We have

2m ≤ 2L · (2empR∑L
l=1 wl

)
∑L

l=1 wl .

Since L > 1 implies 2epR ≥ 16, by Lemma 7 we get

V CD(F) ≤ L+ (

L∑
l=1

wl) log(4epR log(2epR)) = O

(
L+ (

L∑
l=1

wl)(log2(p) + log2(R))

)
.

Theorem 3. Let r, n ∈ Z+ and n > r. Let F be a ReLU BRFCNN with width at most n, depth at
most L and weight matrix rank at most r, Then the VC dimension for F is at most

V CD(F) = O
(
L2nr log(nrL)

)
.

If n > L, we have
V CD(F) = O

(
L2nr log(n))

)
.

If L > n, we have
V CD(F) = O

(
L2nr log(L)

)
.

(The proof is given in Appendix A.7.)

3.5 UPPER BOUND COMPARISON FOR DIFFERENT DNN ARCHITECTURES

In this subsection, we compare the VC dimensions for various different DNN architectures. Let U
be the number of nodes from layer 0 to L− 1. i.e:

U :=

L−1∑
i=0

ki.

First of all, we compare different settings for upper bounds of the VC dimensions of ReLU BRFC-
NNs with fixed U and r. In addition, the number of units in each layer is the same. We only vary the
network width n and the network depth L. We prove in Appendix A.8 that for sufficiently large U ,
swapping the dimension of depth and width will increase the upper bounds of the VC dimensions if
n < L; and decrease the upper bounds of the VC dimensions if L > n. Furthermore, the network
with L = U, n = 1 has the largest VC upper bound, and the network with L = 2, n = U/2 has the
smallest VC upper bound.

Next, we compare the ReLU BRFCNN with a fixed graph structure but choose different r. By
Theorem 3, we obtain that the VC upper bound increases linearly as r increases.

Finally, we compare our VC upper bound with (Bartlett et al., 2019). When applying their bound to
the set of ReLU FCNNs with width at most n, depth at most L and full-rank weight matrices, their
bound becomes

O
(
(n2L+ (L− 2)n+ 1)L log(n2L+ (L− 2)n+ 1)

)
= O

(
n2L2 log(nL)

)
.

7

Under review as a conference paper at ICLR 2024

For n > L, their bound becomes

O
(
n2L2 log(n)

)
;

for L > n, their bound becomes

O
(
n2L2 log(L)

)
.

It is worth noticing that when r increases to n, our upper bound is consistent with the upper bound
in (Bartlett et al., 2019). By (Bartlett et al., 2019) , we can say the VC upper bound for the full-rank
case is nearly tight. In Section 5, we will give a lower bound of a set of ReLU BRFCNN (not full
rank case) and compare it with the upper bound in Theorem 3.

4 GENERALIZATION ERRORS FOR RELU BRFCNNS

In this section, we first introduce the empirical error and the generalization error. Then we recall a
well-known result, Theorem 4, in deep learning that related to VC dimension and these two errors.
Finally, we derive Theorem 5, thus finding out how rank affects the generalization error in Remark 3.
Definition 4 (Empirical Error and Generalization Error). (Vapnik, 1968) Let f be a function from
the input space X to {−1, 1}. Let Dm = {(x1, y1), . . . , (xm, ym)} be the data set generated
independently m times from the distribution D. The empirical error is defined by the mean zero-one
loss on the data set D:

Ê(f ;Dm) =
1

m

m∑
i=1

I(f(xi ̸= yi)),

where I(·) is a function that takes a boolean value as the input. If the input is True it will return 1
and 0 otherwise. The generalization error is the expected zero-one loss of f with respect to the data
distribution D:

E(f ;D) = E(x,y)∼D[I(f(x ̸= y)].

Theorem 4. (Vapnik, 1968) Let F be a given function class and V CD(F) = d. The data set is
Dm. Then we have for any δ > 0, with probability at least 1− δ, the following holds for f ∈ F:∣∣∣E(f ;D)− Ê(f ;Dm)

∣∣∣ ≤
√

8d log(m/d) + 8 log(4δ)

m
.

Now we can derive Theorem 5.
Theorem 5. Let n > r and 0 ≤ δ ≤ 1. Let F be a ReLU BRFCNN with width at most n, depth at
most L, and weight matrix rank at most r. Then for all f ∈ F , there exist a constant C such that the
following inequality holds:

P

(∣∣∣E(f ;D)− Ê(f ;Dm)
∣∣∣ ≤ C

√
d

m
log

m

d
− 1

m
log(δ)

)
≥ 1− δ.

For m > d, we have

P

(∣∣∣E(f ;D)− Ê(f ;Dm)
∣∣∣ ≤ C

√
d

m
log(m)− 1

m
log(δ)

)
≥ 1− δ.

Furthermore, for n < L, we have

P

(∣∣∣E(f ;D)− Ê(f ;Dm)
∣∣∣ ≤ C

√
L2nr log L

m
log(m)− 1

m
log(δ)

)
≥ 1− δ.

For n ≥ L, we have

P

(∣∣∣E(f ;D)− Ê(f ;Dm)
∣∣∣ ≤ C

√
L2nr log n

m
log(m)− 1

m
log(δ)

)
≥ 1− δ.

8

Under review as a conference paper at ICLR 2024

Remark 3. Assume L, n and δ → 0 are fixed in the setting of Theorem 5. And let the number of
data points m > d. Then we get with very high probability,

∣∣∣E(f ;D)− Ê(f ;Dm)
∣∣∣ ≤ C

√
r

√
log(m)

m
. (C is a constant.) (4)

According to Inequality (4), we get that the convergence rate of the generalization error is sensitive
to the perturbation of r when r is small. On the contrary, when r is large, the perturbation on
it will not make the convergence rate of the generalization error change significantly, because the
convergence rate of generalization error is roughly proportional to the

√
r when we fix all other

variables. Finally, although r becomes very large we still can make Ê(f ;D) converge toE(f ;Dm),
since we can take infinitely many data points.

5 LOWER BOUNDS OF VC DIMENSIONS FOR BRFCNNS

In this section, we construct a BRFCNN that can achieve the VC dimension close to the upper
bounds we derived, which shows that our upper bound is nearly tight. Finally, we compare this
bound with Theorem 3 in Remark 4.
Theorem 6. Let r, n ∈ Z+ and n > r ≥ 6 ,then there exists a ReLU BRFCNN with width at most
n, 3 + 5

(
⌊ r
2⌋ − 2

)
layers, 41(⌊ r

2 ⌋−3)

2 +
15(⌊ r

2 ⌋−3)2

2 hidden nodes, and each weight matrix has rank
at most r, such that its VC-dimension is at least(

n−
(
⌊r
2
⌋ − 3

))(
⌊r
2
⌋ − 3

)
= Ω(nr).

(See proof in Appendix A.10).

Remark 4. In order to compare the result of Theorem 6 with Theorem 3, we also want the depth of
the network we constructing in Theorem 6 at most L. This enforces

3 + 5m ≤ L =⇒ m ≤ ⌊L− 3

5
⌋.

Hence, for L−3
5 < r−6

2 , the lower bound becomes

n′m =

(
n− ⌊L− 3

5
⌋
)(

⌊L− 3

5
⌋
)

= Ω(nL);

for L−3
5 > r−6

2 , the VC lower bound will becomes

n′m =
(
n−

(
⌊r
2
⌋ − 3

))(
⌊r
2
⌋ − 3

)
= Ω(nr).

If n >> L, r, the lower bound we achieve here is close to the upper bound in Theorem 3, which
shows that our upper bound is nearly tight.

6 CONCLUSION AND FUTURE WORK

In this paper, We derive some upper bound for the VC dimension of BRFCNNs, and compare this
upper bound for different settings. In addition, we also analyze how the ranks affect the generaliza-
tion bounds. we also construct a BRFCNN that can achieve the VC dimension close to the upper
bounds we derived, which shows that our upper bound is nearly tight. Finally, it is worth mentioning
that the core method we propose in Section 3.1 can also be used to find a VC upper bound of a set of
FCNNs that have orthogonal weight matrices. Notice that, the orthogonal matrices M we consider
here only satisfy the following property:

MMT = D,

where D is unnecessary to be an identity matrix. Since all the non-free variables can be expressed
as rational fractions of free variables, we just need to follow the process in Section 3.4 again to get
an upper bound.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ossama Abdel-Hamid, Abdelrahman Mohamed, Hui Jiang, Li Deng, Gerald Penn, and Dong
Yu. Convolutional neural networks for speech recognition. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 22(10):1533–1545, 2014.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019.

Jafar Alzubi, Anand Nayyar, and Akshi Kumar. Machine learning from theory to algorithms: an
overview. In Journal of physics: conference series, volume 1142, pp. 012012. IOP Publishing,
2018.

Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations. Cambridge
University Press, 2009.

Martin Anthony, Peter L Bartlett, Peter L Bartlett, et al. Neural network learning: Theoretical
foundations, volume 9. cambridge university press Cambridge, 1999.

Mostafa Rahimi Azghadi, Corey Lammie, Jason K Eshraghian, Melika Payvand, Elisa Donati, Bern-
abe Linares-Barranco, and Giacomo Indiveri. Hardware implementation of deep network acceler-
ators towards healthcare and biomedical applications. IEEE Transactions on Biomedical Circuits
and Systems, 14(6):1138–1159, 2020.

Peter L Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear vc-dimension bounds for piecewise
polynomial networks. Neural Computation, 10(8):2159–2173, 1998.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks. The Journal of Machine
Learning Research, 20(1):2285–2301, 2019.

Dr Abul Bashar. Survey on evolving deep learning neural network architectures. Journal of Artificial
Intelligence and Capsule Networks, 1(2):73–82, 2019.

Eric Baum and David Haussler. What size net gives valid generalization? Advances in neural
information processing systems, 1, 1988.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Tomer Galanti, Zachary S Siegel, Aparna Gupte, and Tomaso Poggio. Sgd and weight decay prov-
ably induce a low-rank bias in neural networks. 2022.

Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout
networks. In International Conference on Machine Learning, pp. 1319–1327, 2013.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdelrahman Mohamed, Navdeep Jaitly, An-
drew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kingsbury, et al. Deep neural networks
for acoustic modeling in speech recognition. IEEE Signal Processing Magazine, 29, 2012.

Marek Karpinski and Angus Macintyre. Polynomial bounds for vc dimension of sigmoidal and
general pfaffian neural networks. Journal of Computer and System Sciences, 54(1):169–176,
1997.

Pascal Koiran and Eduardo D Sontag. Vapnik-chervonenkis dimension of recurrent neural networks.
In Computational Learning Theory: Third European Conference, EuroCOLT’97 Jerusalem, Is-
rael, March 17–19, 1997 Proceedings 3, pp. 223–237. Springer, 1997.

10

Under review as a conference paper at ICLR 2024

Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis dimension
of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484, 2016.

Eduardo D Sontag et al. Vc dimension of neural networks. NATO ASI Series F Computer and
Systems Sciences, 168:69–96, 1998.

Vladimir Vapnik. On the uniform convergence of relative frequencies of events to their probabilities.
In Doklady Akademii Nauk USSR, volume 181, pp. 781–787, 1968.

Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. In Measures of Complexity, pp. 11–30. Springer, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

Yutong Wang and Clayton D Scott. Vc dimension of partially quantized neural networks in the
overparametrized regime. arXiv preprint arXiv:2110.02456, 2021.

Halbert White. Artificial neural networks: approximation and learning theory. Blackwell Publish-
ers, Inc., 1992.

A APPENDIX

A.1 PROOF OF THEOREM 1

Proof. Let the m rational fractions be

f1(x) =
p1(x)

q1(x)
, · · · , fm(x) =

pm(x)

qm(x)
.

Next, multiply all rational fractions by the square of their denominators

f ′1(x) = q21(x)×
p1(x)

q1(x)
, · · · , f ′m(x) = q2m(x)× pm(x)

qm(x)
,

=⇒ f ′1(x) = q1(x)p1(x), · · · , f ′m(x) = qm(x)× qm(x),

=⇒ K = |{(sgn(f ′1(x)), . . . , sgn(f ′m(x)) : x ∈ Rn}|.
Since all sign patterns(vectors) do not change their sign for multiplying positive numbers to their
entries. Because

f ′1(x), . . . , f
′
m(x)

are polynomials function with degree at most dden + dnum, by Theorem 1, we get K ≤
2(2em(dden + dnum)/n)n.

A.2 PROOF OF LEMMA 2

Proof. Since the rank of M is r, we can find r linear independent rows from M . The sub-matrix
form by that r rows Mr has rank r, so we can extract r columns from it such that these sub r rows
are still linear independent. Thus these r columns form a r×r sub-matrix with rank r and we denote
this sub-matrix as Sr. The rest of the m− r rows can be represented as a linear combination of that
r rows. In order to determine the linear combination coefficient, we only need to know the r entries
correspond to the columns of Sr for the m− r rows. More precisely we can let Mi be the i row of
M and it is also the rest of the m − r rows, vi be a sub-vector of Mi and share the same columns
with Sr. By solving the following linear equation with respect to the linear combination coefficient
xi:

xiSr = vi.

11

Under review as a conference paper at ICLR 2024

This linear equation has a unique solution, since Sr is a full-rank matrix. So, We can get the linear
combination coefficient xi of row i by the r independent rows of M . Finally, we can recover row i
by

Mi = xiMr.

Hence, we only need to know the r linearly independence rows and r entries for each of the m− r
rows to recover M . We called these entries free variables and other entries of M called non-free
variables. By simple calculation, there are (n−r)× (m−r) non-free variables and (n+m−r)×r
free variables.

A.3 PROOF OF LEMMA 3

Proof. By Lemma 2, we can find a r × r sub-matrix Sr with rank r in matrix M and the rows and
columns it corresponds to contain all the free variables of M . Due to r < min(m,n), M must
contain non-free variables. Let Mi,j be a non-free variable in M and we want to express it by only
using the free variables. Let Sij be a (r+ 1)× (r+ 1) matrix contains Sr and all the free variables
in row i and column j and the element Mi,j . For simplicity, we denote matrix Sij as S′ and Dij be
the minor (the determinant of the sub-matrix of S′ by removing the ith row and j column) of the
entry S′

ij . Then we have
rank(M) = r,

=⇒ rank(S′) ≤ r < r + 1,

=⇒ det(S′) = 0. (S′ is a (r + 1)× (r + 1) matrix).
Let S′

ab be the only non free variable in S′, by using the Laplace expansion along the a-th row we
get

r+1∑
j=1

(−1)a+jS′
ajDaj = 0,

=⇒
∑
j ̸=b

(−1)a+jS′
ajDaj = (−1)a+b+1S′

abDab,

=⇒
∑

j ̸=b(−1)a+jS′
ajDaj

(−1)a+b+1Dab
= S′

ab. (5)

According to the definition of determinant, all minors Daj and Dab are polynomials with degree
r. In addition, S′

aj are all free variables. Hence by equation (5), we get the numerator degree and
denominator degree are r + 1 and r respectively.

A.4 PROOF OF LEMMA 4

Proof. Let xi and yi be the input and output of any unit in layer i and di be the maximum possible
degree of the input polynomial xi with respect to the network parameters. According to the definition
of FCNN, we know the input of an arbitrary input unit only depends on the input x0, so d0 = 0 which
is the base case of di. If we know the input of any unit of layer i is xi, the output of this unit can be
calculated as yi = ψ(xi). The degree of the output polynomial is at most ddi since ψ is a piecewise
polynomial function of degree at most d. Because the input of layer i + 1 for arbitrary unit j is
defined as:

xi+1 =

ki∑
k=1

ykwk,j + bj .

wk,j is the weight associate with the unit k in layer i and the unit j in layer i + 1. bj is the bias of
unit j in layer i + 1.Hence di+1 = ddi + 1 which is the recurrent relation of di. By using the base
case and the recurrent relation for di, we get the following sequence:

d0 = 0, d1 = 1, d2 = d+ 1, d3 = d2 + d+ 1, · · ·
From this pattern, we get

di =

i−1∑
t=0

dt.

12

Under review as a conference paper at ICLR 2024

A.5 PROOF OF LEMMA 5

Proof. By the proof A.4 of Lemma 4, we know the polynomial degree of unit output is at most d
times than the polynomial degree of unit input. In order to arrive at layer l, vi needs to go through
l − i computation units. Hence dl−i is the maximum possible degree for vi can achieve.

A.6 PROOF OF LEMMA 6

Proof. When the weight matrices for each layer are not full rank we can replace all nonfree variables
as free variables, the input of any unit in any layer i is not a polynomial function of the free variables
and biases. it is a sum of rational fractions since every non-free variable can be expressed as a
ratio of free variables by Lemma 3. In order to write the sum of rational fractions as a single
rational fraction(ratio of two polynomials) and determine the degrees, we need to find the common
denominator of all the rational fractions of the sum. We know that only the non-free variables
produce rational fractions, So one of the common denominators is

∏
v v

vl . v denotes any non-free
variable form layer 1 to l and all of them have been replaced by the free variables. vl be the maximum
possible degree of v for the input in layer l. The constructions of the common denominator are by
assuming all the polynomials of the denominators for all v are coprime, which means the common
factor for these polynomials is 1. Hence, the common denominator is the product of all power of
these polynomials. It is also worth noticing that the degree of this common denominator is an upper
bound for the degree of the lowest common denominator which is used for the reduction of rational
fractions to a common denominator. By Lemma 2, we know that there are (ki−1−ri)×(ki−ri) non-
free variables in layer i. By Lemma 2 the polynomial degree of input of layer l with respect to the
non-free variables in layer i is no more than dl−i by 5. By Lemma 3 the degree of the denominator
of non-free variables after expressing by the free variables becomes ri. The degree of the common
denominator with respect to the free variable is at most

l∑
i=1

(ki−1 − ri)× (ki − ri)× dl−i × ri. (6)

After using the reduction of rational fractions to a common denominator for all rational fractions,
we start to find which rational fraction have the maximum numerator degree. Let v′ denote free
variables for weights, and b denote the biases. bd, v′d and vd mean the power of b, v′ and v. Finally,
let cd be the common denominator. We can write any rational fractions by∏

v′

v′v
′
d

∏
v

vvd
∏
b

bbd .

Since v′ and b are network parameters, So∏
v′

v′v
′
d and

∏
b

bbd

only form the part of the numerator for each rational fraction, they contribute∑
v′

v′d +
∑
b

bd

degrees. Let vnum and vden denote the numerator and the denominator of v. After the reduction of
rational fractions to a common denominator cd. The degree of the numerator of

∏
v v

vd becomes∑
v

deg(vnum)vd + cd−
∑
v

deg(vden)vd =
∑
v

(deg(vnum)− deg(vden))vd + cd

=
∑
v

vd + cd.

by Lemma 3. Hence the degree of the numerator becomes∑
v′

v′d +
∑
b

bd +
∑
v

vd + cd.

13

Under review as a conference paper at ICLR 2024

The degree for the lowest common denominator cd is upper bounded by the common denominator
6 and ∑

v′

v′d +
∑
b

bd +
∑
v

vd ≤
l−1∑
t=0

dt

by Lemma 4. We get the degree of numerator after the reduction of rational fractions to a common
denominator is upper bounded by

l−1∑
t=0

dt +

l∑
i=1

(ki−1 − ri)× (ki − ri)× dl−i × ri.

A.7 PROOF OF THEOREM 3

Proof. By Lemma 2 and Theorem 2 and definition of R. We have

V CD(F) = O(L+ (

L∑
l=1

l∑
l′=1

kl′ + (kl′−1 + kl′ − r)× rl′)

(log(p) + log(

L∑
l=1

kl(

l−1∑
t=0

dt + 2

l∑
i=1

(ki−1 − ri)(ki − ri)d
l−iri)))),

=⇒ V CD(F) = O(L+ (

L∑
l=1

l∑
l′=1

n+ (2n− r)× r)

(log(p) + log(

L∑
l=1

n(

l−1∑
t=0

dt + 2

l∑
i=1

(n− r)(n− r)dl−ir)))).

By d = 1 and p = 1 for ReLU, we have

= O(L+ (

L∑
l=1

l∑
l′=1

n+ (2n− r)× r)(log(

L∑
l=1

n(l + 2

l∑
i=1

(n− r)(n− r)r)))),

=⇒ V CD(F) = O
(
L2nr log(n3rL2))

)
= O

(
L2nr log(nrL)

)
.

If the width of the network n is larger than the depth L. We have
O
(
L2nr

)
O
(
log(n3rL2))

)
= O

(
L2nr log n

)
.

If the depth L of the network n is larger than the width. We have
O(L2nr)O(log(n3rL2)) = O

(
L2nr log L

)
.

A.8 PROOF OF UPPER BOUND COMPARISON

Let U be sufficiently large. Let A×B = U and A ≥ B.
For L = B and n = A, there exist a constant k1 > 0, such that

V CD(F) = k2BUr log(A);

For L = A and n = B, there exist a constant k2 > 0, such that
V CD(F) = k1AUr log(A).

By the assumption of A and B. We get A ≥
√
U . Since U is sufficient large we can say A ≥√

U > k1, k2. Hence for a ReLU BRFCNN with a larger number of computational units and each
layer share the share the same number of computational units, then when we swap the dimension of
depth and width the VC upper bound will increase for n < L; the VC upper bound will decrease for
L > n. Hence the network with the largest VC upper bound for L = U, n = 1 and the network with
the smallest VC upper bound for L = 2, n = U/2. (VC upper bound 2 only works for L ≥ 2).

14

Under review as a conference paper at ICLR 2024

A.9 FULLY CONNECTED BIT EXTRACTION NETWORK

Our construction of BRFCNN is motivated by (Bartlett et al., 2019), where they only consider full-
rank wight matrix case. Let Sn and Sm denote the set of standard basis for Rn and Rm. The class
of bit extraction network is the set of functions

Fb := {fb(x; (a := a1, . . . , an)) : Sn × Sm → {0, 1},

∀a1, . . . , an ∈ { k

2m
: 0 ≤ k ≤ 2m − 1}.

There are n parameters a1, . . . , an for each of the network in Fb. Let (x1,x2) be the input vector
and assume x1 = ei and x2 = ej . The function fb define as

fb(ei, ej ;a) := Bin(ai)[j].

which means it returns the j bits of the binary representation of the network parameter ai. We can
regard 0 as −1 and 1 as +1. By the definition of Fb, for any sign patterns, we always can find a
set of parameter a such that fb(Sn × Sm;a) generate this sign pattern. Hence, Sn × Sm can be
shattered by Fb and V CD(Fb) = nm. Next, we are going to introduce how to use ReLU FCNN
to represent Fb. Similar to the construction steps of (Bartlett et al., 2019), but adding many identity
maps to ensure edges only link between adjacent layers. The identity mappings actually enforce
the activation function to become the identity function. However according to the network input,
all the inputs for all units are non-negative, hence we can only use the ReLU activation function
in the Fully Connected Bit Extraction Network. The whole construction takes 3 step, the first step
is by extracting the ai parameter from a. The second step is extracting all bits from the binary
representation of ai and arranging them into a size m vector. The final step is returning the j-th bits
of the vector in the second step. Before introducing the network in detail, let the vector ai,k be the
vector that contains the first k bits of the binary representation of ai. The fist step also can view as a
function take (xi,xj) as inputs and return (ai,xj). The weight matrix for the first layer is defined
as follows: [

a 01×m

0m×n Im×m

]
(m+1)×(n+m).

The biases for all units are 0 for the first layer.
The second step takes (ai,xj) as input and return (ai,m,xj). Let q ∈ [m], This step will extract q
bits each time until all m bits are extracted. We denote the layers for each q-bit extraction net as a
bit extraction block. Then, the number of bit extraction blocks is ⌈m

q ⌉. This figure shows the first bit
extraction block for q = 3. We use b = b1b2b3 . . . bm to denote the binary representation of ai. This
block takes size m+1 vector (b,xj) as input and return size m+4 vector (b1, b2, b3, b4 . . . bm,xj).
The edges without number labeling mean the weight is 1. The 8 orange rectangle block means the
indicator function with respect to the intervals. According to the output of these indicator functions,
we can find out the location of b in 3 decimals in interval [0, 1). Hence we can get the first 3 bits
from the network. After that, we just need to remove the first 3 bits in b. Which is done in the last
layer of this bit extraction block.

Figure 1: A diagram of a bit extraction block.

15

Under review as a conference paper at ICLR 2024

Figure 2: A diagram of an indicator net.

The indicator functions actually can be approximated by a sub-network. This subnetwork is defined
by the function in (Bartlett et al., 2019):

f(x) := σ(1− σ(
a

ϵ
− x

ϵ
)) + σ(1− σ(

x

ϵ
− b

ϵ
))− 1.

and When ϵ = 2−m−2, all the location of ai can be correctly identify. In conclusion, there are 5
layers for each bit extraction block.

The third step takes (ai,m,xj) as input and return the j element of ai,m. This can be implemented
by 2 layers. The second last matrix is

[Im×m Im×m]
m×2m.

The biases for all units are −1 for this layer. The last matrix is a column of 1s with size m and bias
0. According to the structure of the fully connected bit extraction network, the minimum depth is 8.

A.10 PROOF OF THEOREM 6

Proof. The structure of this ReLU BRFCNN actually is a Fully Connected Bit Extraction Network
in Appendix A.9. The definition of m and q are defined in Appendix A.9. Let n′ be n in Appendix
A.9. The n in Theorem 6 means the maximum number of units in each layer. To make the
calculation easier, we assume that m is divided by q and T = m

q . According to the structure of the
Bit Extraction FCNN, the following are all the sizes of the weight matrices and the corresponding
inequalities that ensure all the ranks ≤ r.
The first layer:
size:

(m+ 1)× (m+ n′).

inequality

m ≤ r − 1 (Since n′ ≥ 1).
Let t ∈ [T], layer 1 of the bit extraction block t has size:(

2q+1 + 1 +m+ (t− 1)
)
q × (1 +m+ (t− 1)q) ,

and inequality
1 +m+ (t− 1)q ≤ r.

16

Under review as a conference paper at ICLR 2024

=⇒ m ≤ r − (t− 1)q − 1.

The intersection of the T inequalities become m ≤ r+q−1
2 . This is also the inequality for t = T .

Layer 2 of the bit extraction block t
size: (

2q+1 + 1 +m+ (t− 1)q
)
×
(
2q+1 + 1 +m+ (t− 1)q

)
.

The intersection of the T inequalities become m ≤ r+q−2q+1−1
2 .

Layer 3 of the bit extraction block t:
size:

(2q + 1 +m+ (t− 1)q)×
(
2q+1 + 1 +m+ (t− 1)q

)
.

The intersection of the T inequalities become m ≤ r+q−2q−1
2 .

Layer 4 of the bit extraction block t:
size:

(q + 1 +m+ (t− 1)q)× (2q + 1 +m+ (t− 1)q) .

The intersection of the T inequalities become m ≤ r−1
2 .

Layer 5 of the bit extraction block t:
size:

(q + 1 +m+ (t− 1)q)× (q + 1 +m+ (t− 1)q) .

The intersection of the T inequality become m ≤ r−1
2 .

The second last layer:
m× 2m;m ≤ r.

The last layer:
1×m; 1 ≤ r.

Finally, we need to find the intersection of the following inequalities

m ≤ r − 1,m ≤ r + q − 1

2
,m ≤ r + q − 2q+1 − 1

2
,m ≤ r + q − 2q − 1

2
,m ≤ r − 1

2
,m ≤ r,

=⇒ m ≤ r + q − 2q+1 − 1

2
Let q = 1, m = ⌊ r

2⌋ − 3 and n′ = n − (⌊ r
2⌋ − 3), then the VC dimension of the network will

becomes:
n′m = (n− (⌊r

2
⌋ − 3))(⌊r

2
⌋ − 3) = Ω(nr).

For fix n′, we also can calculate the number of nodes between the first layer and the second last
layer(computational units) U ′ by adding up the number of columns for all weight matrices from
layer 1:

U ′ = 3m+

m
q∑

t=1

((1 +m+ (t− 1)q) +
(
2q+1 + 1 +m+ (t− 1)q

)
+(

2q+1 + 1 +m+ (t− 1)q
)
+ (2q + 1 +m+ (t− 1)q) + (q + 1 +m+ (t− 1)q)).

For q = 1, we have

= 3m+

m∑
t=1

5m+ 5t+ 11 =
41m

2
+

15m2

2
.

For m = ⌊ r
2⌋ − 3, we get

U ′ =
41(⌊ r

2⌋ − 3)

2
+

15(⌊ r
2⌋ − 3)2

2
.

17

	Introduction
	Preliminary
	Upper Bounds of VC Dimensions for BRFCNNs
	Some Preliminary Results for Studying VC Dimensions of DNNs
	Free Variables Counting
	Degree Counting
	Upper Bounds of VC Dimensions of BRFCNNs
	Upper Bound Comparison for Different DNN Architectures

	Generalization Errors for ReLU BRFCNNs
	Lower Bounds of VC Dimensions for BRFCNNs
	Conclusion and Future Work
	Appendix
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Theorem 3
	Proof of UPPER BOUND COMPARISON
	Fully Connected Bit Extraction Network
	Proof of Theorem 6

