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Figure 1: (a) High-resolution (∼ 5K) renderings of the “bicycle” scene from the Mip-NeRF 360
dataset, with results from 3DGS, Mip-Splatting, and our method. Red dashed boxes highlight key
details. (b) Performance on this scene: our method achieves the highest PSNR (25.6 dB) with
significantly lower GPU memory (23 GB) and model size (567 MB) than 3DGS and Mip-Splatting.
(c) Average resource usage across the full dataset shows our method maintains the smallest memory
and model footprint.

ABSTRACT

3D Gaussian Splatting (3DGS) has achieved significant progress in real-time 3D
scene reconstruction. However, its application in high-resolution reconstruction
scenarios faces severe memory scalability bottlenecks. To address this issue, we
propose Hierarchical Gaussian Splatting (HRGS), a memory-efficient framework
with hierarchical block-level optimization from coarse to fine. Specifically, we
first derive a global, coarse Gaussian representation from low-resolution data; we
then partition the scene into multiple blocks and refine each block using high-
resolution data. Scene partitioning comprises two steps: Gaussian partitioning and
training data partitioning. In Gaussian partitioning, we contract irregular scenes
into a normalized, bounded cubic space and employ a uniform grid to evenly dis-
tribute computational tasks among blocks; in training data partitioning, we retain
only those observations that lie within their corresponding blocks or make signif-
icant contributions to the rendering results. By guiding each block’s refinement
with the global coarse Gaussian prior, we ensure alignment and seamless fusion of
Gaussians across adjacent blocks. To reduce computational resource demands, we
introduce an Importance-Driven Gaussian Pruning (IDGP) strategy: during each
block’s refinement, we compute an importance score for every Gaussian prim-
itive and remove those with minimal rendering contribution, thereby accelerat-
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ing convergence and reducing redundant computation and memory overhead. To
further enhance surface reconstruction quality, we also incorporate normal priors
from a pretrained model. Finally, even under memory-constrained conditions, our
method enables high-quality, high-resolution 3D scene reconstruction. Extensive
experiments on three public benchmarks demonstrate that our approach achieves
state-of-the-art performance in high-resolution novel view synthesis (NVS) and
surface reconstruction tasks.

1 INTRODUCTION

3D scence reconstruction remains a longstanding challenge in computer vision and graphics. A sig-
nificant advancement in this domain is the Neural Radiance Field (NeRF) (Mildenhall et al., 2021),
which effectively represents geometry and view-dependent appearance using multi-layer percep-
trons (MLPs), demonstrating significant advancements in 3D reconstruction quality. Recently, 3D
Gaussian Splatting (3DGS) (Kerbl et al., 2023) has gained considerable attention as a compelling al-
ternative to MLP-based (Mildenhall et al., 2021) and feature grid-based representations (Chen et al.,
2022; Fridovich-Keil et al., 2022; Liu et al., 2020; Müller et al., 2022c). 3DGS stands out for its
impressive results in 3D scene reconstruction and novel view synthesis while achieving real-time
rendering at 1K resolutions. This efficiency and effectiveness, combined with the potential inte-
gration into the standard GPU rasterization pipeline, marks a significant step toward the practical
adoption of 3D reconstruction methods. Although 3DGS has demonstrated impressive 3D recon-
struction results, its application in high-resolution scenarios encounters critical memory scalability
limitations. Specifically,when reconstructing outdoor scenes at ultra-high resolutions approaching
5K (e.g.4978× 3300 pixels) in standardized benchmark datasets like Mip-NeRF 360 (Barron et al.,
2022a), conventional 3DGS implementations demand excessive VRAM, exceeding the capacity of
mainstream GPUs with limited memory, such as the NVIDIA A5000 (24GB VRAM). This com-
putational bottleneck arises from the increasing resolution: higher resolutions demand more GPU
memory, as illustrated in Fig. 1. Such algorithmic behavior fundamentally conflicts with finite GPU
memory resources, resulting in catastrophic memory overflow during optimization phases.

To overcome these critical memory constraints while preserving reconstruction fidelity for high-
resolution scene reconstruction, we present Hierarchically Gaussian Splatting (HRGS), a
memory-efficient framework with hierarchical block optimization from coarse to fine. Specifically,
we first obtain a coarse global Gaussian representation using low-resolution images. Subsequently,
to minimize memory usage on a single GPU, we partition the scene into spatially adjacent blocks
and parallelly refined. Each block is represented with fewer Gaussians and trained on reduced data,
allowing further optimization with high-resolution images. The partitioning strategy operates at two
levels: Gaussian primitives and training data. To achieve a more balanced partition of Gaussians
and avoid blocks with sparse Gaussians, we begin by contracting unbounded Gaussians. In detail,
we define a bounded cubic region and use its boundary to normalize the Gaussian positions. Within
this region, Gaussians are contracted via a linear mapping, while those outside undergo nonlinear
contraction, yielding a more compact Gaussian representation. We then apply a uniform grid subdi-
vision strategy to this contracted space, ensuring an even distribution of computational tasks. During
data partitioning for training, we compute the SSIM loss (Wang et al., 2003) for each observation by
comparing two renderings: One rendering is implemented with the complete global Gaussian rep-
resentation, while the other is executed subsequent to the elimination of Gaussians within the target
block. A more pronounced SSIM loss denotes that the observation exerts a more substantial contri-
bution to the target block, so we set a threshold on SSIM loss and retain only observations whose
values exceed it. To mitigate artifacts at the block boundaries, we further include observations that
fall within the region of the considered block. Finally, to prevent overfitting, we employ a binary
search algorithm during data partitioning to expand each block until the number of Gaussians it con-
tains exceeds a specified threshold. This innovative strategy effectively reduces interference from
irrelevant data while improving fidelity with decreased memory usage, as demonstrated in Tab. 4.

After partitioning the Gaussian primitives and data, we initialize each block in the original, uncon-
tracted space using the coarse global Gaussian representation. To accelerate convergence and reduce
computational overhead during block-level refinement with high-resolution data, we introduce an
Importance-Driven Gaussian Pruning (IDGP) strategy. Specifically, we evaluate the interaction be-
tween each Gaussian and the multi-view training rays within the corresponding block, and discard
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those with negligible rendering contributions. All blocks are then refined in parallel, and subse-
quently integrated into a unified, high-resolution global Gaussian representation. To further enhance
the quality of the reconstructed surfaces, we incorporate the View-Consistent Depth-Normal Reg-
ularizer (Chen et al., 2024a), which is applied both during the initialization of the coarse global
Gaussian representation and throughout the subsequent block-level refinement. Finally, our method
enables high-quality and high-resolution scene reconstruction even under constrained memory ca-
pacities (e.g., NVIDIA A5000 with 24GB VRAM). We validate our method on two sub-tasks of
3D reconstruction: high-resolution NVS and surface reconstruction, and demonstrate that it delivers
superior high-resolution reconstruction performance. In summary, the main contributions of this
paper are:

• We propose HRGS, a memory-efficient coarse to fine framework that leverages low-
resolution global Gaussians to guide high-resolution local Gaussians refinement, enabling
high-resolution scene reconstruction with limited GPU memory.

• We introduce a novel partitioning strategy for Gaussian primitives and data, optimizing
memory usage, reducing irrelevant data interference, and enhancing reconstruction fidelity.

• We propose a novel dynamic pruning strategy, Importance-Driven Gaussian Pruning
(IDGP), which evaluates the contribution of each Gaussian primitive during training and
selectively removes those with low impact. This approach significantly improves training
efficiency and optimizes memory utilization.

• Extensive experiments on three public datasets demonstrate that our approach achieves
state-of-the-art performance in high-resolution rendering and surface reconstruction.

2 RELATED WORK

3D Reconstruction. Recent 3D reconstruction research can be broadly categorized into traditional
geometry-based and deep learning methods. The former relies on multi-view stereo (MVS) (YAN,
2021) and structure from motion (SfM) (Schonberger & Frahm, 2016) to estimate scene depth and
camera poses, producing point clouds and subsequent surface meshes. The latter integrates implicit
functions (e.g., SDF, Occupancy) (Huang et al., 2023) with volumetric rendering for high-fidelity
reconstruction, as exemplified by Neural Radiance Fields (NeRF) (Mildenhall et al., 2021). How-
ever, NeRF-based approaches often struggle with real-time performance in large-scale or dynamic
scenarios. In contrast, 3D Gaussian Splatting (Kerbl et al., 2023) encodes scenes as 3D Gaussians
(with position, scale, and color), using differentiable point-based rendering to achieve fast training
and inference while balancing accuracy and quality. Balancing high fidelity, scalability, and real-
time capability remains a key challenge in 3D reconstruction. Within the field of 3D reconstruction,
there are primarily two main sub-tasks: novel view synthesis (NVS) and surface reconstruction.

Novel View Synthesis. Novel View Synthesis (NVS) aims to generate a target image from an arbi-
trary camera pose, given source images and their camera poses (Levoy & Hanrahan, 1996; Gortler
et al., 1996). NeRF (Mildenhall et al., 2021) integrates implicit representations with volume render-
ing(Drebin et al., 1988; Levoy, 1990), demonstrating impressive results in view synthesis. However,
dense point sampling remains a major bottleneck for rendering speed. To address this, various
methods accelerate NeRF by replacing the original multi-layer perceptrons (MLPs) (Chen & Zhang,
2019; Park et al., 2019) with discretized representations, such as voxel grids (Sun et al.), hash en-
codings (Müller et al., 2022a), or tensor radiation fields (Chen et al., 2022). Additionally, some
approaches (Yariv et al., 2023; Reiser et al., 2023) distill pretrained NeRFs into sparse representa-
tions, enabling real-time rendering. Recent advancements in 3D Gaussian Splatting (3DGS) have
significantly improved real-time rendering, demonstrating that continuous representations are not
strictly necessary. However, directly optimizing and rendering at high resolutions drastically in-
crease memory overhead, making it challenging to achieve real-time reconstruction of high-quality
scenes on mainstream GPUs with limited memory (24GB). Our approach specifically addresses
this challenge by reducing the computational cost of high-resolution processing while preserving
reconstruction fidelity.

Multi-View Surface Reconstruction. Traditional multi-view stereo methods (Bleyer et al., 2011a;
Broadhurst et al., 2001; Kutulakos & Seitz, 2000; Schönberger et al., 2016a; Seitz & Dyer, 1999;
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Figure 2: Illustrative diagram of the hierarchical block optimization framework. We first derive
a global coarse Gaussian representation using low-resolution data, which is then contracted into a
bounded cubic region. Subsequently, the contracted Gaussian primitives are partitioned into blocks,
each paired with corresponding data. Leveraging the global coarse Gaussian as initialization, we
parallelly refine each block in the original uncontracted space using high-resolution data. During
this refinement process, an Importance-Driven Gaussian Pruning strategy is employed to compute
the interaction between each Gaussian primitive and training view rays, removing low-contribution
primitives to accelerate convergence and reduce redundancy. The optimized blocks are then con-
catenated to form the final global Gaussian representation, which is validated through novel view
synthesis (NVS) and surface reconstruction tasks.

Seitz et al., 2006) reconstruct scenes by estimating dense depth maps (Bleyer et al., 2011b;
Schönberger et al., 2016b), fusing them into point clouds (Furukawa & Ponce, 2010; Lhuillier &
Quan, 2005), and generating surfaces through triangulation or implicit fitting (Kazhdan & Hoppe,
2023). While widely adopted, these approaches often suffer from artifacts, noise, and local min-
ima during reconstruction (Barnes et al., 2009). Recent advances in neural implicit representations,
such as NeRF (Mildenhall et al., 2022) and SDF-based variants (Wang et al., 2021; Yu et al., 2022),
learn continuous volumetric or surface fields directly from images, jointly modeling geometry and
appearance for improved robustness to occlusions and textureless regions. However, their high
computational cost and limited scalability remain challenges. To address these issues, 3D Gaussian
Splatting (3DGS) (Kerbl et al., 2023) uses explicit anisotropic Gaussians for efficient, differentiable
rasterization (Yifan et al., 2019). However, its performance in sparse or large-scale settings is limited
by insufficient geometric supervision (Chen et al., 2023). Recent methods, like VCR-GauS (Chen
et al., 2024b), Vastgaussian (Lin et al., 2024), and SuGaR (Guédon & Lepetit, 2024), improve re-
construction through view-consistent constraints (Turkulainen et al., 2024; Bae & Davison, 2024b;
Yin et al., 2019). Our HRGS framework advances 3DGS by combining global Gaussian priors,
adaptive partitioning, and importance-driven pruning, supporting high-fidelity 5K rendering under
strict memory constraints. This makes HRGS a promising solution for high-resolution surface re-
construction, overcoming limitations in previous methods (Li et al., 2024; Barron et al., 2022c; Fang
& Wang, 2024).

3 METHODOLOGY

Our proposed HRGS efficiently reconstructs high-resolution scenes. We first review 3DGS in Sec-
tion 3.1. Next, in Section 3.2, we present the memory-efficient coarse-to-fine framework, detailing
the partitioning of Gaussian primitives and data, along with the proposed Importance-Driven Gaus-
sian Pruning (IDGP) strategy. Finally, Section 3.3 describes the loss function employed in our
approach.

3.1 PRELIMINARY

We begin with a brief overview of 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023). In the
3DGS framework, a scene is represented as a set of discrete 3D Gaussian primitives, denoted by
GK = {Gk | k = 1, . . . ,K}, where K is the total number of Gaussians in the scene. Each Gaus-
sian Gk is defined by a set of learnable parameters, including its 3D position pk ∈ R3×1, opacity
σk ∈ [0, 1], and geometric properties, which typically consist of scaling and rotation parameters
that define the Gaussian covariance matrix Σk ∈ R3×3. Furthermore, spherical harmonic (SH) fea-
tures fk ∈ R3×16 are used to encode view-dependent color information ck ∈ R3×1, allowing for
a realistic depiction of color variations as a function of the viewing angle. For rendering purposes,
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the combined color and opacity contributions from multiple Gaussians at a given pixel are weighted
according to their respective opacities. The color blending for overlapping Gaussians is computed
as follows:

Ĉ =
∑
k∈M

ckαk

k−1∏
j=1

(1− αj) , (1)

where ck and αk = σkGk denote the color and density of the k-th Gaussian primitive, respectively.

3.2 HIERARCHICAL BLOCK OPTIMIZATION FRAMEWORK

Traditional 3D Gaussian methods (Kerbl et al., 2023; Chen et al., 2024a) rely on global iterative
optimization for scene reconstruction but struggle with memory inefficiency in high-resolution set-
tings, such as the Mip-NeRF 360 (Barron et al., 2022b) dataset. To address this, we propose a
hierarchical optimization framework that balances coarse global representation and fine-grained lo-
cal refinement, as shown in Fig 2. We first construct a low-resolution global Gaussian prior, guiding
block-wise high-resolution optimization to enhance geometric detail while maintaining memory ef-
ficiency. This approach enables precise reconstruction under constrained memory conditions. The
following subsections detail the coarse global Gaussian generation, Gaussian and data partitioning
strategies, as well as refinement and post-processing procedures.

Coarse Global Gaussian Representation. This stage establishes the foundation for subsequent
Gaussian and data partitioning. Initially, we train the COLMAP (Schönberger et al., 2016;
Schönberger & Frahm, 2016) points using all observations at a low resolution for 30,000 itera-
tions, generating a coarse representation of the global geometric structure. The resulting Gaussian
primitives are represented as GK = {Gk | k = 1, . . . ,K}, where K denotes the total number
of Gaussians. In the following block-wise high-resolution refinement, this robust global geomet-
ric prior ensures that Gaussians are positioned accurately, thereby preventing drift and eliminating
inter-block discontinuities, minimizing significant fusion artifacts.

Primitives and Data Division. Directly applying uniform grid division in the original 3D space may
lead to uneven Gaussian distribution in local regions (e.g. many nearly empty grid cells alongside
overly dense ones). To address this imbalance, we define a bounded cubic region and contract
all Gaussians within it. Within this region, the central one-third of the space is designated as the
internal region, while the surrounding area is classified as the external region. The internal region is
bounded by the minimum and maximum corner positions, pmin and pmax, which define the limits of
the central one-third of the entire region. To standardize the representation of global Gaussians, we
introduce a normalization step: p̂k = 2 (pk − pmin) / (pmax − pmin)−1. As a result, the coordinates
of Gaussians located in the internal region are constrained within the range [−1, 1]. To achieve more
effective contraction of the global Gaussians, we apply a linear mapping for the Gaussians in the
internal region, while a nonlinear mapping is employed for the external region (as shown in Fig. 2).
The final contraction step is performed using the function described in (Wu et al., 2023):

contract(p̂k) =

{
p̂k, if ∥p̂k∥∞ ≤ 1,(
2− 1

∥p̂k∥∞

)
p̂k

∥p̂k∥∞
, if ∥p̂k∥∞ > 1.

(2)

The contracted space is then uniformly partitioned into n blocks (the specific number of blocks used will
be discussed further in Sec. 4.), resulting in a more balanced Gaussian partitioning. After partitioning the
Gaussians, our objective is to ensure that each block is sufficiently trained. In other words, the training data
assigned to each block should be highly relevant to the region it represents, focusing on refining the details
within the block. To achieve this, we select observations and retain only those that contribute significantly to
the visible content of the corresponding block in the rendering results. Since SSIM loss effectively captures
structural differences and is somewhat robust to brightness variations (Wang et al., 2003), we use it as the
foundation for our data partition strategy. Specifically, for the j-th block, the global Gaussians contained
within it are represented as: GKj = {Gk | bj,min ≤ contract(p̂k) < bj,max, k = 1, . . . ,Kj}, where bj,min
and bj,max define the spatial bounds of the j-th block, and Kj is the number of Gaussians contained within the
block. The set of observations assigned to the j-th block is defined by the following formula:

P1
j = Mask

(
LSSIM

(
IGK (τ ), IGK\GKj

(τ )
)
> ϵ

)
⊙ τ , (3)

where Mask(·) generates an element-wise binary mask. Each element of the mask is set to 1 if it satisfies the
condition inside the mask (i.e. the SSIM loss exceeds a threshold ϵ), and 0 otherwise. The term GK \ GKj

denotes the portion of the global set GK excluding the block GKj . τ is a matrix containing all camera poses,
with each column τi representing the i-th camera pose. ⊙ is element-wise product operation. And the resulting
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set P1
j represents the camera poses assigned to the j-th block. However, this strategy does not account for the

projection of the considered block, which may lead to artifacts at the edges of the block. To address this issue,
we further include poses that fall within the boundaries of the considered block:

P2
j = Mask (bj,min ≤ contract(p̂τi) < bj,max)⊙ τ . (4)

where p̂τi is the position under the world coordinate of pose i. The final assignment is:

Pj(τ , GKj) = Merge
(
P1

j ,P
2
j

)
, (5)

where Merge denotes the concatenate operator that removes any duplicate elements, ensuring only one copy of
each element is retained. To prevent overfitting, we employ a binary search method (Lin, 2019) to incrementally
expand bj,min and bj,max until Kj exceeds a predefined threshold. Notably, this procedure is applied exclusively
during the data partitioning phase for each block.

Importance-Driven Gaussian Pruning (IDGP). After the Gaussian primitives and data division, we proceed
to train each block in parallel in the original uncontracted space. Specifically, we first initialize each block
using the coarse global Gaussian prior, and then fine-tune each block using high-resolution data as detailed
in Sec. 3.3. During block-level optimization, we further accelerate convergence and reduce redundancy by
applying a lightweight importance scoring and pruning strategy. Let Rb denote the set of all rays cast from the
training views assigned to block b. For each Gaussian primitive pi in block b, we only consider its interactions
with Rb and define the weighted hit count as

Hi =
∑
r∈Rb

1(pi ∩ r)Ti,r,where Ti,r =
∏
pk∩r

depth(pk)<depth(pi)

(
1− αk

)
. (6)

Here, 1(pi ∩ r) = 1 if and only if ray r intersects pi, and Ti,r accumulates the transmission up to pi by all
closer primitives pk. We then compute the raw volume of pi as vi =

∏3
d=1 si,d, where each si,d is the

scale factor of pi along the d-th spatial axis, and apply logarithmic compression ṽi = ln
(
1 + vi

)
. Finally,

we assign each primitive an importance score with its opacity αi: Si = αi ṽi Hi. After evaluating {Si}
for all primitives in the block, we sort them in descending order and remove the lowest 20%. The remaining
Gaussians, now both globally informed by the coarse prior and locally pruned of low-impact points, continue
through block-level fine-tuning. Finally, we select the fine-tuned Gaussians within each block and, guided
by the global geometric prior, concatenate the blocks to obtain the fine-tuned global Gaussian. Through this
process, the previously coarse global Gaussians are significantly enhanced in areas where they lacked detail.

3.3 LOSS FUNCTION

To optimize both the coarse and refined stages,the loss functions are defined as follows. First, we use the RGB
loss LRGB from 3DGS for the novel view synthesis task. To reconstruct scene surfaces, we enforce normal
priors N predicted by a pretrained monocular deep neural network (Bae & Davison, 2024a) to supervise the
rendered normal map N̂ using L1 and cosine losses:

Ln = ∥N̂−N∥1 + (1− N̂ ·N). (7)

Additionally, to effectively update Gaussian positions, we utilize the predicted normal N from the pretrained
model to supervise the D-Normal Nd. The D-Normal is derived from the rendered depth by computing the
cross-product of horizontal and vertical finite differences from neighboring points:

Nd =
∇vd×∇hd

|∇vd×∇hd|
, (8)

where d represents the 3D coordinates of a pixel obtained via back-projection from the depth map. We then
apply the D-Normal regularization from (Chen et al., 2024a):

Ldn = w ·
(
∥N̄d −N∥1 + (1− N̄d ·N)

)
, (9)

where w is a confidence term. The overall loss function integrates these components:

Ltotal = LRGB + λ1Ls + λ2Ln + λ3Ldn, (10)

where λ1, λ2, and λ3 balance the individual terms. The term Ls is introduced to simplify depth computation,
as described in (Chen et al., 2024a).
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Figure 3: Qualitative Comparison on the Mip-NeRF 360 Dataset. Three representative scenes
demonstrate that our method more faithfully preserves fine-scale structures and achieves superior
visual fidelity compared to 3DGS and Mip-Splatting.

Figure 4: Qualitative Comparison on TNT dataset. Reconstructions from left to right—SuGar,
NeuS, 2DGS, and VCR-Gaus—demonstrate that our method delivers more complete surface ge-
ometry, enhanced smoothness in planar regions, and superior preservation of fine structural details,
thereby outperforming existing approaches in geometric fidelity.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Dataset and Metrics. To evaluate the effectiveness of our reconstruction method, we conduct experiments on
two core tasks: novel view synthesis (NVS) and surface reconstruction, using multiple benchmark datasets. Our
primary goal is high-resolution 3D reconstruction under constrained memory, which emphasizes the preserva-
tion of fine details (e.g., textures, edges); we therefore select datasets offering high-resolution imagery and
rich geometric complexity. We first assess high-resolution NVS performance on Mip-NeRF360 (Barron et al.,
2022b) (which includes scenes at resolutions such as 4946×3286), followed by high-fidelity surface reconstruc-
tion on the Tanks and Temples (TNT)(Knapitsch et al., 2017) dataset. Additionally, we perform comparative
experiments on the Replica(Straub et al., 2019) dataset to further validate our method. For a comprehensive
evaluation, we employ standard metrics including SSIM, PSNR, LPIPS, and F1-score. Rendering efficiency is
also assessed in terms of frames per second (FPS).

Implementation Details. We begin by following the 3DGS (Kerbl et al., 2023) pipeline, performing 30,000
iterations at a low resolution (0.3K) to obtain a coarse global Gaussian prior. During this stage, we introduce
our Importance-Driven Gaussian Pruning (IDGP) strategy, which scores the rendering contribution of each
Gaussian primitive and prunes those with the lowest impact. This step prevents irrelevant viewpoints from
being assigned to training blocks in subsequent stages, reducing unnecessary computational overhead. The
resulting coarse prior serves as initialization for the refinement phase. In the contraction stage, we define
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Table 1: Mip-NeRF 360 Full-Resolution Results. The rendering quality comparison highlights the
best and second-best results.

Zip-NeRF Instant-NGP Mip-NeRF 3DGS 3DGS+EWA Mip-Splatting Ours
PSNR ↑ 28.25 24.36 27.51 26.19 26.42 26.53 28.41
SSIM ↑ 0.822 0.644 0.779 0.795 0.783 0.833 0.869
LPIPS ↓ 0.198 0.366 0.254 0.349 0.347 0.343 0.245

Table 2: Quantitative Results on the Tanks and Temples Dataset (Knapitsch et al., 2017). The
best results are highlighted in orange, while the second-best results are marked in blue.

NeuS-based Gaussian-based
Scene NeuS MonoSDF SuGaR 3DGS 2DGS VCR-GauS Ours
Barn 0.29 0.49 0.14 0.13 0.36 0.62 0.65
Caterpillar 0.29 0.31 0.16 0.08 0.23 0.26 0.29
Courthouse 0.17 0.12 0.08 0.09 0.13 0.19 0.23
Ignatius 0.83 0.78 0.33 0.04 0.44 0.61 0.64
Meetingroom 0.24 0.23 0.15 0.16 0.16 0.19 0.24
Truck 0.45 0.42 0.26 0.18 0.16 0.52 0.61
Mean 0.38 0.39 0.19 0.09 0.30 0.40 0.45
FPS <10 – 159 68 145 146

the central one-third of the full scene as the internal region and the remainder as the external region. The
contracted Gaussians are then divided into four spatial sub-blocks. For data assignment, we use an SSIM
threshold of ϵ = 0.1. Each sub-block is further trained for 30,000 iterations. Specifically, we apply IDGP
at the 10,000th, 15,000th, and 25,000th iterations to prune low-impact Gaussians based on their interaction
contributions with training rays. This dynamic pruning accelerates convergence and reduces computational
redundancy. To facilitate surface reconstruction, we adopt the depth-normal regularization method described in
Sec. 3.3. Specifically, we use the pretrained DSINE (Bae & Davison, 2024a) model for outdoor scenes and the
pretrained GeoWizard (Fu et al., 2024) for indoor scenes to predict normal maps. The hyperparameters λ1, λ2,
and λ3 are set to 1, 0.01, and 0.015, respectively. After rendering the depth maps, we perform truncated signed
distance function (TSDF) fusion and process the results using Open3D (Zhou et al., 2018). Additional details
are provided in the supplementary.

Table 3: Our experimental comparsions
on Replica (Straub et al., 2019). Bold
indicates the best.

Type Method F1-score Time

Implicit NeuS 65.12
>10hMonoSDF 81.64

Explicit

3DGS 50.79

≤2hSuGar 63.20
2DGS 64.36
Ours 74.87

Novel View Synthesis. As shown in Tab. 1, we com-
pare our method with several existing approaches, includ-
ing mip-NeRF (Barron et al., 2022a), Instant-NGP (Müller
et al., 2022b), zip-NeRF (Barron et al., 2023), 3DGS (Kerbl
et al., 2023), 3DGS+EWA (Zwicker et al., 2001), and Mip-
Splatting (Yu et al., 2024). At high resolutions, our method
significantly outperforms all state-of-the-art techniques. As
shown in Fig. 3, our method produces high-fidelity imagery
devoid of fine-scale texture distortions. While 3DGS (Kerbl
et al., 2023) introduces noticeable erosion artifacts due to di-
lation operations, Mip-Splatting (Yu et al., 2024) shows im-
proved performance, yet still exhibits evident texture distor-
tions. In contrast, our method avoids such issues, producing
images that are both aesthetically pleasing and closely aligned with the ground truth, demonstrating the effec-
tiveness of our hierarchicall refined strategy.

Surface Reconstruction. Our method not only delivers high-quality novel view synthesis but also enables
accurate 3D surface reconstruction. As shown in Tab. 2, our approach outperforms both NeuS-based methods
(e.g., NeuS (Wang et al., 2021), MonoSDF (Yu et al., 2022), and Geo-NeuS (Fu et al., 2022)) and Gaussian-
based techniques (e.g., 3DGS (Kerbl et al., 2023), SuGaR (Guédon & Lepetit, 2024), 2DGS (Huang et al.,
2024a), and VCR-GauS (Chen et al., 2024b)) on the Tanks and Temples (TNT) dataset. Compared to NeuS-
based approaches, our method achieves significantly faster reconstruction. Compared to Gaussian-based meth-
ods, our method obtains substantially better reconstruction quality, for instance, improving the F1-score from
0.3 to 0.45 compared to 2DGS. Moreover, our approach surpasses the recent state-of-the-art method VCR-
GauS, achieving a higher reconstruction quality (0.45 vs. 0.4). As illustrated in Fig. 4, our method excels at
recovering fine geometric details. We also observe a significant advantage in rendering speed, outperforming
2DGS by more than a factor of two. On the Replica dataset, as summarized in Tab. 3, our method attains
performance comparable to MonoSDF (Yu et al., 2022) while operating at substantially higher speeds. Further-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

more, compared to explicit reconstruction approaches including 3DGS (Kerbl et al., 2023), SuGaR (Guédon &
Lepetit, 2024), and 2DGS (Huang et al., 2024a), our method achieves notably higher F1-scores.

4.2 ABLATION STUDIES

To validate the effectiveness of individual components in our method, we conducted a series of ablation exper-
iments on the “Stump” scene from the Mip-NeRF 360 dataset and the “Ignatius” scene from the TNT dataset.
Specifically, we evaluated the impacts of the following components: hierarchical block optimization strategy,
Importance-Driven Gaussian Pruning (IDGP), and data partitioning strategy.

Table 4: Ablation on Data Division. “SO Ass.” refers to SSIM-based assignment, while “BO Ass.”
denotes boundary-based assignment. Bold indicates the best.

Method Settings
baseline w/o contraction w/o SO Ass. w/o BO Ass. Full

PSNR ↑ 21.87 22.73 24.29 22.96 25.24
F1 ↑ 0.55 0.54 0.58 0.60 0.64

Ablation of the Data Division. As shown in Tab. 4, we analyzed the impact of the data partitioning strategy,
using the original Gaussian global prior as the baseline. The results in the first and last columns of Tab. 4
demonstrate the effectiveness of our proposed method in improving performance (0.55 vs. 0.64). The second
column in Tab. 4 further indicates that assigning relevant data in the contracted space is essential for enhancing
reconstruction quality. The third column in Tab. 4 highlights the importance of Strategy 1 (Eq. (13)) in data
partitioning, and we also found that Strategy 2 (Eq. (14)) plays a significant role in preventing artifacts at the
edges of blocks. ß

Table 5: Ablation on number of blocks.

2 4 8 16
PSNR ↑ 24.86 25.24 23.93 22.56
F1 ↑ 0.62 0.64 0.61 0.57

Ablation of the Number of Blocks. As shown in Tab. 5, we
investigate how the number of blocks affects reconstruction
performance by splitting the coarse global Gaussian into 2, 4,
8, or 16 blocks. Our results indicate that too few blocks can
cause conflicts between local and global optima, resulting
in insufficient refinement of fine details, whereas too many
blocks may lead to imbalanced data distribution and local
overfitting. Consequently, we select four blocks for our experiments on the TNT dataset.

Table 6: Ablation Studies on the “Stump” Scene of the Mip-NeRF 360 Dataset (Barron et al.,
2022a).

Method Model Size(MB) GPU Memory(G) PSNR SSIM LPIPS

Baseline 348.62 23 26.39 0.804 0.291
Baseline w/o IDPG 601.04 28 26.41 0.791 0.288

Ablation of Importance-Driven Gaussian Pruning. To validate the effectiveness of the proposed Importance-
Driven Gaussian Pruning (IDGP) strategy, we conducted an ablation study on the “stump” scene of the Mip-
NeRF 360 dataset. As shown in Tab. 6, we compare the full method with the IDGP mechanism (Baseline)
against a control variant in which IDGP is disabled (Baseline w/o IDGP). IDGP is able to selectively prune
redundant Gaussians during training without degrading rendering quality, thereby achieving significant im-
provements in both model structure and computational efficiency.

5 CONCLUSIONS

In this work, we propose HRGS, a memory-efficient coarse-to-fine framework that uses low-resolution global
Gaussians to guide the refinement of high-resolution local Gaussians, enabling high-resolution scene recon-
struction under limited GPU memory. Our novel partitioning strategy for Gaussian primitives and data ef-
fectively facilitates block-wise optimization, significantly alleviating the high memory overhead typical of
traditional 3DGS in high-resolution 3D reconstruction. Despite reduced memory requirements, our method
achieves superior reconstruction quality and demonstrates state-of-the-art performance on two key sub-tasks
of 3D reconstruction. As a result, this work establishes a new baseline for high-resolution 3D reconstruction,
setting an important precedent for future research in the field.
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Ethics Statement
This study proposes a high-resolution 3D reconstruction method based on Hierarchical Random Gaussian Splat-
tering (HRGS), aiming to achieve high-quality scene reconstruction under limited memory conditions. This
work falls under the category of basic algorithm research. All experiments are conducted using publicly avail-
able standard benchmark datasets (such as Mip-NeRF 360, Tanks and Temples, and Replica). The use of these
datasets complies with academic conventions and does not involve human subjects, personal data, or any form
of privacy risks. We encourage the application of this technology in fields that benefit society, including edu-
cation, digitalization of cultural heritage, smart city visualization, and virtual/augmented reality. We also call
on users to abide by relevant ethical guidelines and laws and regulations. Although this method has advantages
in improving reconstruction efficiency, it may also be misused in unauthorized scene reconstruction and other
behaviors that infringe on privacy. Therefore, we suggest that in practical deployment, enhanced ethical review
and legal supervision should be implemented to ensure the legitimacy of the application of this technology. The
authors declare no potential conflicts of interest.

Reproducibility Statement
To ensure the reproducibility of this study, we have provided a detailed description of the HRGS framework
in the main text and the Method section (Section 3), including the hierarchical block optimization strategy,
Gaussian and data partitioning methods, and the Importance-Driven Gaussian Pruning (IDGP) strategy. The
Experimental Setup section (Section 4) clearly specifies the datasets used, evaluation metrics, hardware en-
vironment (NVIDIA A5000/A800 GPU), and software configuration (PyTorch 2.0.1, CUDA 11.7). We will
make the complete code implementation publicly available on GitHub after the final revision of the paper, in-
cluding model initialization, partitioning process, training scripts, and loss function definitions, to enable other
researchers to reproduce our results. In addition, Appendix A further provides hyperparameter settings, res-
olution scaling experiments, and module ablation analysis, which enhances the transparency and verifiability
of the method. If necessary, we are willing to provide training logs, model weights, and preprocessed data to
support the community’s further verification and development of this work.
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A APPENDIX

Ground Truth 3DGS OursMip-Splatting

Figure A: Comparison of 3DGS, Mip-Splatting and Ours at full resolution on the Mip-NeRF 360
dataset.

A.1 IMPLEMENTATION DETAILS

All experiments are conducted using machines equipped with NVIDIA A5000 GPUs, with PyTorch 2.0.1
and CUDA 11.7 as the software environment. For comparison methods that exceed the memory capacity
of the A5000 setup, we employ NVIDIA A800 GPUs to ensure reliable execution and fair evaluation. Unless
otherwise specified, we adopt the same hyperparameter settings as 3DGS (Kerbl et al., 2023). For outdoor
scenes in the TNT dataset (Knapitsch et al., 2017), we incorporate decoupled appearance modeling (Lin et al.,
2024) to mitigate exposure-related artifacts. All models are trained and evaluated on the same data splits as
used in 2DGS (Huang et al., 2024a), across the TNT (Knapitsch et al., 2017) and Mip-NeRF360 (Barron et al.,
2022a) benchmarks.

A.2 ADDITIONAL EFFICIENCY COMPARISONS

We have supplemented the efficiency metrics in the table A. HRGS exhibits clear advantages in both memory
consumption and the number of active Gaussians. Although the training time is longer, this reflects a deliberate
time-for-space trade-off, enabling high-resolution reconstruction under strict memory constraints and demon-
strating efficiency in resource-limited scenarios.

Table A: Efficiency comparison of different methods at full resolution on the 360 dataset.

Method Time (h) GPU (GB) Gaussians num

3DGS 3 31 2,754,212
Mip-Splatting 2.5 41 4,013,411
Ours 5 19 1,301,166

A.3 ADDITIONAL ABLATION STUDY

In this section, we further investigate the contributions of our proposed modules through comprehensive ab-
lation studies. We begin by analyzing the block-wise training strategy in Section A.3.1. Next, we examine
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Table B: Mip-NeRF 360 Full-Resolution Results. Bold indicates the best.

Zip-NeRF Instant-NGP Mip-NeRF 3DGS CityGS Mip-Splatting Ours

PSNR ↑ 28.25 24.36 27.51 26.19 27.71 26.53 28.41
SSIM ↑ 0.822 0.644 0.779 0.795 0.801 0.833 0.869
LPIPS ↓ 0.198 0.366 0.254 0.349 0.294 0.343 0.241

the impact of the Data Division and IDGP strategies in Section A.3.2 and Section A.3.3, respectively. While
these ablation studies were previously presented in the main paper, they were limited to a single scene. Here,
we extend the evaluation to the full dataset, providing a more comprehensive and statistically robust analysis.
Additionally, we introduce a ablation study on normal priors in Section A.3.4 to evaluate the effectiveness of
geometric constraints. Finally, in Section A.3.5, we assess the scalability and effectiveness of our method across
various resolution scales, demonstrating its consistent performance under different computational constraints.

A.3.1 BLOCK-WISE TRAINING FOR HIGH-RESOLUTION RECONSTRUCTION

As shown in Tab. B, our method achieves superior rendering quality compared to CityGS. As illustrated in
Fig. B, our approach demonstrates exceptional detail preservation in intricate geometric features and textural
nuances. Additionally, Tab. C highlights the advantages of our block partitioning strategy over CityGS in
enhancing model scalability. Across the Mip-NeRF 360 dataset, our method consistently reduces the total
model size. For example, in the bicycle scene, the model size is 587.05 MB compared to the baseline’s 1126.4
MB, with comparable improvements observed at the block level Tab. C. Furthermore, as shown in Fig. C,
our method substantially reduces GPU memory consumption compared to 3DGS, Mip-Splatting, and CityGS,
underscoring its superior optimization of computational efficiency over CityGS despite employing similar block
partitioning strategies.

Ground Truth 3DGS OursMip-Splatting CityGS

Figure B: Comparison of 3DGS, Mip-Splatting, CityGS and Ours at full resolution on the Mip-
NeRF 360 dataset.

A.3.2 ABLATION OF THE DATA DIVISION.

As shown in Table. D, we conducted chunk-based ablation experiments on the entire TNT dataset to evaluate
the impact of data-partitioning strategies, using the original Gaussian global prior as the baseline. We system-
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Table C: Comparison of model sizes (MB) across CityGS and Ours. Bold indicates the best.

Scene CityGS (MB) Ours (MB)
Total cell0 cell1 cell2 cell3 Total cell0 cell1 cell2 cell3

bicycle 1126.4 512.63 480.45 70.92 63.11 587.05 187.22 238.32 100.76 61.75
bonsai 278.52 49.97 43.83 117.54 67.18 160.10 49.81 47.16 48.18 34.01
counter 215.85 21.38 22.26 78.73 93.49 144.58 23.06 36.63 36.36 45.54
flowers 738.18 269.72 276.41 96.18 93.87 399.71 163.86 133.96 65.55 63.33
garden 1196.80 269.72 276.41 96.18 93.87 360.52 114.76 86.78 87.60 79.39
kitchen 324.08 30.26 26.46 157.15 110.21 170.94 38.41 35.78 76.55 47.52
stump 873.41 399.37 302.45 171.59 191.51 368.62 103.86 103.32 80.75 80.69
treehill 745.24 273.96 236.07 136.24 98.97 385.84 109.68 149.32 66.55 60.29
room 301.02 33.58 94.33 74.08 106.03 221.97 316.31 33.84 75.64 76.19

Figure C: Average GPU memory consumption of 3DGS, Mip-Splatting, CityGS, and our
method on the Full-Resolution Mip-NeRF 360 dataset.

atically investigate the contribution of individual components, including contraction, SSIM-based assignment
(SO Ass.) and boundary-based assignment (BO Ass.).

The results in the first and last columns of Tab. D demonstrate the effectiveness of our proposed method in
improving performance (0.36 vs. 0.45). The second column in Tab. D further indicates that assigning relevant
data in the contracted space is essential for enhancing reconstruction quality. The third column in Tab. D
highlights the importance of SO Ass. in data partitioning, and we also found that BO Ass. plays a significant
role in preventing artifacts at the edges of blocks.

Table D: Ablation on Data Division (performed on the full TNT dataset). “SO Ass.” refers to
SSIM-based assignment, while “BO Ass.” denotes boundary-based assignment. Bold indicates the
best.

Method Settings
baseline w/o contraction w/o SO Ass. w/o BO Ass. Full

PSNR ↑ 22.19 23.63 24.89 23.96 25.02
F1 ↑ 0.36 0.38 0.41 0.43 0.45

A.3.3 ABLATION OF IMPORTANCE-DRIVENGAUSSIAN PRUNING.

To evaluate the impact of Importance-Driven Gaussian Pruning (IDGP), we performed ablation studies on the
full-resolution Mip-NeRF 360 dataset by comparing the proposed method with a variant that excludes IDGP.
As shown in Tab. F, removing IDGP results in a substantial increase in model size from 313.72 MB to 621.04
MB, along with a 42% rise in GPU memory usage (19 GB to 27 GB). Although PSNR slightly improves (28.02
vs. 27.91), the SSIM drops notably (0.821 vs. 0.863). These results underscore the effectiveness of IDGP in
eliminating redundant Gaussians, significantly enhancing model efficiency while preserving high-quality recon-
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3DGSGT Mip-Splatting Ours 3DGS Mip-Splatting Ours

Full resolution 1/2 resolution

3DGSGT Mip-Splatting Ours3DGS Mip-Splatting Ours

1/8 resolution1/4 resolution

Figure D: Qualitative comparsion on Mip-NeRF 360 for different resolution scales.

struction, thus highlighting its importance for memory-efficient 3D reconstruction in high-resolution settings.
To evaluate the impact of our hierarchical refinement strategy, we conducted an ablation study on the Mip-NeRF
360 dataset. As illustrated in Tab. H, the results demonstrate that employing only coarse 3D Gaussian Splatting
with pruning yields limited reconstruction quality. In contrast, our complete pipeline—integrating both coarse
initialization and hierarchical refinement—achieves a substantial improvement, confirming the effectiveness of
the proposed refinement stages.

A.3.4 CONTRIBUTION OF PRETRAINED GEOMETRIC PRIORS

Regarding this study,our technical solution introduces normals estimated by the Dsine normal predictor, ap-
plying them as normal loss supervision to the normals generated by the depth2normal module in the 2DGS
framework. We conducted experiments on the TNT dataset, and the results ?? indicate that this supervision
strategy improves the F1 score by 0.04. While it promotes reconstruction performance to a certain extent, the
improvement effect is relatively limited.

As shown in the table E, our method achieves superior normal estimation quality while maintaining competitive
computational efficiency compared to the baseline 2DGS approach.

Table E: Quantitative comparison of normal estimation performance.

Method 2DGS 2DGS + Dsine Ours

F1 Score 0.30 0.34 0.45
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Table F: Ablation study on IDPG across the entire full resolution Mip-NeRF 360
Dataset(Barron et al., 2022a).

Method Model Size(MB) GPU Memory(G) PSNR SSIM LPIPS

w/o IDPG 621.04 27 28.02 0.821 0.308
Ours (Full) 313.72 19 27.91 0.863 0.342

A.3.5 ROBUSTNESS VALIDATION ACROSS RESOLUTION SCALES

To thoroughly evaluate the robustness of our method across varying resolution scales, we performed de-
tailed visual comparisons of rendering quality on the Mip-NeRF 360 dataset at multiple resolution levels.
As shown in Tab. G, we compare our method with several existing approaches, including mip-NeRF (Barron
et al., 2022a), Instant-NGP (Müller et al., 2022b), zip-NeRF (Barron et al., 2023), 3DGS (Kerbl et al., 2023),
3DGS+EWA (Zwicker et al., 2001), and Mip-Splatting (Yu et al., 2024). Our approach demonstrates com-
parable performance to these prior methods at one-eighth of the original resolution. Furthermore, at higher
resolutions, our method significantly outperforms all state-of-the-art techniques. As shown in Fig. D, our
method produces high-fidelity imagery devoid of fine-scale texture distortions. While 3DGS (Kerbl et al.,
2023) introduces noticeable erosion artifacts due to dilation operations, Mip-Splatting (Yu et al., 2024) shows
improved performance, yet still exhibits evident texture distortions. In contrast, our method avoids such issues,
producing images that are both aesthetically pleasing and closely aligned with the ground truth, demonstrating
the effectiveness of our hierarchicall refined strategy.

Table G: Quantitative results on Mip-NeRF 360 (Downscaled Resolutions). The best results are
highlighted in orange, while the second-best results are marked in blue.

1/2x 1/4x 1/8x

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
zip-NeRF 30.00 0.892 0.099 31.57 0.933 0.056 32.52 0.954 0.037
Instant-NGP 25.23 0.719 0.251 26.54 0.900 0.142 28.42 0.877 0.092
mip-NeRF 29.19 0.864 0.136 30.45 0.912 0.077 30.86 0.931 0.058
3DGS 26.75 0.783 0.274 27.31 0.823 0.181 29.19 0.880 0.107
Mip-Splatting 26.47 0.801 0.305 27.66 0.823 0.181 29.39 0.884 0.108
Ours 31.03 0.902 0.168 31.02 0.921 0.138 31.24 0.903 0.096

Table H: Ablation study on coarse global 3DGS with IDGP at full resolution on the 360 dataset.

Method PSNR SSIM LPIPS

Coarse 3GDS + IDGP 19.60 0.617 0.472
Full pipeline 28.41 0.869 0.241

A.4 MESH EXTRACTION

The mesh extraction method used is consistent with 2DGS (Huang et al., 2024b). Given rendered depth maps
and camera poses, these inputs are fused via Open3D’s TSDF integration to construct a continuous Signed
Distance Field (SDF). The final surface mesh is then directly extracted from the SDF at its zero-level isosurface
using Marching Cubes. enabling direct geometry reconstruction without intermediate point cloud representa-
tions. Additionally, no post-processing is applied to the final mesh.

A.5 ANTI-ALIASING 3D RECONSTRUCTION

The robustness of our method (HRGS) across multiple resolutions is primarily attributed to its hierarchical
coarse-to-fine design integrated with a global prior. Initially, the model learns a global coarse Gaussian rep-
resentation from low-resolution data, constructing a stable and resolution-independent structural scaffold of
the scene. This global prior serves as an anchor for subsequent high-resolution optimization. Consequently,
even with variations in training resolution, the refinement process consistently begins from this unified geo-
metric foundation, thereby preventing significant deviations and maintaining the integrity of the overall scene
structure.
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Figure E: Qualitative rendering results on TNT and Replica dataset.

Regarding the mitigation of aliasing artifacts (e.g., erosion), HRGS explicitly decouples global structure mod-
eling from local detail refinement through a block-wise optimization strategy guided by data selection. Each
local block refines details based on the stable coarse model, which provides essential global contextual infor-
mation. This approach effectively suppresses jagged edges and erosion artifacts that typically emerge during
direct high-resolution training. Essentially, the coarse global stage establishes an anti-aliasing prior, while the
block-wise refinement enhances spatial details without overfitting to noisy or redundant patterns.

A.6 ADDITIONAL QUALITATIVE RESULTS

As shown in Fig.A, our method preserves fine-scale structures more accurately and achieves higher visual
fidelity than 3DGS(Kerbl et al., 2023) and Mip-Splatting (Yu et al., 2024) across three representative scenes.
Fig. F displays the rendering (top) and surface reconstruction (bottom) results on the Mip-NeRF360 (Barron
et al., 2022a) dataset. Additional rendering results on the TNT (Knapitsch et al., 2017) and Replica (Straub
et al., 2019) datasets are provided in Fig. E. Collectively, these visual comparisons substantiate our method’s
capability for high-quality 3D reconstruction while maintaining critical geometric details.

A.7 LIMITATIONS

Although our method can achieve high-resolution scene reconstruction under limited GPU resources, extending
the block-based framework to dynamic scenes introduces new challenges. In particular, ensuring temporal
consistency across frames and accurately modeling motion across spatial partitions remain open problems.
Addressing these challenges will be a key focus of our future work, with the goal of enabling temporally
coherent and spatially consistent reconstruction in dynamic environments.
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Figure F: Qualitative results on the Mip-NeRF360 dataset. Our method reconstructs surfaces
with fine geometry details and produces high-fidelity renderings on Mip-NeRF360 dataset.

A.8 BROADER SOCIAL IMPACTS

This work presents Hierarchical Gaussian Splatting (HRGS), a super-resolution reconstruction framework tai-
lored for computationally constrained environments. HRGS achieves high-fidelity 3D reconstruction while
significantly reducing GPU memory usage and model size, thereby enhancing the accessibility of advanced 3D
vision techniques. Its efficiency enables deployment on low-power platforms such as mobile and embedded
devices, with promising applications in education, cultural heritage preservation, smart city visualization, and
immersive virtual or augmented reality. However, we acknowledge the potential for misuse in privacy-sensitive
contexts, such as unauthorized spatial reconstruction. To mitigate such risks, the deployment of HRGS should
be governed by clear ethical guidelines and regulatory oversight.

B USE OF LARGE LANGUAGE MODELS

A large language model (LLM) was used solely for language-level assistance, such as improving readability,
fluency of the text and formatting LATEX tables and retrieve related works. The research ideas, experiments, and
results are entirely the work of the authors, who bear full responsibility for the content of this submission.
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