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Abstract

In this paper we propose a novel algorithm for robust estimation of Gaussian Mixture Model
(GMM) parameters and clustering that explicitly accounts for cell outliers. To achieve this,
the proposed algorithm minimizes a penalized negative log-likelihood function where the
penalty term is derived via the false discovery rate principle. The penalized negative log-
likelihood function is cyclically minimized over outlier positions and the GMM parameters.
Furthermore, the minimization over the GMM parameters is done using the majorization
minimization framework: specifically we minimize a tight upper bound on the negative
log-likelihood function which decouples into simpler optimization subproblems that can be
solved efficiently. We present several numerical simulation studies comprising experiments
aimed at evaluating the performance of the proposed method on synthetic as well as real
world data and at systematically comparing it with state-of-the-art robust techniques in dif-
ferent scenarios. The simulation studies demonstrate that our approach effectively addresses
the challenges inherent in parameter estimation of GMM and clustering in contaminated
data environments.

1 Introduction and literature

In machine learning, pattern classification, and other statistical fields, a fundamental challenge lies in es-
timating the parameters of the underlying distribution from observed data samples corrupted by outliers
(Thomaz et al., 2004; Minh & Murino, 2017; Bois et al., 2024). For example, health monitoring systems
may suffer from faulty measurements (Sangra & Codina, 2015), while socio-economic surveys might in-
clude deliberately falsified responses (Menold & Kemper, 2014). To address these issues, robust statistical
methodologies have been developed to accurately estimate the parameters of the outlier corrupted data by
first detecting outliers, then either down-weighting or completely eliminating them and finally estimating
the parameters from the remaining uncorrupted data. The outliers may be casewise outliers (Huber, 1964;
Stoica et al., 2024), or cellwise outliers (Alqallaf et al., 2009), the latter being more challenging to deal with.

The inherent complexity of real-world data often cannot be adequately captured by a single distribution. To
take this complexity into account, a mixture model that is a linear combination of several basic distributions
can be employed. When these component distributions are Gaussian, the resulting model is termed a
Gaussian mixture model (GMM). The superposition of multiple component distributions facilitates the
representation of intricate density functions, and GMMs are widely utilized to reveal possible underlying
clusters of the data samples (Bishop & Nasrabadi, 2006; Reynolds et al., 2009; Yang et al., 2012; Sharma
et al., 2024; Cuesta-Albertos & Dutta, 2023).

In many applications of GMMs the data are corrupted by outliers that do not belong to any of the mixture
distributions. To handle outlier corrupted data, one approach is to partially relax the normality assumption
by considering heavy-tailed distributions for the components. This framework includes models such as the
mixture of Student’s t distributions (Peel & McLachlan, 2000) and the mixtures of contaminated normal
distributions (Punzo & McNicholas, 2016). To address arbitrarily distributed outliers within the model-based
clustering, García-Escudero et al. (2008) introduced robust trimmed clustering (TCLUST), an approach that
extends the minimum covariance determinant (MCD) method for estimating the distribution parameters
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using classification trimmed likelihoods. In particular, TCLUST incorporates a concentration step within
its expectation maximization (EM) algorithm, analogous to the one used in the FAST-MCD procedure
(Rousseeuw & van Driessen, 1999), where a fixed proportion of the observations that deviate most from
the mean are considered to be outliers and are omitted from the parameter estimation step. A similar
trimming method has also been implemented within a mixture model framework in Neykov et al. (2007) and
García-Escudero et al. (2014).

The goal of the present study is to develop an outlier-robust GMM parameter estimation approach that can
detect the cell outliers. To achieve this, we employ the multiple hypothesis testing procedure of false discovery
rate (FDR) to detect the outliers and employ the majorization-minimization (MM) approach to estimate
the GMM parameters from the uncorrupted data. Unlike the classical EM algorithm, which necessitates the
introduction of latent variables and the computation of conditional expectations, our MM-based approach
for estimating the GMM parameters circumvents these steps and it is straightforward to understand and
implement. The proposed method alternatingly estimates the cell outlier positions and the GMM parameters
by minimizing a penalized negative log likelihood objective until a convergence criterion is met, where the
penalty term is derived from the FDR principle.

The remaining sections of the paper are organized as follows. In Section II, we introduce the data model
and formulate the minimization problem of penalized negative log-likelihood objective function with respect
to the cell outlier positions and the GMM parameters. In Section III, we present a brief overview of the MM
framework and the FDR-based multiple hypothesis testing. Section IV presents the derivations of cell outlier
detection in the GMM and the GMM parameter estimation via the MM approach. This section offers an
in-depth, step-by-step exposition of the mathematical formulations, emphasizing the iterative optimization
process that underpins our method. In Section V, we conduct an extensive simulation study on synthetic as
well as real world data to evaluate the performance of the proposed framework under a variety of simulation
conditions, and we benchmark its performance against state-of-the-art robust parameter estimation and
clustering techniques. Finally, Section VI concludes the paper.

2 Problem Formulation

In this section, we discuss the GMM as well as the GMM in the presence of cell outliers, and formulate the
minimization problem with respect to the cell outlier positions and the GMM parameters.

Let y(t) be a p-dimensional vector that is randomly drawn from a mixture of K Gaussian distributions. The
corresponding mixture distribution is given by:

p (y(t); θ) =
K∑

k=1
πk N (y(t); µk, Σk) , (1)

where the parameter vector θ = {πk, µk, Σk}K
k=1 comprises the mixing proportions, means, and covariance

matrices of the K components and N (y(t); µk, Σk) denotes the distribution of the kth component, viz:

N (y(t); µk, Σk) ≜ 1√
(2π)p|Σk|

exp
(

−1
2 (y(t) − µk)⊤ Σ−1

k (y(t) − µk)
)

. (2)

In many practical scenarios, the vector y(t) may be partially corrupted by cell outliers. To address this
situation, we introduce a binary vector b(t) associated with y(t): the element bj(t) of the binary vector
b(t) is set to 1 if the jth element of y(t) is uncorrupted and to 0 if the jth element of y(t) is contaminated.
Based on the binary vector b(t), we construct a binary selection matrix Bt ∈ Rp×pt where pt is the number
of uncorrupted elements in y(t). The matrix Bt is defined so that each column contains exactly one entry
equal to 1 corresponding to the uncorrupted elements of y(t), with all other entries set to 0. For example, if

y(t) = [y1(t), y2(t), y3(t)]⊤
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and the corresponding indicators are b1(t) = 1, b2(t) = 1, and b3(t) = 0, then the matrix Bt is given by:

Bt =

1 0
0 1
0 0

 .

This structure of Bt ensures that B⊤
t y(t) extracts the uncorrupted elements of y(t), and thus B⊤

t ΣkBt is
the covariance matrix corresponding to these elements. Since {Bt} can be directly obtained from {b(t)}
and vice versa, the two notations are equivalent. We employ both representations because Bt facilitates the
expression of the uncorrupted data and its associated covariance (i.e., B⊤

t y(t) and B⊤
t ΣkBt), while b(t) is

a more convenient notation when estimating the positions of the cell outliers.

In the presence of cell outliers, if an observed sample y(t) is drawn from the GMM then the distribution
corresponding to the uncorrupted elements of the data is given by:

p (y(t); θ, b(t)) =
K∑

k=1
πk N (y(t); µk, Σk, b(t)) , (3)

where:

N (y(t); µk, Σk, b(t)) ≜ 1√
(2π)pt

∣∣B⊤
t ΣkBt

∣∣ exp
(

−1
2 (y(t) − µk)⊤ Bt

(
B⊤

t ΣkBt

)−1 B⊤
t (y(t) − µk)

)
,

(4)
and pt =

∑p
j=1 bj(t).

Assume now that we have a cell-corrupted dataset D = {y(1), · · · , y(N)} consisting of N independent and
identically distributed samples drawn from the GMM in (3). The objective is to estimate both the model
parameters θ and the binary variables {b(t)}. To facilitate this estimation, we define the following function
that will be frequently referenced in subsequent derivations:

gtk (θk, b(t)) ≜ log (πk N (y(t); µk, Σk, b(t))) , (5)

where θk ≜ {πk, µk, Σk}. Note that (5) can be written as:

gtk (θk, b(t)) = log πk − 1
2 (y(t) − µk)⊤ Bt

(
B⊤

t ΣkBt

)−1 B⊤
t (y(t) − µk)− 1

2 log
∣∣B⊤

t ΣkBt

∣∣− pt

2 log(2π). (6)

Also note that:
πk N (y(t); µk, Σk, b(t)) = egtk(θk,b(t)). (7)

For the dataset D, the likelihood function corresponding to the uncorrupted data can be expressed as:

L (θ; D, {b(t)}) ≜
N∏

t=1
p (y(t); θ, b(t)) . (8)

Therefore the negative log-likelihood is given by:

l (θ; D, {b(t)}) ≜ − log L (θ; D, {b(t)}) = −
N∑

t=1
log
(

K∑
k=1

egtk(θk,b(t))

)
. (9)

For later use, we also define the negative log-likelihood of the tth observation y(t) as follows:

lt (θ, y(t), b(t)) ≜ − log
(

K∑
k=1

egtk(θk,b(t))

)
(10)
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Minimizing (9) will flag too many cells as outliers. To prevent this from happening we add a penalty term
to (9) which penalizes the number of outliers. The problem of estimating the GMM parameters θ and the
binary variables {b(t)} will thus be formulated as:

minimize
{Ni}, θk, {b(t)}

l (θ; D, {b(t)}) +
∑p

i=1
∑Ni

t=1 ηt,

subject to πT 1 = 1, π ⪰ 0, Σk ≻ 0 ∀ k,
(11)

where Ni = N −
∑N

t=1 bi(t) denotes the number of corrupted cells corresponding to the ith variable across
all observations and ηt is a penalty factor whose choice will be based on the FDR as discussed later.

3 Preliminaries

In this section, we provide concise descriptions of the MM procedure (Sun et al., 2016) and the FDR principle
(Stoica & Babu, 2022), which will be useful in the algorithm development.

3.1 Majorization Minimization

Consider the following minimization problem:

minimize
θ∈Θ

f(θ), (12)

where θ denotes the optimization variable and Θ represents the feasibility set.

Let θz ∈ Θ denote the current estimate of θ at the zth iterative step. A surrogate function gf (θ | θz) is said
to majorize the original objective function f(θ) at θz if (Sun et al., 2016; Hunter & Lange, 2004):

f(θ) ≤ gf (θ | θz) ∀ θ ∈ Θ, (13)

and
f(θz) = gf (θz | θz). (14)

Instead of directly minimizing f(θ), the MM procedure minimizes the surrogate function gf (θ | θz). The
minimizer of this surrogate function is then taken as the updated estimate θz+1, i.e.,

θz+1 = arg minimize
θ∈Θ

gf (θ | θz). (15)

The update in (15) guarantees a non-increasing sequence of objective function values:

f(θz+1)
(13)
≤ gf (θz+1 | θz)

(15)
≤ gf (θz | θz) (14)= f(θz). (16)

Thus, starting from an initial point θ0 ∈ Θ, the MM procedure generates a sequence {θz} that monotonically
decreases the objective function. For further details on the construction of surrogate functions, readers are
referred to Sun et al. (2016).

3.2 False Discovery Rate for Multiple Hypothesis Testing

For outlier detection, we utilize the multiple hypothesis testing procedure of FDR (Benjamini & Hochberg,
1995; Stoica & Babu, 2022). Let {Ht}N

t=1 denote the set of N null hypotheses and {T (t)}N
t=1 be the corre-

sponding test statistics. The multiple hypothesis testing, which is usually preferred to individual testing for
large N , (Stoica et al., 2024) is often performed by controlling the FDR (Benjamini & Hochberg, 1995). Let
γt denote the individual false alarm probability (also called the significance level):

γt = prob(reject Ht | Ht = true). (17)
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The FDR is defined as the expectation of the ratio of the number of incorrectly rejected hypothesis (false
discoveries) and that of all rejected hypothesis (discoveries):

FDR = E
[

IR

R

]
, (FDR = 0 for R = 0.) (18)

To control the FDR at level α, we proceed in the following way. Let {T (t)} be ordered such that T (1) ≥
T (2) · · · ≥ T (N) and let the significance levels be given as:

γt = α
t

Nη
, t = 1, · · · , N, (19)

where η is the harmonic number:

η = 1 + 1
2 + · · · + 1

N
≈ log N + 0.577. (20)

Also let ηt be the following quantile of the distribution of {T (t)}:

prob(T (t) ≥ ηt | Ht) = γt. (21)

Finally let:

t̂ = max [t | T (t) ≥ ηt]. (22)

FDR rejects the t̂ hypotheses (H1, · · · , H
t̂
) and accepts the remaining hypotheses (H

t̂+1, · · · , HN ). If the test
statistics are known to be independent or positively correlated, then the following larger significance levels
can be used:

γt = α
t

N
, t = 1, · · · , N. (23)

4 Proposed Algorithm: RobGMM

In this section, we present an iterative procedure for solving (11). For reader’s convenience, we restate the
optimization problem in (11):

minimize
{Ni}, {θk}, {b(t)}

l (θ; D, {b(t)}) +
∑p

i=1
∑Ni

t=1 ηt,

subject to πT 1 = 1, π ⪰ 0, Σk ≻ 0 ∀ k.
(24)

where ηt are obtained by means of the FDR procedure, see (21) and (29) below. We minimize the above
objective function alternatingly with respect to the outlier positions and the GMM parameters. First, we
exploit the FDR-based penalty in (24) to arrive at an estimate of outlier positions given estimates of the
GMM parameters. Then, for given cell outlier positions, we minimize (24) over the GMM parameters using
the MM procedure. The MM-based derivation of the parameter updates avoids the introduction of latent
variables and the computation of conditional expectations, as is typically required in alternative methods
such as the EM algorithm.

4.1 Outlier Detection

In this subsection we describe the procedure for estimating the set {bi(t)}. Our approach sequentially
updates each binary variable, beginning with {b1(t)}N

t=1 while keeping the remaining variables {b̂j(t)}j ̸=1

and the GMM parameters θ̂ fixed, followed by an analogous update for {b2(t)}N
t=1, and so on. To facilitate
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this, we first consider the negative log-likelihood of the observation y(t) given in (10) as a function of {bi(t)},
using the latest estimates of {b̂j(t)}j ̸=i and θ̂:

fi (bi(t)) ≜ lt

(
θ̂, y(t), {b̂j(t)}j ̸=i, bi(t)

)
. (25)

Since bi(t) ∈ {0, 1}, the function in (25) can be expressed in an affine form as

fi (bi(t)) ≜ bi(t)f1
i (t) + (1 − bi(t)) f0

i (t), (26)

where f1
i (t) and f0

i (t) denote the values of fi (bi(t)) at bi(t) = 1 and bi(t) = 0, respectively. Employing the
representation in (26), the negative log-likelihood associated with the uncorrupted data can be written up
to an additive constant as

N∑
t=1

bi(t)Ti(t), (27)

where:
Ti(t) = f1

i (t) − f0
i (t), t = 1, · · · , N.

Each Ti(t) can be viewed as a test statistic associated with the null hypothesis:

Hi(t): The ith cell of tth sample belong to one of the mixture components and therefore is not an outlier.

Thus multiple hypotheses testing using FDR can be used to test these hypotheses jointly. Since the data
samples are assumed to be independent (over t), the test statistics associated with these hypotheses are also
independent and therefore the significance levels are given by (23). Let the thresholds ηt be defined as in
(21):

prob (Ti(t) ≥ ηt | Hi(t)) = γt (28)

By the log-likelihood ratio theorem (Stoica & Babu, 2024b) the variable Ti(t) follows a chi-square distribu-
tions with one degree of freedom under the null hypothesis that bi(t) = 1. Using this observation in (28)
leads to an explicit choice of the penalty factor ηt in (11):

prob
(
Ti(t) ≥ ηt

∣∣Ti(t) ∼ χ2(1)
)

= αt

N
, t = 1, · · · , N, (29)

where α denotes a predetermined false discovery rate, which is typically set at 0.05. Next observe that mini-
mizing the likelihood in (11) with respect to {bi(t)} and Ni is equivalent to solving the following minimization
problem:

min
Ni, {bi(t)}N

t=1

N∑
t=1

bi(t)Ti(t) +
Ni∑
t=1

ηt. (30)

By sorting the test statistics {Ti(t)}N
t=1 in descending order, i.e., Ti(1) ≥ Ti(2) ≥ · · · ≥ Ti(N) and minimizing

(30) with respect to {bi(t)}N
t=1, the minimum of (30) with respect to Ni is obtained by evaluating:

N∑
t=Ni+1

Ti(t) +
Ni∑
t=1

ηt (31)

for all possible Ni’s. Choosing the minimum of (31) yields the optimal number of corrupted cells, denoted
by N̂i, and consequently the corresponding estimates {b̂i(t)}N

t=1. The updates of the remaining variables
{bj(t)}j ̸=i are derived similarly.
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4.2 GMM parameter estimation

Using the latest estimates of the cell outlier positions {b̂(t)}, the negative log-likelihood in (9) becomes:

l
(

θ; D, {b̂(t)}
)

= −
N∑

t=1
log
(

K∑
k=1

e
gtk

(
θk,b̂(t)

))
, (32)

We will employ an MM algorithm to minimize (32) over θ. The objective in (32) is a log-sum-exp func-
tion (Boyd & Vandenberghe, 2004), therefore using Lemma 1 in the Appendix leads to the following tight
upperbound at θ = θ̃ (the latest estimate of θ):

l
(

θ; D, {b̂(t)}
)

≤ −
N∑

t=1

K∑
k=1

wtkgtk

(
θk, b̂(t)

)
+ constant

≜ sl

(
θ | θ̃

)
+ constant,

(33)

where

wtk = e
gtk

(
θ̃k,b̂(t)

)
∑K

j=1 e
gtj

(
θ̃j ,b̂(t)

) . (34)

We minimize the surrogate function sl

(
θ | θ̃

)
to obtain the updated estimate θ̂:

θ̂ = arg minimize
{πk,µk,Σk}

sl

(
θ | θ̃

)
subject to π⊤1 = 1, π ⪰ 0, Σk ≻ 0 ∀k

. (35)

Using (6), sl

(
θ | θ̃

)
can be written (to with an additive constant) as

sl

(
θ | θ̃

)
=

N∑
t=1

K∑
k=1

wtk

(
1
2 (y(t) − µk)⊤ B̂t

(
B̂⊤

t ΣkB̂t

)−1
B̂⊤

t (y(t) − µk) + 1
2 log

∣∣∣B̂⊤
t ΣkB̂t

∣∣∣− log πk

)
.

(36)

Observe that sl

(
θ | θ̃

)
is separable in {πk} and {µk, Σk}, therefore the objective in (35) can be minimized

separately with respect to {πk} and {µk, Σk}.

4.2.1 Estimation of {πk}

From (35), the minimization problem with respect to {πk} is given by:

maximize
{πk}

∑N
t=1
∑K

k=1 wtk log πk

subject to π⊤1 = 1, π ⪰ 0
(37)

Letting λ be the multiplier for the equality constraint
∑K

k=1 πk = 1, the Lagrangian for (37) is:

L({πk}, λ) =
N∑

t=1

K∑
k=1

wtk log πk + λ

(
K∑

k=1
πk − 1

)
. (38)

The update of πk is obtained by setting the derivative of the Lagrangian with respect to πk to zero:
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∂L({πk}, λ)
∂πk

=
∑N

t=1 wtk

πk
+ λ = 0. (39)

The constraint
∑K

k=1 πk = 1 and (39) implies that:

λ = −
N∑

t=1

K∑
k=1

wtk. (40)

By substituting λ from (40) into (39), we get the update of {πk} as:

π̂k =
∑N

t=1 wtk∑N
t=1
∑K

k=1 wtk

∀k. (41)

From (34) we get
∑N

t=1
∑K

k=1 wtk = N , therefore:

π̂k =
∑N

t=1 wtk

N
∀k. (42)

4.2.2 Estimation of {µk}

Next consider the optimization problem with respect to {µk} for fixed {B̂t}, {π̂k}, and {Σ̂k}:

minimize
{µk}

N∑
t=1

K∑
k=1

wtk (y(t) − µk)⊤ B̂t

(
B̂⊤

t Σ̂kB̂t

)−1
B̂⊤

t (y(t) − µk) . (43)

The solution to (43), which is a quadratic least-squares problem, is given by:

µ̂k =
(

N∑
t=1

wtkB̂t

(
B̂⊤

t Σ̂kB̂t

)−1
B̂⊤

t

)−1( N∑
t=1

wtkB̂t

(
B̂⊤

t Σ̂kB̂t

)−1
B̂⊤

t y(t)
)

∀k. (44)

4.2.3 Estimation of {Σk}

With given {µ̂k} and {B̂t} the optimization problem with respect to Σk is:

minimize
{Σk⪰0}

N∑
t=1

K∑
k=1

wtk

(
log
∣∣∣B̂⊤

t ΣkB̂t

∣∣∣+ q⊤
k (t)B̂t

(
B̂⊤

t ΣkB̂t

)−1
B̂⊤

t qk(t)
)

, (45)

where qk(t) = y(t) − µ̂k. We tackle (45) using an one-step MM approach. An upper bound for the term
log
∣∣∣B̂t

⊤
ΣkB̂t

∣∣∣ in (45) for a given Σk = Σ̃k can be obtained using Lemma 2 in the Appendix:

N∑
t=1

wtk log |B̂t

⊤
ΣkB̂t| ≤ Tr (CkΣk) + constant, (46)

where

Ck ≜
N∑

t=1
wtkB̂t(B̂t

⊤
Σ̃kB̂t)−1B̂t

⊤
. (47)

Since both Σk and Σ̃k are positive semi-definite matrices, we can derive the following tight upperbound for
the second term in (45) at Σ̃k using Lemma 3 in the Appendix:
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N∑
t=1

wtkq⊤
k (t)B̂t(B̂t

⊤
ΣkB̂t)−1B̂t

⊤
qk(t) ≤ Tr

(
DkΣ−1

k

)
, (48)

where

Dk ≜
N∑

t=1
wtkΣ̃kB̂t(B̂t

⊤
Σ̃kB̂t)−1B̂t

⊤
qk(t)q⊤

k (t)B̂t(B̂t

⊤
Σ̃kB̂t)−1B̂t

⊤
Σ̃k. (49)

By combining (46) and (48), we arrive at the following surrogate minimization problem:

min
{Σk⪰0}

K∑
k=1

(
Tr (CkΣk) + Tr

(
DkΣ−1

k

))
. (50)

Letting Ẽk = D− 1
2

k ΣkD− 1
2

k , the above problem can be equivalently written as:

min
{Σk⪰0}

K∑
k=1

(
Tr
(

D
1
2
k CkD

1
2
k Ẽk

)
+ Tr

(
Ẽ−1

k

))
. (51)

The matrix inequality

((
D

1
2
k CkD

1
2
k

) 1
2 − Ẽ−1

k

)
Ẽk

((
D

1
2
k CkD

1
2
k

) 1
2 − Ẽ−1

k

)
⪰ 0 (52)

implies that

Tr
((

D
1
2
k CkD

1
2
k

)
Ẽk

)
+ Tr

(
Ẽ−1

k

)
≥ 2Tr

((
D

1
2
k CkD

1
2
k

) 1
2
)

. (53)

The minimum of left hand side of (53) is obtained when (see (52)):

Ẽk =
(

D
1
2
k CkD

1
2
k

)− 1
2

, (54)

and thus corresponding minimizer of (50) is:

Σ̂k = D
1
2
k

(
D

1
2
k CkD

1
2
k

)− 1
2 D

1
2
k . (55)

The pseudocode of the proposed Robust GMM (RobGMM) algorithm is summarized in Algorithm 1.

Algorithm 1 RobGMM
Input: {y(t)}, α = 0.05
Output: {b̂i(t)}, {π̂k}, {µ̂k}, and {Σ̂k}

1: Initial values of {πk}, {µk}, and {Σk} are obtained using a suitable clustering technique (such as K-
means)

2: {bi(t) = 1}
3: repeat
4: Obtain {b̂i(t)} using (30) and (31)
5: Obtain {π̂k} using (42)
6: Obtain {µ̂k} using (44)
7: Obtain {Σ̂k} using (55)
8: until Convergence

9
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4.3 Convergence and Computational Complexity

The cyclic minimization of the objective in (11) with respect to {πk,µk, Σk}, and {Bt}N
t=1 guarantees the

monotonic decrease of the objective with respect to the iterative steps. Consequently the convergence of the
objective function evaluated at the iterates of the RobGMM can be proved using techniques from Razaviyayn
et al. (2013); Sun et al. (2016). The following convergence criterion for the RobGMM algorithm can be used:∣∣∣∣J (θcurrent, {Bt}current) − J (θprevious, {Bt}previous)

J (θprevious, {Bt}previous)

∣∣∣∣ < ϵ,

where J (θcurrent, {Bcurrent
t }) and J (θprevious, {Bprevious

t }) denote, respectively, the values of the penalized
negative log-likelihood in (11) evaluated at the current and previous estimates of θ and Bt. In the simulation
studies we have used ϵ = 10−6.

In the following we analyze the computational complexity per-iteration of the proposed algorithm in terms of
K, N , and p, where we remind the reader that K denotes the number of mixture components, N represents
the number of data points, and p is the data dimension. The evaluation of the set {b(t)} incurs a cost of
O(KNp4). The computation of the mixing coefficients {πk} requires O(KNp3 + K2N) operations, while
estimating the means {µk} requires O(Kp3 +KNp2 +KN) computations. The estimation of the covariance
matrices {Σk} needs O(KNp3 + KN) flops. Thus the overall computational complexity per-iteration of the
RobGMM algorithm is O(KNp4 + K2N).

5 Numerical Study

In this section the performance of RobGMM for clustering as well as robust GMM parameter estimation
is compared with that of two state-of-the-art robust methods, namely TCLUST (García-Escudero et al.,
2008) and Student’s t mixture model (with degree of freedom = 5) (Peel & McLachlan, 2000). We have also
included the vanila GMM (Dempster et al., 1977) in this comparison. Furthermore the RobGMM algorithm
is also applied to the real-world Top Gear data set (Alfons, 2021) for clustering and outlier detection. Our
experiments are run using the MATLAB software on Intel-i7 processor with 64 GB of RAM.

5.1 Clustering Performance

We evaluate the clustering performance of RobGMM algorithm on data generated using the following sim-
ulation settings:

• Samples (N) = 400

• Dimensions (p) = 2 (chosen small for the sake of displaying the clustering results)

• Clusters (K) = 4

• Proportions (π) = [0.25, 0.25, 0.25, 0.25]

• Means: µ1 =
[
−7
6

]
, µ2 =

[
6

−7

]
, µ3 =

[
10
4

]
, µ4 =

[
−6
−5

]

• Covariances: Σ1 =
[
9.6 5.9
5.9 6.0

]
, Σ2 =

[
3.6 −3.0

−3.0 5.9

]
, Σ3 =

[
5.8 −4.1

−4.1 6.0

]
, Σ4 =

[
1.6 2.2
2.2 4.9

]

We generate the outliers by randomly selecting 5% or 10% elements from the data matrix and modifying
their values such that they are uniformly distributed in the interval [−20, 20]. Fig. 1 shows the uncorrupted
data, the data corrupted with 10% cell outliers, and the clustering results obtained using competing methods
and the proposed RobGMM algorithm. It can be seen that RobGMM algorithm has an excellent robust
clustering performance.
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(a) Uncorrupted data with 400 sam-
ples and 4 clusters

(b) Data corrupted with 10% outliers
(square marker denotes an outlier)

(c) Clustering obtained by GMM al-
gorithm

(d) Clustering obtained by Student’s
t mixture model

(e) Clustering obtained by TCLUST
algorithm

(f) Clustering obtained by the pro-
posed RobGMM algorithm

Figure 1: Uncorrupted and outlier-corrupted data, and clustering results obtained by competing methods
and the proposed RobGMM algorithm.
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The clustering performance of the RobGMM algorithm is compared with TCLUST and student’s t mix-
ture using two performance metrics namely Accuracy (Metz, 1978) and the Enhanced Multivariate Pearson
Correlation Coefficient (EMPC) (Stoica & Babu, 2024a). Evaluating these performance metrics requires
computing the confusion matrix. Let G be the (K + 1) × (K + 1) confusion matrix in which the first K
groups are for the uncorrupted data clusters and the (K +1)th group is assigned to the outliers. The element
Gi,j of G shows the number of data points from the ith cluster that were classified as belonging to the jth

cluster. Using G the Accuracy and EMPC are obtained as follows:

Accuracy =
∑K+1

k=1 Gkk∑K+1
i=1

∑K+1
j=1 Gij

, (56)

EMPC = 1
K + 1

K+1∑
k=1

(δk + βk) Gkk

δkβk
− 1, (57)

where δk =
∑K+1

j=1 Gkj and βk =
∑K+1

i=1 Gik. Note that to match the obtained clustering order to the true
clustering order, we consider all possible orders of the K clusters. For all these possible clustering orders, we
construct the corresponding confusion matrices and compute the Accuracy for each of them. The clustering
order that gives the maximum accuracy is identified as a match to the true clustering order.

Table 1: Performance metrics for RobGMM and other methods for 5% outliers

GMM Student’s t mixture TCLUST RobGMM
(mean ± std. dev.) (mean ± std. dev.) (mean ± std. dev.) (mean ± std. dev.)

Accuracy 0.835 ± 0.106 0.890 ± 0.103 0.943 ± 0.028 0.987 ± 0.005
EMPC 0.568 ± 0.196 0.654 ± 0.201 0.758 ± 0.054 0.944 ± 0.023

Table 2: Performance metrics for RobGMM and other methods for 10% outliers

GMM Student’s t mixture TCLUST RobGMM
(mean ± std. dev.) (mean ± std. dev.) (mean ± std. dev.) (mean ± std. dev.)

Accuracy 0.765 ± 0.101 0.819 ± 0.106 0.857 ± 0.081 0.972 ± 0.017
EMPC 0.471 ± 0.207 0.568 ± 0.214 0.650 ± 0.167 0.921 ± 0.044

The average Accuracy and EMPC performance metrics obtained by RobGMM and the competing methods
are shown in Table 1 and Table 2 for 5% and 10% outliers in 500 Monte-Carlo runs with random outlier
positions. From Table 1, and Table 2, we observe that the average Accuracy and EMPC values obtained by
the RobGMM algorithm are larger than those obtained by the other methods. Furthermore the metric values
corresponding to RobGMM have smaller standard deviation which suggests a more consistent clustering
performance.

5.2 Parameter Estimation Performance

The performance of the RobGMM algorithm for the GMM parameter estimation is compared with that
of the competing methods in two different scenarios using the following metrics: normalized root mean
squared error (NRMSE) and the Kullback-Leibler (KL) divergence. The NRMSE of the estimated mean and
covariance matrix for the kth cluster are given by:

NRMSE (µ̂k) = ∥µk − µ̂k∥
∥µk∥

, (58)

NRMSE
(

Σ̂k

)
= ∥Σk − Σ̂k∥F

∥Σk∥F
, (59)

12
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where ∥ · ∥F denotes the Frobenius norm. The KL divergence of the kth component is defined as:

KL
[
(µk, Σk) ||

(
µ̂k, Σ̂k

)]
= 1

2

[
log
∣∣∣Σ̂k

∣∣∣− log |Σk| − p + Tr
(

Σ̂−1
k Σk

)
+ (µ̂k − µk)⊤ Σ̂−1

k (µ̂k − µk)
]

.

(60)

The cell-outliers are generated by randomly selecting cells from the data matrix and shifting their values such
that the outlying observations do not occur in the 99th percentile of any cluster component. For Scenario-1,
the simulation settings are as follows

• Samples (N) = 400

• Dimensions (p) = 2

• Clusters (K) = 2

• Proportions (π) = [0.5, 0.5]

• Means: µ1 =
[
−27
26

]
, µ2 =

[
26

−27

]

• Covariances: Σ1 =
[
13.6 3.3
3.3 7.4

]
, Σ2 =

[
4.8 −2.0

−2.0 9.2

]

whereas for Scenario-2 they are

• Samples (N) = 600

• Dimensions (p) = 2

• Clusters (K) = 3

• Proportions (π) = [0.33, 0.37, 0.3]

• Means: µ1 =
[
−22
24

]
, µ2 =

[
31
−2

]
, µ3 =

[
−25
−30

]

• Covariances: Σ1 =
[
6.1 2.1
2.1 4.4

]
, Σ2 =

[
6.1 2.8
2.8 7.9

]
, Σ3 =

[
14.3 −2.4
−2.4 6.7

]

Fig. 2 shows the NRMSE and the KL divergence values versus outlier percentage for RobGMM and the
competing methods for Scenario 1. We observe that the Student’s t mixture model performs reasonably
well up to 2% outliers but then breaks down. The methods TCLUST, GMM, and RobGMM demonstrate
a relatively consistent performance over a broad range of outlier percentages, however TCLUST and GMM
yield poor estimates of Σ1, Σ2, whereas RobGMM yields the best estimates in all cases.

The KL divergence and the NRMSE versus outlier percentage plots obtained by all four methods for Scenario
2 are shown in Fig. 3. In this case the TCLUST method performs reasonably well for a small percentage
of outliers. The Student’s t mixture model obtains poor estimates of the parameters and therefore it suffers
from high NRMSE and high KL divergence. Compared to the competing methods, the RobGMM exhibits
superior performance over a broad range of outlier percentages.
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(a) NRMSE (µ̂1) vs outlier percent-
age

(b) NRMSE (µ̂2) vs outlier percent-
age

(c) NRMSE (Σ̂1) vs outlier percent-
age

(d) NRMSE (Σ̂2) vs outlier percent-
age

(e) KL divergence for component 1 vs
outlier percentage

(f) KL divergence for component 2 vs
outlier percentage

Figure 2: Performance metrics versus outlier percentage for RobGMM and the competing estimation methods
(Scenario 1).
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(a) NRMSE (µ̂1) vs outlier percent-
age

(b) NRMSE (µ̂2) vs outlier percent-
age

(c) NRMSE (µ̂3) vs outlier percent-
age

(d) NRMSE (Σ̂1) vs outlier percent-
age

(e) NRMSE (Σ̂2) vs outlier percent-
age

(f) NRMSE (Σ̂3) vs outlier percent-
age

(g) KL divergence vs outlier percent-
age for component 1

(h) KL divergence vs outlier percent-
age for component 2

(i) KL divergence vs outlier percent-
age for component 3

Figure 3: Performance metrics versus outlier percentage for RobGMM and the competing estimation methods
(Scenario 2).
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Figure 4: Penalized negative log-likelihood objective vs iterations of RobGMM on the Top Gear dataset

5.3 Top Gear Dataset Clustering

The Top Gear dataset comprises various car models and their numerical feature specifications. We selected
p = 11 fully observed features corresponding to N = 245 car models. We used a logarithmic transformation
of the highly skewed variables price, displacement, brake horsepower (BHP), torque, and top speed (Alfons,
2021). We then applied the RobGMM algorithm to the dataset. In Fig. 4, we show the penalized negative
log-likelihood objective vs RobGMM iterations, and as expected the objective converges monotonically.

The car models were grouped into four clusters using the RobGMM algorithm: Cluster 1 comprises high-
performance and luxury sports cars such as the Aston Martin V12 Zagato, Ferrari 458, Audi R8, Aston
Martin Vanquish, Aston Martin Vantage, Audi A5 Sportback, Audi A7 Sportback, Audi R8 V10, Bentley
Continental GTC, BMW 6 Series, Corvette C6, Porsche 911, Porsche Boxster, Jaguar XFR, and Lamborgh-
ini Aventador. These cars are distinguished by their emphasis on power, speed, and exclusivity. Cluster
2 consists largely of mainstream, compact, and family-oriented vehicles including models like Ford Fiesta,
Honda Civic, Alfa Romeo Giulietta, Aston Martin Cygnet, Volkswagen Tiguan, Peugeot 107, Renault Clio,
Renault Megane, SEAT Toledo, Toyota iQ, Volkswagen Passat, Chevrolet Spark, Hyundai i20, Suzuki Swift,
and Volkswagen Golf. These cars are practical, widely available, and suited for everyday use. Cluster 3 in-
cludes large SUVs and executive luxury vehicles such as Rolls-Royce Phantom, Bentley Mulsanne, Audi Q7,
BMW X6, Land Rover Range Rover, Rolls-Royce Ghost, Rolls-Royce Phantom Coupe, Toyota Land Cruiser
V8, Volkswagen Touareg, Bentley Flying Spur, Jeep Wrangler, Nissan Pathfinder, Ssangyong Rodius, and
Lexus RX, indicating a focus on comfort, size, and premium features. Cluster 4 is composed of hybrid, elec-
tric, and niche vehicles including Audi TT Coupe, Audi TT Roadster, BMW i3, Chevrolet Volt, Fiat Doblo,
Lexus CT 200h, Peugeot 207 CC, Peugeot 3008, Peugeot 308 CC, Subaru BRZ, Suzuki Grand Vitara, Toyota
GT 86, Toyota Prius, Vauxhall Ampera, and Citroen DS5, with a focus on eco-friendliness and innovation.

In Fig. 5, we show some examples of the cell outliers detected by RobGMM, which highlight feature
values that deviate significantly from the typical characteristics of cars within their respective clusters (ten
representative cars randomly selected from each cluster are shown in the figure). For instance, in Cluster 1,
the Bentley Continental GTC is notably heavy for a performance sports car. In Cluster 2, the Peugeot 107
is exceptionally lightweight for a mainstream everyday vehicle, while the Aston Martin Cygnet and Toyota
iQ exhibit unusually short body lengths despite being categorized as regular city cars. In Cluster 3, the
Bentley Mulsanne, Rolls-Royce Ghost, Rolls-Royce Phantom, and Rolls-Royce Phantom Coupe possess body
lengths significantly greater than those of other luxury sedans and SUVs. In Cluster 4, the BMW i3 records
an exceptionally high MPG value.

In a final experiment, we contaminated the Top Gear dataset by perturbing 1% randomly selected cells in
each feature to create synthetic outliers. Fig. 6 illustrates the positions of the synthetically generated cell
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Figure 5: Cell outliers detected by RobGMM method in the Top Gear dataset (Violet pixel shows a cell
outlier).
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(a) Positions of synthetically generated outliers

(b) Synthetic outlier positions detected by RobGMM algorithm

Figure 6: Cell outliers detected by RobGMM algorithm in the Top Gear dataset (Violet pixel shows a cell
outlier).

outliers and those of the cell outliers detected by the RobGMM algorithm. The results show that RobGMM
successfully identifies all the outliers.

6 Conclusion

In this paper, we proposed a novel algorithm for robust estimation of GMM parameters and clustering
that explicitly accounts for cell outliers. We minimized a penalized negative log-likelihood function to
estimate the GMM parameters where the penalty term was derived from the FDR principle. The penalized
negative log-likelihood function was cyclically minimized over the outlier positions and the GMM parameters.
The minimization over the GMM parameters was done via an MM framework in which we minimized a
tight upper bound on the negative log-likelihood function. This minimization operation decoupled into
simpler optimization subproblems that were solved efficiently. We presented an extensive simulation study,
comprising various experiments aimed at evaluating the performance of the proposed method on synthetic
as well as real-world data and at comparing it with state-of-the-art robust GMM parameter estimation and
clustering techniques.
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A Appendix

Lemma 1. The log-sum-exp function can be lower-bounded at any x̃ as follows:

h (x) ≜ log
(

p∑
i=1

exi

)
≥ h (x̃) + ∇h (x̃)⊤ (x − x̃) , (61)

with equality achieved at x = x̃. Here
x = [x1, · · · , xp]⊤

and ∇h (x̃) denotes the gradient of h (x) at x̃. The gradient of h (x) is given by:

∇h (x) =
(

p∑
i=1

exi

)−1
 ex1

...
exp

 . (62)

Proof. The log-sum-exp function h (x) is convex on Rp×1 (Boyd & Vandenberghe, 2004), therefore a tight
lower bound for h (x) at any x̃ can be constructed by using the following first order Taylor expansion:

h (x) ≥ h (x̃) + ∇h (x̃)⊤ (x − x̃) . (63)

Lemma 2. Let Σk and Σ̃k be positive semi-definite matrices. Then the following inequality holds for any
matrix B̂t:

log
∣∣∣B̂t

⊤
ΣkB̂t

∣∣∣ ≤ Tr
((

B̂t

⊤
Σ̃kB̂t

)−1
B̂t

⊤
ΣkB̂t

)
+ constant, (64)

with equality for Σk = Σ̃k.
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Proof. From the arithmetic mean–geometric mean inequality (Sun et al., 2016) we have that:

∣∣∣∣(B̂t

⊤
Σ̃kB̂t

)−1
B̂t

⊤
ΣkB̂t

∣∣∣∣1/p

≤ 1
p

Tr
((

B̂t

⊤
Σ̃kB̂t

)−1
B̂t

⊤
ΣkB̂t

)
(65)

or, equivalently,

1
p

[
log
∣∣∣B̂t

⊤
ΣkB̂t

∣∣∣− log
∣∣∣B̂t

⊤
Σ̃kB̂t

∣∣∣] ≤ log
[

1
p

Tr
((

B̂t

⊤
Σ̃kB̂t

)−1
B̂t

⊤
ΣkB̂t

)]
≜ log(x) (66)

Since the function log(x) is concave, it can be upper bounded by its first-order Taylor expansion at any point
x0:

log(x) ≤ log(x0) + 1
x0

(x − x0) (67)

In particular, when x0 = 1 this inequality simplifies to:

log(x) ≤ x − 1 (68)

Combining (66) and (68) yields

log
∣∣∣B̂t

⊤
ΣkB̂t

∣∣∣ ≤ Tr
((

B̂t

⊤
Σ̃kB̂t

)−1
B̂t

⊤
ΣkB̂t

)
+ constant, (69)

where constant = log
∣∣∣B̂t

⊤
Σ̃kB̂t

∣∣∣− p.

Lemma 3. Let Σk and Σ̃k be positive semi-definite matrices. Then the following inequality holds for any
matrix B̂t: (

B̂t

⊤
ΣkB̂t

)−1
⪯
(

B̂t

⊤
Σ̃kB̂t

)−1
B̂t

⊤
Σ̃kΣ−1

k Σ̃kB̂t

(
B̂t

⊤
Σ̃kB̂t

)−1
(70)

with equality for Σk = Σ̃k.

Proof. Consider the matrix:

[
B̂t

⊤
Σ̃kΣ−1

k Σ̃kB̂t B̂t

⊤
Σ̃kB̂t

B̂t

⊤
Σ̃kB̂t B̂t

⊤
ΣkB̂t

]
=
[

B̂t

⊤
Σ̃kΣ−1/2

k

B̂t

⊤
Σ1/2

k

] [
Σ−1/2

k Σ̃kB̂t Σ1/2
k B̂t

]
⪰ 0

Because this matrix is positive semidefinite, its Schur complements are also positive semidefinite. In partic-
ular:

B̂t

⊤
Σ̃kΣ−1

k Σ̃kB̂t ⪰
(

B̂t

⊤
Σ̃kB̂t

)(
B̂t

⊤
ΣkB̂t

)−1 (
B̂t

⊤
Σ̃kB̂t

)
, (71)

which is equivalent to:(
B̂t

⊤
ΣkB̂t

)−1
⪯
(

B̂t

⊤
Σ̃kB̂t

)−1
B̂t

⊤
Σ̃kΣ−1

k Σ̃kB̂t

(
B̂t

⊤
Σ̃kB̂t

)−1
. (72)
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