DUALTIME: A DUAL-ADAPTER LANGUAGE MODEL FOR TIME SERIES MULTIMODAL REPRESENTATION LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

The recent rapid advancements in language models (LMs) have garnered attention in time series multimodal representation learning. However, existing contrastive learning-based and prompt-based LM approaches tend to be biased, often assigning a primary role to time series modality while treating text modality as secondary. We classify these approaches under a temporal-primary paradigm, which overlooks the unique and critical task-relevant information provided by the text modality, failing to fully leverage mutual benefits and complementarity of different modalities. To fill this gap, we propose a novel textual-temporal multimodal learning paradigm that enables either modality to serve as the primary one while being enhanced by the other, thereby effectively capturing modality-specific information and fostering cross-modal interaction. In specific, we design **DualTime**, a language model composed of dual adapters to implement temporal-primary and textual-primary modeling simultaneously. Within each adapter, lightweight adaptation tokens are injected into the top layers of LM to encourage high-level cross-modal interaction. The shared LM pipeline by dual adapters not only achieves adapter alignment but also reduces computation resources and enables efficient fine-tuning. Empirically, DualTime demonstrates superior performance, achieving notable improvements of 7% accuracy and 15% F1 in supervised settings. Furthermore, the few-shot label transfer experiments validate DualTime's expressiveness and transferability.

030 031 032

033

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

027

028

029

1 INTRODUCTION

034 Time series is a ubiquitous data modality across a wide range of real-world applications Trirat et al. (2024). In recent years, the availability of various modalities (e.g., text Li et al. (2020), images 035 Lalam et al. (2023), sensor data Zurita et al. (2017), graph Liu et al. (2024a)) coupled with traditional time series is increasing. Each modality contains both shared information that overlaps with other 037 modalities and unique information that may provide distinct insights Liang et al. (2024). Jointly modeling time series with other modalities offers richer insights for decision-making. For example, in medical applications, electroencephalogram (EEG) signals capture physiological activity, while 040 clinical records provide health history. Analyzing only symptoms may suggest epilepsy but can't 041 specify seizure types, while EEGs detect abnormal activity but lack personal context. Integrating 042 both modalities can improve diagnostic precision and rationality. A key challenge in time series 043 multimodal learning is to effectively represent and exploit the complementarity and interactions of 044 different modalities Guo et al. (2019).

Recently, large-scale pre-trained language models (LMs) have shown exceptional proficiency in understanding sequential data Chang et al. (2023); Gruver et al. (2024), sparking interest in integrating them into time series multimodal learning Deldari et al. (2022); Ye et al. (2024). Several contrastive learning-based works leverage language models as encoders to extract meaningful representations of text modality, which in turn guide the pre-training of time series encoder but are not present during the inference stage Liu et al.; Yu et al. (2024); King et al. (2023). For instance, METS Li et al. (2024) utilizes a frozen clinical LM to derive embeddings from clinical reports, aligning them with ECG embedding through contrastive learning to enhance ECG signal. And only ECG encoder provides decision for inference. Other prompt-based works not only utilize a frozen LM as a text modality encoder, but also fine-tune another LM as a brain to process the fused multimodal input Jia et al.

Figure 1: (a) Different time series multimodal modeling paradigms. (b) Unimodal classification
 results on the PTB-XL dataset (5 classes), using LSTM for temporal classification and BERT for
 textual classification. The circled samples are misclassified by one modality but corrected by another,
 demonstrating the complementary information of different modalities.

(2024); Liu et al. (2024b); Cheng et al. (2024); Chan et al. (2024). Specifically, text modality is treated as a prompt of the time series modality to guide LLM's reasoning on the temporal input. For instance, Time-LLM Jin et al. (2023) assembles dataset descriptions, task instructions, and data statistics into a text prompt to facilitate LM's understanding of time series data.

072 In these LM-based multimodal works, time series is typically considered the primary modality, 073 being more relevant for decision-making, while text serves as an auxiliary modality to enhance the 074 time series embedding, either by projecting textual knowledge into the time series encoder using 075 contrastive learning or by guiding LM with a textual prompt to generate more contextually appropriate 076 responses for temporal inputs. We classify these approaches as temporal-primary multimodal models. 077 However, in some cases, the textual information is no less important than temporal information. As 078 shown in Figure 1 (b), we conduct a unimodal classification experiment on the PTB-XL ECG dataset 079 and find that 18.8% of samples are correctly classified by the text modality but misclassified by the time series modality, while 13.1% shows the reverse. This highlights the complementarity of the two modalities and suggests that the text modality contains even more unique task relevant information. In 081 these cases, viewing text modality as auxiliary may introduce bias and fail to capture essential textual information while a text-primary perspective could enable a more comprehensive understanding of 083 the informative content provided by the text. 084

085 To fully exploit the complementarity and mutual benefits of different modalities, we propose a novel textual-temporal multimodal learning paradigm to integrate both temporal-primary and textualprimary perspectives (as shown in Figure 1 (a)). However, to effectively construct LM-based approach 087 of such paradigm is technically non-trivial. The most straightforward solution is to train a LM-based 880 submodel separately for each perspective. Nevertheless, there remain two-fold challenges: First, considering LMs involved, two separately trained submodels suffer non-negligible computational 090 costs. Second, the integration of submodels and the design of single submodels should fuse the two 091 modalities from different perspectives to sufficiently capture both shared and unique information 092 from each modality. Note that the naive multimodal concatenation at LM input layer of existing works is difficult to extract high-level multimodal semantics. 094

To address the aforementioned challenges, we propose DualTime, a multimodal language model 095 for time series representation learning, consisting of a temporal-primary multimodal adapter and 096 a textual-primary multimodal adapter to effectively explore the complementary information in multimodal input. Under dual adapter design, each modality has the chance to serve as the primary 098 modality and get improved by the other modality. Within each adapter, multimodal fusion is 099 achieved by injecting learnable adaptation tokens into the top layers to extract high-level multimodal 100 semantics. Furthermore, both adapters share the same LM backbone to reduce computational 101 resources. Meanwhile, we keep the majority of LM's parameters frozen to make different modalities 102 benefit from its pre-trained knowledge. We update only a small portion of LM's parameters, adapting it to our task while enabling efficient fine-tuning. In addition, by pipeline sharing, the modality 103 alignment of different adapters could be accomplished. Our main contributions are as below: 104

105

106 107 • We are the first to propose a textual-temporal multimodal learning paradigm that treats both modalities equally. This paradigm fully leverages the rich complementary semantics of time series and text modality and captures the intricate interaction across different modalities.

Figure 2: DualTime architecture. It consists of dual adapters to model time series and text as primary modality respectively. Dual adapters share the same LM parameters to reduce computational cost and realize adapter alignment. The LM's pre-trained knowledge is preserved by adopting a zero-initialized gating strategy. The high-level cross-modal fusion is achieved by injecting trainable adaptation tokens in the top layers of LM within each adapter.

- We propose **DualTime**, a dual-adapter language model for time series multimodal representation learning. Each adapter performs the mutual integration of time series and text modalities by introducing learnable tokens into the top layers of the LM backbone, facilitating high-level multimodal semantic fusion. The shared LM pipeline allows both adapters to leverage the pre-trained knowledge and achieves more efficient fine-tuning.
- **DualTime** demonstrates superior performance on public real-world datasets, showing its strong generalization and transferability. Notably, it achieves an average improvement of 7% in accuracy and 15% in F1 score under supervised learning. The code of DualTime is provided in the supplementary materials.

141 2 METHODOLOGY

In this work, we focus on sample-level time series multimodal data. Specifically, each sample is a time-text pair (e.g., ECG signal and its coupled clinical report). The whole dataset is denoted as $\mathcal{S} = \{(X_1, S_1), (X_2, S_2), ..., (X_N, S_N)\}$, where $X_i \in \mathbb{R}^{T \times d}$ denotes a *d*-dimension multivariate time series modality with length *T* and S_i denotes the paired textual modality. For simplicity, we omit the sample indicator subscript in the following.

In summary, to fully utilize the complementary information of different modalities, DualTime consists of two multimodal adapters, namely a textual-primary multimodal adapter, and a temporal-primary multimodal adapter. Each adapter treats one modality as the primary modality and enhances it with the other modality. Both adapters share the same frozen pre-trained language model with L layers. Each adapter implements multimodal fusion in the topmost M ($M \le L$) transformer blocks of the language model. The shared language model backbone facilitates efficient fine-tuning and encourages the dual adapters' embedding space alignment.

154 155

131

132

133

134

135

136

137

138

139

140

2.1 TEXTUAL-PRIMARY MULTIMODAL ADAPTER

Processed by the textual tokenizer, the text input can be modeled by I^s -length word tokens with embedding $E_s \in \mathbb{R}^{I^s \times D}$, where D is the hidden dimension. For the first L - M transformer layers, they are standard transformer layers. The forward process of layer-l is:

159
160
$$\tilde{\boldsymbol{H}}_{s}^{l-1} = \mathrm{LN}\left(\mathrm{MHA}\left(\boldsymbol{W}_{q}^{l}\boldsymbol{H}_{s}^{l-1}, \boldsymbol{W}_{k}^{l}\boldsymbol{H}_{s}^{l-1}, \boldsymbol{W}_{v}^{l}\boldsymbol{H}_{s}^{l-1}\right)\right) + \boldsymbol{H}_{s}^{l-1}, \tag{1}$$

$$\boldsymbol{H}_{s}^{l} = \mathrm{LN}\left(\mathrm{MLP}\left(\tilde{\boldsymbol{H}}_{s}^{l-1}\right)\right) + \tilde{\boldsymbol{H}}_{s}^{l-1},\tag{2}$$

166 167

168

169

176 177 178

179

181 182

183

192 193

200

where H_s^l is the output of layer-*l* with $H_s^0 = E_s$, MHA, LN, MLP denote the multi-head attention, the layer normalization, and the multi-layer perception, respectively. To obtain the query, key, value matrics at layer-*l*, W_q^l , W_k^l , W_v^l are parameterized by the pre-trained language model. Meanwhile, the attention operation Attention is defined by:

Attention
$$(\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V}) = \operatorname{softmax} \left(\boldsymbol{Q} \boldsymbol{K}^T / \sqrt{d_k} \right) \boldsymbol{V},$$
 (3)

where Q, K, V are corresponding query, key, and value matrices, d_k is the dimension of key.

Furthermore, we follow the adapter architecture in Zhang et al. (2023a) and utilize a lightweight adapter mechanism to achieve multimodal modeling at the topmost M transformer blocks. Specifically, we adopt learnable length-P adaptation tokens T_s^l at each multimodal fusion layer $l(L - M + 1 \le l \le L)$, where the adaptation tokens $T_s^l \in \mathbb{R}^{P \times D}$ have the same dimension as language model. As to the secondary temporal modality, a trainable temporal encoder and a cross-modal projector are utilized to transform the time series input into the language model embedding space:

$$\boldsymbol{Z}_{s} = \operatorname{Projector}\left(\operatorname{TemEncoder}\left(\boldsymbol{X}\right)\right). \tag{4}$$

The temporal encoder can be any time-series encoder that best fits the specific datasets, while the projector is a linear layer responsible for dimension transformation. For decreasing the computational cost, different multimodal fusion layers will share the same temporal embedding. Thus, the adaptation tokens of textual-primary multimodal adapter will be calculated by:

$$\tilde{T}_s^l = T_s^l + Z_s. \tag{5}$$

(8)

(9)

For the topmost M transformer layers, the multimodal forward process is formalized as:

$$\tilde{\boldsymbol{H}}_{s}^{l-1} = \mathrm{LN}\left(\mathrm{MHA}\left(\boldsymbol{W}_{q}^{l}\boldsymbol{H}_{s}^{l-1}, \boldsymbol{W}_{k}^{l}\boldsymbol{H}_{s}^{l-1}, \boldsymbol{W}_{v}^{l}\boldsymbol{H}_{s}^{l-1}\right)\right) + \boldsymbol{H}_{s}^{l-1},\tag{6}$$

$$\hat{\boldsymbol{H}}_{s}^{l-1} = \mathrm{LN}\left(\mathrm{MHA}\left(\boldsymbol{W}_{q}^{l}\boldsymbol{H}_{s}^{l-1}, \boldsymbol{W}_{k}^{l}\tilde{\boldsymbol{T}}_{s}^{l}, \boldsymbol{W}_{v}^{l}\tilde{\boldsymbol{T}}_{s}^{l}\right)\right) + \boldsymbol{H}_{s}^{l-1},\tag{7}$$

$$\boldsymbol{H}_{s}^{l} = \mathrm{LN}\left(\mathrm{MLP}\left(\mathrm{Gate}^{l}\hat{\boldsymbol{H}}_{s}^{l-1} + \tilde{\boldsymbol{H}}_{s}^{l-1}\right)\right) + \left(\mathrm{Gate}^{l}\hat{\boldsymbol{H}}_{s}^{l-1} + \tilde{\boldsymbol{H}}_{s}^{l-1}\right).$$

In particular, combined with the pre-trained projection matrices W_k^l , W_v^l , the learnable adaptation tokens will serve as key, value matrices of the multi-head attention layer. In Equation (8), we perform a zero-initialized gating strategy to achieve multimodal adaptation token fusion Zhang et al. (2023a). Gating parameter *Gate^l* will be initialized as zero at the beginning of training, the multimodal adaptation tokens will be injected gradually, which can preserve the pre-trained knowledge and capacities of LMs.

201 2.2 TEMPORAL-PRIMARY MULTIMODAL ADAPTER

202 Considering the sequential property of time series, the temporal-primary multimodal adapter takes 203 the time series data as the language model input. We utilize the common patching strategy for time series modeling in related works Nie et al. (2022); Zhou et al. (2024). Several adjacent timestamps 204 will be assembled as a token, which can provide local semantic information within a time series. 205 For a pre-defined patch size p and stride s, the time series input $X \in \mathbb{R}^{T \times d}$ can be reorganized as 206 $\tilde{X} \in \mathbb{R}^{T_s \times (p \times d)}$, where $T_s = \left\lceil \frac{T-p}{s} \right\rceil + 1$ is the number of temporal tokens. Subsequently, we utilize 207 208 a projector (i.e. linear layer) to adjust the dimension of temporal tokens. The adjusted temporal token 209 can be denoted as E_t ($E_t \in \mathbb{R}^{T_s \times D}$). 210

With $H_t^0 = E_t$ as the input of the first transformer layer, the model forward process will be similar to the ones introduced in Section 2.1, e.g., Equation (1-2) and Equation (5 - 8).

Differently, for the secondary text input, we use a pre-trained BERT Devlin et al. (2018) model as a text encoder (similar to the temporal encoder in Equation (4)) to extract textual information:

215
$$Z_t = \operatorname{Proj}(\operatorname{BERT}(S)).$$

216 2.3 PRE-TRAINED LANGUAGE MODEL PARAMETERS SHARING

217 Aided by our dual adapter model design, most of the pre-trained language model parameters (e.g., 218 the attention weight matrices W_q, W_k, W_v , and the MLP layer of each transformer block) could 219 be shared by both textual-primary multimodal adapter and temporal-primary multimodal adapter. 220 On the one hand, the frozen parameters could preserve the knowledge and sequential modeling 221 capacities of the language model. On the other hand, since most of the parameters in our proposed 222 adapters are shared, there is only a minimal increase in the training parameters compared to a single 223 adapter. This ensures complementary modeling between the two modalities while still allowing 224 for efficient fine-tuning. Additionally, by sharing the same LM pipeline, the embedding spaces of different adapters are easily aligned, further facilitating the integration of dual adapters. 225

226 2.4 TRAINING LOSS

240 241

248 249 250

251 252 253

254

255 256

257

264

265

Supervised Learning. For supervised classification, we add the last transformer layer output of each adapter together to obtain the final multimodal representation. Then, an extra linear classifier and the cross-entropy loss are used for supervised training.

Unsupervised Representation Learning. For unsupervised representation learning, we adopt the contrastive learning paradigm. In particular, for data augmentation, we add random Gaussian noise to the original input. The noise-corrupted sample and its original sample are a positive pair within each adapter. We denotes $H_s^{'L}$ as the augmentation of H_s^L , and $H_t^{'L}$ as the augmentation of H_t^L . The contrastive loss could be divided into two parts, within-adapter contrastive loss and cross-adapter contrastive loss.

Formally, by maximizing the agreement between positive pairs and minimizing the similarity between negative pairs (i.e., different input instances), in a mini-batch with size *B*, the within-adapter contrastive losses are

$$\mathcal{L}_{s} = -\sum_{i=1}^{B} \log \frac{\exp\left(\sin\left(\boldsymbol{H}_{s,i}^{L}, \boldsymbol{H}_{s,i}^{'}\right)/\tau\right)}{\sum_{k=1}^{B} \mathbb{1}_{[k\neq i]} \exp\left(\sin\left(\boldsymbol{H}_{s,i}^{L}, \boldsymbol{H}_{s,k}^{L}\right)/\tau\right)}, \quad \mathcal{L}_{t} = -\sum_{i=1}^{B} \log \frac{\exp\left(\sin\left(\boldsymbol{H}_{t,i}^{L}, \boldsymbol{H}_{t,i}^{'}\right)/\tau\right)}{\sum_{k=1}^{B} \mathbb{1}_{[k\neq i]} \exp\left(\sin\left(\boldsymbol{H}_{t,i}^{L}, \boldsymbol{H}_{t,k}^{L}\right)/\tau\right)}, \quad (10)$$

where $\mathbb{1}_{[k \neq i]}$ is the indicator function and τ is the temperature parameter, $\sin(\cdot, \cdot)$ is the dot product between two ℓ_2 -normalized vectors.

The cross-adapter contrastive learning assumes that the embeddings from two adapters for one temporal-textual input pair should be similar. Concurrently, embedding from different instances should be considered negative pairs. In this vein, the cross-adapter contrastive loss is given by:

$$\mathcal{L}_{cross} = -\sum_{i=1}^{B} \left(\log \frac{\exp\left(\sin\left(\boldsymbol{H}_{s,i}^{L}, \boldsymbol{H}_{t,i}^{L}\right)/\tau\right)}{\sum_{k=1}^{B} \mathbb{1}_{[k\neq i]} \exp\left(\sin\left(\boldsymbol{H}_{s,i}^{L}, \boldsymbol{H}_{t,k}^{L}\right)/\tau\right)} + \log \frac{\exp\left(\sin\left(\boldsymbol{H}_{t,i}^{L}, \boldsymbol{H}_{s,i}^{L}\right)/\tau\right)}{\sum_{k=1}^{B} \mathbb{1}_{[k\neq i]} \exp\left(\sin\left(\boldsymbol{H}_{t,i}^{L}, \boldsymbol{H}_{s,k}^{L}\right)/\tau\right)} \right).$$
(11)

The overall loss function of unsupervised representation learning is given by:

$$\mathcal{L}_{unsup} = \mathcal{L}_s + \mathcal{L}_t + \mathcal{L}_{cross}.$$
 (12)

Note that for the variants of DualTime, namely DualTime (Time) and DualTime (Text), we only adopt the within-adapter contrastive loss for training.

3 EXPERIMENTS

The main research questions of this work are Q1: How well does DualTime perform in learning
high-quality representations with supervision signals? (Section 3.2) Q2: How capable is DualTime in
generating general representations under unsupervised learning? (Section 3.4) Q3: How adaptable is
DualTime while conducting few-shot learning? (Section 3.3) Additionally, we conduct experiments
on ablation study, textual encoder testing, sensitivity analysis, and efficiency evaluation, providing
deeper insights into the model's mechanisms, robustness and superiority.

3.1 EXPERIMENTAL SETUP

Datasets All experiments are conducted on publicly available real-world multimodal time series datasets: the PTB-XL electrocardiogram (ECG) dataset Wagner et al. (2020) and the TUSZ electroencephalogram (EEG) dataset Shah et al. (2018). (1) PTB-XL ¹: This dataset consists of 12-lead

¹https://physionet.org/content/ptb-xl/1.0.3/

Table 1: Supervised Learning. DualTime achieves an average improvement of 7% in Acc. and
15% in F1 across all experiments. The best results are in **bold** while the second and third best are
in <u>underlined</u>. "Acc.", "Pre.", and "Rec." represent accuracy, precision and recall respectively. All
LM-based models are highlighted in grey.

274							РТВ	-XL							ΤU	JSZ				Ave	rage
275		Modality	Model		Dete	ction			Classif	ication			Dete	ction			Classif	ication			age
070				Acc.	Pre.	Rec.	Fl	Acc.	Pre.	Rec.	F1	Acc.	Pre.	Rec.	Fl	Acc.	Pre.	Rec.	F1	Acc.	Fl
276			LSTM	0.68	0.60	0.48	0.48	0.67	0.63	0.50	0.52	0.76	0.53	0.54	0.54	0.58	0.44	0.27	0.26	0.67	0.45
277			LightTS	0.68	0.46	0.46	0.45	0.67	0.59	0.48	0.50	0.74	0.59	0.63	0.59	0.76	0.75	0.72	0.71	0.71	0.56
			Dlinear	0.68	0.59	0.55	0.34	0.59	0.40	0.44	0.45	0.74	0.55	0.55	0.54	0.71	0.72	0.58	0.58	0.08	0.55
278			Pyraformer	0.76	0.66	0.59	0.58	0.66	0.56	0.49	0.51	0.84	0.47	0.50	0.47	0.75	0.77	0.67	0.72	0.75	0.57
	* * * *		ETSformer	0.72	0.63	0.57	0.55	0.54	0.45	0.38	0.40	0.79	0.53	0.53	0.53	0.73	0.70	0.66	0.66	0.70	0.54
279	LM-free Model	Time	Autoformer	0.72	0.56	0.56	0.54	0.62	0.47	0.44	0.44	0.79	0.52	0.51	0.51	0.70	0.64	0.64	0.61	0.71	0.53
000	would		Crossformer	0.66	0.58	0.51	0.53	0.65	0.55	0.48	0.50	0.79	0.50	0.51	0.50	0.72	0.71	0.58	0.58	0.71	0.53
280			FEDformer	0.67	0.57	0.50	0.51	0.65	0.53	0.47	0.49	0.76	0.57	0.58	0.57	0.68	0.48	0.54	0.48	0.69	0.51
001			Informer	0.67	0.59	0.51	0.52	0.67	0.59	0.51	0.52	0.82	0.57	0.55	0.55	0.77	0.74	0.69	0.71	0.73	0.58
281			Reformer	0.69	0.56	0.53	0.54	0.65	0.53	0.48	0.49	0.84	0.52	0.50	0.48	0.74	0.75	0.61	0.66	0.73	0.54
202			DatahTET	0.50	0.42	0.50	0.57	0.54	0.39	0.51	0.29	0.80	0.50	0.50	0.49	0.75	0.75	0.59	0.61	0.00	0.44
202		l	Fatch151	0.78	0.70	0.02	0.02	0.74	0.09	0.39	0.02	0.75	0.54	0.55	0.54	0.70	0.05	0.39	0.57	0.74	0.39
283		Time	GPT4TS	0.71	0.58	0.52	0.53	0.59	0.46	0.45	0.45	0.78	0.48	0.48	0.48	0.71	0.73	0.60	0.64	0.70	0.53
		Text	GPT2	0.72	0.65	0.56	0.58	0.73	0.65	0.61	0.62	0.72	0.49	0.49	0.50	0.64	0.69	0.53	0.58	0.70	0.57
284		Teat	BERT	0.70	0.64	0.51	0.53	0.73	0.65	0.59	<u>0.62</u>	0.72	0.49	0.49	0.49	0.59	0.45	0.39	0.40	0.69	0.51
005	LM-based		Llama 3	0.73	0.60	0.60	0.60	0.74	0.69	0.56	0.55	0.72	0.63	0.63	0.63	0.66	0.62	0.47	0.47	0.71	0.56
285	Model		ChinicalBERT	0.75	0.57	0.54	0.55	0.74	0.69	0.56	0.55	0.72	0.65	0.08	0.00	0.07	0.30	0.64	0.45	0.72	0.54
006		Time	TimeLLM	0.69	0.60	0.48	0.47	0.67	0.59	0.46	0.48	0.75	0.51	0.51	0.51	0.69	0.70	0.50	0.47	0.70	0.48
200		+	UniTime	0.67	0.33	0.42	0.37	0.64	0.54	0.43	0.44	0.79	0.54	0.53	0.53	<u>0.77</u>	0.78	0.71	0.71	0.72	0.51
287		Text	GP14M1S	0.72	0.59	0.60	0.59	0.65	0.48	0.50	0.48	0.82	0.64	0.63	0.63	0.70	0.72	0.60	0.53	0.72	0.55
201			DualTime (Time)	0.72	0.61	0.55	0.54	0.68	0.58	0.53	0.53	0.83	0.61	0.57	0.58	0.72	0.74	0.60	0.59	0.74	0.56
288			DualTime (Text)	0.82	0.75	0.74	0.74	<u>0.76</u>	0.69	0.63	0.65	0.82	0.65	0.66	0.65	0.78	0.74	0.72	0.73	0.79	0.69
			DualTime	0.83	0.77	0.75	0.76	0.80	0.74	0.73	0.73	0.84	0.69	0.69	0.69	0.79	<u>0.77</u>	0.80	0.78	0.82	0.74
289																					

290 ECG signals, which capture the electrical activity of the heart, along with clinical reports describing 291 signal characteristics without diagnostic labels. PTB-XL provides two label sets: a coarse-grained 292 label set for disease detection (4 classes) and a fine-grained label set for specific disease classification 293 (5 classes). (2) TUSZ v1.5.2²: The Temple University Seizure Corpus (TUSZ) is a large-scale 294 dataset of EEG signals that record the electrical activity of the brain. It includes 19-channel EEG 295 recordings and the clinical history for each patient session. Similar to PTB-XL, TUSZ offers two 296 label sets: a coarse-grained label set for distinguishing seizure and non-seizure EEG signals, and a fine-grained label set for seizure type classification, comprising 5 classes. More details about the 297 datasets, including the label sets, data splits, and preprocessing steps, are provided in Appendix A.1. 298

299 Baselines Representative baselines are selected to ensure sufficient experiments. (1) Unimodal 300 LM-free methods: MLP-based models (LightTS Zhang et al. (2022), DLinear Zeng et al. (2023)); 301 RNN-based models (LSTM Hochreiter and Schmidhuber (1997)); CNN-based models (TimesNet 302 Wu et al. (2022), TS2Vec Yue et al. (2022), TS-CoT Zhang et al. (2023b)); Transformer-based models (Pyraformer Liu et al. (2021), ETSformer Woo et al. (2022), Autoformer Wu et al. (2021), 303 Crossformer Zhang and Yan (2022), FEDformer Zhou et al. (2022), Informer Zhou et al. (2021), 304 Reformer Kitaev et al. (2020), iTransformer Liu et al. (2023), PatchTST Nie et al. (2022), TS-TCC 305 Eldele et al. (2021)). (2) Unimodal LM-based methods: BERT Devlin et al. (2018), GPT-2 Radford 306 et al. (2019), GPT4TS Zhou et al. (2024). (3) Multimodal LM-based methods: TimeLLM Jin et al. 307 (2023), UniTime Liu et al. (2024b), GPT4MTS Jia et al. (2024) for supervised learning; METS Li 308 et al. (2024), MERL Liu et al. for unsupervised learning. (4) DualTime variants: DualTime (Time) 309 for temporal-primary multimodal adapter, *DualTime (Text)* for textual-primary multimodal adapter. 310 Note that for GPT-2 or BERT, we use textual embeddings generated by them and then train a linear 311 classifier from scratch for the downstream task.

312 Implementations DualTime adopts a frozen GPT-2 as the backbone. In the textual-primary mul-313 timodal adapter, the tokenizer is from GPT-2. To avoid heavy computational costs, we choose a 314 lightweight CNN-based model as temporal encoder, which consists of three conv-blocks and each 315 with three CNN layers. We train it from scratch to adapt it to our tasks. In the temporal-primary 316 multimodal adapter, a frozen BERT serves as a textual encoder. All hidden dimensions are set to 768 317 to match the dimension of the backbone (i.e. GPT-2). The value of multimodal fusion layers M is 11 318 and adaptation token length P is 5. Sensitivity analysis of these parameters is in the Appendix A.6. 319 Time series patching size and stride are all 25. Adam is adopted as the optimizer Kingma (2014). All experiments are implemented by PyTorch Framework with a NVIDIA A6000 (48G) GPU. 320

- 321
- 322 323

²https://isip.piconepress.com/projects/nedc/html/tuh_eeg/

324 3.2 SUPERVISED LEARNING

We add a linear classifier as the output layer of DualTime to verify its ability to learn high-quality 326 representations with supervision signals. As shown in Table 1, (1) Time-only models perform 327 better than text-only models, achieving second best in most experiments. PatchTST significantly 328 outperforms other baselines in PTB-XL. This indicates that time series model can better capture 329 decision-relevant information than the textual models on average. (2) Compared with text-only 330 BERT and GPT-2, DualTime (Text) enhances text modality with time series data and demonstrates 331 noticeable improvements, underscoring the importance of integrating time series in the textual-332 primary model. (3) Among multimodal approaches based on LMs, UniTime and GPT4MTS exhibit similar performance, outperforming TimeLLM by a 2% accuracy improvement. This performance 333 gap may be due to the differences in their fine-tuning strategies. While TimeLLM relies on a frozen 334 LLM, UniTime and GPT4MTS employ parameter-efficient fine-tuning techniques. (4) DualTime 335 significantly outperforms these LM based multimodal methods by 10% accuracy improvement. This 336 discrepancy likely arises from their temporal-primary paradigm, which overlooks critical information 337 in the text modality. In contrast, DualTime integrates both temporal-primary and textual-primary 338 perspectives, allowing for a more comprehensive understanding of the multimodal interactions among 339 different modalities. (5) DualTime (Text) generally outperforms DualTime (Time), likely due to 340 the backbone GPT-2's stronger capability in processing text compared to time series. (6) DualTime 341 achieves the best performance, improving accuracy by 7% and F1 by 15% on average.

342 343

344

3.3 FEW-SHOT LEARNING FOR LABEL TRANSFER

345 To evaluate the transferability of learned representations under 346 supervised learning setting, we introduce a Few-shot Label 347 Transfer framework, which facilitates in-dataset transfer between label sets with different granularity (as illustrated in 348 Figure 3). It is common in real-world applications that coarse-349 grained labels, such as the presence of a disease, are typically 350 easier and less expensive to acquire, whereas fine-grained la-351 bels, like specific disease types, often require more effort and 352 resources to obtain. In this framework, we first pre-train the 353 model on a dataset with coarse-grained yet abundant labels 354 (e.g., disease detection) and then fine-tune it using fine-grained 355 but limited labels (e.g., disease classification). More specifi-356 cally, after supervised learning on coarse-grained dataset, we 357 freeze the pre-trained model parameters and train an additional 358 classifier using limited fine-grained labeled data for few-shot learning. We conduct {5, 10, 15, 20, 50, 100}-shot experiments 359 on all methods and the 5-shot results of DualTime is in Table 360 2. We further select several competitive baseline methods and 361

Figure 3: Illustration for Label Transfer. We first pre-train a model on dataset with coarsegrained but redundant labels, then fine-tune it on dataset with finegrained but limited labels.

show the performance with different shots in Figure 4(b) and leave other baselines in Appendix A.4.

363 364 5-shot time series samples might exhibit patterns captured by time-only models while GPT-366 2 and BERT struggle to effectively utilize the 367 few available textual samples. (2) Additionally, 368 DualTime (Time) surpasses DualTime (Text) on 369 PTB-XL and performs comparably on TUSZ, 370 suggesting that when samples are limited, the 371 time series modality is more important than the 372 text modality. (3) Despite training on only 5-373 shot samples, DualTime outperforms most base-374 lines across nearly all metrics, showcasing its ef-375 fectiveness in scenarios with limited data. (4) As the number of shots (K) increases, DualTime's 376 accuracy advantage progressively widens (as de-377 picted in Figure 4(b)).

As shown in Table 2, (1) Time-only models generally outperform text-only models. The limited 5-shot time series samples might exhibit pat-

Madality	Model		PTE	-XL			ΤU	SZ	
wouanty	Widdei	Acc.	Pre.	Rec.	F1	Acc.	Pre.	Rec.	F1
	LSTM	0.60	0.37	0.38	0.37	0.31	0.55	0.48	0.37
	TimesNet	0.50	0.33	0.32	0.29	0.34	0.26	0.21	0.20
	LightTS	0.22	0.24	0.25	0.20	0.33	0.39	0.44	0.33
	Dlinear	0.30	0.24	0.24	0.23	0.42	0.37	0.48	0.37
	Pyraformer	0.39	0.24	0.23	0.22	0.47	0.33	0.43	0.33
	ETSformer	0.46	0.33	0.24	0.21	0.44	0.53	0.33	0.32
Time	Autoformer	0.25	0.26	0.26	0.22	0.24	0.26	0.29	0.17
Time	Crossformer	0.39	0.32	0.35	0.31	0.51	0.34	0.36	0.35
	FEDformer	0.21	0.23	0.22	0.18	0.34	0.26	0.21	0.20
	Informer	0.47	0.35	0.35	0.34	0.24	0.33	0.21	0.17
	Reformer	0.32	0.38	0.27	0.25	0.34	0.30	0.31	0.24
	iTransformer	0.25	0.20	0.20	0.29	0.51	0.41	0.47	0.41
	PatchTST	0.45	0.38	<u>0.40</u>	0.38	0.34	0.21	0.31	0.19
	GPT4TS	0.20	0.20	0.20	0.18	0.45	0.42	0.49	0.38
Trent	GPT2	0.24	0.22	0.22	0.18	0.20	0.31	0.44	0.19
Text	BERT	0.45	0.34	0.33	0.32	0.24	0.35	0.32	0.24
T:	TimeLLM	0.49	0.28	0.33	0.30	0.29	0.33	0.26	0.25
Time	UniTime	0.46	0.32	0.34	0.30	0.54	0.32	0.31	0.44
Torrt	GPT4MTS	0.46	0.31	0.31	0.28	0.51	0.47	0.53	0.45
rext	DualTime (Time)	0.58	0.41	0.39	0.38	0.46	0.41	0.51	0.42
	DualTime (Text)	0.49	0.37	0.38	0.36	0.47	0.45	0.51	0.43
	DualTime	0.64	0.52	0.50	0.50	0.52	0.48	0.56	0.48

Table 3: Unsupervised Learning. 100% labeled data are used for linear classifier training. DualTime achieves an average 2% Acc and 2% F1 improvement, showing its powerful generalization on downstream tasks.

						РТВ	-XL							TU	SZ				Ave	rage
	Modality	Model		Dete	ction	F1	A	Classif	fication	E1		Dete	ction	E1		Classif	fication	E1		El
	1	TSTCC	Acc.	0.57	0.53	0.54	Acc.	0.56	0.48	F1	Acc.	0.51	0.50	F1 0.48	Acc.	0.44	0.51	F1 0.45	Acc.	F1
LM-free	Time	TS2vec	0.61	0.37	0.33	0.34	0.61	0.54	0.48	0.30	$\frac{0.74}{0.70}$	0.31	0.30	0.48	<u>0.70</u>	0.44 0.75	0.57	0.43	0.66	0.49
Model		TSCoT PatchTST	0.73	0.71 0.53	0.58 0.38	$\frac{0.60}{0.35}$	$\frac{0.75}{0.55}$	$\frac{0.68}{0.45}$	0.61 0.32	0.63 0.30	0.67	0.54 0.50	$\frac{0.57}{0.50}$	$\frac{0.53}{0.50}$	0.69 0.67	$\frac{0.76}{0.63}$	0.55 0.53	0.60 0.45	$\frac{0.71}{0.64}$	$\frac{0.59}{0.40}$
	Text	GPT2	0.72	0.65	0.56	0.58	0.73	0.65	0.61	0.62	0.72	0.49	0.49	0.50	0.64	0.69	0.53	0.58	0.70	0.57
		BERT	0.70	0.64	0.51	0.53	0.73	0.65	0.59	0.62	0.72	0.49	0.49	0.49	0.59	0.45	0.39	0.40	0.69	0.51
LM-based	Time	METS	0.74	0.66 0.71	0.57	0.58	0.71	0.64 0.70	0.57	0.60	0.65	0.55	0.59 0.62	0.53	0.57 0.70	0.46 0.89	0.26 0.46	0.20	0.67	0.48
Model	_+	DualTime (Time)	0.68	0.52	0.46	0.44	0.60	0.48	0.39	0.40	0.68	0.52	0.52	0.51	0.66	0.50	0.66	0.49	0.66	0.46
	Text	DualTime (Text) DualTime	0.72 0.75	0.66 0.68	0.55 0.59	0.57 0.62	0.73 0.77	0.66 0.71	0.63 0.65	0.64 0.67	0.70 0.75	0.50 0.60	0.50 0.57	0.50 0.58	0.70 0.75	0.58 0.60	0.77 0.79	0.60 0.60	$\frac{0.71}{0.75}$	0.58 0.62
0.8 VCCnuacy 9.0	GPT2	TSTCC TS = TS2vec Pa assification	0.8 0.7 0.7 0.7 0.7		METS MERL TUSZ CI	Du	ialTime ion		0.7 0.6 2 0.5 0.5 0.5 0.5 0.4 0.4	BERT TimesNe	et	- LSTM - Pyrafo lassifical	rmer		0.7 0.6 0.5 0.4		TimeL UniTim FUSZ Cla	LM	GPT4 DualT	MTS ime
0.8 500000 0.6 0.5	GPT2 BERT PTB-XL CI	** TSTCC -** TS ** TS2vec -** Pa assification ************************************	0.8 0.7 0.7 0.5		METS MERL TUSZ CI	Du lassificat	on 70 %)	90	0.7 0.6 Deno5 0.5 0.4 0.3	BERT TimesNe	et PTB-XL C	LSTM Pyrafc Pyrafc	rmer ion 50	Cro	0.7 0.6 0.5 0.4 0.3	er T	TimeL UniTin TUSZ Cla 15 K-s	LM	GPT4 Dual1	MTS Time

Figure 4: (a) Performance comparison for unsupervised representation learning with different proportions of labeled data on classification task. DualTime consistently performs best, especially in TUSZ. (b) Performance comparison for label transfer with different shots. DualTime shows the best performance on nearly all the shots. For small shots, its advantage is not significant while as the shot increases, the performance gap becomes obvious.

3.4 UNSUPERVISED LEARNING

To assess our model's ability to generate general representations without ground truth supervision, we conduct unsupervised experiments. Once unsupervised embeddings are obtained for all samples, varying proportions of labeled data, from 10% to 100%, are used to train a linear classifier. Figure 4 (a) illustrates the performance comparison among competitive unsupervised approaches with data proportions ranging from 10% to 90% on two datasets with fine-grained labels. Table 3 shows the results of 100% labeled data proportion. More detailed results can be found in Appendix A.3.

As shown in Table 3, (1) Similar to the results of supervised learning, time-only models generally outperform text-only models across all experiments, highlighting the importance of time series data. (2) While the multimodal model MERL slightly outperforms the best time-only model TSCoT, METS falls behind, suggesting that multimodal does not always surpass single modality. The effectiveness of multimodal fusion is crucial. (3) DualTime surpasses MERL in most experiments, emphasizing the advantages of our complementary textual-temporal multimodal design. (4) Overall, DualTime achieves an average accuracy improvement of 2% and consistently outperforms other baselines across varying data proportions in Figure 4 (a). This suggests that the representations learned by DualTime are more expressive and transferable, facilitating effective training even with limited labeled data.

Table 4: **Influence of Different Textual Encoders**. In general, BERT-based textual encoders demonstrate superior performance, with ClinicalBERT specifically for medical applications achieving the highest average accuracy.

		PTB							TUSZ										
Textual Encoder	Su	Supervised Learning			Uns	upervise	l Learr	ing	Su	pervised	Learni	ng	Uns	upervise	d Learı	ning	Average		
	Classi	ssification Detection			Classification Detection			Classification Detection				Classi	fication	Dete	ction				
	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	
DualTime (BERT)	0.83	0.76	0.81	0.74	0.75	0.62	0.77	0.67	0.84	0.69	0.79	0.78	0.75	0.58	0.75	0.60	0.79	0.62	
DualTime (RoBERTa)	0.83	0.76	0.80	0.73	0.74	0.61	0.76	0.66	0.87	0.61	0.79	0.74	0.75	0.49	0.74	0.64	0.78	0.60	
DualTime (ClinicalBERT)	0.83	0.76	0.81	0.75	0.77	0.65	0.77	0.58	0.87	0.68	0.79	0.75	0.76	0.57	0.74	0.62	0.80	0.62	
DualTime (GPT-2)	0.82	0.75	0.80	0.73	0.74	0.60	0.76	0.66	0.86	0.52	0.72	0.60	0.71	0.56	0.68	0.49	0.76	0.58	

Visualization To better visualize the learned representations, we use UMAP McInnes et al. (2018) to project the unsupervised representation learning results into 2D plots. (1) Figure 5 displays the embeddings of various encoders on PTB-XL, with labels assigned to different categories. TS2Vec (time-only) successfully identifies abnormal ECGs, while BERT (text-only) performs the worst by mixing all categories, illustrating the advantage of the time series modality. (2) Compared with BERT, DualTime (Text) can better distinguish abnormal ECG and normal ECG, indicating the effectiveness of two modalities over one modality. (3) Compared with DualTime (Time), DualTime (Text) has obviously better discriminative capacity, supporting the advantage of textual-primary modeling over temporal-primary modeling. (4) Overall, DualTime provides the most distinct representations, attributed to the benefit of complementary multimodal modeling.

448 449 450

451

432

433

440

441

442

443

444

445

446

447

3.5 EXPLORATIONS ON MODEL DESIGN

Ablation Study We ablate DualTime into DualTime (Time) and DualTime (Text). Specifically, 452 DualTime (Time) leverages the textual modality to enhance temporal modality modeling, while 453 DualTime (Text) treats the textual modality as primary and the temporal modality as secondary. 454 We evaluate their performances under all three settings, as shown in Table 1, 3, 2. (1) Generally 455 speaking, DualTime (Text) has a better performance than DualTime (Time) in supervised learning and 456 unsupervised learning. This suggests that the backbone language model (i.e. GPT-2) demonstrates 457 a better understanding of text compared with time series. (2) While DualTime (Time) outperforms 458 DualTime (Text) in PTB-XL 5-shot experiments (as shown in Table 2), possibly because the model 459 lacks sufficient understanding of limited textual data and temporal modality can provide more valuable 460 clues for decision-making. (3) Overall, DualTime consistently outperforms single adapter variants, 461 indicating the contributions of both adapters and highlighting the advantages of complementary textual-temporal paradigm over temporal-primary or textual-primary paradigm. 462

463 Multimodal Fusion Gating Analysis To better un-464 derstand how multimodal information is integrated 465 within each adapter, we present the multimodal adaptation token fusion gating parameters across different 466 transformer layers in Figure 6. (1) At the start of train-467 ing, there is no multimodal fusion due to the zero-468 initialized gating strategy. Gradually, the absolute 469 values of the gating parameters gradually increase, 470 indicating a growing level of multimodal fusion. (2) 471 We also observe that the gating parameter values are 472 higher in the initial layers (Layer 1 and 2) and the 473 final layers (Layer 10 and 11) compared to the mid-474 dle layers (Layer 5 and 6). This suggests that the 475 learnable adaptation tokens enhance multimodal inte-

Figure 6: Multimodal gating parameters of different transformer layers.

476 gration in initial layers, while deeper layers are likely adapted for different downstream tasks.

477 Textual Encoder Testing The current textual encoder used in the temporal-primary adapter of 478 DualTime is BERT. We investigate the impact of various textual encoders by examining the following 479 options: BERT, RoBERTa Liu (2019), ClinicalBERT Wang et al. (2023), and GPT-2. A simplified 480 version of the supervised and unsupervised experimental results are presented in Table 4. More 481 detailed results are in Appendix A.5. As shown in Table 4, BERT-based textual encoders (BERT, 482 RoBERTa, ClinicalBERT) consistently outperform GPT-2. This is likely due to GPT-2's primary 483 focus on text generation, while BERT and its variants excel in comprehending the entire textual input thanks to their masked language model training strategy. Notably, ClinicalBERT specifically 484 pre-trained on medical corpus achieves the highest performance among the tested variants. This 485 underscores the influence of the textual encoder's pre-trained knowledge on its comprehension of

textual modalities. Considering that the textual contents in the PTB-XL and TUSZ datasets are
 clinical reports, a domain-specific language model tailored for medical applications is more capable
 of accurately interpreting and analyzing medical textual inputs.

3.6 EFFICIENCY EVALUATION

To evaluate the computational costs, we choose the most competitive unimodal baselines (namely TimesNet and PatchTST) and LM-based multimodal approaches (i.e. UniTime and TimeLLM) to compare their efficiency regarding training time per epoch, total parameter size, trainable parameter size, and classification accuracy. Figure 7 shows an efficiency comparison on TUSZ.

Overall, DualTime features a moderate number of trainable parameters while exhibiting the best
downstream performance. (1) Compared to unimodal methods, DualTime has approximately 1.0
million trainable parameters—larger than PatchTST but significantly smaller than TimesNet, whose
complexity arises from its use of 2D convolution operations. (2) Additionally, DualTime employs a
frozen backbone shared between dual adapters and introduces learnable adaptation tokens, enabling
more efficient fine-tuning and effective multimodal fusion. Consequently, DualTime has the smallest
parameter count and the shortest training time among multimodal methods, highlighting its efficiency
and superior performance.

504 505 506

490

491 492

4 RELATED WORK

In this section, we discuss large language models (LLMs) based multimodal works involving both time series and text modalities input. Inspired by Baltrušaitis et al. (2018); Liang et al. (2024), we categorize them into two groups based on how they derive multimodal representation.

513 **Coordinated Representation** projects time series 514 and text modality into separate but coordinated 515 spaces, bringing them closer to enforce shared in-516 formation between modalities Liang et al. (2024). 517 This group, including METS Li et al. (2024), MERL 518 Liu et al., ESI Yu et al. (2024) and King et al. (2023), 519 adopts contrastive learning to align time series and 520 text modalities within a unified space. They leverage LLMs to obtain embedding representations of the 521 text modality, which then guide the pre-training of 522

Figure 7: Efficiency comparison on TUSZ. The dotted size represents the model trainable parameter size. DualTime is moderate in size but delivers the performance.

time series encoder, enhancing the quality and robustness of time series representation. For instance,
 MERL uses contrastive learning to improve ECG signals under clinical report supervision. However,
 during training, the contrastive learning often prioritizes shared semantics across modalities, neglect ing modality-specific information. In addition, in the inference stage, only the time series modality
 is present and the text modality is missing. Consequently, such framework depends on time series
 for decision. The unique and critical task-relevant information from text is overlooked, potentially
 leading to sub-optimal model performance.

Joint Representation projects both modalities into a shared semantic space and fuses them into a 530 single vector Guo et al. (2019). This vector is then fed into into a language model or transformer for 531 prediction. This group includes Time-LLM Jin et al. (2023), UniTime Liu et al. (2024b), GPT4MTS 532 Jia et al. (2024), InstructTime Cheng et al. (2024), MedTsLLM Chan et al. (2024) which implement 533 multimodal fusion by simply concatenating two modalities at the input layer of LLM. However, the 534 order of concatenation influences how LLMs integrate information from different modalities Liu et al. (2024b), resulting in varying cross-modal interactions. Specifically, these works treat the text 536 modality as a prompt prepended to time series modality to facilitate LLM's reasoning on temporal 537 inputs. For instance, UniTime places domain instruction as contextual identifiers before temporal representation to help LLM distinguish between different data sources and adjust its modeling strategy 538 accordingly. However, such sequential concatenation implies that the concatenated modalities are not equally important, making LLM focus more on time series.

All these LLM based multimodal works consider time series as the primary modality for decision making, with text serving as an auxiliary to enhance time series modeling. In contrast, DualTime
 allows each modality to act as primary modality through a dual-adapter multimodal language model,
 which can comprehensively capture the unique and shared semantics provided by different modalities.

545 5 CONCLUSION

544

555 556

557

565

566

573

574

580

581

546 In this paper, we propose a new textual-temporal paradigm for time series multimodal learning to delve 547 into the complementary modeling of different modalities. Under this paradigm, we design DualTime 548 with dual adapter design to achieve temporal-primary and textual-primary modeling. Within each 549 adapter, the high-level multimodal fusion is achieved via learnable token injection in the top layers of 550 language model. The pre-trained language model pipeline shared by both adapters enables fine-tuning 551 efficiency. Considering the significant performance gain, the extensive experiments demonstrate that 552 DualTime serves as an effective representation learner in both supervised and unsupervised settings. 553 Regarding the transferability of the model, we demonstrate the superiority of DualTime through few-shot label transfer experiments. 554

References

- Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
 A survey and taxonomy. *IEEE transactions on pattern analysis and machine intelligence*, 41(2):
 423–443, 2018.
- 561 Nimeesha Chan, Felix Parker, William Bennett, Tianyi Wu, Mung Yao Jia, James Fackler, and Kimia
 562 Ghobadi. Medtsllm: Leveraging llms for multimodal medical time series analysis. *arXiv preprint* 563 arXiv:2408.07773, 2024.
 - Ching Chang, Wen-Chih Peng, and Tien-Fu Chen. LLM4TS: Two-Stage Fine-Tuning for Time-Series Forecasting with Pre-Trained LLMs. In *arXiv:2308.08469*, 2023.
- Mingyue Cheng, Yiheng Chen, Qi Liu, Zhiding Liu, and Yucong Luo. Advancing time series
 classification with multimodal language modeling. *arXiv preprint arXiv:2403.12371*, 2024.
- Shohreh Deldari, Hao Xue, Aaqib Saeed, Jiayuan He, Daniel V Smith, and Flora D Salim. Beyond just vision: A review on self-supervised representation learning on multimodal and temporal data. *arXiv preprint arXiv:2206.02353*, 2022.
 - Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.
- 575
 576
 576
 576
 577
 578
 578
 579
 579
 579
 574
 575
 576
 577
 578
 579
 578
 579
 579
 574
 575
 575
 576
 576
 577
 578
 578
 579
 578
 579
 578
 579
 578
 579
 578
 579
 578
 579
 578
 579
 578
 578
 579
 578
 579
 578
 579
 578
 579
 578
 579
 578
 579
 578
 579
 578
 579
 578
 579
 578
 579
 578
 579
 578
 579
 578
 579
 578
 579
 578
 579
 579
 578
 579
 578
 579
 578
 579
 579
 578
 579
 579
 579
 579
 570
 570
 570
 571
 572
 574
 574
 575
 575
 576
 576
 577
 578
 578
 579
 579
 579
 570
 570
 570
 571
 571
 572
 572
 573
 574
 574
 574
 575
 575
 576
 576
 577
 578
 578
 578
 579
 579
 579
 570
 570
 571
 571
 572
 573
 574
 574
 574
 574
 574
 575
 576
 576
 577
 578
 578
 578
 578
 579
 578
 578
 578
 579
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 - Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot time series forecasters. *Advances in Neural Information Processing Systems*, 36, 2024.
- Wenzhong Guo, Jianwen Wang, and Shiping Wang. Deep multimodal representation learning: A survey. *Ieee Access*, 7:63373–63394, 2019.
- Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8): 1735–1780, 1997.
- Furong Jia, Kevin Wang, Yixiang Zheng, Defu Cao, and Yan Liu. Gpt4mts: Prompt-based large language model for multimodal time-series forecasting. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 23343–23351, 2024.
- Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-Ilm: Time series forecasting by reprogramming
 large language models. In *The Twelfth International Conference on Learning Representations*, 2023.

601

607

608

628

629

630

- Ryan King, Tianbao Yang, and Bobak J Mortazavi. Multimodal pretraining of medical time series and notes. In *Machine Learning for Health (ML4H)*, pages 244–255. PMLR, 2023.
- 597 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 598 2014.
- Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. *arXiv* preprint arXiv:2001.04451, 2020.
- Sravan Kumar Lalam, Hari Krishna Kunderu, Shayan Ghosh, Harish Kumar, Samir Awasthi, Ashim
 Prasad, Francisco Lopez-Jimenez, Zachi I Attia, Samuel Asirvatham, Paul Friedman, et al. Ecg
 representation learning with multi-modal ehr data. *Transactions on Machine Learning Research*, 2023.
 - Jun Li, Che Liu, Sibo Cheng, Rossella Arcucci, and Shenda Hong. Frozen language model helps ecg zero-shot learning. In *Medical Imaging with Deep Learning*, pages 402–415. PMLR, 2024.
- Qing Li, Jinghua Tan, Jun Wang, and Hsinchun Chen. A multimodal event-driven lstm model for
 stock prediction using online news. *IEEE Transactions on Knowledge and Data Engineering*, 33
 (10):3323–3337, 2020.
- Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency. Foundations & trends in multimodal machine learning: Principles, challenges, and open questions. *ACM Computing Surveys*, 56(10): 1–42, 2024.
- Che Liu, Zhongwei Wan, Cheng Ouyang, Anand Shah, Wenjia Bai, and Rossella Arcucci. Zero-shot
 ecg classification with multimodal learning and test-time clinical knowledge enhancement. In
 Forty-first International Conference on Machine Learning.
- Chenxi Liu, Sun Yang, Qianxiong Xu, Zhishuai Li, Cheng Long, Ziyue Li, and Rui Zhao. Spatial-temporal large language model for traffic prediction. *arXiv preprint arXiv:2401.10134*, 2024a.
- Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
 forecasting. In *International conference on learning representations*, 2021.
- Ku Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, and Roger Zimmermann.
 Unitime: A language-empowered unified model for cross-domain time series forecasting. In
 Proceedings of the ACM Web Conference 2024, 2024b.
 - Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint arXiv:1907.11692*, 2019.
- Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 itransformer: Inverted transformers are effective for time series forecasting. *arXiv preprint arXiv:2310.06625*, 2023.
- Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.
- Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2022.
- Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
- Vinit Shah, Eva Von Weltin, Silvia Lopez, James Riley McHugh, Lillian Veloso, Meysam Golmohammadi, Iyad Obeid, and Joseph Picone. The temple university hospital seizure detection corpus. *Frontiers in neuroinformatics*, 12:83, 2018.
- Nils Strodthoff, Temesgen Mehari, Claudia Nagel, Philip J Aston, Ashish Sundar, Claus Graff,
 Jørgen K Kanters, Wilhelm Haverkamp, Olaf Dössel, Axel Loewe, et al. Ptb-xl+, a comprehensive
 electrocardiographic feature dataset. *Scientific data*, 10(1):279, 2023.

648	
649	Siyi Tang, Jared A Dunnmon, Khaled Saab, Xuan Zhang, Qianying Huang, Florian Dubost, Daniel L
650	Rubin, and Christopher Lee-Messer. Self-supervised graph neural networks for improved elec-
654	troencephalographic seizure analysis. arXiv preprint arXiv:2104.08336, 2021.
1 60	Deters Trirat Vacin Chin Junhyack Kang Vaungaun Nam Jihya Na Minyaung Das Japan Kim
652	Patara Inirat, 100ju Sinin, Juninyeok Kang, Toungeun Nain, Jinye Na, Minyoung Dae, Joeun Kim,
653	Byungnyun Kim, and Jae-Gil Lee. Universal time-series representation learning: A survey. arXiv
654	preprint urxiv.2401.03717, 2024.
655	Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseliot, Dieter Kreiseler, Fatima II unze, Woiciech
656	Samek and Tohias Schaeffter Pth-yl a large publicly available electrocardiography dataset
657	Scientific data, 7(1):1–15, 2020.
658	
659	Guangyu Wang, Xiaohong Liu, Zhen Ying, Guoxing Yang, Zhiwei Chen, Zhiwen Liu, Min Zhang,
660	Hongmei Yan, Yuxing Lu, Yuanxu Gao, et al. Optimized glycemic control of type 2 diabetes with
661	reinforcement learning: a proof-of-concept trial. Nature Medicine, 29(10):2633-2642, 2023.
662	
663	Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential
664	smoothing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381, 2022.
665	
666	Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
000	with auto-correlation for long-term series forecasting. Advances in neural information processing
667	systems, 34:22419–22430, 2021.
668	Haivu Wu Tangga Hu Yong Liu Hang Zhou Jianmin Wang and Mingshang Long Timesnat
669	Temporal 2d variation modeling for general time series analysis. In <i>The algorith international</i>
670	conference on Learning representations 2022
671	conjerence on learning representations, 2022.
672	Jiexia Ye. Weigi Zhang, Ke Yi, Yongzi Yu, Ziyue Li, Jia Li, and Fugee Tsung. A survey of time
673	series foundation models: Generalizing time series representation with large language mode. arXiv
674	preprint arXiv:2405.02358, 2024.
675	
676	Han Yu, Peikun Guo, and Akane Sano. Ecg semantic integrator (esi): A foundation ecg model
677	pretrained with llm-enhanced cardiological text. arXiv preprint arXiv:2405.19366, 2024.
678	
679	Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
680	Bixiong Xu. Ts2vec: Towards universal representation of time series. In <i>Proceedings of the AAAI</i>
681	Conference on Artificial Intelligence, volume 36, pages 8980–8987, 2022.
682	Ailing Zong, Muxi Chan, Lai Zhang, and Qiang Xu. Are transformers offective for time series
683	forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 27, pages
69/	11121_11128 2023
60F	11121 11120, 2023.
600	Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Aoiun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu,
000	Hongsheng Li, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init
687	attention. arXiv preprint arXiv:2303.16199, 2023a.
688	
689	Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
690	more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. arXiv
691	preprint arXiv:2207.01186, 2022.
692	
693	weiqi Zhang, Jianteng Zhang, Jia Li, and Fugee Isung. A co-training approach for noisy time
694	series learning. In <i>Proceedings of the 32nd ACM International Conference on Information and</i>
695	nowleage management, pages 5508–5518, 20250.
696	Yunhao Zhang and Junchi Yan, Crossformer: Transformer utilizing cross dimension dependency
697	for multivariate time series forecasting. In The eleventh international conference on learning
698	representations 2022
699	Tepresentations, 2022.
700	Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
701	Informer: Beyond efficient transformer for long sequence time-series forecasting. In <i>Proceedings</i>
1.4.1	of the AAAI conference on artificial intelligence, volume 35, pages 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In International conference on machine learning, pages 27268-27286. PMLR, 2022. Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis by pretrained lm. Advances in neural information processing systems, 36, 2024. Daniel Zurita, Miguel Delgado, Jesus A Carino, and Juan A Ortega. Multimodal forecasting methodology applied to industrial process monitoring. IEEE Transactions on Industrial Informatics, 14(2):494-503, 2017.

756 A EXPERIMENTAL DETAILS

758 A.1 DATASETS

Dataset Details We show the summary of datasets in Table A.1 with dataset statistics and data splitting displayed. For PTB-XL, the coarse-grained labels divide the samples into four classes:
 Normal ECG, Borderline ECG, Abnormal ECG, Otherwise normal ECG Strodthoff et al. (2023), and the fine-grained labels refer to *Normal ECG, Conduction Disturbance, Myocardial Infarction, Hypertrophy*, and *ST/T change*. Similarly, the coarse-grained labels of TUSZ distinguish seizure and non-seizure EEG signals and the fine-grained labels provide further seizure classification: *combined focal (CF) seizures, generalized non-specific (GN) seizures, absence (AB) seizures, combined tonic (CT) seizures.*

Table A.1: Dataset statistics and data split for PTB-XL and TUSZ datasets.

	PT	TB-XL	Т	USZ
	Detection	Classification	Detection	Classification
Size of Training Set	17084	17084	7766	1924
Size of Validation Set	2146	2146	5426	446
Size of Test Set	2158	2158	8848	521
Number of Classes	4	5	2	4
Sequence Length	1000	1000	6000	6000
Number of Channels	12	12	19	19
Average Text Length	13.7	13.7	24.3	23.0

Dataset Examples PTB-XL dataset contains clinical 12-lead electrocardiograms (ECGs) and their corresponding reports. The clinical reports are automatically generated by the machine and have no diagnosis revealed. TUSZ dataset is the largest EEG seizure database containing 19-channel EEG signals and clinical notes of each patient, for example, clinical history, medications, etc. In this work, we take the clinical history as the experimental textual input. Furthermore, we show two examples for PTB-XL and TUSZ dataset in Figure A.1, respectively. Both time series data and textual data are displayed.

Data Pre-processing All the experiments are conducted on two real-world multimodal time series datasets: PTB-XL Wagner et al. (2020), TUSZ v1.5.2 Shah et al. (2018). PTB-XL contains 12-

lead electrocardiograms (ECGs) with paired clinical reports describing signal characteristics without
diagnosis labels. Following Li et al. (2024), all the non-English ECG reports in PTB-XL are translated
into English. TUSZ is a large-scale EEG seizure database containing 19-channel EEG signals and
clinical history for each session of patients. Following Tang et al. (2021), we process TUSZ to obtain
60-second EEGs for experiments. To avoid data imbalance, we randomly sample at most 8 normal
EEGs per patient for training. Both datasets offer two sets of labels: a coarse-grained label set for
disease detection and a fine-grained label set for disease classification.

818 A.2 EVALUATION METRICS

817

823 824 825

836

837

The evaluation metrics we consider in this paper include accuracy, precision, recall, f1-score. The
 calculation of these metrics is as follows. For multi-class classification, we report the macro average
 results.

• Accuracy:

Accuracy.	$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$
Precision:	$Precision = \frac{TP}{TP + FP}$
• Recall:	$\text{Recall} = \frac{TP}{TP + FN}$
• F1 Score:	$F1 = 2 \cdot \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$

Here, TP, TN, FP, and FN represent True Positives, True Negatives, False Positives, and False Negatives, respectively.

838 A.3 UNSUPERVISED LEARNING 839

840 A.3.1 UNSUPERVISED BASELINES

841 For the unsupervised baselines, we follow the codes in original papers to conduct our experiments. 842 Here is a more detailed introduction.TS2Vec is a universal framework based on contrastive learning 843 designed for learning representations of time series at arbitrary semantic levels. TSTCC is an 844 unsupervised time-series representation learning framework that leverages temporal and contextual 845 contrasting to extract meaningful representations from unlabeled data. TSCoT employs co-training based contrastive learning to derive representations through time series prototypes. PatchTST, a 846 Transformer-based model, supports both time series forecasting and self-supervised representation 847 learning and we implement its self-supervised code. METS and MERL utilize contrastive learning to 848 align time series and text modalities without requiring ground truth labels. The aligned time series 849 embeddings are then used to train downstream classifiers. For BERT and GPT-2, we extract textual 850 embeddings generated by these pre-trained language models as general-purpose representations. 851

A.3.2 FULL UNSUPERVISED LEARNING RESULTS

The complete unsupervised results of the representative methods, evaluated by training a linear classifier on labeled data subsets ranging from 10% to 90%, are shown in Figure A.2. A simplified version of these results appears in the main text as Figure 4(a). The results cover both classification and detection tasks across two datasets. Notably, DualTime consistently outperforms other methods across varying proportions of labeled data, with its performance remaining stable as the proportion changes. This suggests that the representations learned by DualTime generalize well, allowing effective classifier training even with very few labeled samples.

860

861 A.4 FEW-SHOT LEARNING

The full few-shot results with all the baseline methods compared will be shown in Figure A.3, whose corresponding simplified figure in the main text is Figure 4(b).

Figure A.2: Performance comparison for unsupervised representation learning with different proportions of labeled data. DualTime consistently performs best, especially in TUSZ classification perhaps due to the beneficial seizures history of patients.

Generally speaking, all models' classification accuracy generally shows a continuous growth trend as the setting of few-shot (K) increases. In particular, under conditions of few-shot scenarios with very limited samples (for example, 5-shot), the transfer performance of text encoders tends to be poor. We might attribute this to the fact that text encoders are trained in large, content-rich text corpora. Although they possess relatively general encoding capabilities, achieving good linear classification 882 results in few-shot scenarios is challenging. The temporal models show different behaviors on different datasets. For PTB-XL dataset, RNN-based models perform well, but former-based methods are more capable for TUSZ's label transfer. On the other hand, our proposed DualTime consistently outperforms the baseline methods on both two datasets. Even with a limited number of available training samples, our model is still able to achieve good classification performance. It substantiates that powered by language model and multimodal input, DualTime demonstrates effectiveness and robust transferability.

Figure A.3: Full results for label transfer with different few-shot settings.

Table A.2: Supervised learning of disease detection and classification on PTB-XL dataset.

		Detectio	n			Classificati	on	
	Accuracy	Precision	Recall	F1	Accuracy	Precision	Recall	F1
DualTime (BERT)	0.83	0.77	0.75	0.76	0.81	0.75	0.74	0.74
DualTime (RoBERTa)	0.83	0.77	0.75	0.76	0.80	0.75	0.73	0.73
DualTime (ClinicalBERT)	0.83	0.78	0.75	0.76	0.81	0.75	0.75	0.75
DualTime (GPT-2)	0.82	0.76	0.74	0.75	0.80	0.74	0.73	0.73

873

874

875 876 877

878

879

880

883

884

885

887

889

890

891

892

893

894

895

896

897

899 900

TEXTUAL ENCODERS TESTING A.5

911 We discuss the influence of different textual encoders by considering the following variants: BERT 912 Devlin et al. (2018), RoBERTa Liu (2019), ClinicalBERT Wang et al. (2023), and GPT-2 Radford et al. 913 (2019) as the DualTime textual encoder. The supervised and unsupervised experimental results are 914 reported in the following Table A.2, Table A.3, Table A.4 and A.5. We observe that the BERT-based 915 textual encoders (BERT, RoBERTa, ClinicalBERT) outperform GPT-2. This is likely because GPT-2 is more suited for text generation, while BERT and its variants have a better understanding of the 916 whole textual input due to their masked language model design. Among the variants, ClinicalBERT, 917 which is specifically developed for clinical notes, achieves the best performance.

		Detection	1		Classificati	on		
	Accuracy	Precision	Recall	F1	Accuracy	Precision	Recall	F1
DualTime (BERT)	0.75	0.68	0.59	0.62	0.77	0.71	0.65	0.67
DualTime (RoBERTa)	0.74	0.69	0.58	0.61	0.76	0.69	0.65	0.66
DualTime (ClinicalBERT)	0.77	0.71	0.62	0.65	0.77	0.70	0.66	0.58
DualTime (GPT-2)	0.74	0.67	0.58	0.60	0.76	0.68	0.64	0.66

Table A.3: Unsupervised learning of disease detection and classification on PTB-XL dataset.

Table A.4: Supervised learning of disease detection and classification on TUSZ dataset.

		Detection	n			Classificati	on	
	Accuracy	Precision	Recall	F1	Accuracy	Precision	Recall	F1
DualTime (BERT)	0.84	0.69	0.69	0.69	0.79	0.77	0.80	0.78
DualTime (RoBERTa)	0.87	0.76	0.59	0.61	0.79	0.77	0.74	0.74
DualTime (ClinicalBERT)	0.87	0.75	0.65	0.68	0.79	0.82	0.74	0.75
DualTime (GPT-2)	0.86	0.79	0.53	0.52	0.72	0.76	0.61	0.60

SENSITIVITY ANALYSIS A.6

As shown in Figure A.4, the performance of our model tends to improve with an increase in the number of multimodal fusion layers. While the length of adaptation tokens has a relatively small impact. Compared to adaptation token length P, the influence of multimodal fusion layers M is more evident.

A.7 FUSION STRATEGY OF DUALTIME

We conduct experiments on different fusion strategies for the auxiliary and primary modalities within each adapter. The table below A.6 presents the experimental results .

It can be observed that dynamic fusion through learnable adaptation tokens achieved the best performance, with an average accuracy of 82%. In contrast, simple concatenation had the poorest performance, with an average accuracy of 75%. likely because it is a static method without learnable parameters, leading to weak generalization capabilities.

The attention mechanism demonstrated the second-lowest performance, achieving an average accu-racy of 77%. While it improves upon simple concatenation by introducing a self-attention mechanism, it treats modality tokens almost equally, failing to emphasize the primary and secondary modali-ties effectively. This lack of distinction causes the textual-primary module and temporal-primary module become similar, making it more challenging for the model to extract the unique information contributed by each modality.

Weighted fusion performed second-best achieving 78% accuracy, perhaps because it can adaptively determine which modality is more important. However, weighted fusion may prioritize one modality over the other, potentially reducing the model's ability to fully extract valuable information from the less prioritized modality. This imbalance could limit the fusion's effectiveness in scenarios where both modalities contribute complementary and unique information. In contrast, the use of learnable adaptation tokens in two modules enforces a distinction between the primary and secondary modalities, guiding the model to focus more effectively on the primary modality. This approach helps the model learn non-overlapping information from each modality, leading to superior performance.

Table A.5: Unsupervised learning of disease detection and classification on TUSZ da

967			Detection	1			Classificati	on	
968		Accuracy	Precision	Recall	F1	Accuracy	Precision	Recall	F1
969	DualTime (BERT)	0.75	0.60	0.57	0.58	0.75	0.60	0.79	0.60
970	DualTime (RoBERTa)	0.75	0.51	0.51	0.49	0.74	0.72	0.65	0.64
971	DualTime (ClinicalBERT) DualTime (GPT-2)	0.76 0.71	0.58 0.60	0.57 0.56	0.57 0.56	$0.74 \\ 0.68$	0.70 0.61	0.65 0.52	0.62 0.49

Figure A.4: Hyperparameter study of multimodal fusion layers M and length of adaptation tokens P.

Table A.6: Fusion Strategy of Primary Modality and Auxiliary Modality

DualTime	PTB-XL								TUSZ								Avorago	
	Detection				Classification				Detection				Classification				Average	
	Acc.	Pre.	Rec.	F1	Acc.	Pre.	Rec.	F1 Ac	. Pr	e. R	ec.	F1	Acc.	Pre.	Rec.	F1	Acc.	F1
Adaptation Tokens	0.83	0.77	0.75	0.76	0.81	0.75	0.74	0.74 0.8	4 0.6	i9 0.	69	0.69	0.79	0.77	0.80	0.78	0.82	0.74
Simple Concatenation	0.76	0.72	0.60	0.62	0.73	0.67	0.58	0.61 0.7	9 0.6	64 0.	62	0.63	0.72	0.66	0.53	0.55	0.75	0.60
Attention Mechanism	0.77	0.72	0.61	0.63	0.75	0.70	0.64	0.66 0.7	9 0.6	6 0.	65	0.65	0.75	0.72	0.63	0.59	0.77	0.63
Weighted Fusion	0.79	0.74	0.65	0.69	0.76	0.71	0.63	0.66 0.8	1 0.6	is 0.	67	0.67	0.78	0.80	0.72	0.75	0.78	0.69

989 990 991

992

980

981 982

B DISCUSSION ABOUT MORE MODALITIES

Here, we discuss the extensibility of the core idea behind DualTime. While DualTime is primarily designed
for the time-series and text pair modality, our proposed
textual-temporal multimodal learning paradigm, which
treats modalities equally, can be extended to other combinations of two modalities or even to scenarios involving
more than two modalities.

For instance, some industrial scenarios can collect time series data generated by various sensors as well as images generated by industrial cameras for identifying potential product defects. In these cases, image modality can replace the text modality while time series modality remains unchanged. A similar framework can be designed to combine these two modalities by using a pre-trained vision model, such as ViT, as the encoder for the image modality, and real-acient the language model backbone with a large u

Figure A.5: Illustration of TripleTime

and replacing the language model backbone with a large visual pre-trained model.

1008 Further, such idea can be extended to more than two modalities. For instance, in addition to time 1009 series signals and textual operating logs, images from industrial cameras can help us identify potential 1010 defects. This scenario requires for the design of a "TripleTime" model. We can utilizes three adapters 1011 to consider multiple modalities simultaneously. As shown in Figure A.5, each adapter will have one primary modality and take the other two modalities as auxiliary inputs. Specifically, GPT-2-based 1012 adapters can be used for both temporal and textual inputs, while a pre-trained vision model can serve 1013 as the backbone for the visual-primary adapter. Learnable adaptation tokens will inject information 1014 from the other two modalities into the primary adapter. Thus, "TripleTime" can achieve simultaneous 1015 multimodal modeling for three different modalities. 1016

1017

1019

1018 C LIMITATIONS AND FUTURE WORKS

One limitation of our work is that, due to the availability of multimodal data, we have only been able
 to test our model on EEG and ECG datasets within the healthcare domain. For future work, we aim
 to incorporate additional multimodal datasets from other domains to evaluate the effectiveness and
 robustness of our model.

Another limitation is that our model can not handle datasets that have varying time series input lengths
 and channel configurations, which affects its ability to assess transferability across datasets with
 different settings. Additionally, our use of a data-specific linear output layer for classification limits

the model's capability for zero-shot learning across datasets with different class numbers or label
 semantics. In future work, we plan to address these issues to improve the cross-dataset transferability
 of our framework.

1030 D SOCIAL IMPACT

Our work focuses on leveraging large language models (LLMs) for multimodal learning in the context of time series analysis. From a narrow perspective, this work can significantly enhance performance with minimal additional cost in domains where time series data are paired with corresponding text, such as patients' diagnostic time series with text reports, machine vibration signals with text logs, or company stock prices with financial reports. From a broader perspective, our approach is adaptable to other modalities and can easily extend to scenarios involving multiple (2+) modalities. Please refer to the Discussion subsection. All in all, our research integrates multiple modalities effectively and efficiently with minimal computation resources, advancing the development of multimodal learning techniques, ultimately contributing to a more intelligent and efficient society.