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ABSTRACT

The recent rapid advancements in language models (LMs) have garnered attention
in time series multimodal representation learning. However, existing contrastive
learning-based and prompt-based LM approaches tend to be biased, often assigning
a primary role to time series modality while treating text modality as secondary. We
classify these approaches under a temporal-primary paradigm, which overlooks the
unique and critical task-relevant information provided by the text modality, failing
to fully leverage mutual benefits and complementarity of different modalities. To
fill this gap, we propose a novel textual-temporal multimodal learning paradigm
that enables either modality to serve as the primary one while being enhanced by
the other, thereby effectively capturing modality-specific information and fostering
cross-modal interaction. In specific, we design DualTime, a language model
composed of dual adapters to implement temporal-primary and textual-primary
modeling simultaneously. Within each adapter, lightweight adaptation tokens are
injected into the top layers of LM to encourage high-level cross-modal interaction.
The shared LM pipeline by dual adapters not only achieves adapter alignment but
also reduces computation resources and enables efficient fine-tuning. Empirically,
DualTime demonstrates superior performance, achieving notable improvements of
7% accuracy and 15% F1 in supervised settings. Furthermore, the few-shot label
transfer experiments validate DualTime’s expressiveness and transferability.

1 INTRODUCTION

Time series is a ubiquitous data modality across a wide range of real-world applications Trirat et al.
(2024). In recent years, the availability of various modalities (e.g., text Li et al. (2020), images
Lalam et al. (2023), sensor data Zurita et al. (2017), graph Liu et al. (2024a)) coupled with traditional
time series is increasing. Each modality contains both shared information that overlaps with other
modalities and unique information that may provide distinct insights Liang et al. (2024). Jointly
modeling time series with other modalities offers richer insights for decision-making. For example,
in medical applications, electroencephalogram (EEG) signals capture physiological activity, while
clinical records provide health history. Analyzing only symptoms may suggest epilepsy but can’t
specify seizure types, while EEGs detect abnormal activity but lack personal context. Integrating
both modalities can improve diagnostic precision and rationality. A key challenge in time series
multimodal learning is to effectively represent and exploit the complementarity and interactions of
different modalities Guo et al. (2019).

Recently, large-scale pre-trained language models (LMs) have shown exceptional proficiency in
understanding sequential data Chang et al. (2023); Gruver et al. (2024), sparking interest in integrating
them into time series multimodal learning Deldari et al. (2022); Ye et al. (2024). Several contrastive
learning-based works leverage language models as encoders to extract meaningful representations of
text modality, which in turn guide the pre-training of time series encoder but are not present during
the inference stage Liu et al.; Yu et al. (2024); King et al. (2023). For instance, METS Li et al. (2024)
utilizes a frozen clinical LM to derive embeddings from clinical reports, aligning them with ECG
embedding through contrastive learning to enhance ECG signal. And only ECG encoder provides
decision for inference. Other prompt-based works not only utilize a frozen LM as a text modality
encoder, but also fine-tune another LM as a brain to process the fused multimodal input Jia et al.
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Figure 1: (a) Different time series multimodal modeling paradigms. (b) Unimodal classification
results on the PTB-XL dataset (5 classes), using LSTM for temporal classification and BERT for
textual classification. The circled samples are misclassified by one modality but corrected by another,
demonstrating the complementary information of different modalities.

(2024); Liu et al. (2024b); Cheng et al. (2024); Chan et al. (2024). Specifically, text modality is
treated as a prompt of the time series modality to guide LLM’s reasoning on the temporal input.
For instance, Time-LLM Jin et al. (2023) assembles dataset descriptions, task instructions, and data
statistics into a text prompt to facilitate LM’s understanding of time series data.

In these LM-based multimodal works, time series is typically considered the primary modality,
being more relevant for decision-making, while text serves as an auxiliary modality to enhance the
time series embedding, either by projecting textual knowledge into the time series encoder using
contrastive learning or by guiding LM with a textual prompt to generate more contextually appropriate
responses for temporal inputs. We classify these approaches as temporal-primary multimodal models.
However, in some cases, the textual information is no less important than temporal information. As
shown in Figure 1 (b), we conduct a unimodal classification experiment on the PTB-XL ECG dataset
and find that 18.8% of samples are correctly classified by the text modality but misclassified by the
time series modality, while 13.1% shows the reverse. This highlights the complementarity of the two
modalities and suggests that the text modality contains even more unique task relevant information. In
these cases, viewing text modality as auxiliary may introduce bias and fail to capture essential textual
information while a text-primary perspective could enable a more comprehensive understanding of
the informative content provided by the text.

To fully exploit the complementarity and mutual benefits of different modalities, we propose a
novel textual-temporal multimodal learning paradigm to integrate both temporal-primary and textual-
primary perspectives (as shown in Figure 1 (a)). However, to effectively construct LM-based approach
of such paradigm is technically non-trivial. The most straightforward solution is to train a LM-based
submodel separately for each perspective. Nevertheless, there remain two-fold challenges: First,
considering LMs involved, two separately trained submodels suffer non-negligible computational
costs. Second, the integration of submodels and the design of single submodels should fuse the two
modalities from different perspectives to sufficiently capture both shared and unique information
from each modality. Note that the naive multimodal concatenation at LM input layer of existing
works is difficult to extract high-level multimodal semantics.

To address the aforementioned challenges, we propose DualTime, a multimodal language model
for time series representation learning, consisting of a temporal-primary multimodal adapter and
a textual-primary multimodal adapter to effectively explore the complementary information in
multimodal input. Under dual adapter design, each modality has the chance to serve as the primary
modality and get improved by the other modality. Within each adapter, multimodal fusion is
achieved by injecting learnable adaptation tokens into the top layers to extract high-level multimodal
semantics. Furthermore, both adapters share the same LM backbone to reduce computational
resources. Meanwhile, we keep the majority of LM’s parameters frozen to make different modalities
benefit from its pre-trained knowledge. We update only a small portion of LM’s parameters, adapting
it to our task while enabling efficient fine-tuning. In addition, by pipeline sharing, the modality
alignment of different adapters could be accomplished. Our main contributions are as below:

• We are the first to propose a textual-temporal multimodal learning paradigm that treats both
modalities equally. This paradigm fully leverages the rich complementary semantics of time
series and text modality and captures the intricate interaction across different modalities.
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Figure 2: DualTime architecture. It consists of dual adapters to model time series and text as primary
modality respectively. Dual adapters share the same LM parameters to reduce computational cost and
realize adapter alignment. The LM’s pre-trained knowledge is preserved by adopting a zero-initialized
gating strategy. The high-level cross-modal fusion is achieved by injecting trainable adaptation tokens
in the top layers of LM within each adapter.

• We propose DualTime, a dual-adapter language model for time series multimodal repre-
sentation learning. Each adapter performs the mutual integration of time series and text
modalities by introducing learnable tokens into the top layers of the LM backbone, facilitat-
ing high-level multimodal semantic fusion. The shared LM pipeline allows both adapters to
leverage the pre-trained knowledge and achieves more efficient fine-tuning.

• DualTime demonstrates superior performance on public real-world datasets, showing its
strong generalization and transferability. Notably, it achieves an average improvement of
7% in accuracy and 15% in F1 score under supervised learning. The code of DualTime is
provided in the supplementary materials.

2 METHODOLOGY

In this work, we focus on sample-level time series multimodal data. Specifically, each sample is
a time-text pair (e.g., ECG signal and its coupled clinical report). The whole dataset is denoted as
S = {(X1,S1) , (X2,S2) , ..., (XN ,SN )}, where Xi ∈ RT×d denotes a d-dimension multivariate
time series modality with length T and Si denotes the paired textual modality. For simplicity, we
omit the sample indicator subscript in the following.

In summary, to fully utilize the complementary information of different modalities, DualTime consists
of two multimodal adapters, namely a textual-primary multimodal adapter, and a temporal-primary
multimodal adapter. Each adapter treats one modality as the primary modality and enhances it with
the other modality. Both adapters share the same frozen pre-trained language model with L layers.
Each adapter implements multimodal fusion in the topmost M (M ≤ L) transformer blocks of the
language model. The shared language model backbone facilitates efficient fine-tuning and encourages
the dual adapters’ embedding space alignment.

2.1 TEXTUAL-PRIMARY MULTIMODAL ADAPTER

Processed by the textual tokenizer, the text input can be modeled by Is-length word tokens with
embedding Es ∈ RIs×D, where D is the hidden dimension. For the first L−M transformer layers,
they are standard transformer layers. The forward process of layer-l is:

H̃ l−1
s = LN

(
MHA

(
W l

qH
l−1
s ,W l

kH
l−1
s ,W l

vH
l−1
s

))
+H l−1

s , (1)

H l
s = LN

(
MLP

(
H̃ l−1

s

))
+ H̃ l−1

s , (2)
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where H l
s is the output of layer-l with H0

s = Es, MHA,LN,MLP denote the multi-head attention,
the layer normalization, and the multi-layer perception, respectively. To obtain the query, key, value
matrics at layer-l, W l

q ,W
l
k,W

l
v are parameterized by the pre-trained language model. Meanwhile,

the attention operation Attention is defined by:

Attention (Q,K,V ) = softmax
(
QKT /

√
dk

)
V , (3)

where Q,K,V are corresponding query, key, and value matrices, dk is the dimension of key.

Furthermore, we follow the adapter architecture in Zhang et al. (2023a) and utilize a lightweight
adapter mechanism to achieve multimodal modeling at the topmost M transformer blocks.
Specifically, we adopt learnable length-P adaptation tokens T l

s at each multimodal fusion layer
l (L−M + 1 ≤ l ≤ L) , where the adaptation tokens T l

s ∈ RP×D have the same dimension as lan-
guage model. As to the secondary temporal modality, a trainable temporal encoder and a cross-modal
projector are utilized to transform the time series input into the language model embedding space:

Zs = Projector (TemEncoder (X)) . (4)

The temporal encoder can be any time-series encoder that best fits the specific datasets, while the
projector is a linear layer responsible for dimension transformation. For decreasing the computational
cost, different multimodal fusion layers will share the same temporal embedding. Thus, the adaptation
tokens of textual-primary multimodal adapter will be calculated by:

T̃ l
s = T l

s +Zs. (5)

For the topmost M transformer layers, the multimodal forward process is formalized as:

H̃ l−1
s = LN

(
MHA

(
W l

qH
l−1
s ,W l

kH
l−1
s ,W l

vH
l−1
s

))
+H l−1

s , (6)

Ĥ l−1
s = LN

(
MHA

(
W l

qH
l−1
s ,W l

kT̃
l
s ,W

l
vT̃

l
s

))
+H l−1

s , (7)

H l
s = LN

(
MLP

(
GatelĤ l−1

s + H̃ l−1
s

))
+

(
GatelĤ l−1

s + H̃ l−1
s

)
. (8)

In particular, combined with the pre-trained projection matrices W l
k,W

l
v, the learnable adaptation

tokens will serve as key, value matrices of the multi-head attention layer. In Equation (8), we perform
a zero-initialized gating strategy to achieve multimodal adaptation token fusion Zhang et al. (2023a).
Gating parameter Gatel will be initialized as zero at the beginning of training, the multimodal
adaptation tokens will be injected gradually, which can preserve the pre-trained knowledge and
capacities of LMs.

2.2 TEMPORAL-PRIMARY MULTIMODAL ADAPTER

Considering the sequential property of time series, the temporal-primary multimodal adapter takes
the time series data as the language model input. We utilize the common patching strategy for time
series modeling in related works Nie et al. (2022); Zhou et al. (2024). Several adjacent timestamps
will be assembled as a token, which can provide local semantic information within a time series.
For a pre-defined patch size p and stride s, the time series input X ∈ RT×d can be reorganized as
X̃ ∈ RTs×(p×d), where Ts =

⌈
T−p
s

⌉
+1 is the number of temporal tokens. Subsequently, we utilize

a projector (i.e. linear layer) to adjust the dimension of temporal tokens. The adjusted temporal token
can be denoted as Et (Et ∈ RTs×D).

With H0
t = Et as the input of the first transformer layer, the model forward process will be similar

to the ones introduced in Section 2.1, e.g., Equation (1-2) and Equation (5 - 8).

Differently, for the secondary text input, we use a pre-trained BERT Devlin et al. (2018) model as a
text encoder (similar to the temporal encoder in Equation (4)) to extract textual information:

Zt = Proj (BERT (S)) . (9)
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2.3 PRE-TRAINED LANGUAGE MODEL PARAMETERS SHARING

Aided by our dual adapter model design, most of the pre-trained language model parameters (e.g.,
the attention weight matrices Wq,Wk,Wv, and the MLP layer of each transformer block) could
be shared by both textual-primary multimodal adapter and temporal-primary multimodal adapter.
On the one hand, the frozen parameters could preserve the knowledge and sequential modeling
capacities of the language model. On the other hand, since most of the parameters in our proposed
adapters are shared, there is only a minimal increase in the training parameters compared to a single
adapter. This ensures complementary modeling between the two modalities while still allowing
for efficient fine-tuning. Additionally, by sharing the same LM pipeline, the embedding spaces of
different adapters are easily aligned, further facilitating the integration of dual adapters.

2.4 TRAINING LOSS

Supervised Learning. For supervised classification, we add the last transformer layer output of each
adapter together to obtain the final multimodal representation. Then, an extra linear classifier and the
cross-entropy loss are used for supervised training.

Unsupervised Representation Learning. For unsupervised representation learning, we adopt the
contrastive learning paradigm. In particular, for data augmentation, we add random Gaussian noise to
the original input. The noise-corrupted sample and its original sample are a positive pair within each
adapter. We denotes H

′L
s as the augmentation of HL

s , and H
′L
t as the augmentation of HL

t . The
contrastive loss could be divided into two parts, within-adapter contrastive loss and cross-adapter
contrastive loss.

Formally, by maximizing the agreement between positive pairs and minimizing the similarity between
negative pairs (i.e., different input instances), in a mini-batch with size B, the within-adapter
contrastive losses are

Ls = −
∑B

i=1 log
exp

(
sim

(
HL

s,i,H
′L
s,i

)
/τ

)
∑B

k=1
1[k ̸=i] exp

(
sim

(
HL

s,i,H
L
s,k

)
/τ

) , Lt = −
∑B

i=1 log
exp

(
sim

(
HL

t,i,H
′L
t,i

)
/τ

)
∑B

k=1
1[k ̸=i] exp

(
sim

(
HL

t,i,H
L
t,k

)
/τ

) ,
(10)

where 1[k ̸=i] is the indicator function and τ is the temperature parameter, sim(·, ·) is the dot product
between two ℓ2-normalized vectors.

The cross-adapter contrastive learning assumes that the embeddings from two adapters for one
temporal-textual input pair should be similar. Concurrently, embedding from different instances
should be considered negative pairs. In this vein, the cross-adapter contrastive loss is given by:

Lcross = −
∑B

i=1

(
log

exp(sim(HL
s,i,H

L
t,i)/τ)∑B

k=1
1[k ̸=i] exp

(
sim

(
HL

s,i,H
L
t,k

)
/τ

) + log
exp(sim(HL

t,i,H
L
s,i)/τ)∑B

k=1
1[k ̸=i] exp

(
sim

(
HL

t,i,H
L
s,k

)
/τ

)
)
.

(11)

The overall loss function of unsupervised representation learning is given by:
Lunsup = Ls + Lt + Lcross. (12)

Note that for the variants of DualTime, namely DualTime (Time) and DualTime (Text), we only
adopt the within-adapter contrastive loss for training.

3 EXPERIMENTS

The main research questions of this work are Q1: How well does DualTime perform in learning
high-quality representations with supervision signals? (Section 3.2) Q2: How capable is DualTime in
generating general representations under unsupervised learning? (Section 3.4) Q3: How adaptable is
DualTime while conducting few-shot learning? (Section 3.3) Additionally, we conduct experiments
on ablation study, textual encoder testing, sensitivity analysis, and efficiency evaluation, providing
deeper insights into the model’s mechanisms, robustness and superiority.

3.1 EXPERIMENTAL SETUP

Datasets All experiments are conducted on publicly available real-world multimodal time series
datasets: the PTB-XL electrocardiogram (ECG) dataset Wagner et al. (2020) and the TUSZ elec-
troencephalogram (EEG) dataset Shah et al. (2018). (1) PTB-XL 1: This dataset consists of 12-lead

1https://physionet.org/content/ptb-xl/1.0.3/
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Table 1: Supervised Learning. DualTime achieves an average improvement of 7% in Acc. and
15% in F1 across all experiments. The best results are in bold while the second and third best are
in underlined. "Acc.", "Pre.", and "Rec." represent accuracy, precision and recall respectively. All
LM-based models are highlighted in grey.

Modality Model
PTB-XL TUSZ Average

Detection Classification Detection Classification
Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. F1

LM-free
Model Time

LSTM 0.68 0.60 0.48 0.48 0.67 0.63 0.50 0.52 0.76 0.53 0.54 0.54 0.58 0.44 0.27 0.26 0.67 0.45
TimesNet 0.68 0.46 0.46 0.45 0.67 0.59 0.48 0.50 0.74 0.59 0.63 0.59 0.76 0.75 0.72 0.71 0.71 0.56
LightTS 0.68 0.59 0.53 0.54 0.59 0.46 0.44 0.45 0.74 0.53 0.53 0.54 0.71 0.72 0.58 0.58 0.68 0.53
Dlinear 0.68 0.58 0.50 0.49 0.61 0.46 0.41 0.41 0.78 0.52 0.52 0.52 0.71 0.62 0.60 0.59 0.70 0.50

Pyraformer 0.76 0.66 0.59 0.58 0.66 0.56 0.49 0.51 0.84 0.47 0.50 0.47 0.75 0.77 0.67 0.72 0.75 0.57
ETSformer 0.72 0.63 0.57 0.55 0.54 0.45 0.38 0.40 0.79 0.53 0.53 0.53 0.73 0.70 0.66 0.66 0.70 0.54
Autoformer 0.72 0.56 0.56 0.54 0.62 0.47 0.44 0.44 0.79 0.52 0.51 0.51 0.70 0.64 0.64 0.61 0.71 0.53
Crossformer 0.66 0.58 0.51 0.53 0.65 0.55 0.48 0.50 0.79 0.50 0.51 0.50 0.72 0.71 0.58 0.58 0.71 0.53
FEDformer 0.67 0.57 0.50 0.51 0.65 0.53 0.47 0.49 0.76 0.57 0.58 0.57 0.68 0.48 0.54 0.48 0.69 0.51

Informer 0.67 0.59 0.51 0.52 0.67 0.59 0.51 0.52 0.82 0.57 0.55 0.55 0.77 0.74 0.69 0.71 0.73 0.58
Reformer 0.69 0.56 0.53 0.54 0.65 0.53 0.48 0.49 0.84 0.52 0.50 0.48 0.74 0.75 0.61 0.66 0.73 0.54

iTransformer 0.56 0.42 0.36 0.37 0.54 0.39 0.31 0.29 0.80 0.50 0.50 0.49 0.73 0.75 0.59 0.61 0.66 0.44
PatchTST 0.78 0.76 0.62 0.62 0.74 0.69 0.59 0.62 0.73 0.54 0.55 0.54 0.70 0.65 0.59 0.57 0.74 0.59

Time GPT4TS 0.71 0.58 0.52 0.53 0.59 0.46 0.45 0.45 0.78 0.48 0.48 0.48 0.71 0.73 0.60 0.64 0.70 0.53

LM-based
Model

Text GPT2 0.72 0.65 0.56 0.58 0.73 0.65 0.61 0.62 0.72 0.49 0.49 0.50 0.64 0.69 0.53 0.58 0.70 0.57
BERT 0.70 0.64 0.51 0.53 0.73 0.65 0.59 0.62 0.72 0.49 0.49 0.49 0.59 0.45 0.39 0.40 0.69 0.51

Llama 3 0.73 0.60 0.60 0.60 0.74 0.69 0.56 0.55 0.72 0.63 0.63 0.63 0.66 0.62 0.47 0.47 0.71 0.56
ClinicalBERT 0.73 0.57 0.54 0.53 0.74 0.69 0.56 0.55 0.72 0.65 0.68 0.66 0.67 0.36 0.64 0.43 0.72 0.54

Time
+

Text

TimeLLM 0.69 0.60 0.48 0.47 0.67 0.59 0.46 0.48 0.75 0.51 0.51 0.51 0.69 0.70 0.50 0.47 0.70 0.48
UniTime 0.67 0.33 0.42 0.37 0.64 0.54 0.43 0.44 0.79 0.54 0.53 0.53 0.77 0.78 0.71 0.71 0.72 0.51

GPT4MTS 0.72 0.59 0.60 0.59 0.65 0.48 0.50 0.48 0.82 0.64 0.63 0.63 0.70 0.72 0.60 0.53 0.72 0.55

DualTime (Time) 0.72 0.61 0.55 0.54 0.68 0.58 0.53 0.53 0.83 0.61 0.57 0.58 0.72 0.74 0.60 0.59 0.74 0.56
DualTime (Text) 0.82 0.75 0.74 0.74 0.76 0.69 0.63 0.65 0.82 0.65 0.66 0.65 0.78 0.74 0.72 0.73 0.79 0.69

DualTime 0.83 0.77 0.75 0.76 0.80 0.74 0.73 0.73 0.84 0.69 0.69 0.69 0.79 0.77 0.80 0.78 0.82 0.74

ECG signals, which capture the electrical activity of the heart, along with clinical reports describing
signal characteristics without diagnostic labels. PTB-XL provides two label sets: a coarse-grained
label set for disease detection (4 classes) and a fine-grained label set for specific disease classification
(5 classes). (2) TUSZ v1.5.2 2: The Temple University Seizure Corpus (TUSZ) is a large-scale
dataset of EEG signals that record the electrical activity of the brain. It includes 19-channel EEG
recordings and the clinical history for each patient session. Similar to PTB-XL, TUSZ offers two
label sets: a coarse-grained label set for distinguishing seizure and non-seizure EEG signals, and a
fine-grained label set for seizure type classification, comprising 5 classes. More details about the
datasets, including the label sets, data splits, and preprocessing steps, are provided in Appendix A.1.

Baselines Representative baselines are selected to ensure sufficient experiments. (1) Unimodal
LM-free methods: MLP-based models (LightTS Zhang et al. (2022), DLinear Zeng et al. (2023));
RNN-based models (LSTM Hochreiter and Schmidhuber (1997)); CNN-based models (TimesNet
Wu et al. (2022), TS2Vec Yue et al. (2022), TS-CoT Zhang et al. (2023b)); Transformer-based
models (Pyraformer Liu et al. (2021), ETSformer Woo et al. (2022), Autoformer Wu et al. (2021),
Crossformer Zhang and Yan (2022), FEDformer Zhou et al. (2022), Informer Zhou et al. (2021),
Reformer Kitaev et al. (2020), iTransformer Liu et al. (2023), PatchTST Nie et al. (2022), TS-TCC
Eldele et al. (2021)). (2) Unimodal LM-based methods: BERT Devlin et al. (2018), GPT-2 Radford
et al. (2019), GPT4TS Zhou et al. (2024). (3) Multimodal LM-based methods: TimeLLM Jin et al.
(2023), UniTime Liu et al. (2024b), GPT4MTS Jia et al. (2024) for supervised learning; METS Li
et al. (2024), MERL Liu et al. for unsupervised learning. (4) DualTime variants: DualTime (Time)
for temporal-primary multimodal adapter, DualTime (Text) for textual-primary multimodal adapter.
Note that for GPT-2 or BERT, we use textual embeddings generated by them and then train a linear
classifier from scratch for the downstream task.

Implementations DualTime adopts a frozen GPT-2 as the backbone. In the textual-primary mul-
timodal adapter, the tokenizer is from GPT-2. To avoid heavy computational costs, we choose a
lightweight CNN-based model as temporal encoder, which consists of three conv-blocks and each
with three CNN layers. We train it from scratch to adapt it to our tasks. In the temporal-primary
multimodal adapter, a frozen BERT serves as a textual encoder. All hidden dimensions are set to 768
to match the dimension of the backbone (i.e. GPT-2). The value of multimodal fusion layers M is 11
and adaptation token length P is 5. Sensitivity analysis of these parameters is in the Appendix A.6.
Time series patching size and stride are all 25. Adam is adopted as the optimizer Kingma (2014). All
experiments are implemented by PyTorch Framework with a NVIDIA A6000 (48G) GPU.

2https://isip.piconepress.com/projects/nedc/html/tuh_eeg/
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3.2 SUPERVISED LEARNING

We add a linear classifier as the output layer of DualTime to verify its ability to learn high-quality
representations with supervision signals. As shown in Table 1, (1) Time-only models perform
better than text-only models, achieving second best in most experiments. PatchTST significantly
outperforms other baselines in PTB-XL. This indicates that time series model can better capture
decision-relevant information than the textual models on average. (2) Compared with text-only
BERT and GPT-2, DualTime (Text) enhances text modality with time series data and demonstrates
noticeable improvements, underscoring the importance of integrating time series in the textual-
primary model. (3) Among multimodal approaches based on LMs, UniTime and GPT4MTS exhibit
similar performance, outperforming TimeLLM by a 2% accuracy improvement. This performance
gap may be due to the differences in their fine-tuning strategies. While TimeLLM relies on a frozen
LLM, UniTime and GPT4MTS employ parameter-efficient fine-tuning techniques. (4) DualTime
significantly outperforms these LM based multimodal methods by 10% accuracy improvement. This
discrepancy likely arises from their temporal-primary paradigm, which overlooks critical information
in the text modality. In contrast, DualTime integrates both temporal-primary and textual-primary
perspectives, allowing for a more comprehensive understanding of the multimodal interactions among
different modalities. (5) DualTime (Text) generally outperforms DualTime (Time), likely due to
the backbone GPT-2’s stronger capability in processing text compared to time series. (6) DualTime
achieves the best performance, improving accuracy by 7% and F1 by 15% on average.

3.3 FEW-SHOT LEARNING FOR LABEL TRANSFER

Model Model

Head Head

Transfer

Coarse-grained 
Labels

Fine-grained 
Labels

(𝑎) (𝑏)
Figure 3: Illustration for La-
bel Transfer. We first pre-train
a model on dataset with coarse-
grained but redundant labels, then
fine-tune it on dataset with fine-
grained but limited labels.

To evaluate the transferability of learned representations under
supervised learning setting, we introduce a Few-shot Label
Transfer framework, which facilitates in-dataset transfer be-
tween label sets with different granularity (as illustrated in
Figure 3). It is common in real-world applications that coarse-
grained labels, such as the presence of a disease, are typically
easier and less expensive to acquire, whereas fine-grained la-
bels, like specific disease types, often require more effort and
resources to obtain. In this framework, we first pre-train the
model on a dataset with coarse-grained yet abundant labels
(e.g., disease detection) and then fine-tune it using fine-grained
but limited labels (e.g., disease classification). More specifi-
cally, after supervised learning on coarse-grained dataset, we
freeze the pre-trained model parameters and train an additional
classifier using limited fine-grained labeled data for few-shot
learning. We conduct {5, 10, 15, 20, 50, 100}-shot experiments
on all methods and the 5-shot results of DualTime is in Table
2. We further select several competitive baseline methods and
show the performance with different shots in Figure 4(b) and leave other baselines in Appendix A.4.

Table 2: 5-shot Label Transfer. DualTime
achieves almost the best fine-tuning performance,
demonstrating its superior few-shot capacity.

Modality Model PTB-XL TUSZ
Acc. Pre. Rec. F1 Acc. Pre. Rec. F1

Time

LSTM 0.60 0.37 0.38 0.37 0.31 0.55 0.48 0.37
TimesNet 0.50 0.33 0.32 0.29 0.34 0.26 0.21 0.20
LightTS 0.22 0.24 0.25 0.20 0.33 0.39 0.44 0.33
Dlinear 0.30 0.24 0.24 0.23 0.42 0.37 0.48 0.37

Pyraformer 0.39 0.24 0.23 0.22 0.47 0.33 0.43 0.33
ETSformer 0.46 0.33 0.24 0.21 0.44 0.53 0.33 0.32
Autoformer 0.25 0.26 0.26 0.22 0.24 0.26 0.29 0.17
Crossformer 0.39 0.32 0.35 0.31 0.51 0.34 0.36 0.35
FEDformer 0.21 0.23 0.22 0.18 0.34 0.26 0.21 0.20

Informer 0.47 0.35 0.35 0.34 0.24 0.33 0.21 0.17
Reformer 0.32 0.38 0.27 0.25 0.34 0.30 0.31 0.24

iTransformer 0.25 0.20 0.20 0.29 0.51 0.41 0.47 0.41
PatchTST 0.45 0.38 0.40 0.38 0.34 0.21 0.31 0.19
GPT4TS 0.20 0.20 0.20 0.18 0.45 0.42 0.49 0.38

Text GPT2 0.24 0.22 0.22 0.18 0.20 0.31 0.44 0.19
BERT 0.45 0.34 0.33 0.32 0.24 0.35 0.32 0.24

Time
+

Text

TimeLLM 0.49 0.28 0.33 0.30 0.29 0.33 0.26 0.25
UniTime 0.46 0.32 0.34 0.30 0.54 0.32 0.31 0.44

GPT4MTS 0.46 0.31 0.31 0.28 0.51 0.47 0.53 0.45
DualTime (Time) 0.58 0.41 0.39 0.38 0.46 0.41 0.51 0.42
DualTime (Text) 0.49 0.37 0.38 0.36 0.47 0.45 0.51 0.43

DualTime 0.64 0.52 0.50 0.50 0.52 0.48 0.56 0.48

As shown in Table 2, (1) Time-only models gen-
erally outperform text-only models. The limited
5-shot time series samples might exhibit pat-
terns captured by time-only models while GPT-
2 and BERT struggle to effectively utilize the
few available textual samples. (2) Additionally,
DualTime (Time) surpasses DualTime (Text) on
PTB-XL and performs comparably on TUSZ,
suggesting that when samples are limited, the
time series modality is more important than the
text modality. (3) Despite training on only 5-
shot samples, DualTime outperforms most base-
lines across nearly all metrics, showcasing its ef-
fectiveness in scenarios with limited data. (4) As
the number of shots (K) increases, DualTime’s
accuracy advantage progressively widens (as de-
picted in Figure 4(b)).
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Table 3: Unsupervised Learning. 100% labeled data are used for linear classifier training. DualTime
achieves an average 2% Acc and 2% F1 improvement, showing its powerful generalization on
downstream tasks.

Modality Model
PTB-XL TUSZ Average

Detection Classification Detection Classification
Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. F1

LM-free
Model Time

TSTCC 0.68 0.57 0.53 0.54 0.65 0.56 0.48 0.50 0.74 0.51 0.50 0.48 0.67 0.44 0.51 0.45 0.69 0.49
TS2vec 0.61 0.46 0.43 0.43 0.61 0.54 0.48 0.49 0.70 0.49 0.49 0.49 0.70 0.75 0.57 0.53 0.66 0.48
TSCoT 0.73 0.71 0.58 0.60 0.75 0.68 0.61 0.63 0.67 0.54 0.57 0.53 0.69 0.76 0.55 0.60 0.71 0.59

LM-free
Model Time

PatchTST 0.60 0.53 0.38 0.35 0.55 0.45 0.32 0.30 0.73 0.50 0.50 0.50 0.67 0.63 0.53 0.45 0.64 0.40

GPT2 0.72 0.65 0.56 0.58 0.73 0.65 0.61 0.62 0.72 0.49 0.49 0.50 0.64 0.69 0.53 0.58 0.70 0.57Text BERT 0.70 0.64 0.51 0.53 0.73 0.65 0.59 0.62 0.72 0.49 0.49 0.49 0.59 0.45 0.39 0.40 0.69 0.51

METS 0.74 0.66 0.57 0.58 0.71 0.64 0.57 0.60 0.65 0.55 0.59 0.53 0.57 0.46 0.26 0.20 0.67 0.48
MERL 0.75 0.71 0.56 0.58 0.75 0.70 0.63 0.66 0.70 0.57 0.62 0.57 0.70 0.89 0.46 0.50 0.73 0.58

DualTime (Time) 0.68 0.52 0.46 0.44 0.60 0.48 0.39 0.40 0.68 0.52 0.52 0.51 0.66 0.50 0.66 0.49 0.66 0.46
DualTime (Text) 0.72 0.66 0.55 0.57 0.73 0.66 0.63 0.64 0.70 0.50 0.50 0.50 0.70 0.58 0.77 0.60 0.71 0.58

LM-based
Model Time

+
Text

DualTime 0.75 0.68 0.59 0.62 0.77 0.71 0.65 0.67 0.75 0.60 0.57 0.58 0.75 0.60 0.79 0.60 0.75 0.62
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Figure 4: (a) Performance comparison for unsupervised representation learning with different
proportions of labeled data on classification task. DualTime consistently performs best, especially in
TUSZ. (b) Performance comparison for label transfer with different shots. DualTime shows the best
performance on nearly all the shots. For small shots, its advantage is not significant while as the shot
increases, the performance gap becomes obvious.

3.4 UNSUPERVISED LEARNING

To assess our model’s ability to generate general representations without ground truth supervision,
we conduct unsupervised experiments. Once unsupervised embeddings are obtained for all samples,
varying proportions of labeled data, from 10% to 100%, are used to train a linear classifier. Figure 4
(a) illustrates the performance comparison among competitive unsupervised approaches with data
proportions ranging from 10% to 90% on two datasets with fine-grained labels. Table 3 shows the
results of 100% labeled data proportion. More detailed results can be found in Appendix A.3.

As shown in Table 3, (1) Similar to the results of supervised learning, time-only models generally
outperform text-only models across all experiments, highlighting the importance of time series data.
(2) While the multimodal model MERL slightly outperforms the best time-only model TSCoT, METS
falls behind, suggesting that multimodal does not always surpass single modality. The effectiveness
of multimodal fusion is crucial. (3) DualTime surpasses MERL in most experiments, emphasizing
the advantages of our complementary textual-temporal multimodal design. (4) Overall, DualTime
achieves an average accuracy improvement of 2% and consistently outperforms other baselines across
varying data proportions in Figure 4 (a). This suggests that the representations learned by DualTime
are more expressive and transferable, facilitating effective training even with limited labeled data.

Abnormal ECG Normal ECG Borderline ECG Otherwise Normal ECG

BERT (Text Only) TS2Vec (Time Series Only) DualTime (Text) DualTime (Time) DualTime

Figure 5: Embedding visualizations of different encoders on PTB-XL, with labels distinguished by
color, show that DualTime more clearly separates different classes compared to other models. This
demonstrates the effectiveness of our complementary textual-temporal multimodal paradigm.
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Table 4: Influence of Different Textual Encoders. In general, BERT-based textual encoders
demonstrate superior performance, with ClinicalBERT specifically for medical applications achieving
the highest average accuracy.

Textual Encoder

PTB-XL TUSZ
AverageSupervised Learning Unsupervised Learning Supervised Learning Unsupervised Learning

Classification Detection Classification Detection Classification Detection Classification Detection
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

DualTime (BERT) 0.83 0.76 0.81 0.74 0.75 0.62 0.77 0.67 0.84 0.69 0.79 0.78 0.75 0.58 0.75 0.60 0.79 0.62
DualTime (RoBERTa) 0.83 0.76 0.80 0.73 0.74 0.61 0.76 0.66 0.87 0.61 0.79 0.74 0.75 0.49 0.74 0.64 0.78 0.60

DualTime (ClinicalBERT) 0.83 0.76 0.81 0.75 0.77 0.65 0.77 0.58 0.87 0.68 0.79 0.75 0.76 0.57 0.74 0.62 0.80 0.62
DualTime (GPT-2) 0.82 0.75 0.80 0.73 0.74 0.60 0.76 0.66 0.86 0.52 0.72 0.60 0.71 0.56 0.68 0.49 0.76 0.58

Visualization To better visualize the learned representations, we use UMAP McInnes et al. (2018)
to project the unsupervised representation learning results into 2D plots. (1) Figure 5 displays the
embeddings of various encoders on PTB-XL, with labels assigned to different categories. TS2Vec
(time-only) successfully identifies abnormal ECGs, while BERT (text-only) performs the worst by
mixing all categories, illustrating the advantage of the time series modality. (2) Compared with BERT,
DualTime (Text) can better distinguish abnormal ECG and normal ECG, indicating the effectiveness
of two modalities over one modality. (3) Compared with DualTime (Time), DualTime (Text) has
obviously better discriminative capacity, supporting the advantage of textual-primary modeling
over temporal-primary modeling. (4) Overall, DualTime provides the most distinct representations,
attributed to the benefit of complementary multimodal modeling.

3.5 EXPLORATIONS ON MODEL DESIGN

Ablation Study We ablate DualTime into DualTime (Time) and DualTime (Text). Specifically,
DualTime (Time) leverages the textual modality to enhance temporal modality modeling, while
DualTime (Text) treats the textual modality as primary and the temporal modality as secondary.
We evaluate their performances under all three settings, as shown in Table 1, 3, 2. (1) Generally
speaking, DualTime (Text) has a better performance than DualTime (Time) in supervised learning and
unsupervised learning. This suggests that the backbone language model (i.e. GPT-2) demonstrates
a better understanding of text compared with time series. (2) While DualTime (Time) outperforms
DualTime (Text) in PTB-XL 5-shot experiments (as shown in Table 2), possibly because the model
lacks sufficient understanding of limited textual data and temporal modality can provide more valuable
clues for decision-making. (3) Overall, DualTime consistently outperforms single adapter variants,
indicating the contributions of both adapters and highlighting the advantages of complementary
textual-temporal paradigm over temporal-primary or textual-primary paradigm.
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Figure 6: Multimodal gating parameters of
different transformer layers.

Multimodal Fusion Gating Analysis To better un-
derstand how multimodal information is integrated
within each adapter, we present the multimodal adap-
tation token fusion gating parameters across different
transformer layers in Figure 6. (1) At the start of train-
ing, there is no multimodal fusion due to the zero-
initialized gating strategy. Gradually, the absolute
values of the gating parameters gradually increase,
indicating a growing level of multimodal fusion. (2)
We also observe that the gating parameter values are
higher in the initial layers (Layer 1 and 2) and the
final layers (Layer 10 and 11) compared to the mid-
dle layers (Layer 5 and 6). This suggests that the
learnable adaptation tokens enhance multimodal inte-
gration in initial layers, while deeper layers are likely adapted for different downstream tasks.

Textual Encoder Testing The current textual encoder used in the temporal-primary adapter of
DualTime is BERT. We investigate the impact of various textual encoders by examining the following
options: BERT, RoBERTa Liu (2019), ClinicalBERT Wang et al. (2023), and GPT-2. A simplified
version of the supervised and unsupervised experimental results are presented in Table 4. More
detailed results are in Appendix A.5. As shown in Table 4, BERT-based textual encoders (BERT,
RoBERTa, ClinicalBERT) consistently outperform GPT-2. This is likely due to GPT-2’s primary
focus on text generation, while BERT and its variants excel in comprehending the entire textual
input thanks to their masked language model training strategy. Notably, ClinicalBERT specifically
pre-trained on medical corpus achieves the highest performance among the tested variants. This
underscores the influence of the textual encoder’s pre-trained knowledge on its comprehension of
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textual modalities. Considering that the textual contents in the PTB-XL and TUSZ datasets are
clinical reports, a domain-specific language model tailored for medical applications is more capable
of accurately interpreting and analyzing medical textual inputs.

3.6 EFFICIENCY EVALUATION

To evaluate the computational costs, we choose the most competitive unimodal baselines (namely
TimesNet and PatchTST) and LM-based multimodal approaches (i.e. UniTime and TimeLLM) to
compare their efficiency regarding training time per epoch, total parameter size, trainable parameter
size, and classification accuracy. Figure 7 shows an efficiency comparison on TUSZ.

Overall, DualTime features a moderate number of trainable parameters while exhibiting the best
downstream performance. (1) Compared to unimodal methods, DualTime has approximately 1.0
million trainable parameters—larger than PatchTST but significantly smaller than TimesNet, whose
complexity arises from its use of 2D convolution operations. (2) Additionally, DualTime employs a
frozen backbone shared between dual adapters and introduces learnable adaptation tokens, enabling
more efficient fine-tuning and effective multimodal fusion. Consequently, DualTime has the smallest
parameter count and the shortest training time among multimodal methods, highlighting its efficiency
and superior performance.

4 RELATED WORK
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Figure 7: Efficiency comparison on TUSZ.
The dotted size represents the model trainable
parameter size. DualTime is moderate in size
but delivers the performance.

In this section, we discuss large language models
(LLMs) based multimodal works involving both time
series and text modalities input. Inspired by Bal-
trušaitis et al. (2018); Liang et al. (2024), we catego-
rize them into two groups based on how they derive
multimodal representation.

Coordinated Representation projects time series
and text modality into separate but coordinated
spaces, bringing them closer to enforce shared in-
formation between modalities Liang et al. (2024).
This group, including METS Li et al. (2024), MERL
Liu et al., ESI Yu et al. (2024) and King et al. (2023),
adopts contrastive learning to align time series and
text modalities within a unified space. They leverage
LLMs to obtain embedding representations of the
text modality, which then guide the pre-training of
time series encoder, enhancing the quality and robustness of time series representation. For instance,
MERL uses contrastive learning to improve ECG signals under clinical report supervision. However,
during training, the contrastive learning often prioritizes shared semantics across modalities, neglect-
ing modality-specific information. In addition, in the inference stage, only the time series modality
is present and the text modality is missing. Consequently, such framework depends on time series
for decision. The unique and critical task-relevant information from text is overlooked, potentially
leading to sub-optimal model performance.

Joint Representation projects both modalities into a shared semantic space and fuses them into a
single vector Guo et al. (2019). This vector is then fed into into a language model or transformer for
prediction. This group includes Time-LLM Jin et al. (2023), UniTime Liu et al. (2024b), GPT4MTS
Jia et al. (2024), InstructTime Cheng et al. (2024), MedTsLLM Chan et al. (2024) which implement
multimodal fusion by simply concatenating two modalities at the input layer of LLM. However, the
order of concatenation influences how LLMs integrate information from different modalities Liu
et al. (2024b), resulting in varying cross-modal interactions. Specifically, these works treat the text
modality as a prompt prepended to time series modality to facilitate LLM’s reasoning on temporal
inputs. For instance, UniTime places domain instruction as contextual identifiers before temporal
representation to help LLM distinguish between different data sources and adjust its modeling strategy
accordingly. However, such sequential concatenation implies that the concatenated modalities are not
equally important, making LLM focus more on time series.
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All these LLM based multimodal works consider time series as the primary modality for decision-
making, with text serving as an auxiliary to enhance time series modeling. In contrast, DualTime
allows each modality to act as primary modality through a dual-adapter multimodal language model,
which can comprehensively capture the unique and shared semantics provided by different modalities.

5 CONCLUSION

In this paper, we propose a new textual-temporal paradigm for time series multimodal learning to delve
into the complementary modeling of different modalities. Under this paradigm, we design DualTime
with dual adapter design to achieve temporal-primary and textual-primary modeling. Within each
adapter, the high-level multimodal fusion is achieved via learnable token injection in the top layers of
language model. The pre-trained language model pipeline shared by both adapters enables fine-tuning
efficiency. Considering the significant performance gain, the extensive experiments demonstrate that
DualTime serves as an effective representation learner in both supervised and unsupervised settings.
Regarding the transferability of the model, we demonstrate the superiority of DualTime through
few-shot label transfer experiments.
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A EXPERIMENTAL DETAILS

A.1 DATASETS

Dataset Details We show the summary of datasets in Table A.1 with dataset statistics and data
splitting displayed. For PTB-XL, the coarse-grained labels divide the samples into four classes:
Normal ECG, Borderline ECG, Abnormal ECG, Otherwise normal ECG Strodthoff et al. (2023),
and the fine-grained labels refer to Normal ECG, Conduction Disturbance, Myocardial Infarction,
Hypertrophy, and ST/T change. Similarly, the coarse-grained labels of TUSZ distinguish seizure and
non-seizure EEG signals and the fine-grained labels provide further seizure classification: combined
focal (CF) seizures, generalized non-specific (GN) seizures, absence (AB) seizures, combined tonic
(CT) seizures.

Table A.1: Dataset statistics and data split for PTB-XL and TUSZ datasets.

PTB-XL TUSZ

Detection Classification Detection Classification

Size of Training Set 17084 17084 7766 1924
Size of Validation Set 2146 2146 5426 446
Size of Test Set 2158 2158 8848 521
Number of Classes 4 5 2 4
Sequence Length 1000 1000 6000 6000
Number of Channels 12 12 19 19
Average Text Length 13.7 13.7 24.3 23.0

Dataset Examples PTB-XL dataset contains clinical 12-lead electrocardiograms (ECGs) and their
corresponding reports. The clinical reports are automatically generated by the machine and have no
diagnosis revealed. TUSZ dataset is the largest EEG seizure database containing 19-channel EEG
signals and clinical notes of each patient, for example, clinical history, medications, etc. In this work,
we take the clinical history as the experimental textual input. Furthermore, we show two examples
for PTB-XL and TUSZ dataset in Figure A.1, respectively. Both time series data and textual data are
displayed.

CLINICAL HISTORY: 64 year-old 

male with epilepsy since age 26. 

Described as foaming at the mouth 

followed by generalized stiffness, 

unresponsiveness, lasting 3-4 

minutes. Post ictal of confusion. 

Last seizure was April 21, 2008. 

Typically 3-4 per month.

ECG REPORT: sinus rhythm 

excessive left type left anterior 

hemiblock

(a)

(b)

Figure A.1: Examples of experimental datasets. (a): PTB-XL dataset collected for electrocardiogram
(ECG) analysis. (b): TUSZ dataset collected for electroencephalogram (EEG) analysis.

Data Pre-processing All the experiments are conducted on two real-world multimodal time series
datasets: PTB-XL Wagner et al. (2020), TUSZ v1.5.2 Shah et al. (2018). PTB-XL contains 12-
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lead electrocardiograms (ECGs) with paired clinical reports describing signal characteristics without
diagnosis labels. Following Li et al. (2024), all the non-English ECG reports in PTB-XL are translated
into English. TUSZ is a large-scale EEG seizure database containing 19-channel EEG signals and
clinical history for each session of patients. Following Tang et al. (2021), we process TUSZ to obtain
60-second EEGs for experiments. To avoid data imbalance, we randomly sample at most 8 normal
EEGs per patient for training. Both datasets offer two sets of labels: a coarse-grained label set for
disease detection and a fine-grained label set for disease classification.

A.2 EVALUATION METRICS

The evaluation metrics we consider in this paper include accuracy, precision, recall, f1-score. The
calculation of these metrics is as follows. For multi-class classification, we report the macro average
results.

• Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision:

Precision =
TP

TP + FP

• Recall:
Recall =

TP

TP + FN

• F1 Score:
F1 = 2 · Precision × Recall

Precision + Recall

Here, TP, TN, FP, and FN represent True Positives, True Negatives, False Positives, and False
Negatives, respectively.

A.3 UNSUPERVISED LEARNING

A.3.1 UNSUPERVISED BASELINES

For the unsupervised baselines, we follow the codes in original papers to conduct our experiments.
Here is a more detailed introduction.TS2Vec is a universal framework based on contrastive learning
designed for learning representations of time series at arbitrary semantic levels. TSTCC is an
unsupervised time-series representation learning framework that leverages temporal and contextual
contrasting to extract meaningful representations from unlabeled data. TSCoT employs co-training
based contrastive learning to derive representations through time series prototypes. PatchTST, a
Transformer-based model, supports both time series forecasting and self-supervised representation
learning and we implement its self-supervised code. METS and MERL utilize contrastive learning to
align time series and text modalities without requiring ground truth labels. The aligned time series
embeddings are then used to train downstream classifiers. For BERT and GPT-2, we extract textual
embeddings generated by these pre-trained language models as general-purpose representations.

A.3.2 FULL UNSUPERVISED LEARNING RESULTS

The complete unsupervised results of the representative methods, evaluated by training a linear
classifier on labeled data subsets ranging from 10% to 90%, are shown in Figure A.2. A simplified
version of these results appears in the main text as Figure 4(a). The results cover both classification
and detection tasks across two datasets. Notably, DualTime consistently outperforms other methods
across varying proportions of labeled data, with its performance remaining stable as the proportion
changes. This suggests that the representations learned by DualTime generalize well, allowing
effective classifier training even with very few labeled samples.

A.4 FEW-SHOT LEARNING

The full few-shot results with all the baseline methods compared will be shown in Figure A.3, whose
corresponding simplified figure in the main text is Figure 4(b).
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Figure A.2: Performance comparison for unsupervised representation learning with different propor-
tions of labeled data. DualTime consistently performs best, especially in TUSZ classification perhaps
due to the beneficial seizures history of patients.

Generally speaking, all models’ classification accuracy generally shows a continuous growth trend
as the setting of few-shot (K) increases. In particular, under conditions of few-shot scenarios with
very limited samples (for example, 5-shot), the transfer performance of text encoders tends to be poor.
We might attribute this to the fact that text encoders are trained in large, content-rich text corpora.
Although they possess relatively general encoding capabilities, achieving good linear classification
results in few-shot scenarios is challenging. The temporal models show different behaviors on
different datasets. For PTB-XL dataset, RNN-based models perform well, but former-based methods
are more capable for TUSZ’s label transfer. On the other hand, our proposed DualTime consistently
outperforms the baseline methods on both two datasets. Even with a limited number of available
training samples, our model is still able to achieve good classification performance. It substantiates
that powered by language model and multimodal input, DualTime demonstrates effectiveness and
robust transferability.
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Figure A.3: Full results for label transfer with different few-shot settings.

Table A.2: Supervised learning of disease detection and classification on PTB-XL dataset.

Detection Classification
Accuracy Precision Recall F1 Accuracy Precision Recall F1

DualTime (BERT) 0.83 0.77 0.75 0.76 0.81 0.75 0.74 0.74
DualTime (RoBERTa) 0.83 0.77 0.75 0.76 0.80 0.75 0.73 0.73

DualTime (ClinicalBERT) 0.83 0.78 0.75 0.76 0.81 0.75 0.75 0.75
DualTime (GPT-2) 0.82 0.76 0.74 0.75 0.80 0.74 0.73 0.73

A.5 TEXTUAL ENCODERS TESTING

We discuss the influence of different textual encoders by considering the following variants: BERT
Devlin et al. (2018), RoBERTa Liu (2019), ClinicalBERT Wang et al. (2023), and GPT-2 Radford et al.
(2019) as the DualTime textual encoder. The supervised and unsupervised experimental results are
reported in the following Table A.2, Table A.3, Table A.4 and A.5. We observe that the BERT-based
textual encoders (BERT, RoBERTa, ClinicalBERT) outperform GPT-2. This is likely because GPT-2
is more suited for text generation, while BERT and its variants have a better understanding of the
whole textual input due to their masked language model design. Among the variants, ClinicalBERT,
which is specifically developed for clinical notes, achieves the best performance.
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Table A.3: Unsupervised learning of disease detection and classification on PTB-XL dataset.

Detection Classification
Accuracy Precision Recall F1 Accuracy Precision Recall F1

DualTime (BERT) 0.75 0.68 0.59 0.62 0.77 0.71 0.65 0.67
DualTime (RoBERTa) 0.74 0.69 0.58 0.61 0.76 0.69 0.65 0.66

DualTime (ClinicalBERT) 0.77 0.71 0.62 0.65 0.77 0.70 0.66 0.58
DualTime (GPT-2) 0.74 0.67 0.58 0.60 0.76 0.68 0.64 0.66

Table A.4: Supervised learning of disease detection and classification on TUSZ dataset.

Detection Classification
Accuracy Precision Recall F1 Accuracy Precision Recall F1

DualTime (BERT) 0.84 0.69 0.69 0.69 0.79 0.77 0.80 0.78
DualTime (RoBERTa) 0.87 0.76 0.59 0.61 0.79 0.77 0.74 0.74

DualTime (ClinicalBERT) 0.87 0.75 0.65 0.68 0.79 0.82 0.74 0.75
DualTime (GPT-2) 0.86 0.79 0.53 0.52 0.72 0.76 0.61 0.60

A.6 SENSITIVITY ANALYSIS

As shown in Figure A.4, the performance of our model tends to improve with an increase in the
number of multimodal fusion layers. While the length of adaptation tokens has a relatively small
impact. Compared to adaptation token length P , the influence of multimodal fusion layers M is more
evident.

A.7 FUSION STRATEGY OF DUALTIME

We conduct experiments on different fusion strategies for the auxiliary and primary modalities within
each adapter. The table below A.6 presents the experimental results .
It can be observed that dynamic fusion through learnable adaptation tokens achieved the best
performance, with an average accuracy of 82%. In contrast, simple concatenation had the poorest
performance, with an average accuracy of 75%. likely because it is a static method without learnable
parameters, leading to weak generalization capabilities.
The attention mechanism demonstrated the second-lowest performance, achieving an average accu-
racy of 77%. While it improves upon simple concatenation by introducing a self-attention mechanism,
it treats modality tokens almost equally, failing to emphasize the primary and secondary modali-
ties effectively. This lack of distinction causes the textual-primary module and temporal-primary
module become similar, making it more challenging for the model to extract the unique information
contributed by each modality.
Weighted fusion performed second-best achieving 78% accuracy , perhaps because it can adaptively
determine which modality is more important. However, weighted fusion may prioritize one modality
over the other, potentially reducing the model’s ability to fully extract valuable information from
the less prioritized modality. This imbalance could limit the fusion’s effectiveness in scenarios
where both modalities contribute complementary and unique information. In contrast, the use of
learnable adaptation tokens in two modules enforces a distinction between the primary and secondary
modalities, guiding the model to focus more effectively on the primary modality. This approach helps
the model learn non-overlapping information from each modality, leading to superior performance.

Table A.5: Unsupervised learning of disease detection and classification on TUSZ dataset.

Detection Classification
Accuracy Precision Recall F1 Accuracy Precision Recall F1

DualTime (BERT) 0.75 0.60 0.57 0.58 0.75 0.60 0.79 0.60
DualTime (RoBERTa) 0.75 0.51 0.51 0.49 0.74 0.72 0.65 0.64

DualTime (ClinicalBERT) 0.76 0.58 0.57 0.57 0.74 0.70 0.65 0.62
DualTime (GPT-2) 0.71 0.60 0.56 0.56 0.68 0.61 0.52 0.49
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Figure A.4: Hyperparameter study of multimodal fusion layers M and length of adaptation tokens P .

Table A.6: Fusion Strategy of Primary Modality and Auxiliary Modality

DualTime
PTB-XL TUSZ AverageDetection Classification Detection Classification

Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. F1
Adaptation Tokens 0.83 0.77 0.75 0.76 0.81 0.75 0.74 0.74 0.84 0.69 0.69 0.69 0.79 0.77 0.80 0.78 0.82 0.74

Simple Concatenation 0.76 0.72 0.60 0.62 0.73 0.67 0.58 0.61 0.79 0.64 0.62 0.63 0.72 0.66 0.53 0.55 0.75 0.60

Attention Mechanism 0.77 0.72 0.61 0.63 0.75 0.70 0.64 0.66 0.79 0.66 0.65 0.65 0.75 0.72 0.63 0.59 0.77 0.63

Weighted Fusion 0.79 0.74 0.65 0.69 0.76 0.71 0.63 0.66 0.81 0.68 0.67 0.67 0.78 0.80 0.72 0.75 0.78 0.69

B DISCUSSION ABOUT MORE MODALITIES

Figure A.5: Illustration of TripleTime

Here, we discuss the extensibility of the core idea be-
hind DualTime. While DualTime is primarily designed
for the time-series and text pair modality, our proposed
textual-temporal multimodal learning paradigm, which
treats modalities equally, can be extended to other combi-
nations of two modalities or even to scenarios involving
more than two modalities.
For instance, some industrial scenarios can collect time
series data generated by various sensors as well as images
generated by industrial cameras for identifying potential
product defects. In these cases, image modality can re-
place the text modality while time series modality remains
unchanged. A similar framework can be designed to com-
bine these two modalities by using a pre-trained vision
model, such as ViT, as the encoder for the image modality,
and replacing the language model backbone with a large visual pre-trained model.
Further, such idea can be extended to more than two modalities. For instance, in addition to time
series signals and textual operating logs, images from industrial cameras can help us identify potential
defects. This scenario requires for the design of a "TripleTime" model. We can utilizes three adapters
to consider multiple modalities simultaneously. As shown in Figure A.5, each adapter will have one
primary modality and take the other two modalities as auxiliary inputs. Specifically, GPT-2-based
adapters can be used for both temporal and textual inputs, while a pre-trained vision model can serve
as the backbone for the visual-primary adapter. Learnable adaptation tokens will inject information
from the other two modalities into the primary adapter. Thus, "TripleTime" can achieve simultaneous
multimodal modeling for three different modalities.

C LIMITATIONS AND FUTURE WORKS

One limitation of our work is that, due to the availability of multimodal data, we have only been able
to test our model on EEG and ECG datasets within the healthcare domain. For future work, we aim
to incorporate additional multimodal datasets from other domains to evaluate the effectiveness and
robustness of our model.
Another limitation is that our model can not handle datasets that have varying time series input lengths
and channel configurations, which affects its ability to assess transferability across datasets with
different settings. Additionally, our use of a data-specific linear output layer for classification limits
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the model’s capability for zero-shot learning across datasets with different class numbers or label
semantics. In future work, we plan to address these issues to improve the cross-dataset transferability
of our framework.

D SOCIAL IMPACT

Our work focuses on leveraging large language models (LLMs) for multimodal learning in the context
of time series analysis. From a narrow perspective, this work can significantly enhance performance
with minimal additional cost in domains where time series data are paired with corresponding text,
such as patients’ diagnostic time series with text reports, machine vibration signals with text logs, or
company stock prices with financial reports. From a broader perspective, our approach is adaptable
to other modalities and can easily extend to scenarios involving multiple (2+) modalities. Please refer
to the Discussion subsection. All in all, our research integrates multiple modalities effectively and
efficiently with minimal computation resources, advancing the development of multimodal learning
techniques, ultimately contributing to a more intelligent and efficient society.
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