
A Computationally Viable Numerical Gradient-based
Technique for Optimal Covering Problems

Gokul Rajaraman
Department of Mechanical Engineering

IIT Bombay
Mumbai 400076, India
22b4517@iitb.ac.in

Debasish Chatterjee
Centre for Systems and Control

IIT Bombay
Mumbai 400076, India
dchatter@iitb.ac.in

Abstract

The problem of optimally covering a given compact subset of RN with a preas-
signed number n of Euclidean metric balls has a long-standing history and it is
well-recognized to be computationally hard. This article establishes a numeri-
cally viable algorithm for obtaining optimal covers of compact sets via two key
contributions. The first is a foundational result establishing Lipschitz continuity
of the marginal function of a certain parametric non-convex maximization prob-
lem in the optimal covering problem, and it provides the substrate for numerical
gradient algorithms to be employed in this context. The second is an adaptation
of a stochastically smoothed numerical gradient-based (zeroth-order) algorithm
for a non-convex minimization problem, that, equipped with randomized restarts,
spurs global convergence to an optimal cover. Several numerical experiments with
complicated nonconvex compact sets demonstrate the excellent performance of our
techniques.

1 Introduction

Optimal covering of sets is an important problem that arises naturally in several fields of science
and technology, including learning and approximation theory, computer science, signal processing,
information theory, combinatorics, communication, sensor networks, multi-agent systems, cyberphys-
ical systems, etc. In a sensor network, for instance, given a collection of sensors having preassigned
sensing radius and a set that must be enveloped by the sensors, an important engineering question
is to find an optimal collection of points for placing the sensors to ensure complete coverage of the
given set. An identical problem arises for the coverage of a given geographical region with cell-phone
towers in order to maximize network availability in the region. In information theory, assuming that
one can accurately decode messages from a certain set within a preassigned maximal error tolerance
for each, it is important to determine the number of ‘signals’ that are necessary for accurate decoding
of all the messages; this is once again a problem of optimal covering of the set of messages with a
collection of ‘signals’.

The covering problem appears in various forms, and perhaps its most common variant is captured by
the following situation. For a given non-empty (and possibly uncountable) compact set M ⊂ RN

and a preassigned ε > 0, one finds a finite set F ⊂ RN that is at most ε-distant from any point in
M. Such a minimal set is an ε-net and its cardinality is the so-called ε-covering number of the set
M; see, e.g., (Kolmogorov and Tihomirov, 1961) for an early detailed exposé of related topics and
(Alimov and Tsar’kov, 2021, Chapters 15 and 16) for a more recent treatment. A closely related and
equally relevant variant of covering is its resource-constrained or budgeted version: Given a number
n of metric balls, one must find the minimal radius and a placement of the n centers of the balls such
that their union covers M. Such a collection of the centers is commonly known as a Chebyshev net
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of cardinality n (Alimov and Tsar’kov, 2021, Definition 15.3).1 We address this particular problem
in our current work.

Formally, given a non-empty and compact M ⊂ RN , we seek to solve the optimization problem

ϵ(M, n) := min
(x1,...,xn)∈RN×n

max
y∈M

min
i=1,...,n

∥y − xi∥. (1)

For an n-tuple of centers (x1, . . . , xn) ∈ RN×n and y ∈ M, mini=1,...,n ∥y − xi∥ determines
the distance of y from

⋃n
i=1{xi}. Consequently, the number maxy∈M mini=1,...,n ∥y − xi∥ is the

maximum distance of points in M from the collection
⋃n

i=1{xi}, and the outer minimization in (1)
optimizes this maximum distance over the centers (x1, . . . , xn). The quantity ϵ(M, n) is known
as the covering radius of the set M with n metric balls as defined in (Alimov and Tsar’kov, 2021,
p. 300); solving (1) yields an optimal n-point representation — a Chebyshev n-net — of M, and
ϵ(M, n) is the error guarantee in such a representation.

Chebyshev n-nets are especially useful for estimating errors in function learning in the presence of
certain regularity properties. For instance, consider a target function f : M → R that is known to be
Lipschitz continuous with modulus L0 but is otherwise unknown, and suppose that a Chebyshev n-net
F of M and the set of values {f(x) | x ∈ F} of f on F are available. Then a tight estimate of the
value of f at a generic y ∈ M may be obtained, within an absolute error margin of L0ϵ(M, n), by
finding y⋆ ∈ argminz∈F ∥z − y∥ and then calculating f(y⋆). By an identical reasoning, for Hölder
continuous f of modulus C > 0 and rate α ∈ ]0, 1[, the corresponding error bound is Cϵ(M, n)α.
Similar arguments in optimization problems involving uniformly continuous objective functions
permit the derivation of quantitative estimates of true optima from estimates over finitely many points.

In several applications of covering, the centers of the metric balls may be restricted to lie within M,
in which case, the problem (1) should be modified to

ϵ′(M, n) := min
(x1,...,xn)∈Mn

max
y∈M

min
i=1,...,n

∥y − xi∥. (2)

This constrained version is relevant in settings where the representative points must strictly belong
to the set under consideration. The triangle inequality immediately yields the sandwich relation
ϵ′(M,n)

2 ⩽ ϵ(M, n) ⩽ ϵ′(M, n). Our efforts are focused on the numerical viability of (1) for
compact M; similar methods can be adapted with minor modifications to address (2) if M is convex.

Contributions

The problem (1) is challenging (NP-hard) even in the case n = 1. Indeed, this situation is the so-
called Chebyshev center problem (Alimov and Tsar’kov, 2021, p. 296) and is of central importance
in optimal function learning (Binev et al., 2024), signal processing (Micchelli and Rivlin, 1977; Eldar
et al., 2008; Wu et al., 2013), approximation theory (Alimov and Tsar’kov, 2019; Foucart and Liao,
2024), and a host of other disciplines. Despite its complexity, it turns out that the Chebyshev center
problem admits a numerically viable solution technique (with excellent approximation properties) by
leveraging certain convexity attributes present therein, and has been recently studied in (Paruchuri
and Chatterjee, 2023). The case of n > 1 considered in the current article is significantly more
difficult: of course, it is challenging (NP-hard), and in addition, it does not appear to be amenable
to any simplification via convexity.2 Moreover, while the Chebyshev center of M is unique for the
Euclidean norm, the Chebyshev n-net problem may not yield unique solutions.3

Since (1) is well-known to be computationally challenging, we focus attention on the develop-
ment of viable algorithm based on numerical gradients (i.e., a zeroth-order algorithm) with good
approximation properties to solve (1):
◦ To this end, we demonstrate that the inner max-min problem in (1) admits a reformulation that yields

good regularity properties parametrically in (x1, . . . , xn) corresponding to the outer minimization

1In sensor and communication networks, for instance, the radius of sensing/communication of each sensor is
dependent on the power at hand, which lends a measure of flexibility in altering the indicated radius.

2For instance, the Chebyshev center of M is identical to the Chebyshev center of the convex hull of M, but
that is false in general for Chebyshev n-nets for n > 1.

3In a few cases of M, closed-form expressions for Chebyshev n-nets are known; see, e.g., (Ushakov and
Lebedev, 2015).
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under mild hypotheses; this is our first main result Theorem 3.2. The indicated regularity property
enables and justifies the deployment of a numerical gradient-based (zeroth-order) algorithm in
the variables (x1, . . . , xn) to arrive at a solution to (1) itself. To our knowledge, ours is the only
instance of a gradient-based approach to finding Chebyshev n-nets for compact subsets of RN that
do not necessarily possess special structure.

◦ In order to obtain the indicated regularity properties, the key technical tools employed here are
derived from the field of sensitivity of optimization problems (Fiacco, 1983; Fiacco and Ishizuka,
1990) or variational analysis (Dontchev and Rockafellar, 2014). We establish the crucial Lipschitz
continuity of the (parametric) inner max-min problem in (1) with respect to (x1, . . . , xn) around
optimal points of the outer minimization; this lays down the foundation for the deployment of a
range of numerical gradient-based algorithms for the outer minimization.

◦ Numerical gradient-based algorithms for nonlinear programs are not expected to converge to global
optimizers in general. Here we lift off-the-shelf a recent zeroth-order algorithm that stochastically
smoothes the numerical gradients and explores the decision landscape in search for global optima;
the precise complexity bound appears in our second main result Theorem 3.6. More refined
algorithms involving, e.g., momenta for convergence to global optimizers are topics of subsequent
investigations. This is the first instance, to the best of our knowledge, that powerful tools from
sensitivity theory have been employed in conjunction with numerical gradient-based algorithms to
address the Chebyshev n-net problem.

◦ The efficacy of our algorithm depends on the availability of accurate solutions to the inner max-min
problem (after an appropriate reformulation) for each fixed (x1, . . . , xn). The indicated parametric
max-min problem happens to be non-convex despite our reformulation, and the speed of execution
of our algorithm depends on how quickly these globally optimal solutions are made available. Our
numerical experiments indicate that despite the lack of convexity, our algorithm (including resets)
gives excellent performance even for relatively complicated nonconvex sets M — see §4 for
details. Scalability of our algorithm with increasing dimensions N and number n of centers remains
a challenging issue: while the numerical gradient-based algorithm for the outer minimization
scales in these variables as O(N

3
2n2), the inner max-min is non-convex and remains the chief

computational bottleneck in our algorithm.
Since the Chebyshev n-net problem is understood to be hard, several randomized algorithms to
approximately solve (1) have been developed; see, e.g., (Har-Peled, 2011, §5.3) for an account. While
many of these randomized techniques involve independent and identically distributed sampling,4 more
complicated history-dependent stochastic iterative algorithms have been advanced in the literature
for special cases — see, e.g., (Ushakov and Lebedev, 2015) (and the references therein) for the case
of N = 3. Other techniques to solve the optimal n-net and related problems relevant to theoretical
computer science and computational geometry may be found in (Malysheva, 2020; Yu, 2021; Voronov
et al., 2023). It is, of course, possible to employ zeroth-order methods (such as simulated annealing
(Robert and Casella, 2004)) that do not rely on any regularity of the inner max-min in (1). However,
the Lipschitz regularity of the parametric max-min (Theorem 3.2) paves the way for fine-tuned
algorithms that exploit this regularity compared to typically slow annealing techniques; as such,
Theorem 3.2 constitutes the key point of departure of our contributions from the current literature.

Organization

This article unfolds as follows. Several preparatory results are contained in §2; they are employed in
the two main results centered around our key Algorithm 1 in §3. Numerical experiments are presented
in §4 and the technical data corresponding to both our theoretical results and numerical experiments
are collected in §A–§D.

2 Preliminaries

It is intuitive to expect that an optimizer (x∗
1, . . . , x

∗
n) of (1) should be restricted to a bounded set

that contains M. Recall that ϵ(M, 1) is the Chebyshev radius of M, and an optimizer z∗ of (1)

4Methods relying on independent and identical sampling typically suffer from sharply worsening performance
as the dimension rises due to concentration of measure effects; see (Das et al., 2022) for details.
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for n = 1 is the Chebyshev center of M.5 In other words, the Chebyshev center of M provides
the best single-point representation of the set M, minimizing the worst-case distance to all points
in M. There is a neat relationship between the n-net problem (1) and the Chebyshev center of M
established in the following proposition, a proof of which is in §B.
Proposition 2.1. If (x∗

1, . . . , x
∗
n) is an optimizer of (1) and if z∗ is a Chebyshev center of M, then

∥z∗ − x∗
i ∥ ⩽ 2ϵ(M, 1) for all i ∈ {1, ..., n}. (3)

In other words, without loss of generality, all optimizers of (1) can be restricted to a ball of twice
the Chebyshev radius, centered at the Chebyshev center. Henceforth, we denote this ball by B(M)
whereby, it follows that (x∗

1, . . . , x
∗
n) ∈ B(M)n

This result is useful for generating initial guesses and bounding our search space when implement-
ing our algorithm, which will be discussed in subsequent sections. Inspection of (1) reveals that
mini=1,...,n ∥y − xi∥ is non-convex in (x1, . . . , xn) for fixed y and vice versa.

As indicated in §1, we reformulate the problem in a way suitable for the construction of a numerically
viable algorithm to extract near optimal solutions. To this end, we first note that the geometric
implication of the problem guarantees strict feasibility for any compact M. Moreover, for a fixed
set of centers, the inner maximization always has a finite optimal value owing to the compactness of
M. We now present a straightforward reformulation of (1) using a slack variable, which, despite its
simplicity, provides the problem with a richer structure for computational viability. Since the square
of the norm ensures continuous differentiability, a property that will become important subsequently,
we work with the squared norm by noting that

min
i=1,...,n

∥y − xi∥2 = max
{
t ∈ R

∣∣ t ⩽ ∥y − xi∥2 for all i = 1, . . . , n
}
,

which immediately leads to

ϵ(M, n)2 = min
(x1,...,xn)∈RN×n

max
y∈M

max
t∈R

t

subject to t− ∥y − xi∥2 ⩽ 0 for all i = 1, . . . , n.
(4)

It is natural to seek a unification of both inner maximizations into a single maximization over the
Cartesian product of their respective domains. The following proposition, whose proof is in §B,
establishes that this unification is valid for the given problem.
Proposition 2.2. For a given set of centers (x1, . . . , xn) ∈ RN×n, if (t†, y†) is an optimizer of

max
{
max

{
t ∈ R

∣∣ t− ∥y − xi∥2 ⩽ 0 for all i = 1, . . . , n
} ∣∣∣ y ∈ M

}
(5)

and (t∗, y∗) is an optimizer of

max
{
t
∣∣∣ (t, y) ∈ R×M and t− ∥y − xi∥2 ⩽ 0 for all i = 1, . . . , n

}
, (6)

then t† = t∗. That is, both (5) and (6) are feasible and have the same optimal value.

In view of of Proposition 2.2, from this point forward, we adopt the following reformulation for the
n-covering radius:

ϵ(M, n)2 = min
(x1,...,xn)∈RN×n

G (x1, . . . , xn) , (7)

where

G (x1, . . . , xn) := max
{
t
∣∣∣ (t, y) ∈ R×M and t− ∥y − xi∥2 ⩽ 0 for all i = 1, . . . , n

}
.

Evaluating G entails solving a nonconvex problem, and the gradient of G is difficult to calculate
analytically, especially without imposing further structure on the inner maximization. There are
several ‘gradient-free’ algorithms such as simulated annealing via Markov chain Monte Carlo to
ensure probabilistic convergence to global minima, simplicial algorithms (e.g., the Nelder-Meade)
for deterministic convergence to global minima, of G, etc. Although these algorithms do not require
further structure on M and may be easy to implement since they only employ point evaluations of

5The Chebyshev center is necessarily unique for us due to strict convexity of the Euclidean norm.
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G, numerical gradient/subgradient-based algorithms tend to furnish solutions more efficiently and
scale well relative to the size of the problem data, provided the objective function satisfies certain
regularity conditions. An algorithm centered around numerical gradients is our target.

To advance in this direction, we impose the condition that M is the intersection of 0-sublevel sets of
finitely many known continuously differentiable functions in the following way. Let O1, . . . ,Ok ∈
RN be open sets containing M, let φj : Oj → R for j = 1, . . . k, be continuously differentiable
functions, and suppose that M is realized as

M =
{
y ∈ RN | φj(y) ⩽ 0 for j = 1, . . . , k

}
.

This allows us to write G as the negative of the optimal value function of a standard parametric
optimization problem

−G (x1, . . . , xn) = min
(t,y)

− t

subject to


t− ∥y − xi∥2 ⩽ 0 for all i = 1, . . . , n,

φi−n(y) ⩽ 0 for all i = n+ 1, . . . , n+ k,

t ⩾ 0,

(t, y) ∈ R× RN .

(8)

Example 2.3. The problem (8), for a given choice of (x1, . . . , xn), need not have strict local
optimizers in general. To see this, let M ⊂ R2 be a disc of radius R > 0 centered at the origin and
let n = 1. The evaluation of G at the origin leads to non-isolated optimizers for (8) since any pair of
the form (R2, y∗) with ∥y∗∥ = R is an optimizer.
Remark 2.4. Note that it is not necessary to explicitly impose the condition t ⩾ 0 in (8), as the
optimal value remains unchanged and is always positive. However, we shall see below that including
this constraint ensures compactness of the feasible region — a property whose significance will
be addressed subsequently. One can observe that if the functions φj for j = 1, . . . , k, are convex
(which in turn implies that M is convex), then the problem (8) becomes a DC (Difference of Convex
functions) program since the objective and the constraints are differences of two convex functions.
The reader is referred to (An et al., 2014) for a comprehensive overview of DC programming
and algorithms to solve problems with DC objectives and constraints upto criticality; see, e.g.,
(Mordukhovich, 2018, Chapter 7) for theoretical insights. Although our results do not require the
functions to be convex, when they are, DC programming algorithms may be used to achieve faster
convergence to criticality in numerical implementations.

3 Main results

We now outline some technical notations and definitions in the context of the problem (8) to set the
stage for our analysis. The Lagrangian L : RN×n × (R× RN )× [0,+∞[n+k+1→ R of (8) is

L(x, (t, y), λ) := −(λn+k+1 + 1)t+

n∑
i=1

λi

(
t− ∥y − xi∥2

)
+

n+k∑
i=n+1

λiφi−n(y), (9)

where x denotes (x1, . . . , xn).

The feasible region is denoted by the set-valued map Sfeas : RN×n ⇒ R × RN ,

Sfeas(x̄) :=

(t, y) ∈ R× RN

∣∣∣∣∣∣
t− ∥y − x̄i∥2 ⩽ 0 for all i = 1, . . . , n,

φi−n(y) ⩽ 0 for all i = n+ 1, . . . , n+ k,

t ⩾ 0

 , (10)

and the set of global optimizers is the set-valued map Sopt : RN×n ⇒ R × RN ,

Sopt(x̄) :=
{
(t, y) ∈ Sfeas(x̄)

∣∣ t = −G(x̄)
}
. (11)

For a choice x̄ of x, let (t̄, ȳ) ∈ Sopt(x̄). We define the set of active constraint indices at (x̄, (t̄, ȳ)) as

I(x̄, (t̄, ȳ)) :=
{
i ∈ {1, . . . , n}

∣∣ t̄− ∥ȳ − x̄i∥2 = 0
}
∪
{
i ∈ {n+ 1, . . . , n+ k}

∣∣ φi−n(ȳ) = 0
}
.

(12)
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The constraint t ⩾ 0 is not included since t remains strictly positive at optimality. The set of
Karush-Kuhn-Tucker (KKT) vectors of (8) for a pair (x̄, (t̄, ȳ)) ∈ RN×n × (R × RN ) is denoted by

Λ(x̄, (t̄, ȳ)) :=

λ ∈ [0,+∞[n+k+1

∣∣∣∣∣∣∣∣∣
∇(t,y)L(x̄, (t̄, ȳ), λ) = 0,

λi

(
t̄− ∥ȳ − x̄i∥2

)
= 0 for i = 1, . . . , n

λiφn−i(ȳ) = 0 for i = n+ 1, . . . , n+ k, and
λn+k+1t̄ = 0

 (13)

Definition 3.1 (MFCQ for (8)). For x ∈ RN×n, the Mangasarian-Fromovitz constraint qualification
condition is said to hold at (t̄, ȳ) ∈ Sopt(x̄) if there exists a direction w ∈ RN+1 such that the inner
product of w with the gradient of each active constraint is strictly negative. To wit, the following
conditions must hold:
(3.1-i)

(
1 −2(ȳ − x̄i)

⊤)w < 0 for all i ∈ {1, . . . , n} ∩ I(x̄, (t̄, ȳ)), and

(3.1-ii) ∇yφi(ȳ)
⊤w < 0 for all i ∈ {n+ 1, . . . , n+ k} ∩ I(x̄, (t̄, ȳ)).

We now present our first main result establishing Lipschitz continuity of G.
Theorem 3.2. Consider the problem (8) and grant the notations established above. Fix x̄ ∈ RN×n

and suppose that the MFCQ condition (defined in Definition 3.1) holds for every (t̄, ȳ) ∈ Sopt(x̄).
Then the function G is locally Lipschitz continuous at x̄. Consequently, its restriction G|B(M)n to
B(M)n (c.f. Proposition 2.1) is Lipschitz. Moreover, for any v ∈ RN×n, we have

inf
(t̄,ȳ)∈Sopt(x̄)

min
λ∈Λ(x̄,(t̄,ȳ))

∂L
∂x

(x̄, (t̄, ȳ), λ) · v ⩽ − lim inf
h↓0

1

h
(G(x̄+ hv)− G(x̄))

⩽ − lim sup
h↓0

1

h
(G(x̄+ hv)− G(x̄)) ⩽ inf

(t̄,ȳ)∈Sopt(x̄)
max

λ∈Λ(x̄,(t̄,ȳ))

∂L
∂x

(x̄, (t̄, ȳ), λ) · v. (14)

Proof. We observe that both the objective and constraint functions are continuously differentiable.
At each x ∈ RN×n, the feasible region Sfeas(x̄) is non-empty by definition. Letting N(x̄) denote
a neighborhood of x̄, we note that the mapping Sfeas is uniformly compact near x̄ since the set⋃

x∈N(x̄) Sfeas(x) always satisfies the containment relation⋃
x∈N(x̄)

Sfeas(x) ⊂
[
0, max

x∈N(x̄)
max
y∈M

max
i=1,...,n

∥y − xi∥2
]
×M.

Furthermore, a set independent of the base point x̄ containing
⋃

x∈N(x̄) Sfeas(x) can be realized if
each component of x̄ is restricted to the interior of the ball described in Proposition 2.1, in which case
we obtain the uniform containment

⋃
x∈N(x̄) Sfeas(x) ⊂

[
0, 9ϵ(M, 1)2

]
×M; the set on the right-

hand side is, of course, bounded. Therefore, (Fiacco and Ishizuka, 1990, Theorem 4.2) — reproduced
for completeness in §C as Theorem C.1 — applies directly to our problem since the MFCQ conditions
hold for every (t̄, ȳ) ∈ Sopt(x̄) by hypothesis. Consequently, G is locally Lipschitz continuous at x̄,
and its lower and upper Dini derivatives satisfy the bounds described in (14). Invoking (Cobzaş et al.,
2019, Theorem 2.1.6) gives us Lipschitz continuity of G|B(M)n , and our proof is complete.

From this point forward, we shall operate under the blanket assumption that MFCQ holds at every
(t̄, ȳ) ∈ Sopt(x̄) for all x̄ ∈ RN×n — a property that can, in principle, be verified once the functions
φ1, . . . , φk, are specified.
Remark 3.3. We highlight that reformulating (1) into (8) using the variable t and representing M
through continuously differentiable functions φ1, . . . , φk, was crucial for establishing Theorem 3.2.
The existing literature does not appear to have employed regularity properties of marginal functions
for the design of optimal covering algorithms, which is a point of departure of our contribution.
Remark 3.4. Observe that, in principle, every closed subset of RN admits a representation as the
zero-level set of a smooth function (Calderón and Zygmund, 1961) that is realized as a smooth
regularization of the distance-to-the-set function. However, such a function may be difficult to encode
in a finitary way for computational purposes. In this light, while our assumption that the set M is
realized as the intersection of zero-sublevel sets of finitely many continuously differentiable functions
may appear to be restrictive, it is a reasonably weak assumption, and this family of sets includes
sublevel sets of polynomials in particular.
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We now turn to the minimization of G. In view of Proposition 2.1, it suffices to restrict the search
space to B(M)n since all global minimizers of G are guaranteed to lie within this set. Moreover, by
Theorem 3.2, we see that G|B(M)n is L-Lipschitz. Now we leverage recent advances in nonconvex
and nonsmooth optimization using randomized smoothing by (Lin et al., 2022; Liu et al., 2024) to
design our numerical algorithm. Specifically, we adopt an optimality framework based on generalized
Goldstein stationary points (Goldstein, 1977) and develop an algorithm that provably converges to
such a point based solely on oracle evaluations of G. Furthermore, we establish a polynomial bound
on the number of such oracle calls required for convergence. We proceed by laying out a set of
definitions. For a detailed exposition, we refer the reader to (Lin et al., 2022).
Definition 3.5. Given a point x ∈ RN×n and a direction v ∈ RN×n, the generalized directional
derivative of G is defined as DG(x; v) := lim supy→x, t↓0

G(y+tv)−G(y)
t . Then, the generalized

gradient (Clarke, 1990) of G is defined as the set

∂G(x) :=
{
g ∈ RN×n

∣∣ ⟨g, v⟩ ⩽ DG(x; v), for all v ∈ Rd
}
. (15)

Let B(x, δ) := {y ∈ RN×n | ∥y − x∥ ⩽ δ}. Given a δ ⩾ 0, the Goldstein δ-subdifferential

(Goldstein, 1977) of G at x is defined as ∂δG(x) := conv
(⋃

y∈B(x,δ) ∂G(y)
)
. Given a δ ⩾ 0 and

γ, ε > 0, a point x ∈ RN×n is called a (γ, δ, ε)-generalized Goldstein stationary point (Liu et al.,

2024) of G|B(M)n if min
{

1
γ

∥∥∥x− ProjB(M)n(x− γg)
∥∥∥ ∣∣∣ g ∈ ∂δG(x)

}
⩽ ε, where ProjB(M)n(y)

denotes the orthogonal projection of y onto B(M)n.

We now present our algorithm — an adaptation of techniques from (Lin et al., 2022; Liu et al., 2024)
with minor modifications suited to the minimization of G restricted to B(M)n.

Algorithm 1 gradOptNet: a numerical gradient-based optimal covering algorithm

1: Input: Initial point x0 ∈ B(M)n, stepsize γ > 0, smoothing parameter δ, iteration number
T ⩾ 1, and parameters b1, b2, and q.

2: for t = 0, 1, . . . , T − 1 do
3: if mod(t, q) = 0 then
4: Sample w1,t, . . . , wb1,t uniformly from the unit sphere in RN×n.
5: Let gi,t = Nn

2δ (G(xt + δwi,t)− G(xt − δwi,t))wi,t for each i ∈ {1, . . . , b1}.
6: Set vt = 1

b1

∑b1
i=1 gi,t.

7: else
8: Sample w1,t, . . . , wb2,t uniformly from the unit sphere in RN×n.
9: Let gi,t = Nn

2δ (G(xt + δwi,t)− G(xt − δwi,t))wi,t for each i ∈ {1, . . . , b2}.
10: Let gi,t−1 = Nn

2δ (G(xt−1 + δwi,t)− G(xt−1 − δwi,t))wi,t for each i ∈ {1, . . . , b2}.
11: Set vt = 1

b2

∑b2
i=1(gi,t − gi,t−1) + vt−1.

12: end if
13: Update xt+1 = ProjB(M)n (xt − γvt).
14: end for
15: return xR, where R ∈ {0, 1, . . . , T − 1} is uniformly sampled

Theorem 3.6. Consider the problem (8) and grant the notations established above. Let L denote
the Lipschitz constant of G|B(M)n . With b1 = O

(
NnL2

ε2

)
, b2 = q = O

(√
Nn L
ε

)
, and γ =

δ
2NnL , the Algorithm 1 requires atmost O

(
N

3
2n2ϵ(M, 1)L3δ−1ε−3

)
calls of G to obtain a (γ, δ, ε)-

generalized Goldstein stationary point of G in expectation.

Proof. In view of Theorem 3.2, we have Lipschitz continuity of G|B(M)n . We observe that Algorithm
1 corresponds to a variant of (Liu et al., 2024, Algorithm 3), adapted to the setting in which the
objective function is deterministic. Noting that the diameter of B(M)n is 4

√
n ϵ(M, 1), we invoke

(Liu et al., 2024, Corollary 5.4) to obtain the complexity bound in the assertion.

Remark 3.7. Theorem 3.2 provided the substrate to enable numerical gradient-based algorithms to
solve (1). Since the outer minimization problem in (1) is non-convex, numerical gradient-based
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algorithms can only guarantee convergence to stationary points as in 3.6. We attempt to obtain global
solutions to (1) in two steps. First, Algorithm 1 involves the calculation of difference quotients and
their randomized smoothing; the smoothing is necessary for obtaining ‘averaged’ descent directions
to solve non-convex optimization problems up to stationarity, and this is performed along with a
variance reduction scheme as proposed in (Liu et al., 2024). Second, global convergence to minimizers
(as opposed to stationary points) is facilitated by the employment of several randomized ‘restarts’
(parallel initializations) in the indicated local scheme.

4 Numerical experiments

This section details the numerical experiments carried out using Algorithm 1. Heuristic observations
in (Liu et al., 2024, Section 6) align with our observations: faster convergence is observed when
the variance reduction step is omitted (i.e., q = 1, rendering b2 immaterial). We also observe better
performance when b1 is increased in response to larger values of n or N . Accordingly, we set q = 1
for all our experiments. For the ease of visualization, we present examples with N = 2 and n < 10
in §4; an illustration with N = 3 is presented in Example D.2 in §D. At each point, G is evaluated
using the NLP solver BARON (Sahinidis, 1996), known for its global optimization capabilities. To the
best of our knowledge, no existing benchmarks or ground truth results are available in the literature,
and therefore, our comparisons of computation time and accuracy are with techniques like simulated
annealing that do not leverage the Lipschitz continuity of G for outer minimization.
Example 4.1. Consider the case where N = 2, k = 1, and the set M is the solid ellipse

M :=
{
y := (y1, y2) ∈ R2

∣∣∣ φ1(y) :=
y21
9

+
y22
4

− 1 ⩽ 0
}
. (16)

The application of Algorithm 1 with multiple parallel initializations (to enhance global convergence
efficiency), led to the results presented in Fig. 1 for number of balls n = 2, 3, 4, 5, 7, and 8.

(a) ϵ(M, 2) = 2.169071 (b) ϵ(M, 3) = 2.016456 (c) ϵ(M, 4) = 1.667632

(d) ϵ(M, 5) = 1.494066 (e) ϵ(M, 7) = 1.220183 (f) ϵ(M, 8) = 1.140047

Figure 1: Covering of the ellipse (16) for varying values of n.

The results exhibit a visually interpretable structure primarily due to the inherent symmetry of the set
M. This naturally motivates the expectation of symmetric structures in the optimal coverings—a
property that is indeed observed in the solutions reported in Fig. 1. The evolution of the objective
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value for the case n = 4 against the iterations of Algorithm 1, with γ = 0.05, δ = 0.01, b1 = 24, and
q = 1 is shown in Fig. 4 featuring 4 restarts. For each n, Algorithm 1 executed with 10 restarts yielded
final radius values with relative standard deviation < 1%, indicating excellent robustness. Table
1 tabulates and compares the computation time and solution quality for Algorithm 1 vs Simulated
Annealing (Metropolis Hastings sampling and geometric cooling rate) for the example with n = 4..

Method ϵ(M,4) ↓ Number of evaluations of G ↓
Trial 1 Trial 2 Trial 3

gradOptNet (Ours) 1.682 1.706 1.698 4800
Simulated Annealing 2.227 2.574 2.301 10000

Table 1: Comparison of computation time and solution quality across methods.

Remark 4.2. We emphasize that the ability of the inner solver used to evaluate G to attain global
optimality is crucial for the effectiveness of Algorithm 1. If a solver lacking global optimality
guarantees (such as IPOPT) is employed, it may fail to produce a valid covering of M. This
phenomenon is treated in Example D.1.
Example 4.3. Let us consider an example where M is asymmetric and nonconvex, and to this end,
consider the case where N = 2, k = 4, and the set M is the region

M :=
{
(y1, y2) ∈ R2 | φj(y) ⩽ 0 for j = 1, 2, 3, 4

}
where, with y := (y1, y2),

φ1(y) := 2y21 − y2, φ2(y) := y2 − 2 (y1 − 1)
2
,

φ3(y) := y2 − 5(y1 + 0.1)2, and φ4(y) := −0.1− y1.

(17)

Once again, Algorithm 1 was employed with multiple parallel initializations, and the results presented
in Fig. 2 were obtained for n = 1, 2, 3, 4, 5, 6.

(a) ϵ(M, 1) = 0.490713 (b) ϵ(M, 2) = 0.288713 (c) ϵ(M, 3) = 0.207196

(d) ϵ(M, 4) = 0.168091 (e) ϵ(M, 5) = 0.152269 (f) ϵ(M, 6) = 0.143661

Figure 2: Covering of the region (17) for n = 1, 2, 3, 4, 5, and 6.

Similarly, for each n, Algorithm 1 executed with 10 restarts converged to final radius values with
relative standard deviation < 1%. Additional experimental details are provided in §D.
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5 Concluding remarks

In this work we established a computationally viable approach to the optimal covering problem. We
started with the definition of the problem (1) and applied a sequence of reformulations under mild
structural assumptions to derive a version (7) more amenable to analysis. A central contribution
of our work is a novel result establishing Lipschitz continuity of the optimal value function G
arising from the nonconvex inner problem, which forms the foundation for applying a numerical
gradient-based (zeroth-order) algorithm for the outer minimization. This algorithm leverages recent
advances in nonsmooth and nonconvex optimization and, via randomized smoothing, offers non-
asymptotic convergence guarantees for obtaining approximate stationary points. We demonstrated
the effectiveness of our method through experiments on compact subsets of R2 and R3. Future
directions include accelerating the computation of G for convex sets via DC programming techniques
and developing strategies to improve global convergence guarantees for the outer minimization. We
also observe that G (x1, . . . , xn) is a permutation invariant function. This property can be used to
restrict the search space further, which may help accelerate convergence.
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paper’s contributions and scope?
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• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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• The answer NA means that the paper does not include theoretical results.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The user requires a BARON license to run the BARON solver.

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Guidelines:
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Although the global optimum is unknown, we indeed report the consistent
convergence of multiple restarts to radius values with relative standard deviation < 1% in
Examples 4.1 and 4.3 of §4 which indicates our method’s robustness.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This article presents work aimed at presenting a novel approach to tackle
the optimal covering problem. The applications of this work could have social impacts in
various domains. However, we do not wish to highlight any such potential societal impacts
in the article.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We have curated the experiments on our own and have not used any dataset
scraped from the Internet.

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Guidelines:
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Foundational Definitions and Results

Here we outline a few important definitions from sensitivity analysis and nonsmooth optimization.

Definition A.1. A set-valued mapping S : A ⇒ B is a mapping S : A → 2B , where for each x ∈ A,
S(x) is a subset of B. They have been extensively used to study the feasible regions and solution
maps of optimization problems

Definition A.2. The set valued map S : A ⇒ B is said to be uniformly compact near x̄ if the set⋃
x∈N(x̄) S(x) is bounded for some neighborhood N(x̄) of x̄.

Definition A.3. A mapping f : Rν → R is said to be locally Lipschitz if at each point x ∈ Rν , there
exists a neighborhood O and L ⩾ 0 such that |f(x1)− f(x2)| ⩽ L∥x1 − x2∥ for all x1, x2 ∈ O.

Definition A.4. A mapping f : U ⊂ Rν → R is L-Lipschitz if there exists L ⩾ 0 such that for every
x1, x2 ∈ U , we have |f(x1)− f(x2)| ⩽ L∥x1 − x2∥. The number L is called the Lipschitz constant
of f .

Corollary A.5 ((Cobzaş et al., 2019)). Let f : Rν → R be a locally Lipschitz function and U ⊂ Rγ

be compact. Then the restriction of f to U denoted by f |U is L-Lipschitz.

We define Dini-derivatives to generalize the notion of directional differentiability for non-smooth
functions.

Definition A.6. Let f : Rν → R and x ∈ Rν . The upper and lower Dini-derivatives of f along the
direction v ∈ Rν are defined as

D+f(x;h) := lim sup
h↓0

1

h
(f(x+ hv)− f(x)) and

D−f(x;h) := lim inf
h↓0

1

h
(f(x+ hv)− f(x))

(18)

respectively.

Definition A.7. Given a point x ∈ Rν and a direction v ∈ Rν , the generalized directional derivative
of a nondifferentiable function f is defined as Df(x; v) := lim supy→x, t↓0

f(y+tv)−f(y)
t . Then, the

generalized gradient (Clarke, 1990) of f is defined as the set

∂f(x) :=
{
g ∈ Rν | g⊤v ⩽ DG(x; v), for all v ∈ Rd

}
. (19)

Definition A.8. Let B(x, δ) := {y ∈ Rν | ∥y − x∥ ⩽ δ}. Given a δ ⩾ 0, the Goldstein δ-
subdifferential (Goldstein, 1977) of f at x is defined as

∂δf(x) := conv

 ⋃
y∈B(x,δ)

∂f(y)

 . (20)

B Proofs of Propositions 2.1 and 2.2

Proposition 2.1. We know that for every i ∈ {1, . . . , n} there exists y ∈ M such that ∥y − x∗
i ∥ ⩽

ϵ(M, n). Consequently, ∥z∗ − x∗
i ∥ ⩽ ∥z∗ − y∥+ ∥y − x∗

i ∥, which leads to

∥z∗ − x∗
i ∥ ⩽ ϵ(M, n) + ϵ(M, 1),

and since ϵ(M, n′) ⩽ ϵ(M, n) for every n′ > n,

∥z∗ − x∗
i ∥ ⩽ 2ϵ(M, 1),

and the assertion follows.
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Proposition 2.2. Strict feasibility of both problems is always ensured since any point in M with
t = 0 readily satisfies all the constraints. It follows immediately that (t†, y†) is a feasible point of (6),
which implies t† ⩽ t∗. Moreover, since

t∗ = max {t ∈ R | t ⩽ ∥y∗ − xi∥ for all i = 1, . . . , n} ,

it follows that t∗ ⩽ t†. Consequently, t† = t∗.

C Lipschitz continuity of optimal value functions of parametrized nonlinear
programs

Consider a parametrized nonlinear program of the form

min
z

g0(x, z)

subject to gi(x, z) ⩽ 0 for i = 1, . . . , p,
(21)

where the functions g0, g1, . . . , gp are continuously differentiable from Rγ×Rκ to R. The Lagrangian
for (21) is given by

L(x, z, λ) := g0(x, z) +

p∑
i=1

λigi(x, z). (22)

The feasible region is denoted by the set-valued map Sfeas : Rγ ⇒ Rκ,

Sfeas(x̄) := {z ∈ Rκ | gi(x̄, z) ⩽ 0 for i = 1, . . . , p} . (23)

The optimal value function Φ : Rγ → R ∪ {+∞} is the optimal value of the NLP for a given
parameter x̄ ∈ Rγ . That is,

Φ(x̄) := min
z∈Sfeas(x̄)

g0(x̄, z). (24)

By convention, Φ(x̄) = +∞ if the problem is infeasible. The set of global optimizers is the set-valued
map Sopt : Rκ ⇒ Rγ ,

Sopt(x̄) :=
{
z ∈ Sfeas(x̄)

∣∣ g0(x̄, z) = Φ(x̄)
}
. (25)

For a choice x̄ of x, let z̄ ∈ Sopt(x̄). We define the set of active constraint indices at (x̄, z̄) as

I(x̄, z̄) :=
{
i ∈ {1, . . . , p}

∣∣ gi(x̄, z̄) = 0
}
. (26)

The set of Karush-Kuhn-Tucker (KKT) vectors of (8) for a pair (x̄, z̄) ∈ Rγ × Rκ is denoted by

Λ(x̄, z̄) := {λ ∈ [0,+∞[p | ∇zL(x̄, z̄, λ) = 0, λigi(x̄, z̄) = 0 for i = 1, . . . , p} (27)

The Mangasarian-Fromovitz constraint qualification (MFCQ) is said to hold at a point z̄ ∈ Sopt(x̄)
if there exists a direction w ∈ Rκ such that the inner product of w with the gradient of each active
constraint is strictly negative. To wit, the following condition must hold:

∇zgi(x̄, z̄)
⊤w < 0 for all i ∈ I(x̄, z̄) (28)

We now state the result (Fiacco and Ishizuka, 1990, Theorem 4.2) that establishes the conditions
under which the optimal value function is Lipschitz continuous.
Theorem C.1. Consider the problem (21) and grant the notations established above. Fix x̄ ∈ Rγ

and suppose that
(C.1-a) the MFCQ condition holds for every z̄ ∈ Sopt(x̄), and

(C.1-b) the map Sfeas is uniformly compact near x̄.
Then the function Φ is locally Lipschitz continuous at x̄. Moreover, for any v ∈ Rγ , we have

inf
z̄∈Sopt(x̄)

min
λ∈Λ(x̄,z̄)

∂L
∂x

(x̄, z̄, λ) · v ⩽ − lim inf
h↓0

1

h
(Φ(x̄+ hv)− Φ(x̄))

⩽ − lim sup
h↓0

1

h
(Φ(x̄+ hv)− Φ(x̄)) ⩽ inf

z̄∈Sopt(x̄)
max

λ∈Λ(x̄,z̄)

∂L
∂x

(x̄, z̄, λ) · v.
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D Experimental details

In this section, we provide further details of the experimental procedure along with a 3D illustration
of covering in Example D.2. As emphasized in §1, the main computational bottleneck arises from
having to reliably solve the inner problem (8) for the evaluation of G globally. This is the reason a
solver with global optimality guarantees is employed. To illustrate the phenomenon mentioned in 4.2,
we provide the following example.

Example D.1. For the solid ellipse (16) in Example 4.1. Here we employed Algorithm 1 maintaining
all parameters from Example 4.1, except that G was evaluated using IPOPT instead of BARON in
Algorithm 1. Fig. 3 illustrates the failure of Algorithm 1 in producing an adequate cover of M with
n = 1, 2, and 3, when IPOPT was employed.

Figure 3: Covering fails if IPOPT is employed in place of BARON for n = 1, 2, 3.

For our experiments, we used the demo mode of BARON, which imposes limits on the problem
dimensions and number of constraints. To facilitate faster convergence and support for larger-scale
problems, a more advanced license may be used. For more details, visit https://minlp.com/
baron-licenses. Table 2 reports the time taken to compute G in Example 4.1 for varying n using
BARON in demo mode on an AMD Ryzen 7 4800H 2.90 GHz CPU. Note that the total number of

Table 2: Computation time for G for varying n

n Computation time (ms)

2 129

3 135

4 143

5 146

6 154

7 160

8 164

9 173

evaluations of G per iteration of Algorithm 1 depends on b1 and b2.

Fig 4 shows the temporal evolution of the objective in Example 4.1 and features 4 restarts (initializa-
tions). An example with a nonconvex, asymmetric set in R3 is provided in Example D.2. Note that
only the isometric view is provided for each case.
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Figure 4: The evolution of G against iteration count for the problem in Example 4.1 for n = 4.

Example D.2. As an illustration of the 3D case, we present an example where M is an asymmetric
and nonconvex subset of R3. Consider the case where k = 3, and the set M is the region

M :=
{
(y1, y2, y3) ∈ R3

∣∣ φj(y) ⩽ 0 for j = 1, 2, 3
}

where, with y := (y1, y2, y3),

φ1(y) := y3 − (1− y21 − 0.3y22), φ2(y) := −(y3 + 1), and φ3(y) := y2 − (0.5(y1 − 1)2 + 0.2y23).
(29)

Algorithm 1 was employed with multiple restarts, and pictures of the outcomes are presented in Fig.
5 for the cases n = 1, 2, 3, and 4.

(a) ϵ(M, 1) = 2.344070 (b) ϵ(M, 2) = 1.692330

(c) ϵ(M, 3) = 1.446102 (d) ϵ(M, 4) = 1.371257

Figure 5: Covering of the region (29) for n = 1, 2, 3, and 4.
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