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Figure 1: Our Cluster-Flow Parallel Coordinates Plot (CF-PCP) combines advantages of regular Parallel Coordinate Plots (PCPs)
and Scatter Plots (SPs) as shown here using 2,000 generated points in dimensions D1–D4. CF-PCPs are read from left to right:
The data is grouped by pairwise dimensional clustering, i.e., stacked axes beneath Di show all clusters from subspace Di−1×Di.
CF-PCPs allow for salient illustration of clusters and traceability across multiple dimensions alike. Thus, we argue that our technique
can reveal patters that are difficult to perceive from a linked combination of SPs and traditional PCPs (cf. red and blue data points).

ABSTRACT

We present a novel variant of parallel coordinates plots (PCPs) in
which we show clusters in 2D subspaces of multivariate data and
emphasize flow between them. We achieve this by duplicating and
stacking individual axes vertically. On a high level, our cluster-
flow layout shows how data points move from one cluster to anot-
her in different subspaces. We achieve cluster-based bundling and
limit plot growth through the reduction of available vertical space
for each duplicated axis. Although we introduce space between
clusters, we preserve the readability of intra-cluster correlations by
starting and ending with the original slopes from regular PCPs and
drawing Hermite spline segments in between. Moreover, our ren-
dering technique enables the visualization of small and large data
sets alike. Cluster-flow PCPs can even propagate the uncertainty
inherent to fuzzy clustering through the layout and rendering stages
of our pipeline. Our layout algorithm is based on A*. It achieves an
optimal result with regard to a novel set of cost functions that allow
us to arrange axes horizontally (dimension ordering) and vertically
(cluster ordering).
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1 INTRODUCTION

The analysis of multivariate or multidimensional data is a long-
standing research topic in visualization [51]. Nowadays, with mul-
tivariate data being ubiquitous, a good interplay of automated data
analysis and visualization is very important for gaining insights. In
the realm of data analysis, subspace clustering allows analysts to
find cross-dimensional relationships between data points, leading
to useful classification methods [9, 16]. On the other side of the
spectrum stands an important class of visualization techniques: pa-
rallel coordinates plots (PCPs) [22,27]. They play an important role
in visualizing multivariate data as their core concept of parallel axes
is easy to grasp and, unlike scatter plots, they scale for increasing
dimensionality. Typically, they render each data point as a polyline,
curve, or density field [21]. Existing techniques combine PCPs with
either a single global cluster assignment for each data point [2] or
with clusters in 1D data dimensions [39]. They then resort to edge
bundling or color coding to show cluster memberships [22].

In this work, we aim to combine subspace clustering with the
visualization advantages of PCPs. To this end, we propose a novel
approach that facilitates the visualization of clusters in 2D subspa-
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Figure 2: Comparison of different clustering and PCP techniques using the NetPerf data set [49]. The edge-bundling layout (a) replaces lines
entirely and only draws a single band between each pair of neighboring 1D clusters [39]. Our cluster-flow parallel coordinates (b) draw individual
lines between 2D clusters of neighboring axes. Clusters are arranged vertically with our crossing minimization algorithm from Section 4.3.
Illustrative parallel coordinates (c) emphasize clusters over all dimensions using colored lines and force-based bundling [36]. Figures (a) and (c)
© 2014 IEEE. Reprinted, with permission, from [39].

ces while still maintaining information about the characteristics of
individual data elements in PCPs: the Cluster-Flow Parallel Coordi-
nates Plot (CF-PCP). As depicted in Figure 1, our approach works
on two visual levels inherent to the image. On the overview level,
a coarse visualization allows users to trace and follow the evolution
of subspace clusters across dimensions by duplicating axes for each
cluster and stacking them vertically. On the detail level, it maintains
the readability of correlation of data points and other data characte-
ristics by ensuring that the incoming and outgoing links reflect the
original information from regular PCPs, i.e., our approach keeps
the original slopes of each data element. We demonstrate that CF-
PCPs allow users to trace both hard and fuzzy subspace clusters
across dimensions. Moreover, we propose new metrics to optimize
dimension ordering in CF-PCPs based on subspace clusters and to
reduce crossings between clusters. Our main contributions are

• a new PCP with density rendering for subspace clustering
that preserves the readability of correlations,

• an approach to visualizing uncertainty from fuzzy cluste-
ring,

• an A*-based algorithm for the optimal layout with respect
to a novel set of metrics that reflect the compatibilities of
clusters between dimensions, and

• a sample implementation of CF-PCP1 using fuzzy DB-
SCAN2 for subspace clustering.

2 RELATED WORK

Multivariate or multidimensional visualization is a major and vi-
brant research area of the visualization community. Respective sur-
vey papers are available from Wong and Bergeron [51] and Liu et
al. [35]. Our work addresses the visual mapping of multivariate
data to PCPs; therefore, the discussion of related work focuses on
parallel coordinates, in particular, in combination with clustering.
Parallel coordinates for data analysis go back to seminal work by
Inselberg [26, 28] and later by Wegman [50]. For a comprehensive
presentation of PCPs, we refer to Inselberg’s book [27]. Despite its
popularity, the underlying geometry of a PCP coupled with a high
number of data points can quickly lead to overdraw and thus visual
clutter [22]. This makes it hard for users to explore and analyze
patterns in the data set. To address these challenges, researchers
have investigated cluster visualization and the saliency of under-
lying patterns.

1https://github.com/NilsRodrigues/clusterflow-pcp
2https://github.com/schulzch/fuzzy_dbscan

A first approach to cluster visualization in PCPs is to explicitly
compute clusters in the data set and display them using different
visual encodings. Inselberg [26] suggested drawing the envelope
of the respective lines in parallel coordinates using the convex hull.
Fua et al. [14] investigated rendering clusters with convex quadrila-
terals resembling the axis-aligned bounding box of a cluster. More
recently, Palmas et al. [39] proposed pre-computing 1D clusters for
each dimension using a kernel density estimation approach and then
linking neighboring axes using compact tubes in which the width
encodes the number of data points in the cluster (see Figure 2a).
They then used color coding to mark the clusters of a chosen di-
mension. Their technique produces a highly summarized and lar-
gely clutter-free visualization, reminiscent of a stream visualization
such as baobab trees [46] as well as timelines by Vehlow et al. [47].
Although visually similar, these techniques differ from our appro-
ach as they do not keep the correlation details of data elements en-
coded in the PCP links, nor do they show the cluster flow between
subspaces.

Another approach changes the visual mapping of the lines to im-
plicitly show clusters. Here, edge bundling [33] has shown to be an
effective technique that helps users find clusters and patterns within
PCPs [20]. Illustrative parallel coordinates [36] bundle PCPs in
image space by pre-clustering the data set first (via k-means) and
then render the lines as curves using B-splines (see Figure 2c).
Zhou et al. [54] used a variant of force-directed edge bundling [23]
to directly compute the clusters based on the patterns emerging
from the bundling algorithm. Heinrich et al. [20] extended pre-
vious work [36, 54] by providing C1-continuity between B-splines
to emphasize end-to-end tracing. Our approach also changes the vi-
sual mapping of the links and reduces clutter. However, our overall
composition of links differs because we duplicate axes and focus
on keeping information about the correlation of data elements in
the clusters.

Another approach to improve PCPs is to change the order of di-
mensions. While ordering can also be applied to other visualization
techniques, it is especially inherent to the construction of PCPs,
where the order of axes directly affects the revealed patterns [50].
Pargnostics [8] uses metrics such as the number of crossings, the
angle of crossings, or the parallelism between dimensions for or-
dering. Tatu et al. [45] presented a method to rank axes in parallel
coordinates using features of the Hough transform. Ankers et al. [1]
proposed a pairwise dimension similarity based on Euclidean dis-
tance. Peng et al. [41] defined a clutter-based measure and used
it in an A* algorithm to order the dimensions. Ferdosi and Roer-
dink [12] generalized the notion of dimensional ordering of axes
by expanding the concept of a pairwise similarity measure to sub-

https://github.com/NilsRodrigues/clusterflow-pcp
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Figure 3: Construction of CF-PCPs. Scatter plots are well suited to show clusters of multivariate data in 2D subspaces (a) but do not readily
show cluster relations across more dimensions. We extend PCPs by creating an individually duplicated axis for each cluster to show high-level
flow between clusters (b). Showing the underlying data points as individual lines increases the available level of detail (c). To maintain visual
data patterns and the perception of correlations, we restore the original PCP’s line angles near the axes (d).

space similarity measure using a predefined quality criterion. Later,
Zhao and Kaufman [52] proposed several clustering techniques to
optimize the ordering of axes in PCPs, e.g., a k-means or a spectral
approach. Tatu et al. [45] also proposed subspace similarity mea-
sures based on dimension overlap and data topology. In general, all
these methods focus on subspaces. Our approach differs from the
previous ones as our duplication of axes emphasizes flow between
clusters and imposes the definition of new similarity measures to
order both data dimensions and clusters.

Our paper also addresses the problem of visualizing uncer-
tainty [5, 6, 40] from fuzzy clustering. Techniques for hatching,
sketchiness, as a specialized form of spatial uncertainty, have gai-
ned a lot of attention [3,15,34]. However, there are only few works
on uncertainty in the context of parallel coordinates. Dasgupta et
al. [7] conceptualized a taxonomy of different types of visual un-
certainty inherent to PCPs. Feng et al. [11] focused on showing
uncertainty in the data by mapping confidence to saliency in order
to reduce misinterpretation of data, relying on density representa-
tion of uncertainty. We adopt color mapping to visualize fuzziness
of clustering in PCPs.

To the best of our knowledge, there is no previous work that
combines all mentioned topics. Kosara et al. [32] also visualize flow
but for categorical data instead of clusters. Their portrait layout of
PCPs also does not calculate an optimal order for dimensions or
categories. Nested PCPs by Wang et al. [48] look very similar but
have a global clustering instead of using subspaces. They are meant
for ensemble visualization in conjunction with other plots and use
global color mapping that only depends on a single dimension.

3 MODEL AND OVERVIEW

We first provide an overview and outline intermediate steps of our
technique (see Figure 3). We assume that we have a set of data
points in a multivariate data set as input: P = {~pi ∈ Rn}. An al-
gorithm assigns each of these points a degree of membership to
clusters, resulting in tuples (~pi, mk,i). Here, mk,i ∈ [0,1] describes
the degree to which data point ~pi belongs to the cluster with index k.
Hard clustering is a special case of this, with mk,i ∈ {0,1}. In con-
trast, soft labeling allows for partial memberships. A single cluster
is then defined as ck = {(~pi, mk,i) |mk,i > 0} and C = {ck} compri-
ses all clusters. We focus on subspace clustering because distance
measures lose expressiveness when dimensionality increases, lea-
ding to superfluously fuzzy or inconceivable clusters. Hence, we
compute clusters for each pair of dimensions (Ri,R j) as shown in
Figure 3a, i.e., we look at sets of 2D subspaces. Our current imple-
mentation employs FuzzyDBSCAN [25], which is an extension of
the classic and popular DBSCAN algorithm, for fuzzy clustering.
However, our visualization is independent of the chosen clustering
algorithm, it just assumes that clustering provides labels for each
data point. The data that serves as source for clustering is shown
beneath the axes.

The goal of CF-PCPs is to show the information about subspace
clusters and the actual data points alike. On a coarse level, they

(a) Cartesian (SP) (b) Parallel (PCP) (c) Stacked (CF-PCP)

Figure 4: Illustration of two clusters, using different coordinate sys-
tems. The scatter plot (a) uses Cartesian coordinates to clearly show
them as dots placed along two straight lines. The clusters are hard
to distinguish in a regular PCP (b) without additional visual variables,
e.g., color. Our cluster-flow layout duplicates PCP axes for each clus-
ter to reduce clutter and increase readability (c).

show the number of clusters in the subspaces and how data elements
virtually flow from one cluster to another (see Figure 3b). Our ap-
proach to showing this flow is based on axis duplication: instead
of a single (vertical) axis for a data dimension, we place clones of
this axis on top of each other, i.e., at the same horizontal position.
Each data cluster gets its own axis clone. Through this duplication,
we can render the stream of data elements between clusters, which
are visible even if one does not focus on individual lines in the
CF-PCPs but just looks at the visualization as a whole. Section 4
describes the details of the axis duplication and how we can achieve
an optimal layout of the data dimensions and cluster ordering.

By rendering an individual line for each data point, we include
further details (see Figure 3c) in a fine-grained level of our proposed
visualization. We use a curve model (see Figure 3d), as described
in Section 5, that allows us to infer correlations and other data cha-
racteristics for individual data elements, similar to regular PCPs.
Furthermore, we present a density rendering and color mapping ap-
proach that allows us to visualize large data sets and uncertainty
from fuzzy clustering (see Sections 5.2 and 5.3).

4 LAYOUT

The key aspect of our layout of CF-PCPs is the duplication of axes
(Section 4.1) because this serves as a basis to visually separate clus-
ters and show the flow between clusters in the different subspa-
ces. Each ordering of axes results in a unique flow pattern between
clusters, therefore we present a new method to optimize the ho-
rizontal axis order according to patterns in data flow (Section 4.2).
Section 4.3 introduces a technique to order the clusters on each data
axes (y-axis) vertically.

4.1 Axis Duplication
CF-PCPs extend traditional PCPs by using the vertical image space
to show cluster assignments. Unlike any other PCP variant, we
visualize each cluster on its own (local) axis. As Figure 4 shows,
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Figure 5: Various reading directions with data points colored accor-
ding to clusters in B×C. Without a reading direction, we obtain over-
lapping axes and discontinuous lines (a) because the 2D subspaces
A×B and B×C do not have the same number of clusters. With a re-
ading direction, axes show the clusters within the subspace of the
current dimension and its neighbor to the left (b) or right (c).

we create two duplicates of the axes to draw the two clusters and
stack them vertically.

Axis duplication becomes necessary because we aim to show
clusters in 2D subspaces, not just in 1D [39]. For the latter case of
1D clustering, we could just squeeze the data vertically to bundle
the line into clusters on each axis individually. However, this appro-
ach will only work if the clusters are already separable in a single
dimension. Figure 4a shows an example with two clusters that are
visible in a scatter plot and linearly separable in two dimensions
but not along 1D axes. Here, traditional PCPs lead to intertwined
visualizations of the two clusters, and even axis scaling could not
separate them Figure 4b. With axis duplication Figure 4c, we now
see two clearly distinguishable bundles of lines that correspond to
the two clusters, i.e., clusters are easy to recognize. However, there
is yet another important benefit: the PCP lines can now be inspected
for each cluster separately and, thus, we can investigate correlations
or other data characteristics independently within each cluster.

Up to now, we only handled a pair of two data dimensions, but
parallel coordinates support multivariate data. Figure 5 shows an
example sequence with three dimensions. In subspace A×B, there
are two clusters, so we create two copies. B×C contains three clus-
ters, so we draw three copies. This results in overplotted axes for
dimension B and interrupted polylines for the data points (see Fi-
gure 5a). Therefore, we introduce a reading direction left-to-right
(LTR) to create as many copies of axis B as there are clusters in
A×B. We duplicate axis C as often as there are clusters in B×C
(see Figure 5b). Since axis A has no pair to the left, there is no
explicit clustering and no duplication. While the opposite reading
direction works accordingly (see Figure 5c), we chose a consistent
LTR layout for all figures in this paper. Beneath the axes, CF-PCPs
also show the two data dimensions that were used for clustering to
help the viewer identify the reading direction.

Cloning the axes and stacking them vertically increases the plot
area and vertically shears the lines that represent the data points,
especially for large numbers of clusters. We address both issues by
scaling down cloned axes with a root function. Assuming the height
h1 of a single regular PCP axis and n as the number of stacked axes,
we get a total height of

h(n) = n ·h1 · (1/n)r , (1)

where r ∈ [0,1] controls the root scaling. Selecting r = 0 will result
in no downscaling at all, while r = 1 will keep the original height
without any growth. Spaces between axes are determined with

s(n) = s2 ·h1 · (1/(n−1))r , (2)

where s2 is the percentage of h1 we want to use as space between
two duplicates. The remaining space is then used for the actual axis
clones. We chose r = 0.8 and s2 = 0.1 for figures in this paper to
balance between growing height and readability.

Axes in regular PCPs are normalized to only display the used
range of each data dimension. Multiple labeled tick marks ena-
ble viewers to read values from data points at their intersections
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Figure 6: Tree representation of our model for ordering of dimensions
d1 to d4. The blue numbers beneath the dimension names represent
costs (left: individual; right: accumulated). Levels 0 and 1 have no
costs because there are no pairs of clusters yet. The path d1, d2, d4,
d3 is optimal as it is at the deepest level and others are at least as
expensive. Missing paths at level 3 and 4 have not been expanded
yet, because their costs were never minimal.

with the axes. As the number of clusters rises, axes in CF-PCPs
shrink. Retaining the same amount of labeled tick marks as in re-
gular PCPs would add more overdraw to the already densely pac-
ked area around the axes. Therefore, we limit the ticks marks to
the maximum and minimum of the data range in each data dimen-
sion and progressively scale the label size according to the space
between axes.

4.2 Dimension Ordering
Just as with regular parallel coordinates, the visual patterns in a CF-
PCP depend heavily on the order of data axes. For this reason, we
propose a method for optimizing the order automatically. Previous
work investigated various metrics—like number of crossings, an-
gles between lines, correlation strength, and more—to optimize the
order [8, 30]. At first glance, we could have simply reused existing
algorithms or defined dimension ordering as an overlap-removal
problem for the polylines in the PCP. However, CF-PCPs do not
only show the underlying data points but also depict flow between
subspace clusters on a coarse scale. For example, to calculate the
costs of chaining two sets of clusters between display axes ai and
ai+1, we also need to know the previous axis ai−1. This is due to our
2D subspace clustering and reading direction LTR: clusters shown
at ai are calculated with data from dimensions di−1×di. Only then
can we calculate costs with the next axis ai+1, which contains clus-
ters from di×di+1.

As shown in Figure 6, we choose a tree T as primary data struc-
ture for our proposed order optimization. We start by creating the
root node at level 0 and add a child for each data dimension at level
1. Then, we expand each leaf recursively by attaching a node for
each unused data dimension. Each level corresponds to an index in
the sequence of display dimensions. This way, for d data dimensi-
ons we obtain a tree with d+1 levels, where each node has d− level
children. The tree contains d! different paths—corresponding to all
permutations of the data dimensions. Costs from one set of clus-
ters to the next depend only on three consecutive data dimensions.
Thus, there are only d · (d−1) · (d−2) different costs to compute,
which can be cached and reused in the tree traversal.

We apply the A* algorithm [17] to compute the shortest path in T
and implement it by lazily expanding a tree node when it is the leaf
with the lowest cumulative costs. The heuristic d− level estimates
the remaining costs. This has implications on the metric we use
to define the distance between two sets of clusters: The minimum
cost from a parent to a child has to be 1 for the heuristic to work.
With this model, the A* algorithm is guaranteed to find an optimal
solution. We combine lazy evaluation with caching of cost values
to compute the A* optimization efficiently.
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Figure 7: Simplified CF-PCP with cluster sets ci and c j. Top and
bottom (black) never cross any other bundles. A red reference bundle
only crosses lines that start below and end above (blue).

Having decided on a basic optimization algorithm, we choose a
measure for the costs of displaying clusters next to each other. CF-
PCPs are targeted at showing how clusters evolve from one sub-
space to the other, how the data points flow from one to another.
Therefore, we propose a metric that focuses on the similarities and
differences of clusters. Let ci and c j be two sets of clusters. The
number of elements in them are n= |ci| and m=

∣∣c j
∣∣. In a first step,

we generate a similarity matrix using the Jaccard indices [29]:

Sci,c j =

J
(
ci,1,c j,1

)
· · ·

...
. . .

...
· · · J

(
ci,n,c j,m

)
 . (3)

The best match of cluster sets would yield few elements with value
1 and many with 0. Bad matches have many data points changing
between clusters, leading to an array with many values < 1. Since
we prefer to see dimension orders with many good matches, we
subtract the matrix’s mean value from all its elements sx,y. We then
square all results and sum them up into the grand sum to get a scalar
similarity value between the sets of clusters:

similarityi, j = ∑
1≤x≤n
1≤y≤m

[
sx,y−mean

(
Sci,c j

)]2
. (4)

To obtain a cost function that fits the requirements of A* and our
tree T , we invert the similarity. However, sim(ci,c j) can be 0 when
all matrix entries have the same value or we are comparing sets of
size 1. Thus, we define the cost function as

horizontalCosti, j = 1+[similarityi, j +1]−1 ≥ 1 (5)

to avoid division by 0. Using our proposed metric helps the optimi-
zation algorithm in avoiding adjacent dimensions with no or only
one cluster between them.

4.3 Cluster Ordering
We separate the optimization of horizontal dimension and vertical
cluster order because CF-PCPs aim to primarily display the data
flow between subspace clusters. The list of available clusters for
display is controlled by the sequence of dimensions but not by their
internal vertical arrangement. Therefore, the order of dimensions is
our highest priority. Afterward, we still have flexibility in choosing
the vertical arrangement along each data dimension. Our approach
to optimizing the vertical sequence is similar to the dimension or-
dering: employ A* to find an optimal path from tree level 1 to a
leaf at level d. The main difference lies in the way we generate the
children of each node. When there are m clusters to be arranged, we
generate all permutations and add them to the parent node, which
is itself a node among permutations of the previous clusters.

We adopted a metric based on the number of line crossings as
a cost function—which is popular for ordering in PCPs [8]—and
adapted it for the display of data flow from one cluster to another.
The comparison of Figures 4b and 4c shows that lines within cluster
pairs move closer to each other. This is caused by the axis scaling
from Section 4.1 and creates the impression of bundles. Intertwined
lines within such a bundle do not interfere with tracing the data flow,
but crossing bundles are difficult to follow visually. Therefore, we
define our metric to penalize these inter-bundle crossings.

γ

γ

γ
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P2
T2

γ

(a) (b)

Figure 8: Composite line geometry in CF-PCPs. In regular parallel
coordinates (a), lines have an angle γ, depending on the underlying
data point’s values in each display dimension. Lines in CF-PCPs (b)
have segments with the same angle in a zone close to the axes (red
lines on gray background). These are then connected by a cubic
Hermite curve with tangents T1 and T2.

A bundle between clusters contains all shared points, e.g., ci,1∩
c j,1. We assume that each line has a certainty l ∈ [0,1] that describes
its—possibly fuzzy—cluster membership. Fuzzy lines will not be
as visible as certain ones and contribute less to overall clutter. See
Section 5.3 for more details on how the certainty will affect line
rendering. Our metric sums up the certainty within each bundle into
L and uses it as an adjusted line count. This new count is used to
populate a matrix with values for all bundles between neighboring
dimensions i and j:

Bi, j =

L(ci,1∩ c j,1) · · ·
...

. . .
...

· · · L(ci,n∩ c j,m)

 . (6)

Our approach calculates the total number of crossings using a met-
hod by Rit [43]: bundles only cross if they start lower and end
higher (see Figure 7). The opposite case (from higher to lower)
is just a different view on the intersection of the same lines. The
actual calculation is done by multiplying each element bx,y of Bi, j
with the submatrix x,yBi,c to its lower left and then getting the grand
sum. The first column and last row do not have a submatrix to the
lower left, so we do not need to calculate crossings for them. The
resulting values are written into a matrix Ii, j and all its elements ix,y
are summed up. The final cost for placing one sequence of clusters
next to another is then

verticalCosti, j = 1+ ∑
1≤x≤n
1≤y≤m

ix,y ≥ 1 . (7)

We start with a minimal vertical cost of 1 to ensure that the me-
tric fits the requirements set by the level-based heuristic for A*.
The width of the primary tree structure T grows much faster than
in Section 4.2. Therefore we recommend using the lazy A* algo-
rithm for the optimization of up to 15 clusters per 2D subspace and
reverting to a greedy approach for more complex problems. For ex-
ample, sorting clusters by the mean value of contained data points
approximates the vertical line layout from PCPs whilst retaining
advantages of their cluster-flow counterparts.

5 RENDERING

At this point, CF-PCPs exist as a model that does not completely
specify how to display lines and encode uncertainty. To be able to
render actual visual output, we now address these aspects.

5.1 Curve Geometry
Traditional PCPs draw data points as straight lines between two
neighboring dimensions. If we do the same in CF-PCPs, we get a
relatively clean visualization without much clutter (Figure 9a). Un-
fortunately, the naive approach of axis duplication also changes the
line slopes with respect to traditional PCPs. In fact, the slope de-
pends no longer just on the data values but much more on the cluster
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Figure 9: Comparison of line geometry in CF-PCPs. Straight lines (a)
make it hard to recognize correlations within clusters. Curved com-
posite lines (b) preserve information on correlations by starting and
ending with the same angles as in regular PCPs. Adjusting tangents
used in the central Hermite splines separates lines that would cover
and occlude each other completely.
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Figure 10: Fuzzy clustering provides a single data point with multiple
soft labels in various clusters. Out technique draws lines between all
possible pairs of these clusters. Their opacity is calculated by mul-
tiplying the point’s labels in both connected clusters. This spreads
each data point’s constant total density of 1 over all possible con-
nections.

membership. A related issue is that the angular resolution is redu-
ced because lines become “compressed” (i.e., closer in angles) if
they belong to the same cluster. Therefore, it becomes harder to re-
cognize correlations. A recent eye-tracking study [37] showed that
participants focus primarily on the area around the axes when rea-
ding PCPs. Another study with extreme bundling in PCPs [19, 20]
showed that the perception of data characteristics and correlation is
even possible when participants could not use the center parts be-
tween axes. These findings give us an opportunity to address the
aforementioned problems: we replace straight lines by composite
connections (see Figure 8). The key to our model is that we start
and finish the connections with short straight line segments with the
same slope as in original PCPs. This creates a zone in the very im-
portant focal area around the axes that retains the same information
as in regular PCPs.

In the center region—in-between data axes—we connect the
straight segments with a cubic Hermite curve. Choosing the tan-
gents of the curve to be identical to the original slope guarantees
a smooth transition between segments. The result of this approach
is shown in Figure 9b. Instead of using the same factor to scale
the Hermite curve’s tangents T 1 and T 2, we vary it between data
points. The relative index of each row in the source data set is ad-
ded to a base factor on T 1 and subtracted for T 2. This spreads the
composite lines along the direction they would have had in a clas-
sic PCP. This is very helpful when there are multiple row with the
same values in both neighboring data dimensions: the wider the li-
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Figure 11: Visualizing uncertainty in the clustering results. The label
weights are binned into 3 ranges. Each bin is separately rendered to
a density field and then mapped to color (a)–(c). Finally, the results
are sorted by uncertainty and alpha blended (d).

nes spread, the more rows share the same values. The effect can
be observed in the curves between the dimensions Oil and Biomass
in Figure 15. In regular PCPs, this information would be lost in
overplotting or would require a density rendering technique.

5.2 Density Rendering

CF-PCPs are designed to work with large data sets that can incur the
problem of overplotting. We address this issue by adopting the es-
tablished method of splatting [53] the lines and showing their den-
sity [2, 31]. This is achieved by splitting the rendering process into
separate passes. The first pass uses additive blending to compute
an intermediate density field. Since the densities typically cover
a large dynamic range, we apply a nonlinear transformation before
we render the final visualization. In our implementation, we apply a
logarithmic mapping together with a logistic function to guarantee
user-specified extrema within [0,1]. The result is then multiplied
with the line color’s alpha value. The result is best demonstrated in
Figure 1, where individual lines can be traced in areas of both high
and low density. We discuss the choice of color in the following
context of uncertainty visualization.

5.3 Uncertainty

Fuzzy clustering involves soft labeling of individual data points.
In our implementation, we distinguished between no clusters at all
(black axes in Figure 11), noise (red), and actual clusters (blue).
This gives viewers additional information about the underlying al-
gorithm’s success in clustering the source data. Going further, more
levels of certainty could be visualized as long as the axis colors re-
main well distinguishable.

Soft clustering can also select multiple labels for a single point,
weakly assigning it to multiple clusters, instead of a single strong
result. We treat these labels as probabilities and, by definition, the
total probability that a point exists is 100 %, i.e., the sum of all as-
signed soft labels has to be 1. The clustering technique does not
supply information on flow between sets of fuzzy clusters in se-
parate subspaces. Therefore, we cannot infer whether a point mo-
ved between specific pairs of neighboring clusters. The probability
that it belongs to one cluster or the other is our only information.
We take this into account by rendering a single source data point
as multiple lines to obtain a faithful visual representation. When a
data row is labeled more than once in a 2D subspace, we draw a line
between all neighboring clusters it belongs to (see Figure 10). We
determine the opacity of each line by multiplying the label values
of the clusters it connects. Our method corresponds to providing
a field with probable paths for the movement of data points and
results in an invariant total opacity of 1 for each point. This pro-
perty is compatible with the rendering technique from Section 5.2
because it does not affect the total density.
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Figure 12: Inter-cluster patterns. Clustering in subspaces D1×D2
and D2×D3 gives the exact same result (a, b). Cluster C1 splits into
C3 and C4 in D3×D4 (c). The displayed clusters in (d) have very low
similarity with the results from the previous subspace.

Up to this point, our approach only renders the probability that
a data point flows from one cluster to the other. Color is a strong
visual variable with many distinguishable values, but we have not
used it for line rendering, yet. Hence, CF-PCPs encode the nu-
merical uncertainty from the clustering algorithm by mapping it to
color. Each line between two axes is rendered according to its un-
derlying data point’s label in the target cluster (right axis for reading
direction LTR). This means that the color of lines for the same data
row may change from one side of an axis to the other, leaving the
positional attributes as hints for tracing the line paths. We choose
a sequential color scale (from light blue to black) to map the label
weights in our examples (see Figure 11). The gradient from light
blue to black only varies significantly in saturation and value, ma-
king it suitable even for viewers with most common color vision
deficiencies.

CF-PCPs apply binning for good readability [38] because
smooth color gradients can be problematic for reading exact va-
lues [4]. Another benefit of binning becomes evident when crea-
ting the density fields (see Section 5.2): additive blending would
mix and distort the used colors. Furthermore, it would make multi-
ple overlayed fuzzy lines look like a single certain one. To address
these issues, our approach creates a separate density field for each
bin in the uncertainty color map. As depicted in Figure 11, CF-
PCPs convert them separately into regular images with the RGB
values from the color map, while the alpha channel encodes the
field’s density. In the final render pass, these individual fields are
sorted by fuzziness and alpha-blended with the over operator [42].

6 VISUAL PATTERNS

As discussed earlier, CF-PCPs show streams of 2D clusters across
the subspaces of a data set while still displaying the original cor-
relations between dimensions. As such, our visualization aims at
providing two levels of granularity: overview and detail. The over-
view level shows similar 2D subspaces, clusters, and inter-cluster
patterns, i.e., how data flows between clusters across different sub-
spaces. The detail level shows intra-cluster patterns, i.e., what is the
correlation within pairs of clusters from neighboring dimensions.

Ordering: Our horizontal ordering, coupled with our A* appro-
ach, implies strong similarities of clusters in neighboring dimensi-
ons because we minimize the total dissimilarity according to our
metrics. More specifically, this means that the two subspaces bet-
ween three neighboring dimensions contain similar clusters.

Clusters: The duplication of axes allows for easy identification
of the number of cluster within each 2D subspace. In turn, this helps
us identify data classes across different pairs of dimensions. Cou-
pled soft labeling, this makes it easy to recognize well-separated
classes (with a high level of certainty) over fuzzy ones.

Inter-Cluster Patterns: We created Figure 12 as an example
with five dimensions that always have two clusters in their subspa-
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Figure 13: Intra-cluster patterns. When CF-PCP axes are at the
same height (a and c), patterns from positive and negative correlati-
ons look very similar to their counterparts in regular PCPs. The line
geometry discussed in Section 5.1 preserves these patterns close to
the axes, even if they are at different heights (b and d).

ces. In Figures 12a and 12b the flow of data between clusters in
D1×D2 and D2×D3 shows highly similar subspaces: each cluster
on the left is associated with a unique cluster on the right. This
one-to-one relationships denotes high or total similarity between
subspaces. The situation is different in Figure 12c, where the CF-
PCPs shows that cluster C1 from D2×D3 splits into C3 and C4 in
D3×D4. It would also be correct to say that C4 splits into C1 and C2,
depending on the point of view. Finally, in Figure 12d, we see two
very dissimilar subspaces. Here, both clusters C3 and C4 split and
mix in D4×D5.

More generally, if each cluster in the subspace of two dimensi-
ons is uniquely associated with every other cluster of a neighboring
subspace (i.e., the similarity matrix in Equation (3) contains only
ones and zeros), it means that they behave similarly. If, in turn, all
clusters are linked with each other (i.e., the similarity matrix con-
tains many values <1 and >0), this shows a completely dissimilar
clustering behavior between the three dimensions that span the two
subspaces. Additionally, an axis having different incoming clusters
is equal to a merge or split, depending on the point of view. Over-
all, in CF-PCPs, the number of splits or merges between clusters
conveys the connectedness of their two subspaces.

Intra-Cluster Patterns: Atop showing the high-level informa-
tion on flow of data between clusters across subspaces, our visuali-
zation also maintains patterns known from traditional parallel coor-
dinates. Since the duplication retains the entire value range of an
axis, our cluster-flow layout shows the distribution of each clus-
ter’s data points in the original dimensions. As demonstrated by the
clusters labeled D3 in Figure 1, we can see where the values are
positioned in regards to the whole range: larger values are in the
upper cluster, smaller ones in the lower. This approach also visua-
lizes whether the data points move closer or further apart, e.g., the
bundle from D3 spread out in D4.

The examples in Figure 13 illustrate how CF-PCPs show data
correlations. If two neighboring clusters are aligned (a and c) then
positive and negative correlations look very similar to the classic
PCP approach. In the case of non-aligned clusters (b and d), our
line geometry from Section 5 ensures that the slopes near the axes
remain identical to the ones in regular PCPs. Hence, our approach
preserves the most important areas of PCPs [37] and adds additional
information on clusters and data flow.

Overall, the visual patterns of our approach can be seen in dif-
ferent places of the visualization: inter-cluster patterns are located
in the entire space between two display dimensions, whereas the
vicinity of duplicated axes reveals intra-cluster patterns.
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Figure 14: Classification of E. coli bacteria according to a tree (a) where nodes correspond to metrics and leafs to inferred classes [24]. All red
metrics are necessary to distinguish the blue classes. These are shown as dimensions in the regular PCP (b). The scatter plots show color-
coded fuzzy subspace clusters between the last three metrics (c). Our CF-PCP (d) technique combines aspects of both previous visualizations.
Its line colors encode certainty: 0 XX XX XX 100 %.

7 EXAMPLES

To demonstrate the applicability of CF-PCPs, we provide examples
for typical real-world data sets and compare our results to previous
approaches.

7.1 Escherichia Coli
Horton and Nakai used machine learning to automatically predict
localization sites of proteins [24]. Their results included a decision
tree that uses multiple measured metrics for Escherichia coli bacte-
ria in order to arrive at a predicted classification. Figure 14a shows
this tree and highlights five red nodes that we selected for visuali-
zation. They correspond to the metrics that define four classifica-
tions (blue). We start our analysis with a regular PCP and density
rendering (Figure 14b). It shows that the dimension lip is only bi-
nary. There seem to be negative correlations between alm2 and its
neighbors, but it is difficult to map the resulting class to a specific
influence of each previous dimension. The CF-PCP in Figure 14d
uses 2D subspace clustering and shows additional information. The
first impression is of mostly green color, which shows low certainty.
This is due to a low degree of separation between the clusters. The
second impression is of flow between clusters. The observable flow
from the CF-PCP matches the tree structure from Figure 14a. Using
Fuzzy DBSCAN with dimensions mcg, lip, and gvh yields a sin-
gle cluster and noise each time. The classification tree confirms
that they are not sufficient to infer any specific classes. Subspace
gvh×alm2 shows the first split into two actual clusters, just as the
tree also arrives at its first class imU. Class imS is inferred next and
the CF-PCP also contains two clusters in alm2×aac. Combining
the information from aac×class reveals four final clusters, which
matches the the classification count in the highlighted subtree.

The scatter plots with color-coded clusters do not show this data
flow between dimensions because the selected colors are not lin-
ked between each plot. Even the display of the fuzziness poses a
problem: some points belong to multiple clusters. Plotting them
multiple time on the same position only retains the color of their
last label.

7.2 NetPerf
To help understand the characteristics of CF-PCPs, we also com-
pare our technique with two clustering-oriented PCP approaches

in Figure 2, using the NetPerf data set [49]: Illustrative Parallel
Coordinates (IPC) [36] and an edge bundling layout (EBL) for in-
teractive parallel coordinates [39]. In contrast to our proposed pai-
rwise fuzzy method, the clustering in IPCs is calculated and rende-
red for all dimensions at once (see Figure 2c). Conversely, the EBL
method clusters the data separately in each single dimension (see
Figure 2a). Both approaches use color to encode clusters consis-
tently over every dimension. Our selected sample visualizations
show four dimensions and three clusters in the NetPerf data set. To
increase comparability, we limit ourselves to the four dimensions
used in the previously published visualizations of the same data.
Dimension ordering is disabled, while the vertical axis order mini-
mizes our metric on line crossings from Section 4.3.

In Figure 2c, Illustrative Parallel Coordinates bundle PCP poly-
lines based on the cluster they belong to. This reduces inter-cluster
overdraw and emphasizes visual cluster separation. Line distortion
is applied at the expense of clarity of pairwise axis correlation, be-
cause their direction no longer corresponds to the original angle in
regular PCPs. Clustering in IPCs works across all visible dimensi-
ons and shows overlap between clusters, for instance, in the signal
strength dimension. In contrast, EBL [39] reduces clutter in PCPs
by bundling edges within pairs of one-dimensional clusters that are
computed with a k-means algorithm. Similarly to our approach,
this method highlights subspace clusters—albeit one-dimensional
ones—and allows viewers to follow the flow of bundles between
dimensions. As such, the method avoids overdraw of clusters on
axes. However, the one-dimensional approach simplifies the vi-
sualization to the detriment of details when it comes to diverging
clusters. For example, edges in the top cluster of the throughput
axis split into three different clusters in signal strength, but without
further interaction, users cannot infer the distribution of data points
that belong to the highest cluster in the signal strength dimension.

Similarly to both alternative approaches, our cluster-flow layout
shows three main clusters per axis pair (see Figure 2b). Howe-
ver, our visualization goes beyond the alternative techniques and is
able to show overlap between clusters while allowing the viewer
to trace complex cluster patterns. More specifically, our plot shows
that low framerates are always associated with low throughput. Just
as with logical consequence, the opposite is not true. Similarly to
IPCs (Figure 2c), the CF-PCP shows that the main cluster of high



Import Balance
2.319

-15.87

Others
4.919

2.099

4.919

2.099
(Import Balance x Others)

Oil
6.297

5.82

6.297

5.82

6.297

5.82
(Others x Oil)

Biomass
9.424

4.604

9.424

4.604

9.424

4.604

9.424

4.604

(Oil x Biomass)

Pumped Storage
18.84

4.696

18.84

4.696

18.84

4.696

18.84

4.696

(Biomass x Pumped Sto.)

Uranium
19.747

1.724

19.747

1.724

19.747

1.724

19.747

1.724

(Pumped Stor. x Uranium)

Hard Coal
0.584

0.14

0.584

0.14

0.584

0.14

0.584

0.14

(Uranium x Hard Coal)

Brown Coal
12.082

1.179

12.082

1.179

12.082

1.179

12.082

1.179

(Hard Coal x Brown Coal)

Hydro Power
0.083

0

0.083

0

0.083

0
(Brown Coal x Hydro Po.)

Wind
5.835

0.043

5.835

0.043

5.835

0.043

5.835

0.043

5.835

0.043

(Hydro Power x Wind)

Gas
0.99

0.002

0.99

0.002

0.99

0.002

0.99

0.002

(Wind x Gas)

Solar
43.184

0.277

43.184

0.277

43.184

0.277
(Gas x Solar)

Seasonal Storage
21.558

0

21.558

0
(Solar x Seasonal Stora.)

Figure 15: Visualization of electric power production by primary energy sources in Germany. Clusters in this CF-PCP are vertically ordered by
their mean value. Line colors encode certainty from fuzzy clustering: 0 XX XX XX 100 %

throughput is associated with three clusters of high to low values of
signal strength. Contrary to the broad bands in EBLs, fine details
in CF-PCPs allow the viewer to see that the highest values of signal
strength are always associated with the highest values of throug-
hput. The large cluster at the top of the throughput dimension in
the EBL of Figure 2a does not support this conclusion.

A commonality with the EBL is the top cluster between sig-
nal strength and throughput, which forks into two different clus-
ters when combining the data on signal strength and bandwidth:
one with high, the other with low values. In the CF-PCP, we can
quickly determine that there are many data points with high frame-
rate, despite having only medium to low throughput and minimal
signal strength and bandwidth. Color coding fuzziness, we are also
able to see that there are uncertain assignments, e.g., the third clus-
ter between framerate and throughput is completely fuzzy and many
of its data points are more likely to be noise or belong to the second
cluster. Overall, our implementation avoids the inconvenience of
overlap from n-dimensional clustering and allows for detailed ana-
lysis by tracing individual lines and clusters across dimensions.

7.3 Energy Production
Lastly, we visualize a larger data set of electricity production by
primary energy source [13,44]. It contains 1750 data rows and lists
a timestamp, 12 sources of primary energy, as well as internatio-
nal imports and exports as dimensions we can use in the CF-PCP.
While the restriction to subspaces generally reduces the number of
clusters, this is not the case with the uniformly distributet data in the
time dimension: it yields 12 clusters. We removed it to get a clea-
ner and less cluttered plot for further analysis. We provide further
visualizations of the original and reduced data set as supplemental
material.

Clustering between pairs of dimensions and separating them ver-
tically can help with visual detection of dependencies in the data.
From Figure 15, we can extract information between hard and
brown coal. On the one hand, low energy production from the
latter only occurs when hard coal also has lower values. On the
other hand, power production on the left-hand side varies greatly,
while brown coal is often at a high output level. Therefore, it seems
that between these two, brown coal is burned more constantly while
hard coal is preferred for adjustments to changing levels in power
production from unsteady sources. Even with density rendering, the
high degree of overplotting would create an almost constant back-
ground between both axes and thus cannot facilitate these observa-
tions.

8 CONCLUSION AND FUTURE WORK

We have presented a technique for cluster-centric visualization of
high-dimensional data using parallel coordinates. The main idea of
our technique is to deliberately duplicate axes for each cluster to

show data flow between 2D subspaces. At the same time, this also
creates an opportunity to display fuzzy clusters with parallel coordi-
nates. We have described an algorithm to compute the cluster-flow
layout, i.e., for ordering dimensions and axes. While the automa-
tic optimization is algorithmicly complex, manual interaction with
the axes and dimensions is always a viable alternative for data ex-
ploration. We analyzed visual correspondence of data patterns and
discussed the applicability of our technique using multiple exam-
ples. Our layout is an improvement over the traditional approach
when clusters are not linearly separable over a single dimension or
all dimensions together and the number of clusters in subspaces is
small: in this case, we bundle lines over separate axis clones instead
of plotting many overlapping lines on a single large axis.

In future work, we want to thoroughly evaluate user performance
in controlled studies. In a first step, CF-PCPs should be compared
against regular PCPs and scatter plot matrices (SPLOM) [10, 18]
separately. A second step would compare them against a combina-
tion of both, for example, in coordinated views. It might also be
interesting to investigate whether the vertical position of the largest
cluster influences user performance.

Extensions of our work might look into alternative optimization
targets for the layout, such as aesthetic aspects or faithfulness. Pa-
rallel coordinates and scatter plots have their strengths and weak-
nesses. We would like to integrate scatter plots into our layout, e.g.,
beneath or between duplicated axes. A progressive clustering and
cluster-flow layout would also be of interest for the analysis of dy-
namic data with live updates. We used CF-PCPs with a reading
direction, where each display dimension is used for clustering with
its neighbor. Our method could be extended to use both neighbors.
Another change could be to cluster all displayed dimensions with
a common reference dimension. This would be similar to selecting
a row or column from a scatter plot matrix and visualizing it with
parallel coordinates. Considering the example with E. coli bacteria,
a hierarchical approach would be very beneficial for small numbers
of dimensions. Here, we would enforce a reading direction and pro-
gressively create subclusters that mimic the classification tree from
Horton and Nakai’s work [24]. Finally, we would like to expand
our approach to the field of interactive model peeling in the context
of regression and machine learning.
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