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Summary
The purpose of continual reinforcement learning is to train an agent on a sequence of tasks

such that it learns the ones that appear later in the sequence while retaining the ability to per-
form the tasks that appeared earlier. Experience replay is a popular method used to make the
agent remember previous tasks, but its effectiveness strongly relies on the selection of experi-
ences to store. Kompella et al. (2023) proposed organizing the experience replay buffer into
partitions, each storing transitions leading to a rare but crucial event, such that these key experi-
ences get revisited more often during training. However, the method is sensitive to the manual
selection of event states. To address this issue, we introduce ProtoCRL, a prototype-based ar-
chitecture leveraging a variational Gaussian mixture model to automatically discover effective
event states and build the associated partitions in the experience replay buffer. The proposed
approach is tested on a sequence of MiniGrid environments, demonstrating the agent’s ability
to adapt and learn new skills incrementally.

Contribution(s)
1. This paper introduces ProtoCRL, a prototype-based architecture for continual reinforce-

ment learning. ProtoCRL features a variational Gaussian mixture model to automatically
identify effective event states and build the associated event tables, i.e., partitions within the
experience replay buffer (ERB) storing transitions that lead to a particular event state.
Context: Experience replay is a common strategy used in continual reinforcement learn-
ing (Liotet et al., 2022; Luo et al., 2023). Kompella et al. (2023) showed that partitioning
the ERB into event tables increases sample efficiency and improves the agent’s generaliza-
tion performance. However, the method is sensitive to the manual selection of event states.
ProtoCRL automatizes the construction of the ERB, making event tables suitable to appli-
cations in which the identification of event states is nontrivial.

2. The learned Gaussian mixture components practically serve as prototypical representations
of an event state. By inspecting the assignments of the input experiences to the Gaussian
mixture components, we show that ProtoCRL identifies meaningful event states that the
agent needs to visit more often to remember previously learned tasks.
Context: In the literature, prototypes have been used to either explain pre-trained black-
box agents (Borzillo et al., 2023) or to improve the agents generalization performance of
agents trained on single tasks (Liu et al., 2023). In this work, we leverage the learned
prototypical representations to both guide experience replay and gain insights into what
information is useful for the agents to maintain the ability to perform multiple tasks learned
in sequence.

3. We show that ProtoCRL achieves comparable performance to manually defined event tables
and even higher performance when reducing the ERB capacity.
Context: We test ProtoCRL on a sequence of three MiniGrid environments (Chevalier-
Boisvert et al., 2018), comparing its performance in terms of average return and forgetting
to manually defined event tables and to ContinualDreamer (Kessler et al., 2023).
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Abstract

The purpose of continual reinforcement learning is to train an agent on a sequence of1
tasks such that it learns the ones that appear later in the sequence while retaining the2
ability to perform the tasks that appeared earlier. Experience replay is a popular method3
used to make the agent remember previous tasks, but its effectiveness strongly relies on4
the selection of experiences to store. Kompella et al. (2023) proposed organizing the5
experience replay buffer into partitions, each storing transitions leading to a rare but6
crucial event, such that these key experiences get revisited more often during training.7
However, the method is sensitive to the manual selection of event states. To address this8
issue, we introduce ProtoCRL, a prototype-based architecture leveraging a variational9
Gaussian mixture model to automatically discover effective event states and build the10
associated partitions in the experience replay buffer. The proposed approach is tested11
on a sequence of MiniGrid environments, demonstrating the agent’s ability to adapt and12
learn new skills incrementally.13

1 Introduction14

Recent advances in deep Reinforcement Learning (RL) have achieved super-human performance in15
several applications (Silver et al., 2016; Wurman et al., 2022). However, unlike humans, RL agents16
lack the ability to continuously and incrementally learn new skills, which is particularly crucial in17
open-world games featuring diverse challenges. In these settings, the major obstacle to continual18
learning is catastrophic forgetting (McCloskey & Cohen, 1989; French, 1999), a phenomenon con-19
sisting of new knowledge overwriting previously learned information. Continual RL (CRL) aims to20
address this issue by proposing methods to mitigate forgetting and improve the agent’s performance21
in sequential tasks (Khetarpal et al., 2022).22

Experience Replay (ER) is a common strategy used in both RL and CRL, albeit with slightly differ-23
ent objectives. In both contexts, ER involves storing the agent’s experiences in an Experience Replay24
Buffer (ERB) and randomly sampling from it to update the agent’s policy. In standard single-task25
RL settings, ER thus leads to better generalization and higher stability, as it ensures that learning26
relies on a more diverse set of experiences and breaks the correlation between consecutive experi-27
ences. In CRL, instead, the ERB also stores data from previous tasks, which is periodically replayed28
to prevent catastrophic forgetting (Rolnick et al., 2019b).29

In environments where crucial events occur rarely, Kompella et al. (2023) propose to partition the30
ERB into event tables, each storing transitions leading to a particular event, i.e. a rarely visited31
state that is essential for task completion. Their approach, called Stratified Sampling from Event32
Tables (SSET), demonstrates increased robustness to perturbations compared to other ER strategies,33
showcasing its effectiveness in mitigating catastrophic forgetting. However, manual selection of34
meaningful event states might not always be straightforward, especially in complex games in which35
the environment has many diverse features.36
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To overcome this limitation and to ensure a more flexible approach for continual reinforcement37
learning, we introduce ProtoCRL, the first prototype-based architecture for CRL. By relying on a38
Variational Gaussian Mixture Model (VGMM), ProtoCRL automatically identifies event states, as-39
signing each experience to one of the VGMM components, thus eliminating the need for manual40
event definitions. Moreover, given that the VGMM can learn to use fewer clusters than its maximum41
capacity, we just need to define the maximum number of components and it will autonomously learn42
to use additional clusters, and thus additional event tables, for new tasks as they arise. When evalu-43
ated on three sequential MiniGrid tasks, ProtoCRL not only reaches similar performance to baselines44
that rely on predefined event tables, but also surpasses them under memory constraints. Moreover,45
inspecting the automatically built event tables offers better insight into the agent’s decision-making.46
Finally, although we use ProtoCRL as online and target network in DDQN (Hasselt et al., 2016), its47
modular design makes it easily adaptable to other algorithms.48

Our main contributions are:49

• Proposing the first prototype-based architecture featuring a VGMM for automatic event discovery.50
ProtoCRL additionally makes event tables more flexible and thus suited to CRL settings, as the51
VGMM can dynamically leverage fewer clusters than the maximum number given, leaving extra52
capacity to accommodate additional event tables as new tasks appear.53

• Showing that ProtoCRL identifies meaningful event states by inspecting the assignments of ob-54
servations to the VGMM’s components, thus gaining insights into the agent’s decision process.55

• Providing evidence of ProtoCRL comparable performance to baselines with manually defined56
event tables and superior performance in the presence of memory constraints on a sequence of57
three MiniGrid tasks.58

2 Preliminaries59

Reinforcement Learning In this work, we consider an agent acting in a Partially Observable60
Markov Decision Process (POMDP) (Kaelbling et al., 1998) M = ⟨S,A,P, R,Ω, O, γ⟩, with state61
space S, action space A, transition function P : S ×A → Pr[S], reward function R : S ×A → R,62
observation function O : S × A → Pr[Ω], where Ω represents a finite set of observations that63
the agent can experience, and discount factor γ ∈ [0, 1). The partial observability comes from the64
fact that the agent does not have access to the environment states s ∈ S, but only to observations65
o ∈ Ω. At time step t, the agent uses its current policy πt : Ω → Pr[A] to choose an action and66
observes the immediate reward rt ∼ R(st, at) and the next observation o′ ∼ O(st, at). The episode67
ends if a termination condition is verified or if a horizon of H is reached. In the remaining part of68
this introduction, we assume for convenience that the agent has access to states st. In the partial69
observability case, all mathematical definitions would be the same but with o in place of s. We70
return to partial observability in Section A.1 of the Supplementary materials, where we describe the71
exact form and content of these observations.72

The value function of a policy is represented by its long-term discounted return: Qπ(s, a) =73
R(s, a) + γEs′∼P(s,a)[V

π(s′)], where V π(s) = Qπ(s, π(s)). The aim of the agent is to find74
an optimal policy π∗ and the corresponding Q∗(s, a) that maximizes the expected discounted re-75
turn. Model-free off-policy methods learn Q∗(s, a) directly from data by incrementally updating76
the value function based on the temporal difference (TD)-error δ = r(s, a) + γVk(s

′) − Qk(s, a)77
for Vk(s

′) = maxa′Qk(s
′, a′). DDQN (Hasselt et al., 2016) is one such approach, in which the78

value function is represented as a deep neural network with parameters ϕ, that are updated along the79
gradient of the TD-error. With respect to DQN (Mnih et al., 2015), DDQN uses two different value80
networks: an online network for current Q-values and a target network for computing Vk(s

′) that is81
updated with lower frequency.82

Experience Replay with Event Tables In off-policy RL, experiences ⟨s, a, r, s′⟩ are typically83
stored in an ERB and then sampled in batches to perform gradient updates to the value networks84
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parameters. Kompella et al. (2023) propose partitioning the ERB into n event tables Bνi and a85
default table B0. The default table stores all transitions, while each event table is associated with86
an event specification ν = ⟨ω, τ⟩, where ω : S → 0, 1 is a boolean event condition and τ is a87
history length. Typical good candidates for event states are important states that occur rarely, such88
as goal states or bottleneck states, and their associated event conditions need to be specified by89
domain experts. All tables are handled in a FIFO manner and insertion and sampling operations90
are controlled by parameters η, κ, di, with i ∈ [0, n], representing sampling probabilities, capacity91
sizes, and minimum data requirements for each table (including the default table, corresponding to92
i = 0), respectively.93

Continual Reinforcement Learning CRL extends the standard RL paradigm to scenarios where94
an agent is faced with a sequence of tasks or changing environments. Each new task is represented95
as a new POMDP Mi = ⟨Si,Ai,Pi, Ri,Ωi, Oi, γi⟩, with i = 1, ..., T . During the i-th task training,96
the agent collects only experiences from that task.97

3 Related Work98

Continual Reinforcement Learning In recent years, interest in CRL has grown considerably99
(Khetarpal et al., 2022). However, the study of catastrophic forgetting and the more general stability-100
plasticity dilemma has a much longer history (McCloskey & Cohen, 1989; French, 1999; Mermillod101
et al., 2013). While some approaches aim at reducing forgetting by applying some form of weight or102
function regularization (Kirkpatrick et al., 2016; Kessler et al., 2022), architecture-based strategies103
feature task-specific sub-networks or dynamic networks to prevent task interference (Rusu et al.,104
2016; Mallya & Lazebnik, 2017). Another popular solution is experience replay (ER), which con-105
sists of storing and replaying experiences from old tasks (Rolnick et al., 2019a; Li et al., 2021;106
Liotet et al., 2022; Luo et al., 2023). For instance, CLEAR (Rolnick et al., 2019a) balances plastic-107
ity and stability by alternating off-policy learning from the ERB and on-policy learning from new108
experiences, using behavioural cloning between the current policy and its past version to increase109
stability. The way in which we populate and sample from the ERB significantly affects the final110
performance, as demonstrated by Kessler et al. (2023). In particular, ER is not particularly suited in111
environments featuring crucial event states that occur very rarely during each episode. These states112
might get sampled too infrequently from the ERB, leading to the agent being unable to efficiently113
and effectively learn the task at hand. Kompella et al. (2023) address this issue by dividing the ERB114
into event tables and ensuring they get sampled frequently enough. However, the effectiveness of115
event tables strongly relies on the definition of event conditions by domain experts, and a wrong116
choice of events might lead to suboptimal performance. The purpose of ProtoCRL is to avoid this117
problem by automatizing the construction of event tables.118

Prototypes in Reinforcement Learning The term prototype has divergent meanings across dif-119
ferent research sub-fields. In representation learning, a prototype is a latent vector encoding features120
relevant for achieving a certain outcome, i.e., a prototypical embedding in the latent space. In ex-121
plainable artificial intelligence, a prototype is typically an input instance or a part of it (e.g., an image122
patch) that is representative of a specific class.123

While early prototype-based networks focused on supervised image classification (Chen et al., 2019;124
Rymarczyk et al., 2022), recent works in RL adapt these principles to interpret black-box image-125
based RL agents. Ragodos et al. (2022) exploit the black-box model’s demonstrations to train a self-126
interpretable agent by imitation learning, while Borzillo et al. (2023) and Kenny et al. (2023) use127
the pre-trained black-box agent as an encoder. In representation learning, instead, self-supervised128
learning and task-agnostic pre-training allow learning prototypical embeddings to enhance the gen-129
eralization capabilities of RL agents (Yarats et al., 2021; Liu et al., 2023; Mazoure et al., 2022).130
For instance, DreamerPro (Deng et al., 2022) clusters observations into trainable prototypes and131
predicts the cluster assignment from both the world model’s state and an augmented view of the132

3



Under review for RLC 2025, to be published in RLJ 2025

observations, while ProtoCAD (Wang et al., 2024) utilizes prototypical representations to extract133
contextual information from varying dynamic environments.134

To our knowledge, no existing work applies a prototype-based network to CRL. We address this135
gap via an architecture featuring a VGMM (Corduneanu & Bishop, 2001; Nasios & Bors, 2006)136
for clustering latent representations and identifying prototypical embeddings of event states. Unlike137
prior methods, our architecture does not require a pre-trained black-box agent or self-supervised138
pre-training.139

4 ProtoCRL140

In this section, we introduce ProtoCRL, our prototype-based architecture that addresses the chal-141
lenges of CRL by integrating a prototype-based latent representation with an event-based experience142
replay mechanism. By learning to cluster latent features via a VGMM, ProtoCRL automatically143
identifies prototypical event states that are critical for learning. These prototypes are then used to144
form event tables in the replay buffer, ensuring that rare but informative transitions are frequently145
revisited during training.146

4.1 Network Architecture147

The network, illustrated in Figure 1, consists of three interdependent components: an encoder fe, a148
VGMM module, and an output layer fo.149

Figure 1: ProtoCRL. A transition ⟨s, a, r, s′⟩ is sampled from the ERB and state s is passed to the
encoder fe, which produces latent representation h. h is the input to a VGMM with K components.
The VGMM assigns the input observation to one of its components through z ∈ ZK , which is a one-
hot assignment vector. The VGMM is parametrized by mixing coefficients π = (π1, ..., πK), means
µ = (µ1, ..., µK), and covariance matrices Σ = (Σ1, ...,ΣK). The latent state representation h and
the mean of the component it is assigned to µk are concatenated and passed to an output dense layer
fo, which predicts Q values. When collecting the experiences to store in the ERB, each experience
is stored in the prototypical event table associated with the VGMM component the observation is
assigned to.

Encoder The encoder fe transforms high-dimensional raw observations into a compact latent rep-150
resentation. This component can be implemented differently, depending on the type of input ob-151
servations. The learned latent space is crucial for capturing the relevant features needed for both152
control and for subsequent clustering. In our experiments, we implement the encoder as a simple153
dense neural network with three hidden layers and LeakyReLU nonlinearities.154
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Variational Gaussian Mixture Model (VGMM) The VGMM processes the latent representa-
tions produced by the encoder and clusters them into a set of prototypes. A Gaussian Mixture
Model (GMM) is a widely-used probabilistic model for clustering and density estimation. The
GMM assumes that the observed data is generated from a mixture of several Gaussian distribu-
tions, each representing a different cluster or component in the data. In this work, we deal with
multi-dimensional data, so we use a multivariate GMM which models the distribution of a set of N
observed data points X = x1, ..., xN , with xn ∈ Rd, as a weighted sum of K multivariate Gaussian
components. The probability density function for the multivariate GMM is given by:

P (xn|θ) =
K∑

k=1

πkN (x|µk,Σk)

where πk are the mixing weights, N (xn|µk,Σk) is a multivariate Gaussian distribution with mean
µk and covariance matrix Σk, and θ = {πk, µk,Σk}Kk=1 represents the set of all parameters of
the model. The mixing weights are such that 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1, as they represent

the probability that a data point belongs to each mixture component. Given our GMM, the end
goal is to perform inference, i.e., to estimate the parameters of our mixture components given some
observations:

p(θ|X ) =
p(X|θ)p(θ)

p(X )

where p(X|θ) is the likelihood of the data given the parameters, and p(θ) is the prior distribution.
However, the computation of the denominator, called evidence, is generally intractable. The main
idea of variational inference is to find a simple distribution q(θ, ϕ) from a family of distributions
Q, called variational distributions, that is a good approximation of the true posterior. To this aim,
we look for the distribution q∗(θ, ϕ) that minimizes the Kullback-Leibler (KL) divergence between
the true and approximate posteriors, which is equivalent to maximizing the evidence lower bound
(ELBO):

q∗(θ, ϕ) = arg min
q(θ,ϕ)∈Q

DKL [q(θ, ϕ)||p(θ, ϕ|X )]

To this aim, we need to place prior distributions over the model parameters θ. In this work, we use155
a Dirichlet prior for the mixing coefficients πk, a Gaussian prior for the means µk, and a Gamma156
prior for the magnitude of the precision matrix, as reported in the literature (Lu, 2021).157

To make this optimization scalable, especially for large datasets, we use Stochastic Variational In-
ference (SVI) (Hoffman et al., 2013). At each iteration, the gradient of the ELBO with respect to
the variational parameters ϕ is estimated using the batch of latent representations produced by the
encoder. The gradient is then used to update ϕ using a learning rate ηt, following the update rule:

ϕt+1 = ϕt + ηt∇ϕELBO(ϕt,Xmini−batch)

By iterating over mini-batches, the variational parameters ϕ converge to values that approximate158
the true posterior distribution of the model parameters. The main advantage of using variational159
inference is that after defining the maximum number of components in the VGMM, a smaller number160
of components might be used based on the input data. This is particularly useful in our CRL setting,161
in which an increasing number of components are needed as the number of seen tasks grows.162

Output Layer The output layer maps the prototype-augmented features, obtained by concatenat-163
ing the encoder’s output with the mean of the GMM component it is assigned to, to action-value164
estimates using a shared network head. In our continual learning setting, the use of a shared head165
across tasks promotes knowledge transfer while reducing the overall model complexity. However,166
this choice may also introduce interference if tasks are highly divergent, which is mitigated by our167
selective replay strategy.168
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4.2 Prototypical Event Tables169

To enhance learning and avoid catastrophic forgetting, ProtoCRL employs event tables (Kompella
et al., 2023). Specifically, for each task i ∈ [1, T ], we define a default table B0

i and prototypical
event tables Bνk

i , with k ∈ [1,K]. Let h = fe(s) be the latent representation of state s obtained
from the encoder. For a VGMM with K components, if we denote the posterior probability that h is
generated by component k as p(k | h), the event condition for table k can be defined as the indicator
function

ωk(s) = 1

{
k = arg max

j∈{1,...,K}
p(j | fe(s))

}
which evaluates to 1 if and only if the latent representation h = f(s) is most likely generated by170
the k-th component, and 0 otherwise. By over-sampling transitions from these event tables during171
training, the network more frequently reinforces critical experiences, which is particularly valuable172
in the context of continual learning. One key aspect in the construction of manual event tables173
is the definition of the sampling probabilities ηi, which is crucial for guaranteeing their effective-174
ness. For simplicity, we fix the same sampling probability for each event table throughout training,175
leaving more sophisticated tuning strategies for future work. However, results show that ProtoCRL176
effectively manages to distribute states among tables to favor more frequent sampling of important177
states.178

4.3 Training Procedure179

VGMM Warm Start To ensure initial reliable clustering in the latent space, the VGMM is pre-
trained (or warm-started) on data collected by performing a random policy on the first task in the
sequence for 200 steps. Although the agent has yet to see future tasks, this warm start builds a
reasonable basis for prototype extraction. As training proceeds through subsequent tasks, the clus-
tering continues to be updated in an online fashion to reflect data from the new tasks.. The training
objective used during this warm start procedure is made up of several components. The first one is
the TD loss, which ensures that the learned representations are meaningful for the task at hand. The
second term is the ELBO, that we need to maximize:

LELBO = αlogplog p(X )− αKL DKL [q(θ, λ)||p(θ, λ|X )]

The third component is an entropy term that encourages the use of diverse clusters. Let ri ∈ RK

denote the cluster probability vector for the i-th sample, obtained by applying a softmax over the
VGMM log-probabilities. We define the average probability of cluster k over a batch of N samples
as:

mk =
1

N

N∑
i=1

ri,k, for k = 1, . . . ,K

Then, we define the entropy loss as:

LE = −
K∑

k=1

mk log
(
mk + ϵ

)
,

where ϵ is a small constant for numerical stability. Finally, we use Hoyer’s sparsity loss (Hoyer,
2004) to encourage exactly one VGMM component to have high probability for each input observa-
tion. The Hoyer sparsity measure for the i-th input sample takes the form:

H(ri) =

√
K ∥ri∥1

∥ri∥2 + ϵ
− 1

where ∥ri∥1 =
∑K

k=1 |ri,k| and ∥ri∥2 =
√∑K

k=1 r
2
i,k. A perfectly one-hot vector achieves

H(ri) = 1, while a uniform distribution yields a lower value. The overall Hoyer sparsity loss over

6



ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

a batch of N samples is computed as the mean:

LH =
1

N

N∑
i=1

H(ri).

Minimizing this loss encourages each probability vector ri to become more sparse. The overall
training objective is:

LProtoCRL = LTD − λ(LELBO − βE LE + βH LH)

with λ, βE and βH being regularization parameters.180

Alternating Training Objectives After the warm start procedure, we alternatively optimize two181
objectives: the TD loss, to sharpen the agent’s policy, and the joint objective used during warm182
start, to estabilish a well-structured latent space and meaningful prototypes that form the basis for183
effective event table construction. This alternating training strategy is designed to find a balance184
between maintaining a robust and interpretable latent structure and optimizing the agent’s decision-185
making capabilities. This design not only automates the discovery of significant event states but also186
improves the overall stability and performance of the agent in continual learning environments.187

5 Experiments188

We test ProtoCRL on a sequence of 3 MiniGrid (Chevalier-Boisvert et al., 2018) tasks - DoorKey,189
LavaCrossing, and SimpleCrossing - using DDQN algorithm (Hasselt et al., 2016). The environ-190
ments are episodic and terminate when the agent reaches the goal or when we reach the maximum191
episode length (set to 200 at evaluation time). The agent receives a reward of −0.05 for each192
environment step, +1 for reaching the goal, and −5 for falling into lava. Further details on the193
environments, architectures and hyperparameters needed for reproducibility are given in Section A194
of the Supplementary Materials. We train all agents for 3K epochs (1K epochs for each task) and195
evaluate them with a frequency of 20 epochs, averaging results over 5 seeds. For each experiment,196
we report average performance and average forgetting CRL metrics (Woł czyk et al., 2021), whose197
formal definitions are provided in the Supplementary materials. The former measures how well the198
agents performs on average on all tasks at the end of the training, while the latter captures the drop199
in the agent’s performance on previous tasks after learning the entire task sequence.200

A central goal of ProtoCRL is to eliminate the need for manually selecting event states while pre-201
serving performance in CRL settings. For this reason, we compare it to (1) a baseline using a single202
FIFO ERB with no event tables (NoET), (2) a simplified variant of event-based replay in which203
we introduce a single event table holding transitions related to the goal state, (3) an event-based204
strategy using multiple event tables (goal, at_door, pickup_key for DoorKey, goal and at_lava205
for LavaCrossing, and goal and at_gap for SimpleCrossing), (4) ContinualDreamer (Kessler et al.,206
2023), which leverages both experience replay and world models. In particular, we expect Continu-207
alDreamer to be a strong baseline, as its learned dynamic model can generate additional transitions208
and thus provide more frequent revisits of past tasks.209

5.1 Performance Comparison210

In this section, we compare the agents performance when using an ERB with capacity of 2M. Note211
that event tables are partitions within the ERB, therefore the total memory usage remains fixed at 2M212
transitions, regardless of the number of event tables. Figure 2 shows episodic returns for all tasks213
across the whole training. Looking at the plot on the left, focusing on the DoorKey task, we notice214
that all methods steadily improve over the training epochs, but experience different performance215
drops when encountering the second task in the sequence, at epoch 1K. While ProtoCRL, GoalET,216
and ET manage to recover from this drop, NoET keeps losing its ability to perform the DoorKey task,217
reaching the lowest final performance. In these experiements, we also show that ProtoCRL benefits218
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from storing a larger history of transitions in the event tables, namely τ = 500 compared to τ = 50,219
which is the value used for GoalET and ET. Indeed, the second lowest final return is obtained by220
ProtoCRL-2M-h50, which despite not experiencing forgetting, fails to reach a high performance on221
the DoorKey task. On the other hand, ContinualDreamer is the approach that converges faster and222
maintains the highest final return, indicating that the integration of world models and experience223
replay is well suited for CRL settings.224

Figure 2: Episodic return on 3 MiniGrid tasks using a 2M memory budget. The task ordering is
DoorKey-LavaCrossing-SimpleCrossing. Each agent is trained on each task for 1K epochs and eval-
uated every 20 epochs across the entire training sequence. Shaded areas indicate standard deviations
across 5 seeds.

On the subsequent tasks, all methods reach similar performances, slightly above or below 0. No-225
tably, ContinualDreamer is the one obtaining the lowest final return for both LavaCrossing and226
SimpleCrossing. This results in GoalET having the highest average performance of 0.32± 0.02 and227
the lowest forgetting of −0.01±0.03, as reported in Table 1. The negative forgetting value indicates228
that the final performance is higher at the end of the entire training than after training the individual229
tasks. Despite not being the best-performing method, ProtoCRL reaches a final average performance230
of −0.42 ± 1.08 that is significantly higher than the NoET and ET baselines, both having average231
performance below −1 and higher standard deviations across seeds.232

Table 1: Average performance and forgetting on three MiniGrid tasks using 2M memory budget.

Avg. Performance Avg. Forgetting
NoET −1.40± 2.44 1.72± 2.39
GoalET 0.32± 0.02 −0.01± 0.03
ET −1.05± 1.96 1.30± 1.85
ContinualDreamer 0.19± 0.07 0.05± 0.09
ProtoCRL-h50 −1.07± 1.97 0.72± 0.97
ProtoCRL −0.42± 1.08 0.73± 1.08

5.2 Decreasing Buffer Capacity233

Sample efficiency is a crucial requirement in CRL settings. One major disadvantage of experience234
replay methods is indeed that the size of the memory grows with the number of tasks. It is there-235
fore necessary for CRL methods to perform well even in the presence of memory constraints. For236
this reason, we test the effectiveness of NoET, GoalET, ET, and ProtoCRL with different buffer237
capacities.238

In Tables 2 and 3, we compare the effectiveness of these methods in terms of average performance239
and forgetting. In Section C in the Supplementary materials, we additionally provide plots showing240
the episodic returns for the three environments across the entire training. Overall, ET and GoalET241
are the approaches that suffer from the greatest performance drops (i.e., increased forgetting) when242
decreasing the memory budget, reaching performances that are much lower than the NoET baseline243
with 1M and 100K memory budgets. This might be due to manually defined tables oversampling244
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a narrow subset of transitions, thus limiting the agent’s exposure to broader context. If event defi-245
nitions or table sampling probabilities are not well tuned, uniform replay (NoET) might maintain a246
more diverse set of experiences, resulting in better overall performance. On the contrary, ProtoCRL,247
with its ability to automatically build event tables, manages to achieve high performance with very248
low memory budgets.249

Table 2: Average performance over 3 MiniGrid tasks with different memory budgets. All metrics are
an average and standard deviation over 5 seeds. We highlight in bold the best performing approaches.

100K 500K 1M 2M
NoET −5.17± 4.24 −4.47± 4.25 −5.16± 3.53 −1.40± 2.44
GoalET −8.61± 0.98 −3.80± 2.93 −7.24± 1.95 0.32± 0.02
ET −9.31± 0.97 −4.49± 2.57 −7.24± 1.95 −1.05± 1.96
ProtoCRL −1.73± 2.93 −2.41± 0.99 −0.37± 0.99 −0.42± 1.08

Table 3: Average forgetting over 3 MiniGrid tasks with different memory budgets. All metrics are an
average and standard deviation over 5 seeds. We highlight in bold the best performing approaches.

100K 500K 1M 2M
NoET 4.78± 3.48 4.75± 4.15 3.43± 3.50 0.86± 1.21
GoalET 4.08± 4.39 2.74± 3.88 3.43± 4.86 −0.01± 0.02
ET 5.47± 4.20 3.39± 3.44 2.75± 3.88 1.33± 1.89
ProtoCRL 2.02± 1.63 2.01± 1.62 0.01± 0.01 0.01± 1.72

5.3 Prototypes analysis250

To shed light on what types of events each prototype, i.e., each VGMM’s mixture component, is251
representing, we inspect which states or transitions predominantly fall into each cluster. To this aim,252
we took the agent trained on the entire task sequence and made it perform 1 episode in each envi-253
ronment following the learned policy, and 10 episodes by choosing a random action with probability254
70% in order to collect more diverse states, thus collecting 2959 states in total.255

In Figure 3, we show the percentage of states assigned to each cluster that are related to specific256
event states. Specifically, for goal, key, and lava we consider all states in which the agent is in the257
position of the object or in an adjacent position but oriented towards the object. For door and gap,258
instead, we consider only states in which the agent is exactly at the door and gap positions.259

Interestingly, around 25% of the states in Cluster 3 represent key, door, and goal states relevant260
for the DoorKey task. Additionally, the same cluster has an important coverage of the gap state,261
which is similar to the door state, together with smaller percentages of lava states and goal states262
for the LavaCrossing and SimpleCrossing tasks. Overall, Cluster 3 appears to be an event cluster,263
as it captures many state transitions that are important to the agent’s task progression. Similarly,264
around 17% of the states in Cluster 5 seem to be capturing event-related states. Lava-related events,265
instead, are predominantly collected in Cluster 1, although there was 1 state among the 2959 we266
collected that was the only one assigned to Cluster 9. Because no cluster stands out with more267
than 50% of its states representing a particular event, it appears that the VGMM’s components268
might be capturing more nuanced distinctions (e.g., each cluster is partially capturing key states269
under different local configurations, such as the agent’s orientation or position near the key) or270
sub-trajectories leading to overcoming the obstacles or reaching the goal. This might seem the271
case by looking at Figure 4, which shows an overlay of the states visited by the agent’s policy272
that are assigned to each cluster. In accordance with our previous analysis, Cluster 3 collects the273
states corresponding to door opening and the subtrajectory leading to the goal in the DoorKey task.274
Clusters 5 and 8, instead, seems more focused on subtrajectories that allow overcoming obstacles275
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Figure 3: Distribution of environment-defined event types within each discovered prototype cluster.
The automatically learned prototypes frequently match to key environment events, demonstrating
ProtoCRL’s ability to partition states in an event-centric manner.

and reaching the goal in the other two environments. Finally, Cluster 11 collects the state relative276
to key collection in the DoorKey task. These results confirm that ProtoCRL effectively identifies277
and groups pivotal states for each environment, supporting more efficient experience replay and278
removing the need for manually defined event tables.279

Figure 4: Overlayed states visited by the agent’s policy that are assigned to each cluster.

6 Conclusions280

In this work, we introduce ProtoCRL, a prototype-based network for CRL that automatically discov-281
ers event states via a VGMM. By replacing the manual event definitions with an adaptive, data-driven282
mechanism for organizing the ERB, ProtoCRL allows the agent to effectively mitigate forgetting.283
Our experiments demonstrate that under stringent memory consraints, ProtoCRL outperforms con-284
ventional baselines that rely on manually defined event tables or uniform sampling.285
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While ProtoCRL shows promising sample efficiency and robustness, some limitations remain. The286
effectiveness of the VGMM-based clustering can be highly sensitive to hyperparameters and may287
capture nuanced distinctions across subtrajectories rather than isolating single dominant event states.288
Additionally, the results ProtoCRL achieves are still lower than state-of-the-art CRL approaches289
integrating experience replay with world models (Kessler et al., 2023).290

Future work should explore tighter integration between ProtoCRL and world-model-based ap-291
proaches. Moreover, investigating adaptive hyperparameter schemes that allow learning other sen-292
sitive hyperparameters, such as the sampling probabilities for the automatically built event tables,293
could further enhance the stability and performance of ProtoCRL in more complex settings.294
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tinual world: A robotic benchmark for continual reinforcement learning. In M. Ranzato,410
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-411
ral Information Processing Systems, volume 34, pp. 28496–28510. Curran Associates, Inc.,412
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/413
file/ef8446f35513a8d6aa2308357a268a7e-Paper.pdf.414

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,415
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-416
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223–417
228, 2022.418

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with pro-419
totypical representations. In International Conference on Machine Learning, pp. 11920–11931.420
PMLR, 2021.421

13

https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740
https://openreview.net/forum?id=nyBJcnhjAoy
https://openreview.net/forum?id=nyBJcnhjAoy
https://openreview.net/forum?id=nyBJcnhjAoy
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://api.semanticscholar.org/CorpusID:15350923
https://api.semanticscholar.org/CorpusID:15350923
https://api.semanticscholar.org/CorpusID:15350923
https://proceedings.neurips.cc/paper_files/paper/2021/file/ef8446f35513a8d6aa2308357a268a7e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ef8446f35513a8d6aa2308357a268a7e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ef8446f35513a8d6aa2308357a268a7e-Paper.pdf


Under review for RLC 2025, to be published in RLJ 2025

Supplementary Materials422

The following content was not necessarily subject to peer review.423

424

A Experimental Setup425

A.1 Environments426

In our experiments, we evaluate ProtoCRL on the DoorKey, LavaCrossing, and SimpleCrossing427
MiniGrid tasks (Chevalier-Boisvert et al., 2018). Figure 5 shows a random instantiations of each428
environment. The exact positions of lava, gap in the wall, door, key, and the color of the key-door429
combination are randomly set in each episode. The goal of the agent is to reach the green square430
starting from the top-left corner of the grid. The agent’s action space includes 5 actions: forward,431
left, right, pickup key, and toggle door. In each environment, the agent receives an observations432
consisting of:433

• An egocentric 9x9 localized forward-view image (highlighted in Figure 5).434

• A boolean flag indicating whether the agent is carrying an object.435

• A 2D representation (category, color) of the object it is carrying. The default value is (−1,−1).436

• The agent’s 3D grid position and orientation (x, y, θ).437

The agent gets a reward of −0.05 for each environment step, +1 for reaching the goal, and −5 for438
falling into lava. The episode terminates when the agents reaches the goal, falls into lava, or we have439
reached the maximum episode length. The latter is set to 2000 while collecting experiences and 200440
at evaluation time for all environments. During training, instead, the maximum episode length is set441
to 500 for LavaCrossing and SimpleCrossing, and to 1000 for DoorKey.442

(a) DoorKey task (b) LavaCrossing task (c) SimpleCrossing task

Figure 5: Random instantiations of the used MiniGrid environments.

A.2 Learning Parameters443

Tables 4, 5, 7, and 6 list the parameters used in our experiments. Event conditions check whether444
the agent has reached the goal (done), has picked up a key (pickup_key), has opened the door445
(at_door), has fallen into lava (at_lava), or has traversed the gap in the wall (at_gap). In order446
to produce results for ContinualDreamer (Kessler et al., 2023), we have used the author’s original447
implementation. The only changes we made concerned the reward function, updated to match the448
one described in Section A.1, the number of environment interactions and the evaluation frequency.449

14



ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

Table 4: Learning parameters for experiments with no event tables (NoET).

Parameter Value
Number of tasks (T ) 3
Value function networks 3 hidden layers of 128, 128, and 64 ReLU units
Learning rate 0.0005
Batch size 64
Epsilon-greedy (ϵ) 0.3
Stale network refresh rate 0.01
Discount factor 0.99

Table 5: Learning parameters for experiments with just goal event tables (GoalET).

Parameter Value
Number of tasks (T ) 3
Event conditions (ωi) donet with t = [0, T ]
Event history length (τ ) 50
Event sampling probabilities (ηi) B0

0 : 0.3529, B0
1 : 0.1765, B0

2 : 0.2941, donet :
0.0588 with t = [0, T ]

Value function networks 3 hidden layers of 128, 128, and 64 ReLU units
Learning rate 0.0005
Batch size 64
Epsilon-greedy (ϵ) 0.3
Stale network refresh rate 0.01
Discount factor 0.99

Table 6: Learning parameters for experiments with multiple event tables per task (ET).

Parameter Value
Number of tasks (T ) 3
Event conditions (ωi) donet with t = [0, T ], pickup_key, at_door,

at_lava
Event history length (τ ) 50
Event sampling probabilities (ηi) B0

0 : 0.34, done0 : 0.03, at_door : 0.07,
pickup_key : 0.03, B0

1 : 0.16, done1 : 0.02,
at_lava : 0.05, B0

2 : 0.23, done2 : 0.02, at_gap :
0.05

Value function networks 3 hidden layers of 128, 128, and 64 ReLU units
Learning rate 0.0005
Batch size 64
Epsilon-greedy (ϵ) 0.3
Stale network refresh rate 0.01
Discount factor 0.99
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Table 7: Learning parameters for experiments with ProtoCRL.

Parameter Value
Number of tasks (T ) 3
Number of VGMM components (K) 12

Event conditions (ωi) 1

{
k = argmaxj∈{1,...,K} p(j | fe(s))

}
Event history length (τ ) 500
Event sampling probabilities (ηi) B0

0 : 0.6, B0
1 : 0.3, B0

2 : 0.6, prototypek,t : 0.1
with k ∈ [0,K − 1], t ∈ [1, T ]

Value function networks 3 hidden layers of 128, 128, and 64 LeakyReLU
units

Phase 1 (LTD) learning rate 0.001
Phase 1 steps ratio 0.5
Phase 2 (LProtoCRL) learning rate 0.001
Phase 2 regularization parameter (λ) 0.1
VGMM warm start epochs 10
αlogp 0.1
αKL 0.001
βE 1000
βH 1.0
Batch size 64
Epsilon-greedy (ϵ) 0.3
Stale network refresh rate 0.01
Discount factor 0.99
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B Continual Reinforcement Learning Metrics450

In order to evaluate the CRL performance of the trained agents, we use two popular metrics: the451
average performance and the average forgetting.452

The average performance metric estimates the average performance of the agent on all tasks at the
end of the task sequence and is computed as:

p(tf ) =
1

T

T∑
i=1

pi(tf )

where tf is the final timestep and pi(tf ) is the performance of the agent on the i-th task at timestep453
tf .454

The average forgetting, instead, is measured as the average difference between the performance of
each task after its own training and at the end of the task sequence:

F =
1

T

T∑
i=1

Fi with Fi = pi(i×N)− pi(tf )

where N is the number of steps per task. The forgetting for the last task in the sequence is FT = 0.455
Finally, forgetting can also take negative values if the performance of a task i is higher at the end of456
the task sequence compared to after task i training.457

C Episodic Return with Decreasing Buffer Capacity458

Figure 6 shows the episodic return for each MiniGrid task in the tested sequence (DoorKey,459
LavaCrossing, SimpleCrossing) obtained by ProtoCRL and the NoET, GoalET, and ET baselines.460
All baselines experience severe performance drop after encountering the second task at epoch 1K,461
with NoET-100K/500K/1M, GoalET-100K/1M, and ET-100K/1M obtaining the lowest return of462
−10 at the end of the task sequence. On the other hand, ProtoCRL maintains a performance that463
is higher than all baselines with memory budget up to 1M transitions. Similar observations can be464
made for the performance on subsequent tasks, in which ProtoCRL obtains episodic returns that465
are slightly lower than 0 for the LavaCrossing task and slightly above 0 (highest achievable) for the466
SimpleCrossing task.467

Figure 6: Episode return on 3 MiniGrid tasks using decreasing memory budget. The task ordering
is DoorKey-LavaCrossing-SimpleCrossing. Each agent is trained on each task for 1K epochs and
evaluated every 20 epochs across the entire training sequence.
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