
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CROSS-DOMAIN REINFORCEMENT LEARNING UNDER
DISTINCT STATE-ACTION SPACES VIA HYBRID Q
FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Cross-domain reinforcement learning (CDRL) is meant to improve the data effi-
ciency of RL by leveraging the data samples collected from a source domain to
facilitate the learning in a similar target domain. Despite its potential, cross-domain
transfer in RL is known to have two fundamental and intertwined challenges: (i)
The source and target domains can have distinct state space or action space, and
this makes direct transfer infeasible and thereby requires more sophisticated inter-
domain mappings; (ii) The domain similarity in RL is not easily identifiable a
priori, and hence CDRL can be prone to negative transfer. In this paper, we pro-
pose to jointly tackle these two challenges through the lens of hybrid Q functions.
Specifically, we propose QAvatar, which combines the Q functions from both the
source and target domains with a proper weight decay function. Through this
design, we characterize the convergence behavior of QAvatar and thereby show
that QAvatar achieves reliable transfer in the sense that it effectively leverages a
source-domain Q function for knowledge transfer to the target domain. Through
extensive experiments, we demonstrate that QAvatar achieves superior transferabil-
ity across domains on a variety of RL benchmark tasks, such as locomotion and
robot arm manipulation, even in the scenarios of potential negative transfer.

1 INTRODUCTION

Reinforcement learning (RL) has witnessed significant progress in various challenging domains, such
as game playing (Mnih et al., 2015; Silver et al., 2016), robot control (Gu et al., 2017; Kalashnikov
et al., 2018), and language models (Ouyang et al., 2022), mainly due to the integration of general RL
techniques with advancements in data collection and computation for large-scale training. However,
data inefficiency of RL remains one significant obstacle to its deployment in many real-world
applications, where online data collection is either costly (e.g., robotics and autonomous driving) or
even hazardous (e.g., medical treatments). As one promising solution, cross-domain RL (CDRL)
serves as a practical framework to improve the sample efficiency of RL from the perspective of
transfer learning, which leverages the data or the pre-trained models from a source domain to enable
knowledge transfer to the target domain, under the presumption that the data collection and model
training are much less costly in the source domain (e.g., simulators).

A plethora of the existing CDRL methods focuses on knowledge transfer across environments that
share the same state-action spaces but with different transition dynamics. This setting has been
extensively studied from a variety of perspectives, such as domain randomization (Peng et al., 2018),
learning similarity metrics (Sreenivasan et al., 2023), reward augmentation (Eysenbach et al., 2021;
Liu et al., 2022), and data filtering (Xu et al., 2023). Despite the above progress, to fully realize the
promise of CDRL, there are two further fundamental challenges to tackle: (i) Distinct state and/or
action spaces between domains: To support flexible transfer across a wide variety of domains, the
generic CDRL algorithms are required to address the discrepancies in the state and action spaces
between source and target domains. Take robot control as an example. One common scenario is
to apply direct policy transfer across robot agents of different morphologies (Zhang et al., 2021),
which naturally leads to discrepancy in representations. This discrepancy significantly complicates
the transfer of either data samples or learned source-domain models. (ii) Unknown domain similarity
and negative transfer: Typical CDRL presumes that the source and target domains are sufficiently

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

similar such that effective transfer is achievable. However, in practice, given that the data budget
of the target domain is limited, it is rather difficult to determine a priori the similarity of a pair of
domains, and this becomes even more challenging when the state-action spaces of the two domains
are distinct. Moreover, this issue can also be highlighted by the phenomenon of negative transfer
(Weiss et al., 2016; Pan & Yang, 2009), where transfer learning from the source domain can have
a negative impact on the target domain. As a consequence, despite that CDRL has been shown to
succeed in various scenarios, without a proper design, the performance of CDRL could actually
be much worse than the vanilla target-domain model learned without using any source knowledge
beyond these good-case scenarios. Notably, to tackle (i), several approaches have been proposed to
address such representation discrepancy by learning state-action correspondence, either in the typical
RL (You et al., 2022) or unsupervised settings (Zhang et al., 2021; Gui et al., 2023). However, these
existing solutions are all oblivious to the issues of domain dissimilarity and negative transfer and
therefore do not provide any performance guarantees. As a result, one fundamental research question
about CDRL remains largely open: How to achieve efficient and reliable cross-domain transfer in RL
across domains of distinct state-action spaces without the knowledge about domain similarity?

In this paper, we answer the above question in the affirmative. Specifically, we revisit the cross-
domain transfer problem in RL from the perspective of mixing the source-domain and target-domain
Q functions and propose a new CDRL framework termed QAvatar, where an “avatar", as described
in the movie Avatar, refers to a genetically engineered body that is created by combining human
DNA with the DNA of the native inhabitants of the alien moon. These avatars allow humans on Earth
to remotely control these bodies and quickly adapt to the toxic environment of another planet. By
drawing an analogy between the cross-planet transfer of humans and the cross-domain transfer of
models in RL, we propose to construct a QAvatar, which updates the target-domain policy based on
the weighted combination of the learned target-domain Q function and the given source-domain Q
function and learn the state-action correspondence by minimizing a cross-domain Bellman loss.

To substantiate this idea, we first present a prototypical algorithm of QAvatar in the tabular setting
and establish that QAvatar enjoys a nice upper bound on the sub-optimality under a properly designed
weight decay function, regardless of the similarity between the source and target domains. This result
also suggests that QAvatar can achieve improved sample efficiency of CDRL while preventing the
potential negative transfer. Based on these findings, we further propose a practical implementation
by integrating the QAvatar algorithm with a neural mapping function based on a normalizing flow
model in learning the state-action correspondence.

The main contributions of this paper can be summarized as follows: 1) We propose the QAvatar
framework that achieves knowledge transfer between two domains with distinct state and action spaces
for improving sample efficiency. We then present a prototypical QAvatar algorithm and establish its
convergence property, showing that QAvatar can improve sample efficiency while avoiding negative
transfer. 2) We further substantiate the QAvatar framework by proposing a practical implementation
with a normalizing-flow-based state-action mapping. This further demonstrates the compatibility of
QAvatar with off-the-shelf methods for learning state-action correspondence. 3) Through extensive
experiments and an ablation study, we show that QAvatar significantly outperforms the benchmark
CDRL algorithms in various popular RL benchmark tasks, regardless of the quality of source-domain
models and domain similarity.

2 RELATED WORK

CDRL across domains with distinct state and action spaces. The existing approaches can divided
into three main categories: (i) Manually designed latent mapping: In (Ammar & Taylor, 2012) and
(Ammar et al., 2012), the trajectories are mapped manually and by sparse coding from the source
domain and the target domain to a common latent space, respectively. The distance between latent
states can then be calculated to find the correspondence of the states from the different domains.
In Gupta et al. (2017), the correspondence of the states is found by dynamic time warping and the
mapping function which can map the states from two domains to the latent space is found by the
correspondence. (ii) Learned inter-domain mapping: In the literature (Taylor et al., 2008; Zhang
et al., 2021; Heng et al., 2022; Gui et al., 2023; Zhu et al., 2024), the inter-domain mapping is mainly
learned by enforcing dynamics alignment (or termed dynamics cycle consistency in (Zhang et al.,
2021)), i.e., aligning the one-step transitions of the two domains. Additional properties have also

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

been incorporated as auxiliary loss functions in learning the inter-domain mapping in the prior works,
including domain cycle consistency (Zhang et al., 2021; Heng et al., 2022), effect cycle consistency
(Zhu et al., 2024), maximizing mutual information between states and embeddings (Heng et al.,
2022), and alignment of target-domain rewards with the embeddings (Heng et al., 2022). Moreover,
as the state and action spaces are typically bounded sets and these methods directly map the data
samples between the two domains, adversarial learning has been used to restrict the output range
of the mapping functions (Zhang et al., 2021; Gui et al., 2023). On the other hand, in (Ammar
et al., 2015), the state mapping function is found by Unsupervised Manifold Alignment (Wang &
Mahadevan, 2009). Despite the above progress, the existing approaches all presume that the domains
are sufficiently similar and do not have any performance guarantees (and hence can suffer from
negative transfer in bad-case scenarios). By contrast, this paper proposes a robust CDRL method that
can achieve transfer regardless of source-domain model quality or domain similarity with guarantees.

CDRL across domains with identical state and action spaces. In CDRL, a variety of methods
have been proposed for the case where source and target domains share the same state and action
spaces but are subject to dynamics mismatch. (i) Using the data samples from both source and target
domains for policy learning: One popular approach is to use the data from both domains for model
updates (Eysenbach et al., 2021; Liu et al., 2022; Xu et al., 2023). For example, for compensating the
discrepancy between domains in transition dynamics, (Eysenbach et al., 2021) proposes to modify
the reward function, which is learned by an auxiliary domain classifier that distinguishes between the
source-domain and target-domain transitions. (Liu et al., 2022) handles the dynamics shift problem
in offline RL by augmenting rewards in the source-domain dataset. (Xu et al., 2023) proposes to
address dynamics mismatch by a value-guided data filtering scheme, which ensures selective sharing
of the source-domain transitions based on the proximity of paired value targets. (ii) Explicit domain
similarity: (Sreenivasan et al., 2023) proposes to selectively apply direct transfer of the source-domain
policy to the target domain based on a learnable similarity metric, which is essentially the TD error
of target domain trajectories with source Q function. Moreover, based on the policy invariant explicit
shaping (Behboudian et al., 2022), (Sreenivasan et al., 2023) further uses the potential function as
a bias term for selecting actions. (iii) Using both Q-functions for the Q-learning updates: Target
Transfer Q-Learning (Wang et al., 2020) calculates the TD error by the source and target domains
Q functions in order to select the TD target from the two Q functions. (iv) Domain randomization:
To tackle sim-to-real transfer with dynamics mismatch, domain randomization (Rajeswaran et al.,
2016; Peng et al., 2018; Chebotar et al., 2019; Du et al., 2021) and Du et al. (2021) collects data from
multiple similar source domains with different configurations to learn a high-quality policy that can
work robustly in a possibly unseen but similar target domain.

3 PRELIMINARIES

In this section, we provide the problem formulation and basic building blocks of CDRL as well
as the useful notation needed by subsequent sections. For a set X , we let ∆(X) denote the set
of probability distributions over X . As in typical RL, we model each environment as an infinite-
horizon discounted Markov decision process (MDP) denoted byM := (S,A, P, r, γ, µ), where (i)
S and A represent the state space and action space, (ii) P : S ×A → ∆(S) denotes the transition
function, (iii) r : S ×A → [−Rmax, Rmax] is the reward function, (iv) γ ∈ [0, 1) is the discounted
factor, and (v) µ ∈ ∆(S ×A) denotes the initial state-action distribution. Notably, the use of an
initial distribution over states and actions is a standard setting in the literature of natural policy
gradient (NPG) (Agarwal et al., 2021; Ding et al., 2020; Yuan et al., 2022; Agarwal et al., 2020;
Zhou et al., 2024). Given any policy π : S → ∆(A), we use τ = (s0, a0, r1, · · ·) to denote a
(random) trajectory generated under π inM, and the expected total discounted reward under π is
defined as V πM(µ) := E[

∑∞
t=0 γ

tr(st, at)|π; s0, a0 ∼ µ]. Moreover, as usual, we use QπM(s, a) and
V πM(s) to denote the Q function and value function of a policy π. We also define the state-action
visitation distribution (also known as the occupancy measure in the MDP literature) of a policy π as
dπ(s, a) := (1− γ)

(
µ(s, a) +

∑∞
t=1 γ

tP(st = s, at = a;π)
)
, for each (s, a).

Problem Formulation of Cross-Domain RL. In typical CDRL, the knowledge transfer involves two
MDPs, namely the source-domain MDPMsrc := (Ssrc,Asrc, Psrc, rsrc, γ, µsrc) and the target-domain

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

MDPMtar := (S tar,Atar, Ptar, rtar, γ, µtar)
1. Notably, in addition to distinct state and action spaces,

the two domains can have different reward functions, transition dynamics, and initial distributions.
Here we assume that the two MDPs share the same discounted factor γ, which is rather mild. More-
over, the trajectories of the two domains are completely unpaired. Let Πtar be the set of all stationary
Markov policies forMtar. The goal of the RL agent is to learn a policy π∗ in the target domain such
that the expected total discounted reward is maximized, i.e., π∗ := argmaxπ∈Πtar V

π
Mtar

(µtar). To
improve sample efficiency via knowledge transfer (compared to learning from scratch), in CDRL,
the target-domain agent is granted access to (πsrc, Qsrc, Vsrc), which denotes a policy and the cor-
responding Q and value functions pre-trained inMsrc. Notably, we make no assumption on the
quality of πsrc (and hence πsrc may not be optimal toMsrc), despite that πsrc shall exhibit acceptable
performance in practice.

In this paper, we focus on designing a reliable CDRL algorithm in the sense that it effectively
leverages a source-domain Q function Qsrc for knowledge transfer to the target domain, regardless of
the quality of Qsrc and domain similarity.

Inter-Domain Mapping Functions. To address the discrepancy in state-action spaces in CDRL,
learning an inter-domain mapping function is one common building block of many CDRL algorithms.
Specifically, there are a variety of ways to construct the mapping functions, such as handcrafted
functions (Ammar & Taylor, 2012), encoders and decoders trained by cycle consistency Heng et al.
(2022) like cycle-GAN (Zhu et al., 2017), neural networks trained by dynamics alignment of the
MDPs (Gui et al., 2023). Moreover, mapping functions have various candidate target spaces, such as a
latent space, state or action spaces of the target domain (i.e., from Ssrc,Asrc to S tar,Atar), and state or
action spaces of the source domain (i.e., from S tar,Atar to Ssrc,Asrc). For example, (Gui et al., 2023)
proposed to learn two mapping functions G1 : S tar → Ssrc and G2 : Asrc → Atar through dynamics
alignment, which infers the unknown mapping between the unpaired trajectories ofMsrc andMtar
by aligning the one-step state transitions. Specifically, dynamics alignment can be implemented
by minimizing the loss function defined as L(G1, G2) = Estar∼ρ,s′tar,s

′
src

[
∥s′src −G1(s

′
tar)∥1

]
, where

star is drawn from some target-domain state distribution ρ and s′tar ∼ Ptar(·|star, G2(asrc)) with
asrc ∼ πsrc(·|G1(star)). However, this approach provides no performance guarantee as it can suffer
from identification issue due to its unsupervised nature. By contrast, in this work, we propose to learn
inter-domain state and action mapping functions in the form of ϕ : S tar → Ssrc and ψ : Atar → Asrc
by leveraging a cross-domain Bellman-like loss function with guarantees, as described subsequently
in Section 4. Moreover, we construct a toy example to show that dynamics cycle consistency could
get stuck at a sub-optimal inter-domain mapping while the proposed cross-domain Bellman-like loss
can learn a better mapping by considering the target-domain rewards in Appendix C.1.

Notation. Throughout this paper, for any real-valued function h : S ×A → R, for any policy π,
we use h(s, π) and h̄(s, a;π) as the shorthand for Ea∼π(·|s)[h(s, a)] and h(s, a)−Ea∼π(·|s)[h(s, a)],
respectively. For any real vector z and any p ≥ 1, we use ∥z∥p to denote the ℓp-norm of z.

4 METHODOLOGY

In this section, we first describe the prototypical framework of QAvatar in the tabular setting (i.e.,
S tar and Atar are finite) and establish convergence guarantees. We then extend this framework to a
practical deep RL implementation.

4.1 THE QAVATAR FRAMEWORK

The main idea of QAvatar is to utilize a weighted combination of a learned target-domain Q function
and the given source-domain Q function for robust cross-domain knowledge transfer. In this way,
QAvatar can enjoy improved sample efficiency in good-case scenarios (e.g., Msrc and Mtar are
similar) while avoiding potential negative transfer in other scenarios. Specifically, QAvatar consists
of the following three major components:

1Throughout this paper, we use the subscripts “src" and “tar" to represent the objects in the source domain
and the target domain, respectively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 QAvatar

Require: Source-domain Q function Qsrc, weight decay function α : N→ [0, 1], and η > 0.
1: Initialize the state mapping function ϕ, the action mapping function ψ, number of on-policy

samples per iteration Ntar, and the target-domain policy π(0)

2: for iteration t = 1, · · · , T do
3: Sample D(t)

tar = {(s, a, r, s′)} of N (t)
tar on-policy samples using π(t) in the target domain

4: Update Qtar by minimizing the TD loss in (2), i.e., Q(t)
tar ← argminQtar LTD(Qtar;π

(t),D(t)
tar)

5: Update ϕ and ψ by minimizing (1), i.e., ϕ(t), ψ(t) ← argminϕ,ψ LCD(ϕ, ψ;Qsrc, π
(t),D(t)

tar).
6: Update the target-domain policy by adapting NPG to CDRL as in (3).
7: end for
8: Return Target-domain policy π(T)

tar ∼ Uniform({π(1), · · · , π(T)}).

• Inter-domain mapping: Under QAvatar , we propose to learn the inter-domain mappings ϕ :
S tar → Ssrc and ψ : Atar → Asrc by minimizing a cross-domain Bellman-like loss function as

LCD(ϕ, ψ;Qsrc, πtar,Dtar) := Ê(s,a,rtar,s′)∈Dtar

[∣∣rtar+γEa′∼πtar [Qsrc(ϕ(s
′), ψ(a′))]−Qsrc(ϕ(s), ψ(a))

∣∣],
(1)

where Qsrc is the pre-trained source-domain Q function and Dtar = {(s, a, rtar, s
′)} denotes a set

of target-domain samples drawn under πtar. Intuitively, the loss in (1) looks for a pair of mapping
functions ϕ, ψ such that Qsrc aligns as much with the target-domain transitions as possible. In the
special case ofMsrc =Mtar and ϕ, ψ being identity maps, (1) simply reduces to the standard loss
function of temporal difference (TD) learning.

• Target-domain Q function: To implement the idea of a hybrid Q function, QAvatar maintains
a target-domain Q function Qtar, which is essentially a critic of the current target-domain policy.
Specifically, in each iteration t, Qtar is obtained by a policy evaluation step via minimizing the
standard TD loss for least-squares policy evaluation (LSPE) (Lagoudakis & Parr, 2001; Yu &
Bertsekas, 2009; Lazaric et al., 2012)2, i.e.,

LTD(Qtar;πtar,Dtar) := Ê(s,a,rtar,s′)∈Dtar

[∣∣rtar + γEa′∼πtar [Qtar(s
′, a′)]−Qtar(s, a)

∣∣2], (2)

where Dtar = {(s, a, r, s′)} denotes target-domain samples.
• NPG-like policy update with a weighted combination of Q functions: The core idea of QAvatar

is to leverage both Qsrc and Qtar to determine policy updates. In the tabular setting, inspired by
(Zhou et al., 2024) in the offline-to-online RL literature, we adapt the classic NPG update (Kakade,
2001), which takes an exponential-weight form on the Q function in the policy space (cf. (Agarwal
et al., 2021; Xiao, 2022)), to the CDRL setting. In each iteration t,

π(t+1)(a|s) ∝ π(t)(a|s) exp
(
η ·
(
(1− α(t))Q(t)

tar (s, a) + α(t)Qsrc(ϕ
(t)(s), ψ(t)(a))

))
, (3)

where α : N→ [0, 1] is the weight decay function to be configured. Intuitively, α(t) shall be close
to one for small t to achieve knowledge transfer from Qsrc and gradually diminish to zero to escape
from potential negative transfer.

The pseudo code of QAvatar is provided in Algorithm 1.
Remark 1. In Line 8 of Algorithm 1, QAvatar outputs the final policy by choosing uniformly at
random from the set of all intermediate polices. This is a standard procedure in the optimization
literature to connect the average sub-optimality with the performance of output policy. In the
experiments, we show that using the last-iterate policy is sufficient and performs well.

4.2 PERFORMANCE GUARANTEES OF QAVATAR

In this section, we formally present the theoretical guarantee of QAvatar and thereby describe how
to choose the proper decay parameter α(·). Before stating the theorem, we first describe a useful
definition on the coverage in terms of state-action distribution (Zhou et al., 2024).

2These works on LSPE are shown under linear function approximation, which includes the tabular setting as
a special case by using one-hot feature vectors.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Definition 1 (Coverage). Given a comparator policy π† inMtar, we say that π† has coverage Cπ† if
for any policy π ∈ Πtar, we have ∥dπ†

/dπ∥∞ ≤ Cπ† .

Notably, one can verify that Cπ† is finite if ∥dπ†
/µtar∥∞ is finite (given that ∥µtar/d

π∥∞ ≤ 1/(1−γ)
for all π, by the definition of dπ), and this can be satisfied under an exploratory initial distribution
with µtar(s, a) > 0 for all (s, a), which is one standard assumption in the NPG literature (Agarwal
et al., 2021; Ding et al., 2020; Yuan et al., 2022; Agarwal et al., 2020; Zhou et al., 2024). Intuitively,
the coverage is needed to enable direct comparison of the Bellman error between policies.
Assumption 1. The initial distribution is exploratory, i.e., µtar(s, a) > 0, for all s, a.

Definition 2 (TD Error). For each state-action pair (s, a) and t ∈ N, the TD error ϵ(t)td (s, a) is
defined as ϵ(t)td (s, a) :=

∣∣Q(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a),a′∼π(t)(·|s′)[Q

(t)
tar (s

′, a′)]
∣∣.

Definition 3 (Cross-Domain Bellman Error). Given a source-domain Qsrc, for each state-action pair
(s, a) and t ∈ N, the cross-domain Bellman error ϵ(t)src,be(s, a;Qsrc) is defined as ϵ(t)src,be(s, a;Qsrc) :=∣∣Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γEs′∼Ptar(·|s,a),a′∼π(t)(·|s′)[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

∣∣.
Definition 4 (Cross-Domain Action Value Function). For each state-action pair (s, a) and t ∈ N,
the cross-domain action value function f (t)(s, a) is defined as f (t)(s, a) := (1− α(t))Q(t)

tar (s, a) +
α(t)Qsrc(s, a), where α : N→ [0, 1] is the weight decay function.

Below we use ∥ϵ(t)src, be(Qsrc)∥∞ and ∥ϵ(t)td ∥∞ as shorthand for ∥ϵ(t)src, be(·, ·;Qsrc)∥∞ and ∥ϵ(t)td (·, ·)∥∞,
and we use µtar,min as a shorthand for mins,a µtar(s, a). We are ready to present the main theoretical
result, and the detailed proof is provided in Appendix B.
Theorem 1. (Average Sub-Optimality) Under the QAvatar in Algorithm 1 and Assumption 1, given
any fixed learning rate η > 0, the average sub-optimality over T iterations can be upper bounded as

1

T

T∑
t=1

(
V π

∗
(µtar)− V π

(t)

(µtar)
)
≤ 1

(1− γ)T

T∑
t=1

E(s,a)∼dπ∗

[
max
a′

f̄ (t) (s, a′)
]
+

log | Atar |
(1− γ)Tη︸ ︷︷ ︸

(a)

+
C0

T

T∑
t=1

α(t)∥ϵ(t)src, be(Qsrc)∥∞︸ ︷︷ ︸
(b)

+
C0

T

T∑
t=1

(1− α(t))∥ϵ(t)td ∥∞︸ ︷︷ ︸
(c)

,

(4)

where C0 := 2
√
Cπ∗/((1− γ)2µtar, min) and f̄ (t)(s, a) := f (t)(s, a)− f (t)(s, π(t)(s)).

Notably, in (4), the term (a) reflects the learning progress of NPG, the (b) reflects the effect of
cross-domain transfer, and (c) indicates the error of policy evaluation for the target-domain policy.
The term (c) reflects the sample complexity of the standard least-squares TD-based policy evaluation
(Lagoudakis & Parr, 2001; Lagoudakis et al., 2002; Yu & Bertsekas, 2009; Lazaric et al., 2012) and
can be made small with sufficient samples (i.e., sufficiently large N (t)

tar).

Key Implications of Theorem 1.

• Positive transfer indeed reduces the upper bound of average sub-optimality: For didactic
purposes, consider an ideal case in the sense that Qsrc is optimal in the source domain and there
always exists a perfect inter-domain mapping ϕ∗ and ψ∗ such that LCD(ϕ

∗, ψ∗;Qsrc, πtar,Dtar) = 0
under any policy πtar. In this case, the positive transfer perfectly happens. Let α(t) be close to
one initially in the first T iterations and let η be sufficiently large. We can observe that term (b)
in (4) is always zero, since ϵsrc, be(Qsrc) is always zero. Regarding the term (a) in (4), since α(t)
is initially close to one, we have f̄ (t)(s, a) ≈ Qsrc(ϕ

(t)(s), ϕ(t)(a))−Qsrc(ϕ
(t)(s), ϕ(t)(π(t)(s))).

By the policy update rule in (3), optimality of source Q function Qsrc, and the fact that perfect
inter-domain mapping exists, we know that 1

T

∑T
t=1 E(s,a)∼dπ∗

[
maxa′ f̄

(t) (s, a′)
]

must be small
since π(s) woul be quickly updated to close to π∗(s) for any s ∈ S tar. Moreover, the term (c) in
(4) shall also be small initially since α(t) is close 1. By combining all the above, we can conclude
that the bound on sub-optimality gap is small in the positive transfer regime.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

• QAvatar can avoid getting stuck in the negative transfer regime: Consider a negative transfer
case, where LCD(ϕ, ψ;Qsrc, πtar,Dtar) is always large under any policy πtar and inter-domain
mappings ϕ and ψ. As a result, ∥ϵ(t)src, be(Qsrc)∥∞ is large. In this case, given that α(t) is a
decreasing function, α(t) shall be close to 0 under large t. We can observe that the term (b) in (4)
is small (even if ∥ϵ(t)src, be(Qsrc)∥∞ remains large). Note that the policy update rule in (3) reduces to
the original NPG based on the target-domain critic since α(t) is close to 0. For the term (a) in (4),
we have f̄ (t)(s, a) ≈ Q(t)(s, a)−Q(t)(s, π(t)(s)) and the term (a) in (4) reduces to the standard
bound for NPG. Similarly, the term (c) in (4) reduces to the standard TD error since α(t) is close to
0. By combining all the above, we conclude that under QAvatar , the bound on sub-optimality gap
would not be continuously dominated by the term (b) in (4) in the negative transfer regime.

Remark 2. Note that the proof of Theorem 1 bears some high-level resemblance with (Zhou et al.,
2024) as they also use NPG in their hybrid actor-critic (HAC) algorithm. That said, QAvatar is
fundamentally different from HAC in two aspects: (i) QAvatar addresses cross-domain transfer while
HAC focuses on using offline and online data from the same domain. (ii) QAvatar utilizes the hybrid
Q function while HAC applies a hybrid squared error regression loss (i.e., the sum of TD errors
calculated from both offline and online data).

4.3 PRACTICAL IMPLEMENTATION OF QAVATAR

We extend the QAvatar framework in Algorithm 1 to a practical deep RL implementation for
continuous state and action spaces by applying the following design choices. The pseudo code is
provided in Algorithm 2 in Appendix.

• Learning the target-domain policy and the Q function. To go beyond the tabular setting and
handle continuous state and action spaces, we extend QAvatar by first connecting NPG with soft
policy iteration (SPI) (Haarnoja et al., 2018). In the entropy-regularized RL setting, SPI has been
shown to be a special case of NPG (Cen et al., 2022). Based on this connection, we choose to
integrate QAvatar with soft actor-critic (SAC) (Haarnoja et al., 2018), i.e., updating the target-
domain critic Qtar by the critic loss of SAC and updating the target-domain policy π(t) by the SAC
policy loss function with the weighted combination of Qtar and Qsrc of QAvatar . Regarding the
weight decay function α(t), based on the theoretical result, we set α(t) = t−β with β > 0 in the
experiments.

• Learning the inter-domain mapping functions with an augmented flow model. Similar to
the tabular setting, we learn the inter-domain mappings by minimizing the cross-domain Bellman
loss. Notably, in practical RL problems, the state and action spaces are mostly bounded sets. As
a result, we need to ensure that the outputs of the inter-domain mappings ϕ : S tar → Ssrc and
ψ : Atar → Asrc fall within the feasible regions. As mentioned in Section 2, adversarial learning is
widely adopted to solve this practical problem in the existing literature (Taylor et al., 2008; Zhang
et al., 2021; Gui et al., 2023; Zhu et al., 2024). However, we observe that adversarial learning
could suffer from unstable training process in practice. Therefore, we use the method proposed
by (Brahmanage et al., 2024) and train a normalizing flow model that can map the outputs of the
mapping functions to the feasible regions.

5 EXPERIMENTS

In this section, we show that QAvatar achieves effective cross-domain transfer and improves the
sample efficiency on various RL benchmark tasks. Moreover, we demonstrate that QAvatar can still
perform well even with the existence of negative transfer between the source and target domains.
Unless stated otherwise, all the results reported in this section are averaged over 5 random seeds.

5.1 EXPERIMENTAL SETTINGS

Benchmark CDRL Methods. We compare the performance of QAvatar with various recent CDRL
benchmark algorithms under distinct state-action spaces, including Dynamics Cycle-Consistency
(DCC) (Zhang et al., 2021), Cross-Morphology-Domain Policy Adaptation (CMD) (Gui et al., 2023),
and Cross-domain Adaptive Transfer (CAT) (Heng et al., 2022). For a fair comparison, all these

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

benchmark methods and QAvatar use the same set of source-domain models (i.e., the policy and the
corresponding Q-networks), which are pre-trained by using SAC in the source domain. However,
the original DCC is implemented in a batch setting, i.e., a fixed number of trajectories are collected
for learning the inter-domain mappings. For a fair comparison, we adapt the DCC in an online
setting, i.e., learning while iteratively collecting new trajectories. Regarding CMD, we observe that
the original setting could suffer because the collected trajectories mostly have low returns due to a
random behavior policy. Therefore, we consider a stronger version of CMD with target-domain data
collected under the target-domain policy, which is induced by the source-domain pre-trained policy
and the current inter-domain mappings.

Moreover, to demonstrate the sample efficiency, we also compare QAvatar with the standard SAC
(Haarnoja et al., 2018), which learns from scratch in the target domain, as well as with the direct
Fine-Tuning (FT) upon the source models (Ha et al., 2024), which can be viewed as using the standard
SAC with source feature initialization. Both methods can serve as reasonably competitive baselines.
The hyperparameters are provided in Appendix E.

Table 1: Dimensionalities of the source
and target domains (“Src" and “Tar" rep-
resent the source domain and the target
domain.

Environment State Action

Src Tar Src Tar

Hopper 11 13 3 4
HalfCheetah 17 23 6 9
Ant 111 133 8 10
Centipede 97 139 10 16
IP / Modified IDP 4 11 1 1
Reacher 11 14 2 2

Block Lifting 42 47 8 7
Door Opening 46 51 8 7
Table Wiping 37 34 7 6
Merging / Highway 12 16 2 2

Evaluation Environments. We evaluate QAvatar in
three types of RL benchmark environments:

• Locomotion: We use the standard MuJoCo environ-
ments, including Hopper-v3, HalfCheetah-v3 and Ant-
v3, as the source domains and follow the same pro-
cedure as in (Zhang et al., 2021; Xu et al., 2023) to
modify them for the target domains. Moreover, we
consider the Centipede environments in CAT (Heng
et al., 2022), using CentipedeFour as the source do-
main and CentipedeSix as the target domain. Addition-
ally, for evaluation in the scenario of negative transfer,
we use Inverted Pendulum-v2 and the two-joint robot
arm Reacher-v2 as the source domains and employ In-
verted Double Pendulum-v2 and the three-joint robot
arm Reacher-v2 as the respective target domains. The
details about the morphology is in Appendix E.

• Robot arm manipulation: We use the environments
provided by Robosuite, a popular package for robot
learning released by (Zhu et al., 2020). We evaluate our algorithm on three tasks, including block
lifting, door opening and table wiping. For each task, we use the Panda robot arm as the source
domain and set the UR5e robot arm as the target domain.

• Autonomous driving: We use the environments provided by BARK-ML (Bernhard et al., 2020).
Notably, these environments are highly unpredictable due to the complex traffic situations and
driver behaviors encoded in the BARK-ML behavior model. For cross-domain transfer, we use
merging-v0 as the source domain and highway-v0 as the target domain.

Table 1 provides the dimensionalities of the state and action spaces in all the tasks.

Reproduction and Sanity Checks for DCC, CMD, and CAT. Regarding CAT and DCC, we directly
use the official implementation provided by the original papers. Moreover, as there is no CMD
implementation available, we reproduce CMD by referring to the source code of DCC as these two
algorithms are similar. As a sanity check, we evaluate DCC and CMD in multiple MuJoCo tasks and
confirm that our reproduced scores are indeed close to those reported in the original papers (despite
that DCC and CMD do not perform well due to their unsupervised nature). Similarly, a sanity check
for CAT on the Centipede task confirms the reproduced score. The details are in Appendix C.2.

5.2 EXPERIMENTAL RESULTS

Does QAvatar improve data efficiency? As shown by the training curves in Figure 1, we observe
that QAvatar achieves improved data efficiency via cross-domain transfer than SAC throughout
the training process in all the MuJoCo, Robosuite, and BARK-ML tasks, despite that these tasks
have rather different dimensionalities as shown in Table 1. CAT achieves moderate performance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Hopper (b) HalfCheetah (c) Ant (d) Centipede

(e) Block Lifting (f) Door Opening (g) Table Wiping (h) Highway

Figure 1: The training curves of QAvatar and the benchmark methods: (a)-(d): Locomotion tasks
in MuJoCo; (e)-(g): Robot arm manipulation tasks in Robosuite; (h) Autonomous driving tasks in
BARK-ML.

in Table Wiping, Centipede, and Highway but does not learn effectively in the other tasks. These
appear reasonable as CAT has no performance guarantees and can suffer if the source and target
are rather dissimilar, despite that CAT applies policy gradient with target-domain rewards to align
the inter-domain mapping with the target domain. On the other hand, FT typically achieves slight
improvement in data efficiency than SAC in MuJoCo but slower learning progress in Robosuite. We
conjecture that this is because distinct robot arms in Robosuite lead to more dissimilar state-action
representations and hence require more fine-tuning steps.

Regarding CMD, it cannot obtain good returns in most of the tasks. Notably, in some environments
like Ant, CMD appears very unstable due to its adversarial learning module for restricting the output
of their mapping functions. DCC does not perform well in most tasks, including HalfCheetah. This
trend is similar to that in the original paper (Zhang et al., 2021). The rewards obtained by DCC in
our experiments are slightly lower than those shown in (Zhang et al., 2021) despite that we try our
best to reproduce their results. To strengthen our argument, we offer a comparison of the original
and reproduced results in Appendix C.2. We conjecture that the undesired performance of CMD and
DCC results from that they learn in an unsupervised manner and hence does not take target-domain
rewards into account.

Additionally, when we consider the time to threshold metric, our algorithm requires 298k fewer
steps to achieve the threshold than SAC does in the best case. When we consider the asymptotic
performance metric, our algorithm can obtain higher final rewards than SAC. The results of these two
metrics are shown in the Appendix C.3 and C.4.

Does QAvatar still perform reliably well when negative transfer is likely to happen? We
construct negative transfer scenarios by modifying the environment configurations via swapping
action encodings, as described below: (i) In the Reacher environment, we use a two-joint robot arm
as the source domain and a three-joint arm as the target domain. To match the action dimensions, the
middle joint of the three-joint arm is disabled (i.e., its action is always set to 0). We then alter the
three-joint arm’s configuration by swapping the encoding of "clockwise" and "counterclockwise"
actions (termed “Modified Reacher"). (ii) Similarly, we use Inverted Pendulum (IP) as the source

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

domain and Inverted Double Pendulum (IDP) as the target domain. Then, we modify the configuration
of IDP by swapping the encodings of the actions “left” and “right" (termed “Modified IDP").

(a) Modified Reacher (b) Modified IDP

Figure 2: The training curves of QAvatar and the bench-
mark methods in the negative transfer cases.

As a result, negative transfer shall easily
occur if we deactivate the inter-domain
action mapping ψ of QAvatar such that
QAvatar cannot learn by simply mapping
the "clockwise" in three-joint Reacher to
"counterclockwise" in two-jointed Reacher
and “left" in IDP to “right" in IP. As shown
in Figure 2, we observe that QAvatar out-
performs all CDRL benchmarks algorithms
and exhibits a learning curve similar to
SAC and FT, despite the negative transfer
scenarios. This confirms that QAvatar can
indeed perform reliably due to the use of
hybrid Q function.

Is QAvatar sensitive to the decay func-
tion? We evaluate QAvatar with α(t) as
1/
√
t, 1/t, and 1/t1.5. As shown in Figure 3, QAvatar can learn successfully regardless of the choice

of α(t) and appear consistently favorable under all these choices of α(t).

Does QAvatar still perform reliably with a source-domain model of lower quality? We further
runQAvatar with low-quality source-domain Q networks, which are pre-trained only for five thousand
steps in both Hopper and Door Opening. As shown by Figure 4, we find that despite QAvatar is
affected by the low-quality source model initially, it can quickly catch up and achieve total reward
comparable to SAC. This appears consistent with the theoretical result in Theorem 1.

(a) Hopper (b) Door Opening

Figure 3: The training curves of QAvatar under
different decay functions α.

(a) Hopper (b) Door Opening

Figure 4: The training curves of QAvatar with
a high-quality and a low-quality source model.

6 CONCLUDING REMARKS AND LIMITATIONS

In this paper, we present QAvatar, the first CDRL method that can handle distinct state-action
representations between domains with performance guarantees. Based on the idea of combining
the source-domain and target-domain Q functions, QAvatar achieves robust knowledge transfer and
tackles the negative transfer issue. Through extensive experiments, we show that QAvatar indeed
serves as a promising and generic solution to cross-domain transfer in RL. One limitation of this
work is that we follow the standard CDRL formulation and consider only one source domain and one
target domain. Extending the idea of QAvatar to achieve knowledge transfer from multiple source
and target domains is a promising future research direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

BIBLIOGRAPHY

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. Pc-pg: Policy cover directed exploration
for provable policy gradient learning. Advances in Neural Information Processing Systems, 33:
13399–13412, 2020.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021.

Haitham B Ammar, Karl Tuyls, Matthew E Taylor, Kurt Driessens, and Gerhard Weiss. Reinforcement
learning transfer via sparse coding. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems, volume 1, pp. 383–390, 2012.

Haitham Bou Ammar and Matthew E Taylor. Reinforcement learning transfer via common subspaces.
In Adaptive and Learning Agents: International Workshop, ALA 2011, Held at AAMAS, pp. 21–36.
Springer, 2012.

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Unsupervised cross-domain
transfer in policy gradient reinforcement learning via manifold alignment. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 29, 2015.

Paniz Behboudian, Yash Satsangi, Matthew E Taylor, Anna Harutyunyan, and Michael Bowling.
Policy invariant explicit shaping: An efficient alternative to reward shaping. Neural Computing
and Applications, pp. 1–14, 2022.

Julian Bernhard, Klemens Esterle, Patrick Hart, and Tobias Kessler. BARK: Open behavior bench-
marking in multi-agent environments. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 6201–6208, 2020.

Janaka Brahmanage, Jiajing Ling, and Akshat Kumar. FlowPG: Action-constrained Policy Gradient
with Normalizing Flows. Advances in Neural Information Processing Systems, 36, 2024.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence
of natural policy gradient methods with entropy regularization. Operations Research, 70(4):
2563–2578, 2022.

Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan Ratliff, and
Dieter Fox. Closing the sim-to-real loop: Adapting simulation randomization with real world
experience. In IEEE International Conference on Robotics and Automation (ICRA), pp. 8973–8979,
2019.

Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo Jovanovic. Natural policy gradient
primal-dual method for constrained markov decision processes. Advances in Neural Information
Processing Systems, 33:8378–8390, 2020.

Yuqing Du, Olivia Watkins, Trevor Darrell, Pieter Abbeel, and Deepak Pathak. Auto-tuned sim-to-real
transfer. In IEEE International Conference on Robotics and Automation (ICRA), pp. 1290–1296,
2021.

Benjamin Eysenbach, Shreyas Chaudhari, Swapnil Asawa, Sergey Levine, and Ruslan Salakhutdinov.
Off-dynamics reinforcement learning: Training for transfer with domain classifiers. In International
Conference on Learning Representations, 2021.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In IEEE International Conference on
Robotics and Automation (ICRA), pp. 3389–3396, 2017.

Haiyuan Gui, Shanchen Pang, Shihang Yu, Sibo Qiao, Yufeng Qi, Xiao He, Min Wang, and Xue Zhai.
Cross-domain policy adaptation with dynamics alignment. Neural Networks, 167:104–117, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant
feature spaces to transfer skills with reinforcement learning. In International Conference on
Learning Representations, 2017.

Seokhyeon Ha, Sunbeom Jeong, and Jungwoo Lee. Domain-aware fine-tuning: Enhancing neural
network adaptability. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 12261–12269, 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pp. 1861–1870, 2018.

You Heng, Tianpei Yang, Yan Zheng, Jianye Hao, and Matthew E. Taylor. Cross-domain adaptive
transfer reinforcement learning based on state-action correspondence. In Conference on Uncertainty
in Artificial Intelligence, 2022.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
International Conference on Machine Learning, pp. 267–274, 2002.

Sham M Kakade. A natural policy gradient. Advances in Neural Information Processing Systems, 14,
2001.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement
learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651–673,
2018.

Michail G Lagoudakis and Ronald Parr. Model-free least-squares policy iteration. Advances in
Neural Information Processing Systems, 14, 2001.

Michail G Lagoudakis, Ronald Parr, and Michael L Littman. Least-squares methods in reinforcement
learning for control. In Methods and Applications of Artificial Intelligence: Second Hellenic
Conference on AI, pp. 249–260. Springer, 2002.

Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Finite-sample analysis of least-
squares policy iteration. Journal of Machine Learning Research, 13:3041–3074, 2012.

Jinxin Liu, Zhang Hongyin, and Donglin Wang. DARA: Dynamics-Aware Reward Augmentation in
Offline Reinforcement Learning. In International Conference on Learning Representations, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359, 2009.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In IEEE International Conference on Robotics and
Automation (ICRA), pp. 3803–3810, 2018.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning
robust neural network policies using model ensembles. In International Conference on Learning
Representations, 2016.

12

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Ram Ananth Sreenivasan, Hyun-Rok Lee, Yeonjeong Jeong, Jongseong Jang, Dongsub Shim, and
Chi-Guhn Lee. A learnable similarity metric for transfer learning with dynamics mismatch. In
PRL Workshop Series –Bridging the Gap Between AI Planning and Reinforcement Learning, 2023.

Matthew E Taylor, Gregory Kuhlmann, and Peter Stone. Autonomous transfer for reinforcement
learning. In Proceedings of International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 283–290, 2008.

Chang Wang and Sridhar Mahadevan. Manifold alignment without correspondence. In IJCAI,
volume 2, pp. 3, 2009.

Yue Wang, Yuting Liu, Wei Chen, Zhi-Ming Ma, and Tie-Yan Liu. Target transfer Q-learning and its
convergence analysis. Neurocomputing, 392:11–22, 2020.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of
Big data, 3:1–40, 2016.

Lin Xiao. On the convergence rates of policy gradient methods. Journal of Machine Learning
Research, 23(282):1–36, 2022.

Kang Xu, Chenjia Bai, Xiaoteng Ma, Dong Wang, Bin Zhao, Zhen Wang, Xuelong Li, and Wei Li.
Cross-domain policy adaptation via value-guided data filtering. Advances in Neural Information
Processing Systems, 36, 2023.

Heng You, Tianpei Yang, Yan Zheng, Jianye Hao, and Matthew E Taylor. Cross-domain adaptive
transfer reinforcement learning based on state-action correspondence. In Uncertainty in Artificial
Intelligence, pp. 2299–2309, 2022.

Huizhen Yu and Dimitri P Bertsekas. Convergence results for some temporal difference methods
based on least squares. IEEE Transactions on Automatic Control, 54(7):1515–1531, 2009.

Rui Yuan, Simon S Du, Robert M Gower, Alessandro Lazaric, and Lin Xiao. Linear convergence of
natural policy gradient methods with log-linear policies. In International Conference on Learning
Representations, 2022.

Qiang Zhang, Tete Xiao, Alexei A Efros, Lerrel Pinto, and Xiaolong Wang. Learning cross-domain
correspondence for control with dynamics cycle-consistency. In International Conference on
Learning Representations, 2021.

Yifei Zhou, Ayush Sekhari, Yuda Song, and Wen Sun. Offline data enhanced on-policy policy gradient
with provable guarantees. In International Conference on Learning Representations, 2024.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 2223–2232, 2017.

Ruiqi Zhu, Tianhong Dai, and Oya Celiktutan. Cross domain policy transfer with effect cycle-
consistency. In IEEE International Conference on Robotics and Automation (ICRA), 2024.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi, Soroush Nasiriany,
and Yifeng Zhu. Robosuite: A modular simulation framework and benchmark for robot learning.
arXiv preprint arXiv:2009.12293, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A SUPPORTING LEMMAS

Lemma 1 (Performance difference lemma). For any two policies π and π′, for any state s, we have

V π
′
(µ)− V π(µ) = 1

1− γ
Es,a∼dπ′ [Aπ(s, a)],

where Aπ(s, a) := Qπ(s, a)− V π(s) is the advantage function.

Proof. This can be directly obtained from Lemma 6.1 in (Kakade & Langford, 2002).

Lemma 2. Suppose f (t) and π(t) denote the cross-domain value functions and the policies at iteration
t. Then, for any learning rate η and policy π∗, we have

T∑
t=1

E(s,a)∼dπ∗

[
f (t)(s, a)− f (t)(s, π(t)(s))

]
≤

T∑
t=1

E(s,a)∼dπ∗

[
max
a′

f (t)(s, a′)− f (t)(s, π(t)(s))
]
+

log | Atar |
η

.

Proof. Let f̄ (t)(s, a) = f (t)(s, a)− f (t)(s, π(t)(s)). According to the policy update rule, at iteration
t, the policy π(t+1) for the next iteration is updated by the formula:

π(t+1)(a | s) =
π(t)(a | s) exp

(
ηf̄ (t)(s, a)

)∑
a′ π

(t) (a′ | s) exp
(
ηf̄ (t) (s, a′)

) . (5)

Let Zt =
∑
a′ π

(t) (a′ | s) exp
(
ηf̄ (t) (s, a′)

)
. By multiplying both sides of (5) by Zt taking the

logarithm, and then taking the expectation on both sides w.r.t (s, a) ∼ dπ∗
, we obtain

E(s,a)∼dπ∗

[
ηf̄ (t)(s, a)

]
= E(s,a)∼dπ∗

[
logZt + log π(t+1)(a | s)− log π(t)(a | s)

]
. (6)

Next, we bound the term logZt. Since the log(·) is an increasing function, we have

logZt = log

(∑
a′∈A

π (a′ | s) exp
(
η(t)f̄ (t) (s, a′)

))

≤ log

(
max
a′∈A

exp
(
ηf̄ (t) (s, a′)

))
≤ max
a′∈A

(
ηf̄ (t) (s, a′)

)
= ηmax

a′∈A
f̄ (t) (s, a′) .

Then, we have

E(s,a)∼dπ∗

[
ηf̄ (t)(s, a)

]
≤ E(s,a)∼dπ∗

[
log π(t+1)(a | s)− log π(t)(a | s) + ηmax

a′
f̄ (t) (s, a′)

]
.

(7)
By taking the summation over iterations on both side of (7),

T∑
t=1

E(s,a)∼d∗
[
ηf̄ (t)(s, a)

]
≤

T∑
t=1

E(s,a)∼dπ∗

[
ηmax

a′
f̄ (t) (s, a′)

]
+ E(s,a)∼dπ∗

[
log π(T+1)(a | s)− log π(1)(a | s)

]
.

Using the fact that log(π(a | s)) ≤ 0, since π(a|s) ≤ 1, and π(1)(a | s) = 1
| Atar | , we have

T∑
t=1

E(s,a)∼dπ∗

[
f̄ (t)(s, a)

]
≤

T∑
t=1

E(s,a)∼dπ∗

[
max
a′

f̄ (t) (s, a′)
]
+

log | Atar |
η

.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lemma 3 ((Agarwal et al., 2019), Chapter 4). Let τ = (s0, a0, s1, a1, · · ·) denote the (random)
trajectory generated under a policy π in an infinite-horizon MDPM. For any function f : S ×A →
R, we have

Eτ
[∞∑
t=0

γtf(st, at)

]
=

1

1− γ
E(s,a)∼dπ

[
f(s, a)

]
. (8)

Lemma 4 (Importance Ratio). Given a fixed policy π and a fixed state-action pair (s, a), let pk(s, a)
denote the probability of reaching (s, a) under an initial distribution dπ and policy π after k time
steps. Then, for any k ∈ N, we have

pk(s, a)

dπ(s, a)
≤ 1

(1− γ)µ(s, a)
. (9)

Proof. To begin with, recall the definition of dπ as

dπ(s, a) := (1− γ)
(
µ(s, a) +

∞∑
t=1

γtP (st = s, at = a;π)
)
≡

∞∑
t=0

γtP (st = s, at = a;π). (10)

Let snext,k and anext,k denote the state and action after k time steps. Then, we can write down pk(s, a):

pk(s, a) =
∑

(s0,a0)

P(snext,k = s, anext,k = a|s0, a0;π)dπ(s0, a0) (11)

=
∑

(s0,a0)

P(snext,k = s, anext,k = a|s0, a0;π) · (1− γ) ·
∞∑
t=0

γt P(st = s0, at = a0;π)

(12)

= (1− γ) ·
∞∑
t=0

γt
∑
s0,a0

P(snext,k = s, anext,k = a|s0, a0;π) · P(st = s0, at = a0;π) (13)

= (1− γ)
∞∑
t=0

γt P(st+k = s, at+k = a;π) (14)

Then, we have

pk(s, a)

dπ(s, a)
=

(1− γ)
∑∞
t=0 γ

t P(st+k = s; at+k = a;π)

(1− γ)
∑∞
t=0 γ

t P(st = s, at = a;π)
(15)

=

∑∞
t=0 γ

t P(st+k = s, at+k = a;π)∑∞
t=0 γ

t P(st = s, at = a;π)
(16)

≤
∑∞
t=0 γ

t∑∞
t=0 γ

t P(st = s;π)
(17)

=
1

1− γ
· 1∑∞

t=0 γ
t P(st = s;π)

(18)

where (17) holds by P(st+k = s, at+k = a;π) ≤ 1 and (18) holds by taking the sum of an infinite
geometric sequence. By

∑∞
t=0 γ

t P(st = s, at = a;π) = µtar(s) +
∑∞
t=1 γ

t P(st = s, at = a;π),
we have

1

1− γ
· 1∑∞

t=0 γ
t P(st = s, at = a;π)

=
1

1− γ
· 1

µ(s, a) +
∑∞
t=1 γ

t P(st = s, at = a;π)
(19)

≤ 1

(1− γ)µ(s, a)
(20)

where (20) holds by
∑∞
t=1 γ

t P(st = s, at = a;π) ≥ 0.

B PROOF OF THEOREM 1

Recall that for any policy π, we use dπ to denote the discounted state-action visitation distribution
under policy π in the target domain.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Lemma 5. Under Algorithm 1, for any t ∈ N, we have

E
(s,a)∼dπ(t)

[(
f̄ t(s, a)−Aπ

t

(s, a)
)2]

≤ 4

(1− γ)2µ2
tar, min

E
(s,a)∼dπ(t)

[(
(1− α(t))ϵ(t)td (s, a) + α(t)ϵ

(t)
src,be(s, a;Qsrc)

)2] (21)

Proof. Recall the definitions that f̄ (t)(s, a) := f (t)(s, a) − f (t)(s, π(t)(s)) and Aπ
(t)

(s, a) :=

Qπ
(t)

(s, a)−Qπ(t)

(s, π(t)(s)). Then, we have

E
(s,a)∼dπ(t)

[(
f̄ (t)(s, a)−Aπ

(t)

(s, a)
)2]

(22)

= E
(s,a)∼dπ(t)

[(
f (t)(s, a)− f (t)(s, π(t)(s))−Qπ

(t)

(s, a) +Qπ
(t)

(s, π(t)(s))
)2]

(23)

≤ E
(s,a)∼dπ(t)

[
2
(
f (t)(s, a)−Qπ

(t)

(s, a)
)2

+ 2
(
Qπ

(t)

(s, π(t)(s))− f (t)(s, π(t)(s))
)2]

(24)

where (24) holds by the fact that (x + y)2 ≤ 2x2 + 2y2 for any x, y ∈ R. Then, by linearity of
expectation, we obtain

E
(s,a)∼dπ(t)

[
2
(
f (t)(s, a)−Qπ

(t)

(s, a)
)2

+ 2
(
Qπ

(t)

(s, π(t)(s))− f (t)(s, π(t)(s))
)2]

(25)

= E
(s,a)∼dπ(t)

[
2
(
f (t)(s, a)−Qπ

(t)

(s, a)
)2]

+ E
s∼dπ(t)

[
2
(
Qπ

(t)

(s, π(t)(s))− f (t)(s, π(t)(s))
)2]

(26)

= E
(s,a)∼dπ(t)

[
2
(
f (t)(s, a)−Qπ

(t)

(s, a)
)2]

+ E
s∼dπ(t)

[
2
[
Ea′∼π(t)(s)

[
Qπ

(t)

(s, a′)− f (t)(s, a′)
]]2]

(27)

≤ E
(s,a)∼dπ(t)

[
2
(
f (t)(s, a)−Qπ

(t)

(s, a)
)2]

+ E
(s,a′)∼dπ(t)

[
2
(
Qπ

(t)

(s, a′)− f (t)(s, a′)
)2]

(28)

≤ 4E
(s,a)∼dπ(t)

[(
f (t)(s, a)−Qπ

(t)

(s, a)
)2]

(29)

where (28) holds by Jensen’s inequality. Then, we proceed to derive an upper bound on
E
(s,a)∼dπ(t)

[(
f (t)(s, a)−Qπ(t)

(s, a)
)2]

. By the definition of f (t) := (1 − α(t))Q
(t)
tar (s, a) +

α(t)Qsrc(ϕ
(t)(s), ψ(t)(a)), we have

E
(s,a)∼dπ(t)

[(
f (t)(s, a)−Qπ

(t)

(s, a)
)2]

(30)

= E
(s,a)∼dπ(t)

[(
(1− α(t))Q(t)

tar (s, a) + α(t)Qsrc(ϕ
(t)(s), ψ(t)(a))−Qπ

(t)

(s, a)
)2]

(31)

= E
(s,a)∼dπ(t)

[((
1− α(t)

)(
Q

(t)
tar (s, a)− rtar(s, a) + rtar(s, a)

)
+ α(t)

(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a) + rtar(s, a)
)
−Qπ

(t)

(s, a)
)2] (32)

= E
(s,a)∼dπ(t)

[((
1− α(t)

)(
Q

(t)
tar (s, a)− rtar(s, a) + rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]

+ γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Q
(t)
tar (s

′, a′)]
)
+ α(t)

(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a) + rtar(s, a)

− γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))] + γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Qsrc(ϕ

(t)(s′), ψ(t)(a′))]
)

−Qπ
(t)

(s, a)
)2]

(33)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

= E
(s,a)∼dπ(t)

[((
1− α(t)

)(
Q

(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
)

+ α(t)
(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)
+
(
1− α(t)

)
γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)] + α(t)γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

+ rtar(s, a)−Qπ
(t)

(s, a)
)2]

(34)

= E
(s,a)∼dπ(t)

[((
1− α(t)

)(
Q

(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
)

+ α(t)
(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)
+ γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[f (t)(s′, a′)] + rtar(s, a)−Qπ

(t)

(s, a)
)2]

(35)

where we obtain (32) by adding the dummy terms
(
1 − α(t)

)(
− rtar(s, a) + rtar(s, a)

)
and α(t)

(
− rtar(s, a) + rtar(s, a)

)
to the inner part of (31), (33) is obtained by

adding
(
1 − α(t)

)(
− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)] + γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Q
(t)
tar (s

′, a′)]
)

and α(t)
(
−

γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))] + γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Qsrc(ϕ

(t)(s′), ψ(t)(a′))]
)

to the inner part

of (32), (34) holds by rearranging the terms in (33), and (35) holds by the definition of f (t). Then, by
adding γEs′′∼Ptar(·|s,a)

a′′∼π(t)(·|s′′)
[Qπ

(t)

(s′′, a′′)]− γEs′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)] to the inner part of (35), we

can rewrite (35) as

E
(s,a)∼dπ(t)

[((
1− α(t)

)(
Q

(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
)

+ α(t)
(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)
+ γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[f (t)(s′, a′)] + rtar(s, a)−Qπ

(t)

(s, a)

+ γEs′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]− γEs′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]
)2]

(36)

= E
(s,a)∼dπ(t)

[∣∣∣∣(1− α(t))(Q(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
)

+ α(t)
(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)
+ γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[f (t)(s′, a′)] + rtar(s, a)−Qπ

(t)

(s, a)

+ γEs′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]− γEs′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]
∣∣∣2]

(37)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

≤ E
(s,a)∼dπ(t)

[(∣∣∣(1− α(t))(Q(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
)∣∣∣

+
∣∣∣α(t)(Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)∣∣∣
+
∣∣∣γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[f (t)(s′, a′)] + rtar(s, a)−Qπ

(t)

(s, a)
∣∣∣

+
∣∣∣γEs′′∼Ptar(·|s,a)

a′′∼π(t)(·|s′′)
[Qπ

(t)

(s′′, a′′)]− γEs′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]
∣∣∣)2]

(38)

≤ E
(s,a)∼dπ(t)

[((
1− α(t)

) ∣∣∣Q(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
∣∣∣︸ ︷︷ ︸

=:ϵ
(t)
td (s,a)

+ α(t)
∣∣∣(Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)∣∣∣︸ ︷︷ ︸
=:ϵ

(t)
src,be(s,a;Qsrc)

+
∣∣∣γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[f (t)(s′, a′)]− γEs′′∼Ptar(·|s,a)

a′′∼π(t)(·|s′′)
[Qπ

(t)

(s′′, a′′)]
∣∣∣

+
∣∣∣rtar(s, a)−Qπ

(t)

(s, a) + γEs′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]
∣∣∣︸ ︷︷ ︸

=0

)2
]

(39)

= E
(s,a)∼dπ(t)

[((
1− α(t)

)
ϵ
(t)
td (s, a) + α(t)ϵ

(t)
src,be(s, a;Qsrc)

+ γ
∣∣∣Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′′)

[
f (t)(s′, a′)−Qπ

(t)

(s′, a′)
]∣∣∣)2

] (40)

= E
(s,a)∼dπ(t)

[((
1− α(t)

)
ϵ
(t)
td (s, a) + α(t)ϵ

(t)
src,be(s, a;Qsrc)

+ γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′′)

[∣∣f (t)(s′, a′)−Qπ(t)

(s′, a′)
∣∣])2

] (41)

where (37) holds by the fact that x2 = |x|2, (38) holds by triangle inequality, (39) by the facts
that 0 ≤ α(t) ≤ 1 and 0 ≤ 1 − α(t) ≤ 1, (40) holds by coupling (s′, a′) and (s′′, a′′) and
applying Bellman expectation equation as well as the definitions that ϵ(t)td (s, a) :=

∣∣Q(t)
tar (s, a) −

rtar(s, a)−γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Q
(t)
tar (s

′, a′)]
∣∣ and ϵ(t)src,be(s, a;Qsrc) :=

∣∣Qsrc(ϕ
(t)(s), ψ(t)(a))−rtar(s, a)−

γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

∣∣. By recursively applying the procedure from (30) to (41)

to
∣∣f (t)(s′, a′) −Qπ(t)

(s′, a′)
∣∣, we obtain a bound on E

(s,a)∼dπ(t)

[(
f (t)(s, a)−Qπ(t)

(s, a)
)2]

as
follows:

E
(s,a)∼dπ(t)

[(
f (t)(s, a)−Qπ

(t)

(s, a)
)2]

(42)

≤ E
(s,a)∼dπ(t)

[((
1− α(t)

)
ϵ
(t)
td (s, a) + α(t)ϵ

(t)
src,be(s, a;Qsrc)

+ γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[∣∣f (t)(s′, a′)−Qπ(t)

(s′, a′)
∣∣])2

] (43)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

≤ E
(s,a)∼dπ(t)

[((
1− α(t)

)
ϵ
(t)
td (s, a) + α(t)ϵ

(t)
src,be(s, a;Qsrc)

+ γEs′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[(
1− α(t)

)
ϵ
(t)
td (s′, a′) + α(t)ϵ

(t)
src,be(s

′, a′;Qsrc)

+ Es′′∼Ptar(·|s′,a′)
a′′∼π(t)(·|s′′)

[∣∣f (t)(s′′, a′′)−Qπ(t)

(s′′, a′′)
∣∣]])2

] (44)

≤ E
(s,a)∼dπ(t)

[((
1− α(t)

)
ϵ
(t)
td (s, a) + α(t)ϵ

(t)
src,be(s, a;Qsrc)

+
1

(1− γ)µtar,min

(
γ
(
1− α(t)

)
ϵ
(t)
td (s, a) + γα(t)ϵ

(t)
src,be(s, a;Qsrc)

+ γ2
(
1− α(t)

)
ϵ
(t)
td (s, a) + γ2α(t)ϵ

(t)
src,be(s, a;Qsrc) + · · ·

))2] (45)

≤ 1

(1− γ)4µ2
tar,min

E
(s,a)∼dπ(t)

[(
(1− α(t))ϵ(t)td (s, a) + α(t)ϵ

(t)
src,be(s, a;Qsrc)

)2]
(46)

where (44) holds by applying the procedure from (30) to (41) to f (t)(s′, a′)−Qπ(t)

(s′, a′), (45) holds
by applying the procedure from (30) to (41) to all the subsequent time steps and using importance
sampling with the importance ratio bound in Lemma 4 and then using the same dummy variables (s, a)
for all the subsequent state-action pairs, and (46) holds by taking the sum of an infinite geometric
sequence.

Theorem 1. (Average Sub-Optimality) Under the QAvatar in Algorithm 1 and Assumption 1, given
any fixed learning rate η > 0, the average sub-optimality over T iterations can be upper bounded as

1

T

T∑
t=1

(
V π

∗
(µtar)− V π

(t)

(µtar)
)
≤ 1

(1− γ)T

T∑
t=1

E(s,a)∼dπ∗

[
max
a′

f̄ (t) (s, a′)
]
+

log | Atar |
(1− γ)Tη︸ ︷︷ ︸

(a)

+
C0

T

T∑
t=1

α(t)∥ϵ(t)src, be(Qsrc)∥∞︸ ︷︷ ︸
(b)

+
C0

T

T∑
t=1

(1− α(t))∥ϵ(t)td ∥∞︸ ︷︷ ︸
(c)

,

(4)

where C0 := 2
√
Cπ∗/((1− γ)2µtar, min) and f̄ (t)(s, a) := f (t)(s, a)− f (t)(s, π(t)(s)).

Proof. We start by providing an upper bound on the sub-optimality gap V π
∗
(µtar)− V π

(t)

(µtar) at
each iteration. Recall that dπtar denotes the discounted state-action visitation distribution of policy π in
the target domain. Note that

V π
∗
(µtar)− V π

(t)

(µtar) (47)

=
1

1− γ
E(s,a)∼dπ∗

tar

[
Aπ

(t)

(s, a)
]

(48)

=
1

1− γ
E(s,a)∼dπ∗

tar

[
f̄ (t)(s, a)− f̄ (t)(s, a) +Aπ

(t)

(s, a)
]

(49)

=
1

1− γ
E(s,a)∼dπ∗

tar

[
f̄ (t)(s, a)

]
+

1

1− γ
E(s,a)∼dπ∗

tar

[
− f̄ (t)(s, a) +Aπ

(t)

(s, a)
]

(50)

≤ 1

1− γ
E(s,a)∼dπ∗

tar

[
f̄ (t)(s, a)

]
+

1

1− γ

√
E(s,a)∼dπ∗

tar

[(
− f̄ (t)(s, a) +Aπ(t)(s, a)

)2]
, (51)

where (48) holds by the performance difference lemma (cf. Lemma 1), (49) is obtained by adding
f̄ t(s, a) − f̄ t(s, a), (50) is obtained by rearranging the terms in (49), and (51) holds by Jensen’s

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

inequality. By the fact that ∥ d
π∗

dπ
(t) ∥∞ ≤ C, we have

1

1− γ
E(s,a)∼dπ∗

[
f̄ (t)(s, a)

]
+

1

1− γ

√
Es,a∼dπ∗

[(
− f̄ (t)(s, a) +Aπ(t)(s, a)

)2]
(52)

≤ 1

1− γ
E(s,a)∼dπ∗

[
f̄ (t)(s, a)

]
+

1

1− γ

√
C · E

s,a∼dπ(t)

[(
− f̄ (t)(s, a) +Aπ(t)(s, a)

)2]
. (53)

Recall the definitions of ϵ(t)td (s, a) and ϵ(t)src, be(s, a;Qsrc) as

ϵ
(t)
td (s, a) :=

∣∣Q(t)
tar (s, a)− rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
∣∣, (54)

ϵ
(t)
src,be(s, a;Qsrc) :=

∣∣Qsrc(ϕ
(t)(s), ψ(t)(a))− rtar(s, a)− γEs′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Qsrc(ϕ

(t)(s′), ψ(t)(a′))]
∣∣.

(55)

Recall that we also define

∥ϵ(t)td ∥∞ := max
(s,a)∈S ×A

ϵ
(t)
td (s, a), (56)

∥ϵ(t)src, be(Qsrc)∥∞ := max
(s,a)∈S ×A

ϵ
(t)
src, be(s, a;Qsrc). (57)

We are ready to put everything together and establish the cumulative sub-optimality. By taking the
summation of (53) over iterations, we have

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]

(58)

≤
T∑
t=1

1

1− γ
E(s,a)∼dπ∗

[
f̄ (t)(s, a)

]
+

T∑
t=1

1

1− γ

√
CE

s,a∼dπ(t)

[(
− f̄ (t)(s, a) +Aπ(t)(s, a)

)2]
(59)

≤
T∑
t=1

1

1− γ
E(s,a)∼dπ∗

[
max
a′

f̄ (t) (s, a′)
]
+

log | Atar |
(1− γ)η

+
2
√
C

(1− γ)2µtar,min

T∑
t=1

α(t)∥ϵ(t)src, be(Qsrc)∥∞ +
2
√
C

(1− γ)2µtar,min

T∑
t=1

(1− α(t))∥ϵ(t)td ∥∞.

(60)

where (59) follows directly from (53) and (60) holds by Lemma 5 and Lemma 2.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 TOY EXAMPLE TO SHOW THE BENEFIT OF CROSS-DOMAIN BELLMAN-LIKE LOSS.

(a) Source Domain (b) Target Domain

Figure 5: The source and target domain of the grid
navigation example.

We consider the 3-by-3 grid navigation problem,
as shown in Figure 5. In both domains, there are
only two actions: ’going top’ and ’going right.’
The state of the source domain is described in
decimal coordinates, while the state of the target
domain is described in binary coordinates. The
white squares represent obstacles that cannot
be traversed. There are three special states: (i)
Start state: The episode always begins at this
state. (ii) End state: The episode will only end
at this state, and the agent will receive an ending
reward of +1. (iii) Treasure state: When the
agent first navigates to this state, it will receive

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

+0.5 rewards. In other states or at other times navigating the treasure state, the agent will not receive
any reward. In the source domain, the start state, end state, and treasure state are set to (0, 0), (0, 2),
and (2, 2), respectively. In the target domain, the start state, end state, and treasure state are set to
(0, 0, 0, 0), (0, 0, 1, 1), and (1, 1, 1, 1), respectively. We assume that the source Q-function Qsrc is
optimal in the source domain and the environment discount factor γ is set to 0.99. It is easy to verify
that the optimal trajectory of the source domain is (0, 0)→ (0, 1)→ (0, 2)→ (1, 2)→ (2, 2) and the
optimal trajectory of the target domain is (0, 0, 0, 0) → (0, 0, 0, 1) → (0, 0, 1, 1) → (0, 1, 1, 1) →
(1, 1, 1, 1). Consider two trajectories in the source domain: Traj-A, which is the optimal trajectory,
and Traj-B, defined as (0, 0) → (0, 1) → (1, 1) → (1, 2) → (2, 2). When we map the optimal
trajectory of the target domain to Traj-A and the optimal trajectory of the target domain to Traj-B,
both mappings result in 0 cycle consistency loss. This suggests that the cycle consistency cannot
determine which mapping is superior. This phenomenon results from the unsupervised nature of
dynamics cycle consistency. In contrast, when we mapping the optimal trajectory of the target domain
to Traj-A yields a cross-domain Bellman-like loss of 0, while mapping the optimal trajectory of
the target domain to Traj-B results in a cross-domain Bellman-like loss of 1. Thus, we can achieve
optimal mapping results based on the cross-domain Bellman error, while the cycle consistency loss
provides sub-optimal mapping results.

C.2 REPRODUCTION AND SANITY CHECKS FOR DCC, CMD, AND CAT

In this section, we report the reproduced scores of DCC, CMD, and CAT as sanity checks for success-
ful reproduction. To simplify the expressions, we abbreviate ’original’ as ’orig’ and ’reproduced’ as
’repr’. As shown in Table 2, we can observe that QAvatar is indeed outperform than DCC, CMD. For
the CAT, since the original paper only provides the result of 2-to-1 transfer (i.e., two source domains
and one target domain) from CentipedeFour and CentipedeEight to CentipedeSix and get around
2200 episodic return at timesteps 700000. Also, in the original paper, CAT has reproduced the MIKT,
which is equivalent to CAT for 1-to-1 transfer (i.e., one source domain and one target domain), and
get around 1900 episodic rewards at timesteps 700000. In our reproduction, CAT achieves 1715
evaluation return, and this is close to MIKT in the original CAT paper. Hence, we believe that our
implementation of CAT is correct given that our configuration is the same as MIKT.

Table 2: The original and reproduced results of DCC and CMD compared with QAvatar and SAC.

Environment DCC (orig) DCC (repr) CMD (orig) CMD (repr) SAC QAvatar

Swimmer 204 ± 56 132 ± 47 44 ± 38 41 ± 14 235 ± 141 316 ± 139
Halfcheetah 2471 ± 382 1360 ± 729 2114 ± 332 303 ± 75 11445 ± 1897 12819 ± 679
Ant N/A 973 ± 501 649 ± 347 882 ± 52 2290 ± 785 2840 ± 1532

C.3 FINAL REWARDS

In this section, we show the asymptotic performance of all baselines and our algorithm. In the
MuJoCo environments except for Ant and Inverted Double Pendulum, we train all the target-domain
models for 500k steps. In Ant and Inverted Double Pendulum, we train all the target-domain models
for 350k and 20k steps, respectively. In Robosuite environments, we train all the target-domain
models for 20k steps. The asymptotic performances of all baselines and our algorithm are shown in
the following tables.

Table 3: Final rewards of QAvatar and all baselines in the MuJoCo environments.

Algorithm Hopper HalfCheetah Ant Centipede Reacher Modified IDP

QAvatar 2762 ± 440 12316 ± 586 2234 ± 1112 2020 ± 1465 -6.1 ± 0.3 9241 ± 62
SAC 2086 ± 257 10986 ± 1822 1620 ± 527 872 ± 36 -5.5 ± 0.1 9212 ± 152
CMD 59 ± 46 -253 ± 344 778 ± 144 834 ± 6116 -14.8 ± 0.5 72 ± 12
DCC 30 ± 16 -631 ± 185 -1240 ± 838 148 ± 182 -16.5 ± 1.4 95 ± 6
CAT 154 ± 156 46 ± 250 17 ± 27 1715 ± 430 -12.2 ± 1.0 41 ± 10
FT 2530 ± 456 12016 ± 1052 1740 ± 642 1123 ± 508 -5.8 ± 0.2 9349 ± 86

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 4: Final performances of QAvatar and all baselines in the Robosuite and BARK-ML environ-
ments.

Environment Block Lifting Door Opening Table Wiping Highway

QAvatar 98.0 ± 21.1 185.2 ± 66.9 67.1 ± 9.1 132.2± 31.7
SAC 90.3 ± 23.4 160.1 ± 40.3 47.2 ± 7.1 117.8 ±15.0
CMD 0.9 ± 0.6 7.8 ± 6.4 0.8 ± 0.4 13.0 ± 4.7
DCC 0.6 ± 0.2 8.2 ± 4.7 0.9 ± 0.7 18.1 ± 19.4
CAT 15.0 ± 14.3 34.7 ± 8.4 55.5 ± 29.7 70.1 ± 6.3
FT 21.9 ± 7.8 129.2 ± 44.9 36.8 ± 17.2 119.1 ± 21.1

C.4 TIME TO THRESHOLD

In the following table, we discover that QAvatar uses the less data to reach the threshold than SAC
does. In Hopper, QAvatar only needs half the amount of data SAC needs to reach the goal.

Table 5: Time to threshold of QAvatar and all baselines

Environment Threshold QAvatar SAC SAC / QAvatar

Hopper 2300 252K 836K 3.32
HalfCheetah 10000 288K 400K 1.39
Ant 1600 254K 344K 1.35
Centipede 900 210K 988K 4.70
Block Lifting 85 90K 94K 1.04
Door Opening 150 80K 94K 1.18
Table Wiping 45 74K 96K 1.30
Highway 110 236K 374K 1.58
Reacher -7 150K 84K 0.56
Inverted Double Pendulum 9000 16K 18K 1.13

C.5 ABLATION STUDY: DEACTIVATING THE FLOW MODEL

(a) Door Opening

Figure 6: Ablation Study: QAvatar without the
flow model

As mentioned above, we use a normalizing flow
model to restrict the output range of the map-
ping functions in the feasible regions. In this
experiment, we disable the flow model and eval-
uate QAvatar in Swimmer and Door Opening.
In Figure 6, QAvatar without a flow model per-
forms worse than QAvatar with a flow model.
In Door Opening, although the ewma values of
rewards obtained by QAvatar without the flow
model are higher than 100, it has to spend more
time attaining high rewards than QAvatar with
the flow model does.

D IMPLEMENTATION
DETAILS OF QAVATAR

D.1 PSEUDO CODE OF THE PRACTICAL IMPLEMENTATION OF QAVATAR

In this section, we provide the pseudo code of the practical version of QAvatar in Algorithm 2.

D.2 INTER-DOMAIN MAPPING NETWORK AUGMENTED WITH A NORMALIZING FLOW
MODEL

As mentioned in Section 4, we use the flow model to map the outputs of the mapping functions to the
feasible regions. The way to integrate these two components is shown in Figure 7.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 2 Practical Implementation of QAvatar

Require: Source-domain Q-network Qsrc, value function Vsrc, and the decay function α : R→ [0, 1].
1: Initialize the state mapping function ϕ, the action mapping function ψ, the target-domain policy

network π, and entropy coefficient β
2: for iteration t = 1, · · · , T do
3: Sample D(t)

tar = {(s, a, r, s′)} of Ntar samples using π(t) in the target domain
4: Update the target-domain {Qtar,1, Qtar,2} by SAC’s critic loss:

Q
(t)
tar,j = argmin

Qtar
Ê
(s,a,r,s′)∈D(t)

tar

[∣∣r + γEa′∼π(t)

[
Qtar(s

′, a′)− β log(π(a′|s′))
]
−Qtar(s, a)

∣∣2].
(61)

5: Update the state mapping function ϕ and action mapping function ψ by minimizing
6: the following loss

ϕ(t), ψ(t) = argmin
ϕ,ψ

Ê
(s,a,r,s′)∈D(t)

tar

[∣∣r + γVsrc(ϕ(s
′))−Qsrc(ϕ(s), ψ(a))

∣∣]. (62)

7: Update the target-domain policy π

π(t+1) = argmin
π

Ê
(s,a,r,s′)∈D(t)

tar ,a
′∼π(t)(·|s)

[
β log π(a′|s)− f (t)(s, a′)

]
, (63)

f (t)(s, a′) = (1− α(t)) min
j=1,2

Q
(t)
tar,j(s, a

′) + α(t)Qsrc(ϕ
(t)(s), ψ(t)(a′)). (64)

8: end for

Figure 7: Integration of the mapping function and the normalizing flow model.

E CONFIGURATION DETAILS OF THE EXPERIMENTS

E.1 MUJOCO ENVIRONMENTS

As mentioned in Section 5, the source domains of our experiments are the original MuJoCo envi-
ronments such as Swimmer-v3, Hopper-v3, HalfCheetah-v3 and Ant-v3. The target domains are
the modified MuJoCo environments such as Swimmer with four limbs, Hopper with an extra thigh,
HalfCheetah with three legs and Ant with five legs. For the Centipede, CentipedeFour refers to a
Centipede with four legs, and CentipedeSix refers to a Centipede with six legs. The environments are
shown in Figure 8.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) Swimmer (b) Hopper (c) HalfCheetah (d) Ant (e) CentipedeFour

(f) Four-limb Swimmer (g) Three-thigh Hopper (h) Three-leg HalfCheetah (i) Five-leg Ant (j) CentipedeSix

Figure 8: The environments of the source domains and the target domains. (a)-(e): Source domains
– Original MuJoCo environments and CentipedeFour. (f)-(j): Target domains – Modified MuJoCo
environments and CentipedeSix.

E.2 ROBOSUITE AND BARK-ML ENVIRONMENTS

Robosuite is a popular robot learning package. We evaluate QAvatar on three tasks, including block
lifting, door opening, and table wiping. For each task, we consider cross-domain transfer from
controlling a Panda robot arm to controlling a UR5e robot arm. For the BARK-ML environments, we
consider transfer from "merging-v0" to "highway-v0". These four tasks are illustrated in Figure 9.

(a) Block Lifting: Panda (b) Door Opening: Panda (c) Table Wiping: Panda (d) merging-v0

(e) Block Lifting: UR5e (f) Door Opening: UR5e (g) Table Wiping: UR5e (h) highway-v0

Figure 9: The environments of the source domains and the target domains. (a)-(d)The source domains:
control Panda to solve the tasks in robosuite and merging-v0 in bark-ml. (e)-(h)The target domains:
control UR5e to solve the tasks in robosuite and highway-v0 in bark-ml.

E.3 THE IMPLEMENTATION DETAILS OF BASELINES

SAC. The implementation of SAC used in our experiments is released by stable-baselines3 Raffin
et al. (2021). The settings of all hyperparameters except for the discouted factor γ follows the default
settings of SAC in the documentation of stable-baselines3. The discouted factor is set as 0.9999

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

in Swimmer-v3 and 0.99 in all other MuJoCo environments, which follows the setting shown in
Hugging Face. As for in the Robosuite environments, we set the discouted factor to 0.9.

CMD. We implement CMD by ourselves according to the pseudocode of CMD shown in its original
paper Gui et al. (2023). We follow the setting of the hyperparameters which is revealed in its original
paper. Additionally, we change CMD from collecting the fixed amount of data to collecting data
continuously for a fair comparison. As for the source model, we use the same model used in our
algorithm.

DCC. We use the original implementation of (Zhang et al., 2021) (https://github.com/
sjtuzq/Cycle_Dynamics) with their default setting Zhang et al. (2021). For a fair comparison,
we use the same source model used in QAvatar and change DCC from collecting the fixed amount of
data to collecting data continuously.

FT. FT can be seen as a standard SAC algorithm with source feature initialization. Specifically, we
modify the input and output layers of the source policy to match the target domain’s state and action
dimensions, using random initialization, while keeping the middle layers with the same weights as
the source model. Similarly, for the source Q function, we adjust the input layer to fit the target
domain’s state and action dimensions with random initialization, while the remaining layers retain
the source model’s weights. After initialization, we can use SAC algorithm to implement FT.

CAT. We use the authors’ implementation (https://github.com/TJU-DRL-LAB/
transfer-and-multi-task-reinforcement-learning/tree/main/
Single-agent%20Transfer%20RL/Cross-domain%20Transfer/CAT) and use
PPO as the target-domain base algorithm following the original paper. For a fair comparison, we use
the same source model used in QAvatar . The hyperparameters are shown in the following table and
"n epochs" means the number of epochs when optimizing the surrogate loss.

Table 6: A list of candidate hyperparameters for Robosuite and MuJoCo.

Parameter MuJoCo Robosuite

learning rate 0.0001, 0.0003, 0.0004, 0.0008 0.0001, 0.0003
length of rollouts 500, 2000 (50, 100 for Modified IDP) 2000
batch size 50, 100 (20, 25 for Modified IDP) 50, 100, 200
entropy coefficient (ent. coef.) 0.01, 0.002 0.01, 0.002
n epochs 10, 20 5, 10
num. of hidden layer of encoder/decoder 1 1
num. of hidden layer of actor/critic 2 2
hidden layer size 256 256

Table 7: Final hyperparameters chosen for each environment.

learning rate len. of rollouts batch size ent. coef. n epochs

Hopper 0.0008 2000 100 0.002 20
HalfCheetah 0.0001 500 50 0.002 10
Ant 0.0004 500 50 0.002 10
CentipedeSix 0.0003 2048 64 0.00 10
InvertedDoublePendulum 0.001 100 20 0.01 20
Reacher 0.0003 2048 64 0.00 10
Robosuite 0.0003 2000 100 0.01 10
Highway 0.0003 2048 64 0.00 10

25

https://github.com/sjtuzq/Cycle_Dynamics
https://github.com/sjtuzq/Cycle_Dynamics
https://github.com/TJU-DRL-LAB/transfer-and-multi-task-reinforcement-learning/tree/main/Single-agent%20Transfer%20RL/Cross-domain%20Transfer/CAT
https://github.com/TJU-DRL-LAB/transfer-and-multi-task-reinforcement-learning/tree/main/Single-agent%20Transfer%20RL/Cross-domain%20Transfer/CAT
https://github.com/TJU-DRL-LAB/transfer-and-multi-task-reinforcement-learning/tree/main/Single-agent%20Transfer%20RL/Cross-domain%20Transfer/CAT

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E.4 DETAILED CONFIGURATION OF QAVATAR

The base algorithm, SAC, is implemented by stable-baselines3 Raffin et al. (2021). As for the
compute resource, we use NVIDIA GeForce RTX 3090 to do the experiments. Finishing the whole
training process including training the source-domain model, target-domain model and flow model
once needs 44 hours in the MuJoCo environments and 39 hours in the Robosuite environments. The
Hyperparameters of QAvatar are shown in the following two tables. The consider functions of decay
functions are 1/

√
t, 1/t, 1/t2 and 1/t3 and the final decay functions chosen for each environments

are shown in the table 9. The settings of hyperparameters such as critic/actor learning rate, batch size,
buffer size and discounted factor are same as SAC.

Table 8: A list of hyperparameters of QAvatar .

Parameter Value

critic/actor learning rate 0.0003
state mapping function learning rate 0.01
action mapping function learning rate 0.01
batch size 256
replay buffer size 106

optimizer Adam
number of hidden layer of mapping functions 1
hidden layer size 256

Table 9: A list of environment-specific hyperparameters of QAvatar .

Environment Decay Function α

Hopper-v3 1/t2

HalfCheetah-v3 1/t3

Ant-v3 1/
√
t

CentipedeSix 1/t
InvertedDoublePendulum-v2 1/t
Reacher-v2 1/t3

Block Lifting 1/t
Door Opening 1/t
Table Wiping 1/t
Highway-v0 1/t3

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F EXPERIMENTS RESULTS FOR REBUTTAL

Figure F.1: Training curves of QAvatar and
baselines using high/low-quality pre-trained
models in Hopper environment.

Figure F.2: The aggregated metrics (with 95%
stratified bootstrap CIs) for all experiments.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(a) Hopper (b) HalfCheetah

Figure F.4: Training curves of QAvatar and
SAC in the negative transfer scenario of loco-
motion tasks.

(a) Hopper (b) HalfCheetah

Figure F.5: Training curves of QAvatar and
SAC in the opposite Q-function of source and
target domain Transfer Scenario.

Figure F.3: Training Curves of SAC and QAvatar
in three different setting, where "src1-tar" refer to
transfer domain src1 to domain tar.(src1: Ant-v3
with front left and back right legs disabled, src2:
Ant-v3 with front right and back left Legs disable,
tar: original Ant-v3).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(a) Hopper (b) HalfCheetah (c) Door Opening (d) Table Wiping

Figure F.6: Training curves of QAvatar and various baseline algorithms are presented. Unlike Figure
1, this version includes two additional baselines: TD3 and PPO, providing a broader comparison of
performance across different methods.

(a) Hopper (b) Ant (c) Door Opening (d) Table Wiping

Figure F.7: Training Curves of QAvatar , SAC, and PAR in Various Environments Under the Same
Settings as in Section 5.

29

	Introduction
	Related Work
	Preliminaries
	Methodology
	The QAvatar Framework
	Performance Guarantees of QAvatar
	Practical Implementation of QAvatar

	Experiments
	Experimental Settings
	Experimental Results

	Concluding Remarks and Limitations
	Bibliography
	Supporting Lemmas
	Proof of Theorem 1
	Additional Experimental Results
	Toy example to show the benefit of cross-domain Bellman-like loss.
	Reproduction and Sanity Checks for DCC, CMD, and CAT
	Final Rewards
	Time To Threshold
	Ablation Study: Deactivating the Flow Model

	Implementation Details of QAvatar
	Pseudo Code of the Practical Implementation of QAvatar
	Inter-Domain Mapping Network Augmented With a Normalizing Flow Model

	Configuration Details of The Experiments
	MuJoCo Environments
	Robosuite and BARK-ML Environments
	The Implementation Details of Baselines
	Detailed Configuration of QAvatar

	Experiments Results For Rebuttal

