
A Computationally Viable Numerical Gradient-based Technique for Optimal Covering Problems

Gokul Rajaraman

Department of Mechanical Engineering
IIT Bombay
Mumbai 400076, India
22b4517@iitb.ac.in

Debasish Chatterjee

Centre for Systems and Control
IIT Bombay
Mumbai 400076, India
dchatter@iitb.ac.in

Abstract

The problem of optimally covering a given compact subset of \mathbb{R}^N with a preassigned number n of Euclidean metric balls has a long-standing history and it is well-recognized to be computationally hard. This article establishes a numerically viable algorithm for obtaining optimal covers of compact sets via two key contributions. The first is a foundational result establishing Lipschitz continuity of the marginal function of a certain parametric non-convex maximization problem in the optimal covering problem, and it provides the substrate for numerical gradient algorithms to be employed in this context. The second is an adaptation of a stochastically smoothed numerical gradient-based (zeroth-order) algorithm for a non-convex minimization problem, that, equipped with randomized restarts, spurs global convergence to an optimal cover. Several numerical experiments with complicated nonconvex compact sets demonstrate the excellent performance of our techniques.

1 Introduction

Optimal covering of sets is an important problem that arises naturally in several fields of science and technology, including learning and approximation theory, computer science, signal processing, information theory, combinatorics, communication, sensor networks, multi-agent systems, cyberphysical systems, etc. In a sensor network, for instance, given a collection of sensors having preassigned sensing radius and a set that must be enveloped by the sensors, an important engineering question is to find an optimal collection of points for placing the sensors to ensure complete coverage of the given set. An identical problem arises for the coverage of a given geographical region with cell-phone towers in order to maximize network availability in the region. In information theory, assuming that one can accurately decode messages from a certain set within a preassigned maximal error tolerance for each, it is important to determine the number of ‘signals’ that are necessary for accurate decoding of all the messages; this is once again a problem of optimal covering of the set of messages with a collection of ‘signals’.

The covering problem appears in various forms, and perhaps its most common variant is captured by the following situation. For a given non-empty (and possibly uncountable) compact set $\mathcal{M} \subset \mathbb{R}^N$ and a preassigned $\varepsilon > 0$, one finds a finite set $\mathcal{F} \subset \mathbb{R}^N$ that is at most ε -distant from any point in \mathcal{M} . Such a minimal set is an ε -net and its cardinality is the so-called ε -covering number of the set \mathcal{M} ; see, e.g., (Kolmogorov and Tihomirov, 1961) for an early detailed exposé of related topics and (Alimov and Tsar’kov, 2021, Chapters 15 and 16) for a more recent treatment. A closely related and equally relevant variant of covering is its resource-constrained or budgeted version: Given a number n of metric balls, one must find the minimal radius and a placement of the n centers of the balls such that their union covers \mathcal{M} . Such a collection of the centers is commonly known as a *Chebyshev net*.

of cardinality n (Alimov and Tsar'kov, 2021, Definition 15.3).¹ We address this particular problem in our current work.

Formally, given a non-empty and compact $\mathcal{M} \subset \mathbb{R}^N$, we seek to solve the optimization problem

$$\epsilon(\mathcal{M}, n) := \min_{(x_1, \dots, x_n) \in \mathbb{R}^{N \times n}} \max_{y \in \mathcal{M}} \min_{i=1, \dots, n} \|y - x_i\|. \quad (1)$$

For an n -tuple of centers $(x_1, \dots, x_n) \in \mathbb{R}^{N \times n}$ and $y \in \mathcal{M}$, $\min_{i=1, \dots, n} \|y - x_i\|$ determines the distance of y from $\bigcup_{i=1}^n \{x_i\}$. Consequently, the number $\max_{y \in \mathcal{M}} \min_{i=1, \dots, n} \|y - x_i\|$ is the maximum distance of points in \mathcal{M} from the collection $\bigcup_{i=1}^n \{x_i\}$, and the outer minimization in (1) optimizes this maximum distance over the centers (x_1, \dots, x_n) . The quantity $\epsilon(\mathcal{M}, n)$ is known as the *covering radius* of the set \mathcal{M} with n metric balls as defined in (Alimov and Tsar'kov, 2021, p. 300); solving (1) yields an optimal n -point representation — a *Chebyshev n -net* — of \mathcal{M} , and $\epsilon(\mathcal{M}, n)$ is the error guarantee in such a representation.

Chebyshev n -nets are especially useful for estimating errors in function learning in the presence of certain regularity properties. For instance, consider a target function $f : \mathcal{M} \rightarrow \mathbb{R}$ that is known to be Lipschitz continuous with modulus L_0 but is otherwise unknown, and suppose that a Chebyshev n -net \mathcal{F} of \mathcal{M} and the set of values $\{f(x) \mid x \in \mathcal{F}\}$ of f on \mathcal{F} are available. Then a tight estimate of the value of f at a generic $y \in \mathcal{M}$ may be obtained, within an absolute error margin of $L_0 \epsilon(\mathcal{M}, n)$, by finding $y_* \in \arg \min_{z \in \mathcal{F}} \|z - y\|$ and then calculating $f(y_*)$. By an identical reasoning, for Hölder continuous f of modulus $C > 0$ and rate $\alpha \in [0, 1]$, the corresponding error bound is $C \epsilon(\mathcal{M}, n)^\alpha$. Similar arguments in optimization problems involving uniformly continuous objective functions permit the derivation of quantitative estimates of true optima from estimates over finitely many points.

In several applications of covering, the centers of the metric balls may be restricted to lie within \mathcal{M} , in which case, the problem (1) should be modified to

$$\epsilon'(\mathcal{M}, n) := \min_{(x_1, \dots, x_n) \in \mathcal{M}^n} \max_{y \in \mathcal{M}} \min_{i=1, \dots, n} \|y - x_i\|. \quad (2)$$

This constrained version is relevant in settings where the representative points must strictly belong to the set under consideration. The triangle inequality immediately yields the sandwich relation $\frac{\epsilon'(\mathcal{M}, n)}{2} \leq \epsilon(\mathcal{M}, n) \leq \epsilon'(\mathcal{M}, n)$. Our efforts are focused on the numerical viability of (1) for compact \mathcal{M} ; similar methods can be adapted with minor modifications to address (2) if \mathcal{M} is convex.

Contributions

The problem (1) is challenging (NP-hard) even in the case $n = 1$. Indeed, this situation is the so-called Chebyshev center problem (Alimov and Tsar'kov, 2021, p. 296) and is of central importance in optimal function learning (Binev et al., 2024), signal processing (Micchelli and Rivlin, 1977; Eldar et al., 2008; Wu et al., 2013), approximation theory (Alimov and Tsar'kov, 2019; Foucart and Liao, 2024), and a host of other disciplines. Despite its complexity, it turns out that the Chebyshev center problem admits a numerically viable solution technique (with excellent approximation properties) by leveraging certain convexity attributes present therein, and has been recently studied in (Paruchuri and Chatterjee, 2023). The case of $n > 1$ considered in the current article is significantly more difficult: of course, it is challenging (NP-hard), and in addition, it does not appear to be amenable to any simplification via convexity.² Moreover, while the Chebyshev center of \mathcal{M} is unique for the Euclidean norm, the Chebyshev n -net problem may not yield unique solutions.³

Since (1) is well-known to be computationally challenging, we focus attention on the development of viable algorithm based on **numerical gradients** (i.e., a **zeroth-order** algorithm) with good approximation properties to solve (1):

- To this end, we demonstrate that the inner max-min problem in (1) admits a reformulation that yields good regularity properties parametrically in (x_1, \dots, x_n) corresponding to the outer minimization

¹In sensor and communication networks, for instance, the radius of sensing/communication of each sensor is dependent on the power at hand, which lends a measure of flexibility in altering the indicated radius.

²For instance, the Chebyshev center of \mathcal{M} is identical to the Chebyshev center of the convex hull of \mathcal{M} , but that is false in general for Chebyshev n -nets for $n > 1$.

³In a few cases of \mathcal{M} , closed-form expressions for Chebyshev n -nets are known; see, e.g., (Ushakov and Lebedev, 2015).

under mild hypotheses; this is our first main result Theorem 3.2. The indicated regularity property enables and justifies the deployment of a numerical gradient-based (zeroth-order) algorithm in the variables (x_1, \dots, x_n) to arrive at a solution to (1) itself. To our knowledge, ours is the only instance of a gradient-based approach to finding Chebyshev n -nets for compact subsets of \mathbb{R}^N that do not necessarily possess special structure.

- In order to obtain the indicated regularity properties, the key technical tools employed here are derived from the field of sensitivity of optimization problems (Fiacco, 1983; Fiacco and Ishizuka, 1990) or variational analysis (Dontchev and Rockafellar, 2014). We establish the crucial **Lipschitz continuity** of the (parametric) inner max-min problem in (1) with respect to (x_1, \dots, x_n) around optimal points of the outer minimization; this lays down the foundation for the deployment of a range of numerical gradient-based algorithms for the outer minimization.
- Numerical gradient-based algorithms for nonlinear programs are not expected to converge to global optimizers in general. Here we lift off-the-shelf a recent zeroth-order algorithm that **stochastically smoothes** the numerical gradients and **explores** the decision landscape in search for global optima; the precise complexity bound appears in our second main result Theorem 3.6. More refined algorithms involving, e.g., momenta for convergence to global optimizers are topics of subsequent investigations. This is the first instance, to the best of our knowledge, that powerful tools from sensitivity theory have been employed in conjunction with numerical gradient-based algorithms to address the Chebyshev n -net problem.
- The efficacy of our algorithm depends on the availability of accurate solutions to the inner max-min problem (after an appropriate reformulation) for each fixed (x_1, \dots, x_n) . The indicated parametric max-min problem happens to be non-convex despite our reformulation, and the speed of execution of our algorithm depends on how quickly these globally optimal solutions are made available. Our numerical experiments indicate that despite the lack of convexity, our algorithm (including resets) gives **excellent performance** even for relatively complicated **nonconvex sets** \mathcal{M} — see §4 for details. Scalability of our algorithm with increasing dimensions N and number n of centers remains a challenging issue: while the numerical gradient-based algorithm for the outer minimization scales in these variables as $\mathcal{O}(N^{\frac{3}{2}}n^2)$, the inner max-min is non-convex and remains the chief computational bottleneck in our algorithm.

Since the Chebyshev n -net problem is understood to be hard, several randomized algorithms to *approximately* solve (1) have been developed; see, e.g., (Har-Peled, 2011, §5.3) for an account. While many of these randomized techniques involve independent and identically distributed sampling,⁴ more complicated history-dependent stochastic iterative algorithms have been advanced in the literature for special cases — see, e.g., (Ushakov and Lebedev, 2015) (and the references therein) for the case of $N = 3$. Other techniques to solve the optimal n -net and related problems relevant to theoretical computer science and computational geometry may be found in (Malysheva, 2020; Yu, 2021; Voronov et al., 2023). It is, of course, possible to employ zeroth-order methods (such as simulated annealing (Robert and Casella, 2004)) that do not rely on any regularity of the inner max-min in (1). However, the Lipschitz regularity of the parametric max-min (Theorem 3.2) paves the way for fine-tuned algorithms that exploit this regularity compared to typically slow annealing techniques; as such, Theorem 3.2 constitutes the key point of departure of our contributions from the current literature.

Organization

This article unfolds as follows. Several preparatory results are contained in §2; they are employed in the two main results centered around our key Algorithm 1 in §3. Numerical experiments are presented in §4 and the technical data corresponding to both our theoretical results and numerical experiments are collected in §A–§D.

2 Preliminaries

It is intuitive to expect that an optimizer (x_1^*, \dots, x_n^*) of (1) should be restricted to a bounded set that contains \mathcal{M} . Recall that $\epsilon(\mathcal{M}, 1)$ is the *Chebyshev radius* of \mathcal{M} , and an optimizer z^* of (1)

⁴Methods relying on independent and identical sampling typically suffer from sharply worsening performance as the dimension rises due to concentration of measure effects; see (Das et al., 2022) for details.

for $n = 1$ is the *Chebyshev center* of \mathcal{M} .⁵ In other words, the Chebyshev center of \mathcal{M} provides the best single-point representation of the set \mathcal{M} , minimizing the worst-case distance to all points in \mathcal{M} . There is a neat relationship between the n -net problem (1) and the Chebyshev center of \mathcal{M} established in the following proposition, a proof of which is in §B.

Proposition 2.1. *If (x_1^*, \dots, x_n^*) is an optimizer of (1) and if z^* is a Chebyshev center of \mathcal{M} , then*

$$\|z^* - x_i^*\| \leq 2\epsilon(\mathcal{M}, 1) \quad \text{for all } i \in \{1, \dots, n\}. \quad (3)$$

In other words, without loss of generality, all optimizers of (1) can be restricted to a ball of twice the Chebyshev radius, centered at the Chebyshev center. Henceforth, we denote this ball by $\mathbb{B}(\mathcal{M})$ whereby, it follows that $(x_1^, \dots, x_n^*) \in \mathbb{B}(\mathcal{M})^n$*

This result is useful for generating initial guesses and bounding our search space when implementing our algorithm, which will be discussed in subsequent sections. Inspection of (1) reveals that $\min_{i=1, \dots, n} \|y - x_i\|$ is non-convex in (x_1, \dots, x_n) for fixed y and vice versa.

As indicated in §1, we reformulate the problem in a way suitable for the construction of a numerically viable algorithm to extract near optimal solutions. To this end, we first note that the geometric implication of the problem guarantees strict feasibility for any compact \mathcal{M} . Moreover, for a fixed set of centers, the inner maximization always has a finite optimal value owing to the compactness of \mathcal{M} . We now present a straightforward reformulation of (1) using a slack variable, which, despite its simplicity, provides the problem with a richer structure for computational viability. Since the square of the norm ensures continuous differentiability, a property that will become important subsequently, we work with the squared norm by noting that

$$\min_{i=1, \dots, n} \|y - x_i\|^2 = \max\{t \in \mathbb{R} \mid t \leq \|y - x_i\|^2 \text{ for all } i = 1, \dots, n\},$$

which immediately leads to

$$\begin{aligned} \epsilon(\mathcal{M}, n)^2 &= \min_{(x_1, \dots, x_n) \in \mathbb{R}^{N \times n}} \max_{y \in \mathcal{M}} \max_{t \in \mathbb{R}} t \\ &\text{subject to } t - \|y - x_i\|^2 \leq 0 \quad \text{for all } i = 1, \dots, n. \end{aligned} \quad (4)$$

It is natural to seek a unification of both inner maximizations into a single maximization over the Cartesian product of their respective domains. The following proposition, whose proof is in §B, establishes that this unification is valid for the given problem.

Proposition 2.2. *For a given set of centers $(x_1, \dots, x_n) \in \mathbb{R}^{N \times n}$, if (t^*, y^*) is an optimizer of*

$$\max\left\{\max\{t \in \mathbb{R} \mid t - \|y - x_i\|^2 \leq 0 \text{ for all } i = 1, \dots, n\} \mid y \in \mathcal{M}\right\} \quad (5)$$

and (t^, y^*) is an optimizer of*

$$\max\left\{t \mid (t, y) \in \mathbb{R} \times \mathcal{M} \text{ and } t - \|y - x_i\|^2 \leq 0 \text{ for all } i = 1, \dots, n\right\}, \quad (6)$$

then $t^ = t^*$. That is, both (5) and (6) are feasible and have the same optimal value.*

In view of of Proposition 2.2, from this point forward, we adopt the following reformulation for the n -covering radius:

$$\epsilon(\mathcal{M}, n)^2 = \min_{(x_1, \dots, x_n) \in \mathbb{R}^{N \times n}} \mathcal{G}(x_1, \dots, x_n), \quad (7)$$

where

$$\mathcal{G}(x_1, \dots, x_n) := \max\left\{t \mid (t, y) \in \mathbb{R} \times \mathcal{M} \text{ and } t - \|y - x_i\|^2 \leq 0 \text{ for all } i = 1, \dots, n\right\}.$$

Evaluating \mathcal{G} entails solving a nonconvex problem, and the gradient of \mathcal{G} is difficult to calculate analytically, especially without imposing further structure on the inner maximization. There are several ‘gradient-free’ algorithms such as simulated annealing via Markov chain Monte Carlo to ensure probabilistic convergence to global minima, simplicial algorithms (e.g., the Nelder-Mead) for deterministic convergence to global minima, of \mathcal{G} , etc. Although these algorithms do not require further structure on \mathcal{M} and may be easy to implement since they only employ point evaluations of

⁵The Chebyshev center is necessarily unique for us due to strict convexity of the Euclidean norm.

\mathcal{G} , numerical gradient/subgradient-based algorithms tend to furnish solutions more efficiently and scale well relative to the size of the problem data, provided the objective function satisfies certain regularity conditions. An algorithm centered around numerical gradients is our target.

To advance in this direction, we impose the condition that \mathcal{M} is the intersection of 0-sublevel sets of finitely many known continuously differentiable functions in the following way. Let $\mathcal{O}_1, \dots, \mathcal{O}_k \in \mathbb{R}^N$ be open sets containing \mathcal{M} , let $\varphi_j : \mathcal{O}_j \rightarrow \mathbb{R}$ for $j = 1, \dots, k$, be continuously differentiable functions, and suppose that \mathcal{M} is realized as

$$\mathcal{M} = \{y \in \mathbb{R}^N \mid \varphi_j(y) \leq 0 \text{ for } j = 1, \dots, k\}.$$

This allows us to write \mathcal{G} as the negative of the optimal value function of a standard parametric optimization problem

$$\begin{aligned} -\mathcal{G}(x_1, \dots, x_n) &= \min_{(t, y)} -t \\ \text{subject to} & \begin{cases} t - \|y - x_i\|^2 \leq 0 & \text{for all } i = 1, \dots, n, \\ \varphi_{i-n}(y) \leq 0 & \text{for all } i = n+1, \dots, n+k, \\ t \geq 0, \\ (t, y) \in \mathbb{R} \times \mathbb{R}^N. \end{cases} \end{aligned} \quad (8)$$

Example 2.3. The problem (8), for a given choice of (x_1, \dots, x_n) , need not have strict local optimizers in general. To see this, let $\mathcal{M} \subset \mathbb{R}^2$ be a disc of radius $R > 0$ centered at the origin and let $n = 1$. The evaluation of \mathcal{G} at the origin leads to non-isolated optimizers for (8) since any pair of the form (R^2, y^*) with $\|y^*\| = R$ is an optimizer.

Remark 2.4. Note that it is not necessary to explicitly impose the condition $t \geq 0$ in (8), as the optimal value remains unchanged and is always positive. However, we shall see below that including this constraint ensures compactness of the feasible region — a property whose significance will be addressed subsequently. One can observe that if the functions φ_j for $j = 1, \dots, k$, are convex (which in turn implies that \mathcal{M} is convex), then the problem (8) becomes a DC (Difference of Convex functions) program since the objective and the constraints are differences of two convex functions. The reader is referred to (An et al., 2014) for a comprehensive overview of DC programming and algorithms to solve problems with DC objectives and constraints upto criticality; see, e.g., (Mordukhovich, 2018, Chapter 7) for theoretical insights. Although our results do not require the functions to be convex, when they are, DC programming algorithms may be used to achieve faster convergence to criticality in numerical implementations.

3 Main results

We now outline some technical notations and definitions in the context of the problem (8) to set the stage for our analysis. The Lagrangian $\mathcal{L} : \mathbb{R}^{N \times n} \times (\mathbb{R} \times \mathbb{R}^N) \times [0, +\infty]^{n+k+1} \rightarrow \mathbb{R}$ of (8) is

$$\mathcal{L}(x, (t, y), \lambda) := -(\lambda_{n+k+1} + 1)t + \sum_{i=1}^n \lambda_i (t - \|y - x_i\|^2) + \sum_{i=n+1}^{n+k} \lambda_i \varphi_{i-n}(y), \quad (9)$$

where x denotes (x_1, \dots, x_n) .

The feasible region is denoted by the set-valued map $S_{\text{feas}} : \mathbb{R}^{N \times n} \rightrightarrows \mathbb{R} \times \mathbb{R}^N$,

$$S_{\text{feas}}(\bar{x}) := \left\{ (t, y) \in \mathbb{R} \times \mathbb{R}^N \mid \begin{array}{ll} t - \|y - \bar{x}_i\|^2 \leq 0 & \text{for all } i = 1, \dots, n, \\ \varphi_{i-n}(y) \leq 0 & \text{for all } i = n+1, \dots, n+k, \\ t \geq 0 \end{array} \right\}, \quad (10)$$

and the set of global optimizers is the set-valued map $S_{\text{opt}} : \mathbb{R}^{N \times n} \rightrightarrows \mathbb{R} \times \mathbb{R}^N$,

$$S_{\text{opt}}(\bar{x}) := \{(t, y) \in S_{\text{feas}}(\bar{x}) \mid t = -\mathcal{G}(\bar{x})\}. \quad (11)$$

For a choice \bar{x} of x , let $(\bar{t}, \bar{y}) \in S_{\text{opt}}(\bar{x})$. We define the set of active constraint indices at $(\bar{x}, (\bar{t}, \bar{y}))$ as

$$I(\bar{x}, (\bar{t}, \bar{y})) := \{i \in \{1, \dots, n\} \mid \bar{t} - \|\bar{y} - \bar{x}_i\|^2 = 0\} \cup \{i \in \{n+1, \dots, n+k\} \mid \varphi_{i-n}(\bar{y}) = 0\}. \quad (12)$$

The constraint $t \geq 0$ is not included since t remains strictly positive at optimality. The set of Karush-Kuhn-Tucker (KKT) vectors of (8) for a pair $(\bar{x}, (\bar{t}, \bar{y})) \in \mathbb{R}^{N \times n} \times (\mathbb{R} \times \mathbb{R}^N)$ is denoted by

$$\Lambda(\bar{x}, (\bar{t}, \bar{y})) := \left\{ \lambda \in [0, +\infty]^{n+k+1} \left| \begin{array}{l} \nabla_{(t,y)} \mathcal{L}(\bar{x}, (\bar{t}, \bar{y}), \lambda) = 0, \\ \lambda_i (\bar{t} - \|\bar{y} - \bar{x}_i\|^2) = 0 \text{ for } i = 1, \dots, n \\ \lambda_i \varphi_{n-i}(\bar{y}) = 0 \text{ for } i = n+1, \dots, n+k, \text{ and} \\ \lambda_{n+k+1} \bar{t} = 0 \end{array} \right. \right\} \quad (13)$$

Definition 3.1 (MFCQ for (8)). For $x \in \mathbb{R}^{N \times n}$, the *Mangasarian-Fromovitz constraint qualification* condition is said to hold at $(\bar{t}, \bar{y}) \in S_{\text{opt}}(\bar{x})$ if there exists a direction $w \in \mathbb{R}^{N+1}$ such that the inner product of w with the gradient of each active constraint is strictly negative. To wit, the following conditions must hold:

$$(3.1\text{-i}) \quad (1 - 2(\bar{y} - \bar{x}_i)^\top) w < 0 \quad \text{for all } i \in \{1, \dots, n\} \cap I(\bar{x}, (\bar{t}, \bar{y})), \text{ and}$$

$$(3.1\text{-ii}) \quad \nabla_y \varphi_i(\bar{y})^\top w < 0 \quad \text{for all } i \in \{n+1, \dots, n+k\} \cap I(\bar{x}, (\bar{t}, \bar{y})).$$

We now present our first main result establishing Lipschitz continuity of \mathcal{G} .

Theorem 3.2. Consider the problem (8) and grant the notations established above. Fix $\bar{x} \in \mathbb{R}^{N \times n}$ and suppose that the MFCQ condition (defined in Definition 3.1) holds for every $(\bar{t}, \bar{y}) \in S_{\text{opt}}(\bar{x})$. Then the function \mathcal{G} is locally Lipschitz continuous at \bar{x} . Consequently, its restriction $\mathcal{G}|_{\mathbb{B}(\mathcal{M})^n}$ to $\mathbb{B}(\mathcal{M})^n$ (c.f. Proposition 2.1) is Lipschitz. Moreover, for any $v \in \mathbb{R}^{N \times n}$, we have

$$\begin{aligned} \inf_{(\bar{t}, \bar{y}) \in S_{\text{opt}}(\bar{x})} \min_{\lambda \in \Lambda(\bar{x}, (\bar{t}, \bar{y}))} \frac{\partial \mathcal{L}}{\partial x}(\bar{x}, (\bar{t}, \bar{y}), \lambda) \cdot v &\leq -\liminf_{h \downarrow 0} \frac{1}{h} (\mathcal{G}(\bar{x} + hv) - \mathcal{G}(\bar{x})) \\ &\leq -\limsup_{h \downarrow 0} \frac{1}{h} (\mathcal{G}(\bar{x} + hv) - \mathcal{G}(\bar{x})) \leq \inf_{(\bar{t}, \bar{y}) \in S_{\text{opt}}(\bar{x})} \max_{\lambda \in \Lambda(\bar{x}, (\bar{t}, \bar{y}))} \frac{\partial \mathcal{L}}{\partial x}(\bar{x}, (\bar{t}, \bar{y}), \lambda) \cdot v. \end{aligned} \quad (14)$$

Proof. We observe that both the objective and constraint functions are continuously differentiable. At each $x \in \mathbb{R}^{N \times n}$, the feasible region $S_{\text{feas}}(x)$ is non-empty by definition. Letting $N(\bar{x})$ denote a neighborhood of \bar{x} , we note that the mapping S_{feas} is uniformly compact near \bar{x} since the set $\bigcup_{x \in N(\bar{x})} S_{\text{feas}}(x)$ always satisfies the containment relation

$$\bigcup_{x \in N(\bar{x})} S_{\text{feas}}(x) \subset \left[0, \max_{x \in N(\bar{x})} \max_{y \in \mathcal{M}} \max_{i=1, \dots, n} \|y - x_i\|^2 \right] \times \mathcal{M}.$$

Furthermore, a set independent of the base point \bar{x} containing $\bigcup_{x \in N(\bar{x})} S_{\text{feas}}(x)$ can be realized if each component of \bar{x} is restricted to the interior of the ball described in Proposition 2.1, in which case we obtain the uniform containment $\bigcup_{x \in N(\bar{x})} S_{\text{feas}}(x) \subset [0, 9\epsilon(\mathcal{M}, 1)^2] \times \mathcal{M}$; the set on the right-hand side is, of course, bounded. Therefore, (Fiacco and Ishizuka, 1990, Theorem 4.2) — reproduced for completeness in §C as Theorem C.1 — applies directly to our problem since the MFCQ conditions hold for every $(\bar{t}, \bar{y}) \in S_{\text{opt}}(\bar{x})$ by hypothesis. Consequently, \mathcal{G} is locally Lipschitz continuous at \bar{x} , and its lower and upper Dini derivatives satisfy the bounds described in (14). Invoking (Cobzaş et al., 2019, Theorem 2.1.6) gives us Lipschitz continuity of $\mathcal{G}|_{\mathbb{B}(\mathcal{M})^n}$, and our proof is complete. \square

From this point forward, we shall operate under the blanket assumption that MFCQ holds at every $(\bar{t}, \bar{y}) \in S_{\text{opt}}(\bar{x})$ for all $\bar{x} \in \mathbb{R}^{N \times n}$ — a property that can, in principle, be verified once the functions $\varphi_1, \dots, \varphi_k$, are specified.

Remark 3.3. We highlight that reformulating (1) into (8) using the variable t and representing \mathcal{M} through continuously differentiable functions $\varphi_1, \dots, \varphi_k$, was crucial for establishing Theorem 3.2. The existing literature does not appear to have employed regularity properties of marginal functions for the design of optimal covering algorithms, which is a point of departure of our contribution.

Remark 3.4. Observe that, in principle, every closed subset of \mathbb{R}^N admits a representation as the zero-level set of a smooth function (Calderón and Zygmund, 1961) that is realized as a smooth regularization of the distance-to-the-set function. However, such a function may be difficult to encode in a finitary way for computational purposes. In this light, while our assumption that the set \mathcal{M} is realized as the intersection of zero-sublevel sets of finitely many continuously differentiable functions may appear to be restrictive, it is a reasonably weak assumption, and this family of sets includes sublevel sets of polynomials in particular.

We now turn to the minimization of \mathcal{G} . In view of Proposition 2.1, it suffices to restrict the search space to $\mathbb{B}(\mathcal{M})^n$ since all global minimizers of \mathcal{G} are guaranteed to lie within this set. Moreover, by Theorem 3.2, we see that $\mathcal{G}|_{\mathbb{B}(\mathcal{M})^n}$ is L -Lipschitz. Now we leverage recent advances in nonconvex and nonsmooth optimization using randomized smoothing by (Lin et al., 2022; Liu et al., 2024) to design our numerical algorithm. Specifically, we adopt an optimality framework based on generalized Goldstein stationary points (Goldstein, 1977) and develop an algorithm that provably converges to such a point based solely on oracle evaluations of \mathcal{G} . Furthermore, we establish a polynomial bound on the number of such oracle calls required for convergence. We proceed by laying out a set of definitions. For a detailed exposition, we refer the reader to (Lin et al., 2022).

Definition 3.5. Given a point $x \in \mathbb{R}^{N \times n}$ and a direction $v \in \mathbb{R}^{N \times n}$, the *generalized directional derivative* of \mathcal{G} is defined as $D\mathcal{G}(x; v) := \limsup_{y \rightarrow x, t \downarrow 0} \frac{\mathcal{G}(y+tv) - \mathcal{G}(y)}{t}$. Then, the *generalized gradient* (Clarke, 1990) of \mathcal{G} is defined as the set

$$\partial\mathcal{G}(x) := \{g \in \mathbb{R}^{N \times n} \mid \langle g, v \rangle \leq D\mathcal{G}(x; v), \text{ for all } v \in \mathbb{R}^d\}. \quad (15)$$

Let $\mathbb{B}(x, \delta) := \{y \in \mathbb{R}^{N \times n} \mid \|y - x\| \leq \delta\}$. Given a $\delta \geq 0$, the *Goldstein δ -subdifferential* (Goldstein, 1977) of \mathcal{G} at x is defined as $\partial_\delta\mathcal{G}(x) := \text{conv}(\bigcup_{y \in \mathbb{B}(x, \delta)} \partial\mathcal{G}(y))$. Given a $\delta \geq 0$ and $\gamma, \varepsilon > 0$, a point $x \in \mathbb{R}^{N \times n}$ is called a $(\gamma, \delta, \varepsilon)$ -*generalized Goldstein stationary point* (Liu et al., 2024) of $\mathcal{G}|_{\mathbb{B}(\mathcal{M})^n}$ if $\min \left\{ \frac{1}{\gamma} \left\| x - \text{Proj}_{\mathbb{B}(\mathcal{M})^n}(x - \gamma g) \right\| \mid g \in \partial_\delta\mathcal{G}(x) \right\} \leq \varepsilon$, where $\text{Proj}_{\mathbb{B}(\mathcal{M})^n}(y)$ denotes the orthogonal projection of y onto $\mathbb{B}(\mathcal{M})^n$.

We now present our algorithm — an adaptation of techniques from (Lin et al., 2022; Liu et al., 2024) with minor modifications suited to the minimization of \mathcal{G} restricted to $\mathbb{B}(\mathcal{M})^n$.

Algorithm 1 gradOptNet: a numerical gradient-based optimal covering algorithm

```

1: Input: Initial point  $x_0 \in \mathbb{B}(\mathcal{M})^n$ , stepsize  $\gamma > 0$ , smoothing parameter  $\delta$ , iteration number  $T \geq 1$ , and parameters  $b_1, b_2$ , and  $q$ .
2: for  $t = 0, 1, \dots, T - 1$  do
3:   if  $\text{mod}(t, q) = 0$  then
4:     Sample  $w_{1,t}, \dots, w_{b_1,t}$  uniformly from the unit sphere in  $\mathbb{R}^{N \times n}$ .
5:     Let  $g_{i,t} = \frac{Nn}{2\delta} (\mathcal{G}(x_t + \delta w_{i,t}) - \mathcal{G}(x_t - \delta w_{i,t})) w_{i,t}$  for each  $i \in \{1, \dots, b_1\}$ .
6:     Set  $v_t = \frac{1}{b_1} \sum_{i=1}^{b_1} g_{i,t}$ .
7:   else
8:     Sample  $w_{1,t}, \dots, w_{b_2,t}$  uniformly from the unit sphere in  $\mathbb{R}^{N \times n}$ .
9:     Let  $g_{i,t} = \frac{Nn}{2\delta} (\mathcal{G}(x_t + \delta w_{i,t}) - \mathcal{G}(x_t - \delta w_{i,t})) w_{i,t}$  for each  $i \in \{1, \dots, b_2\}$ .
10:    Let  $g_{i,t-1} = \frac{Nn}{2\delta} (\mathcal{G}(x_{t-1} + \delta w_{i,t}) - \mathcal{G}(x_{t-1} - \delta w_{i,t})) w_{i,t}$  for each  $i \in \{1, \dots, b_2\}$ .
11:    Set  $v_t = \frac{1}{b_2} \sum_{i=1}^{b_2} (g_{i,t} - g_{i,t-1}) + v_{t-1}$ .
12:   end if
13:   Update  $x_{t+1} = \text{Proj}_{\mathbb{B}(\mathcal{M})^n}(x_t - \gamma v_t)$ .
14: end for
15: return  $x_R$ , where  $R \in \{0, 1, \dots, T - 1\}$  is uniformly sampled

```

Theorem 3.6. Consider the problem (8) and grant the notations established above. Let L denote the Lipschitz constant of $\mathcal{G}|_{\mathbb{B}(\mathcal{M})^n}$. With $b_1 = \mathcal{O}\left(\frac{NnL^2}{\varepsilon^2}\right)$, $b_2 = q = \mathcal{O}\left(\frac{\sqrt{Nn}L}{\varepsilon}\right)$, and $\gamma = \frac{\delta}{2NnL}$, the Algorithm 1 requires atmost $\mathcal{O}\left(N^{\frac{3}{2}}n^2\epsilon(\mathcal{M}, 1)L^3\delta^{-1}\varepsilon^{-3}\right)$ calls of \mathcal{G} to obtain a $(\gamma, \delta, \varepsilon)$ -generalized Goldstein stationary point of \mathcal{G} in expectation.

Proof. In view of Theorem 3.2, we have Lipschitz continuity of $\mathcal{G}|_{\mathbb{B}(\mathcal{M})^n}$. We observe that Algorithm 1 corresponds to a variant of (Liu et al., 2024, Algorithm 3), adapted to the setting in which the objective function is deterministic. Noting that the diameter of $\mathbb{B}(\mathcal{M})^n$ is $4\sqrt{n}\epsilon(\mathcal{M}, 1)$, we invoke (Liu et al., 2024, Corollary 5.4) to obtain the complexity bound in the assertion. \square

Remark 3.7. Theorem 3.2 provided the substrate to enable numerical gradient-based algorithms to solve (1). Since the outer minimization problem in (1) is non-convex, numerical gradient-based

algorithms can only guarantee convergence to stationary points as in 3.6. We attempt to obtain global solutions to (1) in two steps. First, Algorithm 1 involves the calculation of difference quotients and their randomized smoothing; the smoothing is necessary for obtaining ‘averaged’ descent directions to solve non-convex optimization problems up to stationarity, and this is performed along with a variance reduction scheme as proposed in (Liu et al., 2024). Second, global convergence to minimizers (as opposed to stationary points) is facilitated by the employment of several randomized ‘restarts’ (parallel initializations) in the indicated local scheme.

4 Numerical experiments

This section details the numerical experiments carried out using Algorithm 1. Heuristic observations in (Liu et al., 2024, Section 6) align with our observations: faster convergence is observed when the variance reduction step is omitted (i.e., $q = 1$, rendering b_2 immaterial). We also observe better performance when b_1 is increased in response to larger values of n or N . Accordingly, we set $q = 1$ for all our experiments. For the ease of visualization, we present examples with $N = 2$ and $n < 10$ in §4; an illustration with $N = 3$ is presented in Example D.2 in §D. At each point, \mathcal{G} is evaluated using the NLP solver BARON (Sahinidis, 1996), known for its global optimization capabilities. To the best of our knowledge, no existing benchmarks or ground truth results are available in the literature, and therefore, our comparisons of computation time and accuracy are with techniques like simulated annealing that do not leverage the Lipschitz continuity of \mathcal{G} for outer minimization.

Example 4.1. Consider the case where $N = 2$, $k = 1$, and the set \mathcal{M} is the solid ellipse

$$\mathcal{M} := \left\{ y := (y_1, y_2) \in \mathbb{R}^2 \mid \varphi_1(y) := \frac{y_1^2}{9} + \frac{y_2^2}{4} - 1 \leq 0 \right\}. \quad (16)$$

The application of Algorithm 1 with multiple parallel initializations (to enhance global convergence efficiency), led to the results presented in Fig. 1 for number of balls $n = 2, 3, 4, 5, 7$, and 8.

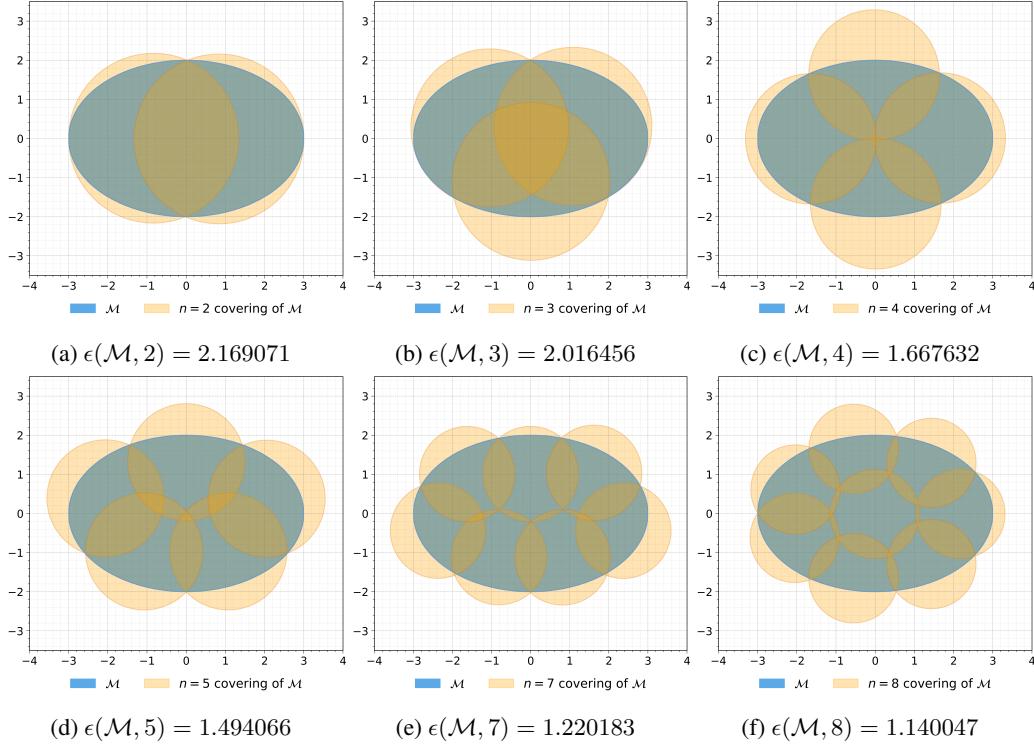


Figure 1: Covering of the ellipse (16) for varying values of n .

The results exhibit a visually interpretable structure primarily due to the inherent symmetry of the set \mathcal{M} . This naturally motivates the expectation of symmetric structures in the optimal coverings—a property that is indeed observed in the solutions reported in Fig. 1. The evolution of the objective

value for the case $n = 4$ against the iterations of Algorithm 1, with $\gamma = 0.05$, $\delta = 0.01$, $b_1 = 24$, and $q = 1$ is shown in Fig. 4 featuring 4 restarts. For each n , Algorithm 1 executed with 10 restarts yielded final radius values with relative standard deviation $< 1\%$, indicating excellent robustness. Table 1 tabulates and compares the computation time and solution quality for Algorithm 1 vs Simulated Annealing (Metropolis Hastings sampling and geometric cooling rate) for the example with $n = 4$.

Method	$\epsilon(\mathcal{M}, 4) \downarrow$			Number of evaluations of $\mathcal{G} \downarrow$
	Trial 1	Trial 2	Trial 3	
gradOptNet (Ours)	1.682	1.706	1.698	4800
Simulated Annealing	2.227	2.574	2.301	10000

Table 1: Comparison of computation time and solution quality across methods.

Remark 4.2. We emphasize that the ability of the inner solver used to evaluate \mathcal{G} to attain global optimality is crucial for the effectiveness of Algorithm 1. If a solver lacking global optimality guarantees (such as IPOPT) is employed, it may fail to produce a valid covering of \mathcal{M} . This phenomenon is treated in Example D.1.

Example 4.3. Let us consider an example where \mathcal{M} is asymmetric and nonconvex, and to this end, consider the case where $N = 2$, $k = 4$, and the set \mathcal{M} is the region

$$\begin{aligned} \mathcal{M} &:= \{(y_1, y_2) \in \mathbb{R}^2 \mid \varphi_j(y) \leq 0 \text{ for } j = 1, 2, 3, 4\} \text{ where, with } y := (y_1, y_2), \\ \varphi_1(y) &:= 2y_1^2 - y_2, \quad \varphi_2(y) := y_2 - 2(y_1 - 1)^2, \\ \varphi_3(y) &:= y_2 - 5(y_1 + 0.1)^2, \text{ and } \varphi_4(y) := -0.1 - y_1. \end{aligned} \quad (17)$$

Once again, Algorithm 1 was employed with multiple parallel initializations, and the results presented in Fig. 2 were obtained for $n = 1, 2, 3, 4, 5, 6$.

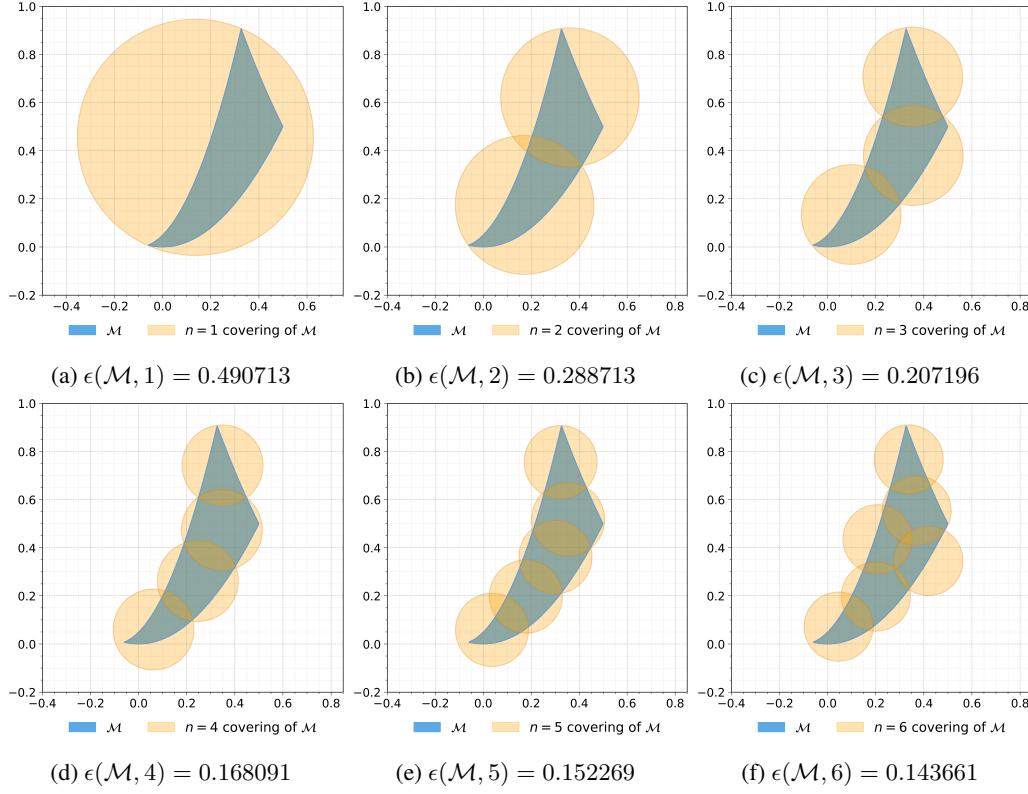


Figure 2: Covering of the region (17) for $n = 1, 2, 3, 4, 5$, and 6.

Similarly, for each n , Algorithm 1 executed with 10 restarts converged to final radius values with relative standard deviation $< 1\%$. Additional experimental details are provided in §D.

5 Concluding remarks

In this work we established a computationally viable approach to the optimal covering problem. We started with the definition of the problem (1) and applied a sequence of reformulations under mild structural assumptions to derive a version (7) more amenable to analysis. A central contribution of our work is a novel result establishing Lipschitz continuity of the optimal value function \mathcal{G} arising from the nonconvex inner problem, which forms the foundation for applying a numerical gradient-based (zeroth-order) algorithm for the outer minimization. This algorithm leverages recent advances in nonsmooth and nonconvex optimization and, via randomized smoothing, offers non-asymptotic convergence guarantees for obtaining approximate stationary points. We demonstrated the effectiveness of our method through experiments on compact subsets of \mathbb{R}^2 and \mathbb{R}^3 . Future directions include accelerating the computation of \mathcal{G} for convex sets via DC programming techniques and developing strategies to improve global convergence guarantees for the outer minimization. We also observe that $\mathcal{G}(x_1, \dots, x_n)$ is a permutation invariant function. This property can be used to restrict the search space further, which may help accelerate convergence.

References

A. R. Alimov and I. G. Tsar'kov. Chebyshev centres, Jung constants, and their applications. *Russian Mathematical Surveys*, 74(5):775–849, 2019. doi: <https://doi.org/10.4213/rm9839>. 2

A. R. Alimov and I. G. Tsar'kov. *Geometric Approximation Theory*. Springer Monographs in Mathematics. Springer, Cham, 2021. doi: https://doi.org/10.1007/978-3-030-90951-2_1, 2

L. H. An, H. V. Ngai, and P. D. Tao. DC programming and DCA for general DC programs. *Advances in Intelligent Systems and Computing*, 282:15–35, 01 2014. doi: https://doi.org/10.1007/978-3-319-06569-4_2, 5

P. Binev, A. Bonito, R. DeVore, and G. Petrova. Optimal learning. *Calcolo. A Quarterly on Numerical Analysis and Theory of Computation*, 61(1), 2024. doi: <https://doi.org/10.1007/s10092-023-00564-y>, 2

A.-P. Calderón and A. Zygmund. Local properties of solutions of elliptic partial differential equations. *Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica*, 20:171–225, 1961. doi: <https://doi.org/10.4064/sm-20-2-181-225>, 6

F. H. Clarke. *Optimization and Nonsmooth Analysis*, volume 5 of *Classics in Applied Mathematics*. Society for Industrial and Applied Mathematics, Philadelphia, 1990. doi: <https://doi.org/10.1137/1.9781611971309>, 7, 18

Ş. Cobzaş, R. Miculescu, and A. Nicolae. *Lipschitz Functions*, volume 2241 of *Lecture Notes in Mathematics*. Springer, Cham, 2019. doi: https://doi.org/10.1007/978-3-030-16489-8_6, 18

S. Das, A. Aravind, A. Cherukuri, and D. Chatterjee. Near-optimal solutions of convex semi-infinite programs via targeted sampling. *Annals of Operations Research*, 318(1):129–146, 2022. doi: <https://doi.org/10.1007/s10479-022-04810-4>, 3

A. L. Dontchev and R. T. Rockafellar. *Implicit Functions and Solution Mappings*. Springer Series in Operations Research and Financial Engineering. Springer-Verlag, 2 edition, 2014. doi: <https://doi.org/10.1007/978-1-4614-9399-3>, 3

Y. C. Eldar, A. Beck, and M. Teboulle. A minimax Chebyshev estimator for bounded error estimation. *IEEE Transactions on Signal Processing*, 56(4):1388–1397, 2008. doi: <https://doi.org/10.1109/TSP.2007.908945>, 2

A. V. Fiacco. *Introduction to Sensitivity and Stability Analysis in Nonlinear Programming*, volume 165 of *Mathematics in Science and Engineering*. Academic Press, Inc., Orlando, FL, 1983. 3

A. V. Fiacco and Y. Ishizuka. Sensitivity and stability analysis for nonlinear programming. *Annals of Operations Research*, 27(1):215–235, 1990. doi: <https://doi.org/10.1007/BF02055196>, 3, 6, 19

S. Foucart and C. Liao. S-procedure relaxation: a case of exactness involving Chebyshev centers. In *Explorations in the mathematics of data science—the inaugural volume of the Center for Approximation and Mathematical Data Analytics*, Applied Numerical and Harmonic Analysis, pages 1–18. Birkhäuser/Springer, Cham, 2024. doi: https://doi.org/10.1007/978-3-031-66497-7_1. 2

A. A. Goldstein. Optimization of lipschitz continuous functions. *Mathematical Programming*, 13: 14–22, 1977. doi: 10.1007/BF01584320. doi: <https://doi.org/10.1007/BF01584320>. 7, 18

S. Har-Peled. *Geometric Approximation Algorithms*, volume 173 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, 2011. doi: <https://doi.org/10.1090/surv/173>. 3

A. N. Kolmogorov and V. M. Tihomirov. ε -entropy and ε -capacity of sets in functional space. *American Mathematical Society Translations* (2), 17:277–364, 1961. 1

T. Lin, Z. Zheng, and M. I. Jordan. Gradient-free methods for deterministic and stochastic nonsmooth nonconvex optimization. In *Advances in Neural Information Processing Systems*, volume 35, 2022. 7

Z. Liu, C. Chen, L. Luo, and B. K. H. Low. Zeroth-order methods for constrained nonconvex nonsmooth stochastic optimization. In *Proceedings of the 41st International Conference on Machine Learning*, volume 235, pages 30842–30872, 2024. 7, 8

O. S. Malysheva. Optimal position of compact sets and the Steiner problem in spaces with Euclidean Gromov-Hausdorff metric. *Sbornik: Mathematics*, 211(10):1382–1398, 2020. doi: <https://doi.org/10.1070/SM9361>. 3

C. A. Micchelli and T. J. Rivlin. A survey of optimal recovery. In *Optimal Estimation in Approximation Theory*, pages 1–54. Plenum, New York, 1977. 2

B. S. Mordukhovich. *Variational Analysis and Applications*. Springer Monographs in Mathematics. Springer, Cham, 2018. doi: <https://doi.org/10.1007/978-3-319-92775-6>. 5

P. Paruchuri and D. Chatterjee. Attaining the Chebyshev bound for optimal learning: A numerical algorithm. *Systems & Control Letters*, 181:105648, 2023. ISSN 0167-6911. doi: <https://doi.org/10.1016/j.sysconle.2023.105648>. 2

C. P. Robert and G. Casella. *Monte Carlo Statistical Methods*. Springer Texts in Statistics. Springer-Verlag, New York, second edition, 2004. doi: <https://doi.org/10.1007/978-1-4757-4145-2>. 3

N. V. Sahinidis. BARON: A general purpose global optimization software package. *Journal of Global Optimization*, 8(2):201–205, 1996. ISSN 1573-2916. doi: <https://doi.org/10.1007/BF00138693>. 8

V. N. Ushakov and P. D. Lebedev. Algorithms for constructing an optimal cover for sets in three-dimensional Euclidean space. *Trudy Instituta Matematiki i Mekhaniki*, 21(2):276–288, 2015. doi: <https://doi.org/10.1134/s0081543816050205>. 2, 3

V. A. Voronov, A. D. Tolmachev, D. S. Protasov, and A. M. Neopryatnaya. Searching for distance graph embeddings and optimal partitions of compact sets in Euclidean space. In M. Khachay, Y. Kochetov, A. Eremeev, O. Khamisov, V. Mazalov, and P. Pardalos, editors, *Mathematical Optimization Theory and Operations Research: Recent Trends*, pages 391–403. Springer Nature Switzerland, 2023. 3

D. Wu, J. Zhou, and A. Hu. A new approximate algorithm for the Chebyshev center. *Automatica*, 49(8):2483–2488, 2013. doi: <https://doi.org/10.1016/j.automatica.2013.04.029>. 2

H. Yu. Cube packings in Euclidean spaces. *Mathematika*, 67(2):288–295, 2021. doi: <https://doi.org/10.1112/mtk.12074>. 3

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[Yes\]](#)

Guidelines:

- The answer NA means that the paper does not include theoretical results.

- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [\[Yes\]](#)

Justification: The user requires a BARON license to run the BARON solver.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: Although the global optimum is unknown, we indeed report the consistent convergence of multiple restarts to radius values with relative standard deviation $< 1\%$ in Examples 4.1 and 4.3 of §4 which indicates our method’s robustness.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[NA\]](#)

Justification: This article presents work aimed at presenting a novel approach to tackle the optimal covering problem. The applications of this work could have social impacts in various domains. However, we do not wish to highlight any such potential societal impacts in the article.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate

to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.

- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: We have curated the experiments on our own and have not used any dataset scraped from the Internet.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. **Crowdsourcing and research with human subjects**

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. **Institutional review board (IRB) approvals or equivalent for research with human subjects**

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. **Declaration of LLM usage**

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

A Foundational Definitions and Results

Here we outline a few important definitions from sensitivity analysis and nonsmooth optimization.

Definition A.1. A set-valued mapping $S : A \rightrightarrows B$ is a mapping $S : A \rightarrow 2^B$, where for each $x \in A$, $S(x)$ is a subset of B . They have been extensively used to study the feasible regions and solution maps of optimization problems

Definition A.2. The set valued map $S : A \rightrightarrows B$ is said to be uniformly compact near \bar{x} if the set $\bigcup_{x \in N(\bar{x})} S(x)$ is bounded for some neighborhood $N(\bar{x})$ of \bar{x} .

Definition A.3. A mapping $f : \mathbb{R}^\nu \rightarrow \mathbb{R}$ is said to be locally Lipschitz if at each point $x \in \mathbb{R}^\nu$, there exists a neighborhood \mathcal{O} and $L \geq 0$ such that $|f(x_1) - f(x_2)| \leq L\|x_1 - x_2\|$ for all $x_1, x_2 \in \mathcal{O}$.

Definition A.4. A mapping $f : U \subset \mathbb{R}^\nu \rightarrow \mathbb{R}$ is L -Lipschitz if there exists $L \geq 0$ such that for every $x_1, x_2 \in U$, we have $|f(x_1) - f(x_2)| \leq L\|x_1 - x_2\|$. The number L is called the Lipschitz constant of f .

Corollary A.5 ((Cobzaş et al., 2019)). *Let $f : \mathbb{R}^\nu \rightarrow \mathbb{R}$ be a locally Lipschitz function and $U \subset \mathbb{R}^\gamma$ be compact. Then the restriction of f to U denoted by $f|_U$ is L -Lipschitz.*

We define Dini-derivatives to generalize the notion of directional differentiability for non-smooth functions.

Definition A.6. Let $f : \mathbb{R}^\nu \rightarrow \mathbb{R}$ and $x \in \mathbb{R}^\nu$. The upper and lower Dini-derivatives of f along the direction $v \in \mathbb{R}^\nu$ are defined as

$$\begin{aligned} D^+ f(x; h) &:= \limsup_{h \downarrow 0} \frac{1}{h} (f(x + hv) - f(x)) \text{ and} \\ D^- f(x; h) &:= \liminf_{h \downarrow 0} \frac{1}{h} (f(x + hv) - f(x)) \end{aligned} \tag{18}$$

respectively.

Definition A.7. Given a point $x \in \mathbb{R}^\nu$ and a direction $v \in \mathbb{R}^\nu$, the *generalized directional derivative* of a nondifferentiable function f is defined as $Df(x; v) := \limsup_{y \rightarrow x, t \downarrow 0} \frac{f(y + tv) - f(y)}{t}$. Then, the *generalized gradient* (Clarke, 1990) of f is defined as the set

$$\partial f(x) := \{g \in \mathbb{R}^\nu \mid g^\top v \leq Df(x; v), \text{ for all } v \in \mathbb{R}^d\}. \tag{19}$$

Definition A.8. Let $\mathbb{B}(x, \delta) := \{y \in \mathbb{R}^\nu \mid \|y - x\| \leq \delta\}$. Given a $\delta \geq 0$, the *Goldstein δ -subdifferential* (Goldstein, 1977) of f at x is defined as

$$\partial_\delta f(x) := \text{conv} \left(\bigcup_{y \in B(x, \delta)} \partial f(y) \right). \tag{20}$$

B Proofs of Propositions 2.1 and 2.2

Proposition 2.1. We know that for every $i \in \{1, \dots, n\}$ there exists $y \in \mathcal{M}$ such that $\|y - x_i^*\| \leq \epsilon(\mathcal{M}, n)$. Consequently, $\|z^* - x_i^*\| \leq \|z^* - y\| + \|y - x_i^*\|$, which leads to

$$\|z^* - x_i^*\| \leq \epsilon(\mathcal{M}, n) + \epsilon(\mathcal{M}, 1),$$

and since $\epsilon(\mathcal{M}, n') \leq \epsilon(\mathcal{M}, n)$ for every $n' > n$,

$$\|z^* - x_i^*\| \leq 2\epsilon(\mathcal{M}, 1),$$

and the assertion follows. \square

Proposition 2.2. Strict feasibility of both problems is always ensured since any point in \mathcal{M} with $t = 0$ readily satisfies all the constraints. It follows immediately that (t^\dagger, y^\dagger) is a feasible point of (6), which implies $t^\dagger \leq t^*$. Moreover, since

$$t^* = \max \{t \in \mathbb{R} \mid t \leq \|y^* - x_i\| \text{ for all } i = 1, \dots, n\},$$

it follows that $t^* \leq t^\dagger$. Consequently, $t^\dagger = t^*$. \square

C Lipschitz continuity of optimal value functions of parametrized nonlinear programs

Consider a parametrized nonlinear program of the form

$$\begin{aligned} \min_z \quad & g_0(x, z) \\ \text{subject to} \quad & g_i(x, z) \leq 0 \text{ for } i = 1, \dots, p, \end{aligned} \tag{21}$$

where the functions g_0, g_1, \dots, g_p are continuously differentiable from $\mathbb{R}^\gamma \times \mathbb{R}^\kappa$ to \mathbb{R} . The Lagrangian for (21) is given by

$$\mathcal{L}(x, z, \lambda) := g_0(x, z) + \sum_{i=1}^p \lambda_i g_i(x, z). \tag{22}$$

The feasible region is denoted by the set-valued map $S_{\text{feas}} : \mathbb{R}^\gamma \rightrightarrows \mathbb{R}^\kappa$,

$$S_{\text{feas}}(\bar{x}) := \{z \in \mathbb{R}^\kappa \mid g_i(\bar{x}, z) \leq 0 \text{ for } i = 1, \dots, p\}. \tag{23}$$

The optimal value function $\Phi : \mathbb{R}^\gamma \rightarrow \mathbb{R} \cup \{+\infty\}$ is the optimal value of the NLP for a given parameter $\bar{x} \in \mathbb{R}^\gamma$. That is,

$$\Phi(\bar{x}) := \min_{z \in S_{\text{feas}}(\bar{x})} g_0(\bar{x}, z). \tag{24}$$

By convention, $\Phi(\bar{x}) = +\infty$ if the problem is infeasible. The set of global optimizers is the set-valued map $S_{\text{opt}} : \mathbb{R}^\kappa \rightrightarrows \mathbb{R}^\gamma$,

$$S_{\text{opt}}(\bar{x}) := \{z \in S_{\text{feas}}(\bar{x}) \mid g_0(\bar{x}, z) = \Phi(\bar{x})\}. \tag{25}$$

For a choice \bar{x} of x , let $\bar{z} \in S_{\text{opt}}(\bar{x})$. We define the set of active constraint indices at (\bar{x}, \bar{z}) as

$$I(\bar{x}, \bar{z}) := \{i \in \{1, \dots, p\} \mid g_i(\bar{x}, \bar{z}) = 0\}. \tag{26}$$

The set of Karush-Kuhn-Tucker (KKT) vectors of (8) for a pair $(\bar{x}, \bar{z}) \in \mathbb{R}^\gamma \times \mathbb{R}^\kappa$ is denoted by

$$\Lambda(\bar{x}, \bar{z}) := \{\lambda \in [0, +\infty]^p \mid \nabla_z \mathcal{L}(\bar{x}, \bar{z}, \lambda) = 0, \lambda_i g_i(\bar{x}, \bar{z}) = 0 \text{ for } i = 1, \dots, p\} \tag{27}$$

The *Mangasarian-Fromovitz constraint qualification (MFCQ)* is said to hold at a point $\bar{z} \in S_{\text{opt}}(\bar{x})$ if there exists a direction $w \in \mathbb{R}^\kappa$ such that the inner product of w with the gradient of each active constraint is strictly negative. To wit, the following condition must hold:

$$\nabla_z g_i(\bar{x}, \bar{z})^\top w < 0 \text{ for all } i \in I(\bar{x}, \bar{z}) \tag{28}$$

We now state the result (Fiacco and Ishizuka, 1990, Theorem 4.2) that establishes the conditions under which the optimal value function is Lipschitz continuous.

Theorem C.1. Consider the problem (21) and grant the notations established above. Fix $\bar{x} \in \mathbb{R}^\gamma$ and suppose that

(C.1-a) the MFCQ condition holds for every $\bar{z} \in S_{\text{opt}}(\bar{x})$, and

(C.1-b) the map S_{feas} is uniformly compact near \bar{x} .

Then the function Φ is locally Lipschitz continuous at \bar{x} . Moreover, for any $v \in \mathbb{R}^\gamma$, we have

$$\begin{aligned} \inf_{\bar{z} \in S_{\text{opt}}(\bar{x})} \min_{\lambda \in \Lambda(\bar{x}, \bar{z})} \frac{\partial \mathcal{L}}{\partial x}(\bar{x}, \bar{z}, \lambda) \cdot v &\leq -\liminf_{h \downarrow 0} \frac{1}{h} (\Phi(\bar{x} + hv) - \Phi(\bar{x})) \\ &\leq -\limsup_{h \downarrow 0} \frac{1}{h} (\Phi(\bar{x} + hv) - \Phi(\bar{x})) \leq \inf_{\bar{z} \in S_{\text{opt}}(\bar{x})} \max_{\lambda \in \Lambda(\bar{x}, \bar{z})} \frac{\partial \mathcal{L}}{\partial x}(\bar{x}, \bar{z}, \lambda) \cdot v. \end{aligned}$$

D Experimental details

In this section, we provide further details of the experimental procedure along with a 3D illustration of covering in Example D.2. As emphasized in §1, the main computational bottleneck arises from having to reliably solve the inner problem (8) for the evaluation of \mathcal{G} globally. This is the reason a solver with global optimality guarantees is employed. To illustrate the phenomenon mentioned in 4.2, we provide the following example.

Example D.1. For the solid ellipse (16) in Example 4.1. Here we employed Algorithm 1 maintaining all parameters from Example 4.1, except that \mathcal{G} was evaluated using IPOPT instead of BARON in Algorithm 1. Fig. 3 illustrates the failure of Algorithm 1 in producing an adequate cover of \mathcal{M} with $n = 1, 2$, and 3 , when IPOPT was employed.

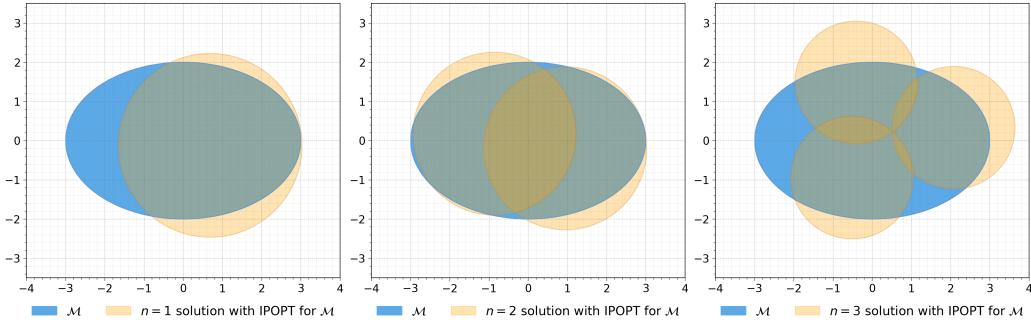


Figure 3: Covering fails if IPOPT is employed in place of BARON for $n = 1, 2, 3$.

For our experiments, we used the demo mode of BARON, which imposes limits on the problem dimensions and number of constraints. To facilitate faster convergence and support for larger-scale problems, a more advanced license may be used. For more details, visit <https://minlp.com/baron-licenses>. Table 2 reports the time taken to compute \mathcal{G} in Example 4.1 for varying n using BARON in demo mode on an AMD Ryzen 7 4800H 2.90 GHz CPU. Note that the total number of

Table 2: Computation time for \mathcal{G} for varying n

n	Computation time (ms)
2	129
3	135
4	143
5	146
6	154
7	160
8	164
9	173

evaluations of \mathcal{G} per iteration of Algorithm 1 depends on b_1 and b_2 .

Fig 4 shows the temporal evolution of the objective in Example 4.1 and features 4 restarts (initializations). An example with a nonconvex, asymmetric set in \mathbb{R}^3 is provided in Example D.2. Note that only the isometric view is provided for each case.

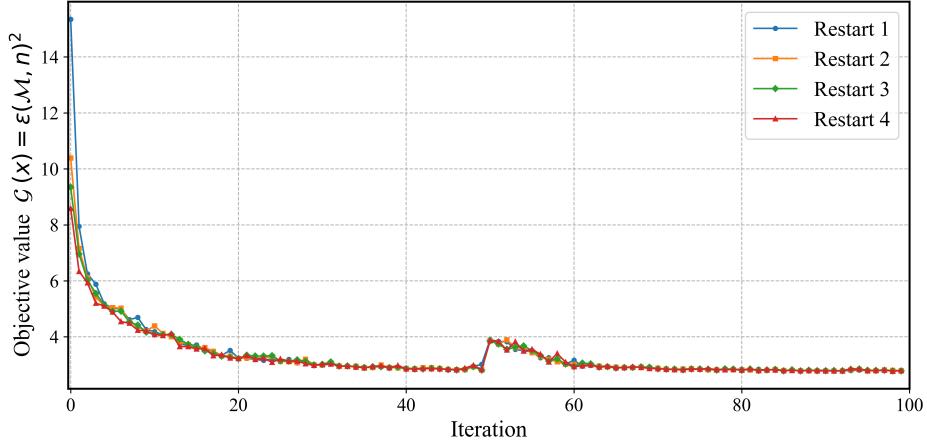


Figure 4: The evolution of \mathcal{G} against iteration count for the problem in Example 4.1 for $n = 4$.

Example D.2. As an illustration of the 3D case, we present an example where \mathcal{M} is an asymmetric and nonconvex subset of \mathbb{R}^3 . Consider the case where $k = 3$, and the set \mathcal{M} is the region

$$\mathcal{M} := \{(y_1, y_2, y_3) \in \mathbb{R}^3 \mid \varphi_j(y) \leq 0 \text{ for } j = 1, 2, 3\} \text{ where, with } y := (y_1, y_2, y_3), \\ \varphi_1(y) := y_3 - (1 - y_1^2 - 0.3y_2^2), \varphi_2(y) := -(y_3 + 1), \text{ and } \varphi_3(y) := y_2 - (0.5(y_1 - 1)^2 + 0.2y_3^2). \quad (29)$$

Algorithm 1 was employed with multiple restarts, and pictures of the outcomes are presented in Fig. 5 for the cases $n = 1, 2, 3$, and 4.

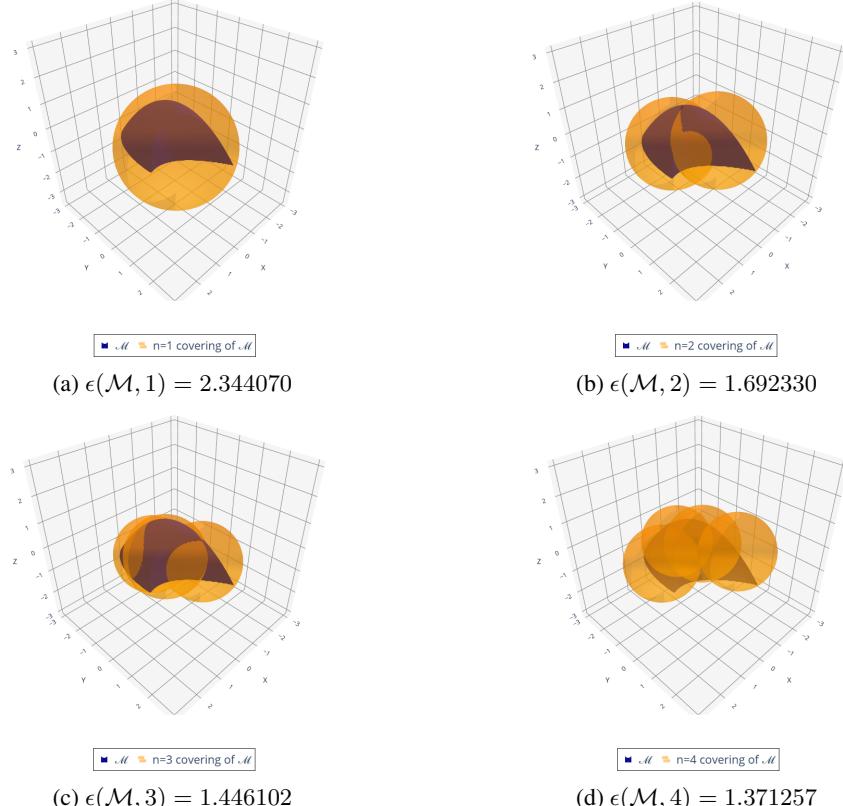


Figure 5: Covering of the region (29) for $n = 1, 2, 3$, and 4.