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ABSTRACT

Federated Learning (FL) is a nascent privacy-preserving learning framework un-
der which the local data of participating clients is kept locally throughout model
training. Scarce communication resources and data heterogeneity are two defining
characteristics of FL. Besides, a FL system is often implemented in a harsh envi-
ronment, leaving the clients vulnerable to Byzantine attacks. To the best of our
knowledge, no gradient compressors simultaneously achieve quantitative Byzan-
tine resilience and privacy preservation. In this paper, we fill this gap via revisit-
ing the stochastic sign SGD Jin et al. (2020). We propose β-stochastic sign SGD,
which contains a gradient compressor that encodes a client’s gradient information
in sign bits subject to the privacy budget β > 0. We show that β-stochastic sign
SGD converges in the presence of partial client participation, mobile static and
adaptive Byzantine faults, and that it achieves quantifiable Byzantine-resilience
and differential privacy simultaneously even with non-IID local data. We show
that our compressor works for both bounded and unbounded stochastic gradients,
i.e., both light-tailed and heavy-tailed distributions. As a byproduct, we show that
when the clients report sign messages, the popular information aggregation rules
simple mean, trimmed mean, median and majority vote are identical in terms of
the output signs. Our theories are corroborated by experiments on MNIST and
CIFAR-10 datasets.

1 INTRODUCTION

Federated Learning (FL) is a nascent learning framework that enables privacy sensitive clients to
collectively train a model without disclosing their raw data McMahan et al. (2017); Kairouz et al.
(2021). Expensive communication overhead and non-IID local data are two defining characteristics
of FL. A variety of communication-saving techniques have been introduced, including periodic av-
eraging McMahan et al. (2017), large mini-batch sizes Lin et al. (2020), and gradient compressors
Xu et al. (2020); Alistarh et al. (2017); Bernstein et al. (2018; 2019); Jin et al. (2020); Safaryan et al.
(2021); Wang et al. (2021). However, challenges remain.

A FL system is often massive in scale and is implemented in harsh environment – leaving the clients
vulnerable to unstructured faults such as Byzantine faults Lynch (1996). Moreover, FL clients
are privacy-sensitive. Despite clients’ privacy is partially preserved via denying raw data access,
quantitative privacy preservation is still desirable. Observing this, Bernstein et al. (2019) proposed
signSGD with majority vote which is provably resilient to Byzantine faults. However, even in the
absence of Byzantine faults, SignSGD fails to converge in the presence of non-IID data Safaryan &
Richtárik (2021); Chen et al. (2020), and is not differentially private. To handle non-IID data, Jin
et al. (2020) proposed stochastic sign SGD and its differentially-private (DP) variant, whose gradi-
ent compressors are simple yet elegant. Unfortunately, their DP variant does not converge 1, and
their standard stochastic sign SGD is not differentially-private (shown in our Theorem 1). We will
discuss the relations between Jin et al. (2020) and our work in the related work.

1Their Theorem 6 analysis contains major flaws.
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Contributions. In this paper, we revisit the elegant compressor in Jin et al. (2020). We propose
β-stochastic sign SGD, which contains a gradient compressor that encodes a client’s gradient infor-
mation in sign bits subject to the privacy budget β > 0, and works for unbounded and mini-batch
stochastic gradients. A parameter B > 0 is chosen carefully to clip the unbounded gradients.

• We first show (in Theorem 1) that when β = 0, the compressor is not differentially private.
In sharp contrast, when β > 0, the compressor is d · log ((2B + β)/β)-differentially private,
where d is the gradient dimension. We provide a finer characterization of the differential privacy
preservation (in Theorem 2 and Corollary 1). In addition, to help the readers interpret our DP,
we show (in Proposition 2) that our compressor with β > 0 can be viewed as a composition of a
randomized sign flipping and stochastic sign SGD compressor. To the best of our knowledge, this
is the first result to establish DP with signed compressors in FL.

• We show (in Theorem 4) β-stochastic sign SGD works for both bounded and unbounded stochas-
tic gradient. Specifically, convergence bounds are derived for both light-tailed and heavy-tailed
stochastic gradients. In addition, we show (in Theorem 4) the convergence of β-stochastic sign
SGD in the presence of partial client participation and mobile Byzantine faults, showing that it
achieves Byzantine-resilience and DP simultaneously. Both static and adaptive adversaries are
considered.

• As a byproduct, we show (in Proposition 1) that when the clients report sign messages, the popular
information aggregation rules simple mean, trimmed mean, median, and majority vote are identi-
cal in terms of the output signs. This implies majority vote is a counterpart of ”middle-seeking”
Byzantine resilient algorithms in the realm of sign aggregations.

• Our theoretical findings are validated with experiments on the MNIST and CIFAR-10 datasets

2 RELATED WORK

Communication Efficiency. Communication is a scare resource in FL McMahan et al. (2017);
Kairouz et al. (2021). Numerous efforts have been made to improve the provable communication
efficiency of FL. FedAvg – the most widely-adopted FL algorithm – and its Algorithm 1s save com-
munication via performing multiple local updates at the client side McMahan et al. (2017); Wang
& Joshi (2019); Stich (2019); Li et al. (2020a). Large mini-batch size is another communication-
saving technique yet its performance turns out be often inferior to FedAvg Lin et al. (2020). Gradient
compressors Xu et al. (2020) take the physical layer of communication into account and are used
to reduce the number of bits used in encoding local gradient information. Quantized SGD (QSGD)
Alistarh et al. (2017) is a lossy compressor with provable trade-off between the number of bits com-
municated per iteration with the variance added to the process. However, its performance is shown
to be inferior to simple compressor such as SignSGD Bernstein et al. (2019), which, based on the
sign, compresses a local gradient into a single bit. Nevertheless, SignSGD fails to converge in the
presence of non-IID data Safaryan & Richtárik (2021); Chen et al. (2020), and is not differentially
private. This is because SignSGD neglects the information contained in the gradient magnitude.

Byzantine Resilience. Despite its popularity, FedAvg is vulnerable to Byzantine attacks on the par-
ticipating clients Kairouz et al. (2021); Blanchard et al. (2017); Chen et al. (2017). This is because
that under FedAvg the PS aggregates the local gradients via simple averaging. Alternative aggrega-
tion rules such as Krum Blanchard et al. (2017), geometric medianChen et al. (2017), coordinate-
wise median and trimmed mean Yin et al. (2018) are shown to be resilient to Byzantine attacks
though different in levels of resilience protection with respect to the number of Byzantine faults, the
model complexity, and underlying data statistics in the presence of IID local data. Assuming the
PS can get access to sufficiently many freshly drawn data samples in each iteration, Xie et al. Xie
et al. (2019) proposed an algorithm Zeno that can tolerate more than 1/2 fraction of clients to be
Byzantine. Unfortunately, their analysis is restricted to homogeneous and balanced local data using
techniques from robust statistics. However, it is not straightforward to extend the results to non-IID
data, which stems from the difficulty of distinguishing the statistical heterogeneity from Byzantine
attacks Li et al. (2019). Many efforts have been devoted to mitigate the negative impacts stemming
from heterogeneous data Ghosh et al. (2019); Karimireddy et al. (2022). Ghosh et al.Ghosh et al.
(2019) used robust clustering techniques whose correctness crucially relies on large local dataset
and local cost functions to be strongly convex. Karimireddy et al. Karimireddy et al. (2022) derived
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convergence under the strong assumption of bounded dissimilarity of local gradients, which often
does not hold when the data efficiency is taken into account Su et al. (2022).

Privacy Preservation. FL is renowned for its capability to decouple model training from the raw
data collections by communicating only model/gradient parameters McMahan et al. (2017) between
the clients and the PS. However, recent results show that both weight and gradient sharing schemes
may leak sensitive information Zhu et al. (2019); Phong et al. (2018). Two notions of differen-
tial privacy exist in FL Truex et al. (2020): (A) central privacy, where a trusted server masks the
data and shares the perturbed updates with the distributed clients, and (B) local privacy, where each
client protects their data from any external parties, including the server. Most of the current works
focus on the perturbed updates by adding Laplace Huang et al. (2015), GaussianWang et al. (2021),
or Binomial perturbation Agarwal et al. (2018). The former two are applied to traditional gradi-
ents/updates, and the latter is applied to compressed gradients/updates whose values are represented
in terms of bits. Focusing on distributed mean estimation problem, Agarwal et al. (2018) proposed
a communication-efficient algorithm that achieves the same privacy and error trade-off as that of
the Gaussian mechanism provided that the model dimension is at most comparable to the client
population size. In this work, we focus on protecting local privacy.

Comparison with Jin et al. (2020). While we admit that β-stochastic sign SGD and sto-sign com-
pressor in Jin et al. (2020) are structurally alike, our results depart in significant ways: their theo-
retical guarantees are flawed since no explicit forms are given for the residual terms and Byzantine
resilience. They consider only full-batch gradients, which may not hold as edge clients in FL are
often with limited computing power and storage McMahan et al. (2017). On top of all, no partial
client participation is considered. In a sharp contrast, our work contains a quantitative characteriza-
tion of the interactions between FL system hyperparameters such as client number M , mini-batch
size n, sampling rate p, etc. We show our work converges in the presence of both static and adaptive
mobile Byzantine adversaries. We build upon our β compressor on mini-batch stochastic gradient
and derive the convergence bounds under light-tailed and heavy-tailed noise using a variety of con-
centration bounds, which is technically non-trivial. We also show our compressor works for partial
client participation. We reserve a point-by-point comparison in Appendix A.

3 PROBLEM SETUP

We consider a cross-device FL system, where a large number of clients are involved Kairouz et al.
(2021). The system consists of one parameter server (PS) and M clients that collaborate to minimize

min
w∈Rd

F (w) :=
1

M

M∑
m=1

fm(w), (1)

where fm(w) := EDm
[fm(w, x, y)] is the local cost function at client m ∈ [M ] := {1, · · · ,M}

with the expectation taken over heterogeneous local data (x, y) ∼ Dm.

Client unavailability. Clients are also heterogeneous in their computation speeds and communica-
tion channel conditions, which result in intermittent clients unavailability. To capture this, following
the literature Kairouz et al. (2021); Li et al. (2020b); Philippenko & Dieuleveut (2020), instead of
full participation, we assume that, in each iteration, a client successfully uploads its local update
with probability p independently across rounds, and independently from the PS and other clients.

Mobile Byzantine attacks. In each iteration t, up to τ clients suffer Byzantine faults. Denote by
B(t) ⊆ [M ] the set of clients are Byzantine in iteration t, which is unknown to the PS. Let τ(t) =
|B(t)|. We refer to the clients in B(t) as Byzantine clients at iteration t. We consider both static and
adaptive system adversaries. In the former, the system adversary does not know client unavailability
in each iteration; in the latter, the system adversary adaptively chooses B(t) according to the client
unavailability in each iteration t.

Differential privacy. In addition to Byzantine resilience, we also aim to provide quantitative privacy
protection. Towards this, we use differential privacy framework.
Definition 1 (Definition 2.4 Dwork et al. (2014)). For any ϵ > 0, a randomized algorithm M
with domain N|X | is ϵ-differentially private if P {M(x) ∈ S} ≤ exp(ϵ)P {M(y) ∈ S} holds for all
S ⊆Range(M) and for all x, y ∈ N|X | such that ∥x− y∥1 ≤ 1.
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4 ALGORITHM

Due to the randomness in data (x, y),∇iF (w, x, y) varies significantly across different realizations,
and could even be unbounded. To cope with this, in Algorithm 1, we clip the gradient coordinate-
wise, which are then used to stochastically generate signs. Formal definitions are given next.
Definition 2. The clipping function with parameter B, denoted by clip {·, B}, projects g ∈ R onto
[−B,B] as clip {g,B} = max {−B,min {B, g}} .
Definition 3. For any privacy budget β ≥ 0 and any clipping parameter B > 0, we define a
gradient compressorMB,β as

[MB,β ]i(g) :=

{
1, with probability B+β+clip{gi,B}

2B+2β ;

− 1, otherwise,
(2)

where gi and [MB,β ]i(g) are the i-th coordinates of g andMB,β(g), respectively.

Algorithm 1: Federated Learning with β-Stochastic Sign SGD
Input: T, η, β, n,B, and ν
Output: w(T )

1 Initialization: w(0)← ν for each m ∈ [M ], and the PS samples each client m ∈ [M ] with
probability p to form S(0);

2 for t = 0, · · · , T − 1 do
/* On each m ∈ S(t) \ B(t) */

3 Get n stochastic gradients g1
m(t), . . . , gn

m(t);
4 for i = 1, · · · , d do

5 ĝmi(t)← 1 with probability
B+β+clip{ 1

n

∑n
j=1 gj

mi(t),B}
2B+2β ; ĝmi(t)← −1 otherwise.

6 end
7 Report ĝm(t) to the PS;

/* On the PS */
8 Wait to receive messages ûm(t) ∈ Rd from the sampled clients S(t)
9 g̃(t) ← sign (agg{ûm(t) : m ∈ S(t)})

10 Sample each client m ∈ [M ] with probability p to obtain S(t+ 1);
11 Broadcast g̃(t) to all clients;

/* On each client m ∈ S(t+ 1) \ B(t) */
12 Upon receiving g̃(t): w(t+ 1)← w(t)− ηg̃(t);
13 end

Our algorithm is formally described in Algorithm 1, which takes T, η, β, n,B, and ν ∈ Rd as inputs,
where T is the iteration horizon T , η > 0 is the stepsize, β ≥ 0 is the privacy budget, n is the mini-
batch size of local stochastic gradients, B > 0 is a parameter used to clip stochastic gradients, and
ν serves as the initial values of w(0).

In each iteration t of Algorithm 1, a client m is selected by the PS with probability p. Let S(t) be
the set of selected clients at time t. Since Byzantine clients can deviate from Algorithm 1 arbitrarily,
lines 2-8 are executed at clients in S(t) \ B(t) only. In each iteration t, client m ∈ S(t) \ B(t)
first obtains n stochastic gradients g1

m(t), . . . , gn
m(t). Then it passes 1

n

∑n
j=1 g

j
m(t) to clip {·, B}

coordinate-wise, and compresses the clipped gradient via the compressorMB,β in lines 5 and 6. For
ease of exposition, let ĝmi(t) = [MB,β ]i(

1
n

∑n
j=1 g

j
m(t)). Finally, client m reports ĝm(t) to the

PS. On the PS side (lines 8 - 12), it first waits to receive messages ûm(t) from the sampled clients,
for which ûm(t) = ĝm(t) if m /∈ B(t). Then the PS passes {ûm : m ∈ S(t)} to an aggregation
function agg, and takes the coordinate-wise sign of the function output to obtained g̃(t). Next, it
broadcasts g̃(t) to S(t+ 1).

For convenience of exposition, if no message is received from a selected client m (which only occurs
when m ∈ B(t)), then the PS treats ûm as 0. Notably, if m ∈ B(t), the received ûm(t) could take
arbitrary value. Since ĝm ∈ {±1}d for m /∈ B(t), if ûmi(t) /∈ {−1, 1}, then it must be true that
client m ∈ B(t). Thus, ûmi(t) will be removed from aggregation by the PS. In other words, it is
always a better strategy for a Byzantine client to restrict û ∈ {±1}d. Henceforth, without loss of
generality, we assume that ûm(t) ∈ {±1}d for all received compressed gradients.
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4.1 AGGREGATION FUNCTIONS

Simple mean (i.e. naive averaging) is one of the widely-adopted aggregation rule of FL algorithms
Kairouz et al. (2021); Blanchard et al. (2017), yet it is vulnerable to Byzantine attacks. Alter-
native aggregation rules such as Krum Blanchard et al. (2017), geometric median Chen et al.
(2017), coordinate-wise median and trimmed mean Yin et al. (2018) are shown to be resilient
to Byzantine attacks yet with different levels of resilience protection, we show that when the in-
puts of the aggregation functions are a collection of binary vectors in {±1}d, the signs of the
outputs of the simple mean, trimmed mean, and median aggregation rules are identical. More-
over, they are all equivalent to the coordinate-wise majority vote aggregation rule.We denote by
aggavg, aggtrimmed,k, aggmedian, and aggmaj , the coordinate-wise mean, k-trimmed-mean, me-
dian, and majority vote aggregation rules, respectively, whose definitions are deferred to Appendix
B.
Proposition 1. For any given S ⊆ [M ] and any given ûm ∈ {±1}d for m ∈ S, the aggregation
rules aggavg, aggtrimmed,k with k < |S|/2, aggmedian, and aggmaj are equivalent in terms of their signs.

5 PRIVACY PRESERVATION

In this section, we characterize the DP of our gradient compressorMB,β . Over the entire training
time horizon, the quantification of the differential privacy preserved for any given client can be
obtained by applying the composition theorem of ϵ-differentially private algorithms (Dwork et al.,
2014, Corollary 3.15). We first show that β is an enablor of DP for our compressor.
Theorem 1. MB,0 is not differentially private. That is, there does not exist a finite ϵ > 0 for which

Definition 1 holds. When β > 0,MB,β is d · log
(

2B+β
β

)
-DP for all gradients.

Theorem 1 also implies that as long as β > 0,MB,β ensures ϵ-differential privacy for ϵ = O(d) at
any iteration t. This might be pessimistic in the presence of a deep neural network. However, it is
possible to reduce the order O(d), and we pave the way as outlined in Theorem 2 and Corollary 1.
Definition 4. For any given B > 0, let CB := (−∞,−B) ∪ (B,∞). For each g ∈ R, define
dist (g, CB) := infg′∈CB

|g − g′|.

Theorem 2. Let g, g′ ∈ G ⊆ Rd be an arbitrary pair of gradient inputs such that g′ ̸= g, and define
l1 sensitivity as ∆1 := maxg,g′∈G ∥g − g′∥1. MB,β is maxg∈G

∑d
i=1 log

(
1 + ∆1

β+dist(gi,CB)

)
-DP

on G for β > 0.

Corollary 1. Given the same definitions as in Theorem 2,MB,β is
(

∆1

β

)
-DP.

Remark 1. Theorem 2 gives a finer characterization of the differential privacy preserved byMB,β

when β > 0. Unfortunately, this maximum is often hard to find, so Corollary 1 tells us that we can
get rid of the order O (d) by controlling the l1 sensitivity ∆1. One way is to let B = ∆1/d.

Definition 5. DP-flip mechanismMB,flip : {±1} → {±1} is defined as: For any b ∈ {±1},

MB,flip(b) =

{
b with probability 2B+β

2(B+β) ;

−b otherwise.
(3)

It can be easily checked thatMB,flip is log
(

2B+β
β

)
-DP.

Proposition 2. For any β > 0,MB,β
d.
=MB,flip ◦MB,0, where d.

= denotes “equal in distribution”.

In Proposition 2, we decompose our MB,β as a composition of MB,0 and MB,flip to help the
readers interpret the realization of our DP. A simple example of the equivalence in Proposition 2 is
given in Fig.1. UnderMB,0, an occurrence of −1 in any round of one of experiments suggests its
input gradient is g′ rather than g. Even if we constrain the set of gradients, the ensured differential
privacy is not controllable (implied by the proof of Theorem.2). In contrast, underMB,β , one can
manipulate β to ensure a controllable privacy quantification as per Theorem.1.
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g = 0.1

g′ = −0.05

1

−1

1

−1

g = 0.1

g′ = −0.05

1

−1

with probability 5/8

with probability 3/8

with probability 3/4

with probability 1/4

with probability 1Given B = β = 0.1

M0 Mflip Mβ

(a) (b)

Figure 1: d = 1, B = β = 0.1 and two gradients g = 0.1 and g′ = −0.05.

6 CONVERGENCE ANALYSIS

Our analysis is derived under the following technical assumptions that are standard in non-convex
optimization Shalev-Shwartz & Ben-David (2014).
Assumption 1 (Lower bound). There exists F ∗ such that F (w) ≥ F ∗ for all w.
Assumption 2 (Smoothness). There exists some non-negative constant L such that
F (w1) ≤ F (w2) + ⟨∇F (w2), w1 − w2⟩+ L

2 ∥w1 − w2∥22 for all w1, w2.
Assumption 3 (Bounded true gradient). For any coordinate i ∈ [d], there exists Bi > 0 such that
|∇fmi(w)| ≤ Bi for all m ∈ [M ]. Let B0 := maxi∈[d] Bi.

Stochastic gradients can have significantly wider range than the true gradients.
Example 1 (Norm discrepancy between true and stochastic gradients). Let x ∼ N (0, Id) be stan-
dard Gaussian random vector. Let f(w,x) = ⟨w,x⟩ + ξ, where ξ is some unknown observation
noise. It can be checked easily that for any w ∈ Rd, it holds that∇f(w) = ∇E [f(w,x)] = E [x] =
0, whereas the natural stochastic gradient∇f(w,x) = x whose support is the entire Rd.
Assumption 4 (Sub-Gaussianity). For a given client m ∈ [M ], at any query w ∈ Rd, the
stochastic gradient gm(w) is an independent unbiased estimate of ∇fm(w) that is coordinate-
wise related to the gradient ∇fm(w) as gmi(w) = ∇fmi(w) + ξmi ∀ i ∈ [d], where ξmi is
zero-mean σmi-sub-Gaussian, i.e, E [ξmi] = 0, and the two deviation inequalities P {ξmi ≥ t} ≤
exp

(
− t2

2σ2
mi

)
and P {ξmi ≤ −t} ≥ exp

(
− t2

2σ2
mi

)
hold. Let σ2 := maxm∈[M ],i∈[d] σ

2
mi.

Assumption 5 (Heavy-tailed noise). Let ξmi defined in Assumption 4 be a zero-mean random vari-
able, E

[
ξ2mi

]
≤ σ2, and E

[
|ξmi|p

′]
≤Mp′ <∞ for p′ ≥ 4.

Notably, the class of sub-Gaussian random variables contains bounded and unbounded random vari-
able as special cases. Tighter convergence bounds can be obtained under boundedness or Gaussian-
ity assumptions on the noise; see Appendix C.1 for details.

Following the road-map used in Bernstein et al. (2019); Jin et al. (2020); Safaryan & Richtárik
(2021), we first establish an upper bound for the probability of gradient sign errors P {g̃i(t)} ≠

sign (∇iF (w(t))), and then bound 1
T

∑T−1
t=0 E [∥∇F (w(t))∥1] to conclude convergence. Recall

that gm(t) := ∇fm(w(t)) denotes the true local gradient at client m.

Theorem 3. Choose c0(n, p) = max

{√
8σ2

n log 6
c ,
√

8(B+β)2

p2 log 6
3−5c

}
and B = (1 + ϵ0)B0.

Fix t ≥ 1 and i ∈ [d]. Let c > 0 be any given constant such that c < 3
5 . Define δ1(t) =

2(B+β)
p

τ(t)
M + c0(n,p)√

M
and δ2(t) = 3(B + β) τ(t)M + c0(n,p)√

M
.

P {g̃i(t) ̸= sign (∇iF (w(t))) | w(t)} ≤ 1− c

2
. (4)

• (Sub-Gaussian noise): Suppose Assumption 3 and 4 hold, and ϵ0 > σ
B0

. Eq. (4) holds if
|∇iF (w(t))| ≥ δ1(t) + 2(B + β) exp

(
−n

2

)
, when the system adversary is adaptive, or when

is static but with τ(t) ≤ 2
p2 log

6
c , and if |∇iF (w(t))| ≥ δ2(t) + 2(B + β) exp

(
−n

2

)
when is

static with τ(t) > 2
p2 log

6
c .
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• (Heavy-tailed noise): Suppose Assumption 3 and 5 hold, and ϵ0 >
M

1
p′
p′

B0
. Eq. (4) holds for p′ ≥ 4

if |∇iF (w(t))| ≥ δ1(t) +
4(B+β)

n
p′
2

when the system adversary is adaptive, or when is static but

with τ(t) ≤ 2
p2 log

6
c , and if |∇iF (w(t))| ≥ δ2(t) +

4(B+β)

n
p′
2

when is static with τ(t) > 2
p2 log

6
c .

Theorem 3 says that when |∇iF (w(t))| is large enough, the sign estimation at the PS in each iter-
ation is more likely to be correct. This is crucial in ensuring the convergence because Theorem 3
implies that when |∇iF (w(t))| is large enough, in expectation, Algorithm 1 pushes w(t) towards
a stationary point of the global objective F . Additionally, small |∇iF (w(t))| implies that w(t) is
already near the neighborhood of a stationary point. Different from Safaryan & Richtárik (2021)
and Jin et al. (2020), we neither assume the sign error distributions across clients be identical, nor
require the average probability of sign error to be less than 1/2. Instead, we show that it is enough
to let the probability of population sign errors be small when the magnitude of the gradients is large.

Theorem 4. Suppose Assumptions 1, 2, 3 hold. Define δ1(t) = 2(B+β)
p

τ(t)
M + c0(n,p)√

M
, δ2(t) =

3(B + β) τ(t)M + c0(n,p)√
M

, Ξ1(n) = 2(B + β) exp
(
−n

2

)
, and Ξ2(n) = 4(B+β)

n
p′
2

. For any given t,

B = (1 + ϵ0)B0, and c such that 0 < c < 3
5 , set the learning rate as η = 1√

dT
and c0(n, p) :=

max

{√
8σ2

n log 6
c ,
√

8(B+β)2

p2 log 6
3−5c

}
.

With Assumption 4 for ϵ0 > σ
B0

or 5 for ϵ0 >
M

1
p′
p′

B0
(p′ ≥ 4),

when the system adversary is adaptive or when is static but with τ(t) ≤ 2
p2 log

6
c ,

1

T

T−1∑
t=0

E [∥∇F (w(t))∥1] ≤
1

c

[
(F (w(0))− F ∗)

√
d√

T
+

L
√
d

2
√
T

+ 2dΞ(n) +
2d

T

T−1∑
t=0

δ1(t)

]
; (5)

or when the system adversary is static with τ(t) > 2
p2 log

6
c ,

1

T

T−1∑
t=0

E [∥∇F (w(t))∥1] ≤
1

c

[
(F (w(0))− F ∗)

√
d√

T
+

L
√
d

2
√
T

+ 2dΞ(n) +
2d

T

T−1∑
t=0

δ2(t)

]
. (6)

We present the convergence results under a unified framework, where Ξ(n) = Ξ1(n) in the case of
sub-Gaussian noise, and Ξ(n) = Ξ2(n) in the case of heavy-tailed noise.

Remark 2. (1) The convergence rates in Eq. (5) and Eq. (6) only differ in their Byzantine terms by a
multiplicative factor of 3p

2 . As long as τ(t) is sufficiently large, the impacts of p, the degree of partial
client participation, on the convergence rate upper bound is limited. The lower bound requirement
on τ(t) might be an artifact of our analysis in simplifying the boundary case derivation.

(2) If τ(t) = τ for each t, then the Byzantine terms in Eq. (5) and Eq. (6) become 4(B+β)τd
pM and

6(B+β)τd
M . Now consider the asymptotics in terms of T and the client number M only. If τ =

O
(√

M
)

, then both 4(B+β)τd
pM and 6(B+β)τd

M scale in M with order O( 1√
M
), which is of the same

order as the term c0(n,p)√
M

in Eq. (5) and Eq. (6), the consequences of weak signal strength of the
compressed gradients near a stationary point of the global objective F . We note that the impacts
are limited as the contribution of one client is masked as a one-bit sign instead of an arbitrary value,
which is also verified in the following experiments. On the other hand, if

∑T−1
t=0 τ(t) = O

(√
T
)

,

the Byzantine terms in Eq. (5) and Eq. (6) scale as O( 1√
T
), of the same order as the first two terms.

In either case, due to the mobility of the Byzantine faults, it is possible that ∪Tt=0B(t) = [M ], i.e.,
every client is corrupted at least once.

(3) The residual term Ξ(n) is an immediate consequence of using mini-batch stochastic gradients
rather than true gradient as in Jin et al. (2020). It turns out that this term have minimal impact on
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the final convergence. In fact, as long as n = Ω(logM) (sub-Gaussian noise) or n = Ω
(
M

1
p′
)

(heavy-tailed noise), this term becomes non-dominating.

(4) When τ(t) = τ = O
(√

M
)

and n of the same order as in (3), the convergence rates become

O( 1√
T
+ 1√

M
), approaching the convergence rate of the standard (centralized, non-private, and

adversary-free) SGDO
(

1√
T

)
as M →∞. Luckily, M in FL is often large McMahan et al. (2017).

The bounds in Theorem 4 can be tightened with more structured gradient noises. We defer our results
on Gaussian-tailed and bounded stochastic gradients to Appendix C.2. All of the results have a sim-
ilar form and differ only in the noisy residual terms. In detail, the residual term O (exp(−n/2)) in
the convergence results of the Gaussian-tailed stochastic gradients is scaled by a constant 1/4

√
2π,

while no noisy tail term appears in the case of bounded stochastic gradients.

7 EXPERIMENTAL EVALUATION

In this section, we evaluate the accuracy and convergence speed of our Algorithm 1 in terms of the
impacts of client sampling p, the differential privacy protection β, and Byzantine attack resilience.
More experiment setups and comparisons with Byzantine baselines are deferred to Appendix. E.We
list key elements of our experimental setup for comparisons with benchmark algorithm below.

• Datasets: MNIST LeCun et al. (2009), and CIFAR-10 Krizhevsky et al. (2009).
• Models: Simple Multi-Layer Perceptron (MLP) McMahan et al. (2017).
• Clients Data: 100 balanced workers with α = 1 Dirichlet distribution Hsu et al. (2019).
• Baseline algorithms: Sign SGD Bernstein et al. (2018) and FedAvg McMahan et al. (2017).
• Byzantine baselines: Krum Blanchard et al. (2017), Geometric Median Chen et al. (2017), Cen-

tered Clipping Karimireddy et al. (2021). Adversary models: Label flipping, Inner product ma-
nipulation Xie et al. (2020), and the ”A little is enough” Baruch et al. (2019).
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Figure 2: MNIST testing results under non-i.i.d distribution with different Byzantine fractions and
(a) no differential privacy protection: β = 0, (b) differential privacy protection β = B.

BS
DS MNIST CIFAR-10

32 89.2% 46.03%
64 88.6% 46.68%

128 89.8% 46.78%
256 91.8% 46.54%

Table 1: Testing results on two datasets (DS)
with different mini-batch sizes (BS).

As α decreases, the local datasets become more and
more non-IID across different clients. For a fair
competition, all the experiments are under the same
learning rate and mini-batch size. Notably, we treat
B as a hyperparameter and fine-tune from extensive
experiments because we allow the stochastic gradi-
ents to be unbounded and the true gradient is upper
bounded by B0.

8



Under review as a conference paper at ICLR 2023

We train MLP under full client participation with 80 and 300 communication rounds in the first
two comparisons for MNIST and CIFAR-10, respectively. For the client sampling and Byzantine
resilience, we extend the time horizon to 500 communication rounds for both datasets.
Mini-batch size. We compare the peak performances of our variant under different mini-batch
sizes. It is observed in Table 1 that the Algorithm 1 is not sensitive to mini-batch size n. This meets
Remark 2 (3) as n = Ω(logM) or n = Ω

(
M

1
p′
)

is enough for the term not to become dominant.
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Figure 3: CIFAR-10 testing results under non-i.i.d distribution with different Byzantine fractions
and (a) no differential privacy protection: β = 0, (b) differential privacy protection β = B.
Parameter B and β. The peak performances are collected and listed in Table 2. We can observe
that the testing results drop as β increases. This matches a trivial observation from Theorem 4 such
that the increase of β pushes the bound farther away from stationary point, implying our variant
suffers from the data-utility-privacy trade-off. For any given B, the testing accuracy is comparable
when the differential privacy quantification βs are relatively small such as β ∈ {0.1B,B}, which is
fortunate as we might not sacrifice too much data utility while ensuring a privacy quantification.

B
β/B MNIST

0.1 (ϵ = 3.04d) 1.0 (ϵ = 1.1d) 5.0 (ϵ = 0.34d) 10.0 (ϵ = 0.18d)
1.0 64.0% 61.7% 41.0% 16.2%
0.1 83.1% 82.9% 81.4% 41.2%

0.01 89.9% 90.0% 90.3% 76.7%

B
β/B CIFAR-10

0.1 (ϵ = 3.04d) 1.0 (ϵ = 1.1d) 5.0 (ϵ = 0.34d) 10.0 (ϵ = 0.18d)
1.0 23.6% 20.7% 17.0% 16.7%
0.1 35.1% 32.4% 25.3% 23.2%

0.01 45.7% 43.7% 40.7% 38.0%

Table 2: Testing results on two datasets with different combinations of B and β/B (ϵ).

Client sampling and Byzantine resilience. Besides normal clients, we assume a constant fraction
of the reporting clients are Byzantine and only send the negation of the reporting signs to PS, the ad-
versary which we call adaptive mobile attackers. Though this is a constant fraction Byzantine experi-
ment, recall that our algorithm can tolerate up toO

(√
M
)

constant or up to
∑T−1

t=0 τ(t) = O
(√

T
)

time-varying Byzantine adversaries. It is observed in Fig. 2 and Fig. 3 that the Algorithm 1 is not
sensitive to client sampling. In particular, the Byzantine-free peak accuracy reaches around 96%
on MNIST and around 44% on CIFAR-10, which is a direct consequence of highly heterogeneous
data distributions. The accuracy drops are almost negligible when the Byzantine fraction does not
exceed 0.1. We can see a sharper drop as the fraction increases. However, the testing accuracy re-
mains stable during the final training stage when Byzantine clients account for 50% of the reporting
clients except when the sampling rate p is small. Two baseline algorithms with no Byzantine clients
are also evaluated for comparisons. It is observed that SignSGD slightly outperforms our variant in
some cases with β > 0; however, our variant is provable d · log 3-differentially private. FedAvg is
inferior to the other algorithms in all cases.
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A COMPARISONS WITH JIN ET AL. (2020).
Jin et al. (2020) Our work

Gradient
Batch-size Full-batch (True Gradient) [Eq. (33)] Mini-batch Stochastic Gradient

Distribution Bounded [Theorem 3] Sub-Gaussian (bounded as a subset)
and heavy-tailed

Residual

Weak Signal
Strength

∆(M) as a function of client number
M without explicit form [Theorem 2
and Remark 3].

c0(n,p)√
M

Byzantine Implicit forms without quantitative
results [Theorem 7 and Remark 6].

(B+β)
∑T−1

t=0 τ(t)
TM

Gradient
noise

No, since only bounded gradients are
considered.

O
(
exp

(
−n

2

))
for Sub-Gaussian noise;

O
(
1/n

p′
2

)
(p′ ≥ 4) for heavy-tailed

noise.

Differential Privacy No for sto-sign compressor; flawed
arguments for DP-sign compressor.

d log(1 + 2B
β ) for arbitrary gradients;(

∆1

β

)
for gradient pairs with bounded

l1 sensitivity ∆1.

Partial Client Participation No.
Theoretically and empirically verified,
and build adaptive Byzantine
adversaries on it.

Table 3: Point-by-point comparisons with Jin et al. (2020).

B ALGORITHMS

Definition 6. Let S ⊆ [M ] and let ûm ∈ {±1}d for m ∈ S.
(A.1) The mean aggregation rule is defined as aggavg ({ûm, m ∈ S}) = 1

|S|
∑

m∈S ûm.

(A.2) The coordinate-wise k-trimmed-mean aggregation rule, denoted by aggtrimmed,k, takes k ∈
N and {ûm, m ∈ S} as inputs and aggregates each coordinate i ∈ [d] as follows: (1) sort
{ûmi, m ∈ S}, where ûmi is the i-th coordinate of ûm, in an increasing order; (2) remove
the top and bottom k values, and denote the remained clients w. r. t. coordinate i as Ri; (3)
if Ri = ∅, then aggtrimmed,k,i ({ûm, m ∈ S}) = 1 (or −1) uniformly at random; otherwise,
aggtrimmed,k,i ({ûm, m ∈ S}) = 1

|Ri|
∑

m∈Ri
ûm.

(A.3) The coordinate-wise median aggregation rule, denoted by aggmedian, aggregates each coor-
dinate i ∈ [d] as follows: it first sorts the {ûmi, m ∈ S} in an increasing order. If |S| is even,
aggmedian,i ({ûm, m ∈ S}) outputs the average of the elements whose ranks are |S|

2 and |S|
2 + 1.

Otherwise, aggmedian,i ({ûm, m ∈ S}) outputs the element whose rank is ⌈ |S|
2 ⌉.

(A.4) The coordinate-wise majority vote aggregation rule, denoted by aggmaj, aggregates each
coordinate i ∈ [d] as follows: If there are more 1 than −1 in {ûmi, m ∈ S}, then
aggmaj,i ({ûm, m ∈ S}) outputs 1. If there are more −1 than 1 in {ûmi, m ∈ S}, then
aggmaj,i ({ûm, m ∈ S}) outputs −1. Otherwise, aggmedian,i ({ûm, m ∈ S}) outputs 0.

C ALTERNATIVE RESULTS

C.1 ALTERNATIVE ASSUMPTIONS

The following two alternative assumptions on the randomness of stochastic gradients are of decreas-
ing levels of stringency.
Assumption 6 (Boundedness). The ℓ∞ norm of all possible stochastic gradients is upper bounded.
Formally, let m ∈ [M ] be an arbitrary client and g be an arbitrary stochastic gradient that client m
obtains. For any coordinate i ∈ [d], there exists B̃i > 0 such that |gi| ≤ B̃i. Let B̃ = maxi∈[d] B̃i.

The following alternative assumption relaxes the boundedness requirement, and allows the stochastic
gradients to be supported over the entire Rd.
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Assumption 7 (Gaussianity). For a given client m ∈ [M ], at any query w ∈ Rd, the stochastic
gradient gm(w) is an independent unbiased estimate of ∇fm(w) that is coordinate-wise related to
the gradient∇fm(w) as gmi(w) = ∇fmi(w) + ξmi ∀ i ∈ [d],

where ξmi ∼ N
(
0, σ2

mi

)
. Let σ2 := maxm∈[M ],i∈[d] σ

2
mi.

C.2 ALTERNATIVE CONVERGENCE RATES

Corollary 2. Suppose that Assumptions 3 and 7 hold. Choose B = (1 + ϵ0)B0 for ϵ0 > σ/B0

and c0(n, p) = max

{√
8σ2

n log 6
c ,
√

8(B+β)2

p2 log 6
3−5c

}
. Fix t ≥ 1 and i ∈ [d]. Let c > 0 be any

given constant such that c < 3
5 .

When the system adversary is adaptive or when the system adversary is static but with τ(t) ≤
2
p2 log

6
c , if |∇iF (w(t))| ≥ 2(B+β)

pM τ(t) + B+β

2
√
2π

exp
(
−n

2

)
+ c0(n,p)√

M
, then Eq. (4) holds.

When the system adversary is static with τ(t) > 2
p2 log

6
c , if |∇iF (w(t))| ≥ 3(B+β)τ(t)

M +
B+β

2
√
2π

exp
(
−n

2

)
+ c0(n,p)√

M
, then Eq. (4) holds.

Corollary 3. Suppose Assumptions 1, 2, 3, and 7 hold. For any given T , B = (1 + ϵ0)B0

for ϵ0 > σ
B0

, and c such that 0 < c < 3
5 , set the learning rate as η = 1√

dT
and c0(n, p) =

max

{√
8σ2

n log 6
c ,
√

8(B+β)2

p2 log 6
3−5c

}
.

When the system adversary is adaptive or when the system adversary is static but with τ(t) ≤
2
p2 log

6
c , we have

1

T

T−1∑
t=0

E [∥∇F (w(t))∥1] ≤
1

c

[
(F (w(0))− F ∗)

√
d√

T
+

L
√
d

2
√
T

+
d√
2π

(B + β) exp
(
−n

2

)
+2d

c0(n, p)√
M

+ 4d
(B + β)

∑T−1
t=0 τ(t)

pTM

]
.

On the other hand, when the system adversary is static with τ(t) > 2
p2 log

6
c , we have

1

T

T−1∑
t=0

E [∥∇F (w(t))∥1] ≤
1

c

[
(F (w(0))− F ∗)

√
d√

T
+

L
√
d

2
√
T

+
d√
2π

(B + β) exp
(
−n

2

)
+2d

c0(n, p)√
M

+ 6d
(B + β)

∑T−1
t=0 τ(t)

TM

]
.

Corollary 4. Suppose that Assumption 6 holds. Choose B = B̃ and c0(n, p) =

max

{√
8σ2

n log 6
c ,
√

8(B+β)2

p2 log 6
3−5c

}
. Fix t ≥ 1 and i ∈ [d]. Let c > 0 be any given con-

stant such that c < 3
5 .

When the system adversary is adaptive or when the system adversary is static but with τ(t) ≤
2
p2 log

6
c , if |∇iF (w(t))| ≥ 2(B+β)

pM τ(t) + c0(n,p)√
M

, then Eq. (4) holds.

When the system adversary is static with τ(t) > 2
p2 log

6
c , if |∇iF (w(t))| ≥ 3(B+β)

M τ(t) +
B+β

2
√
2π

exp
(
−n

2

)
+ c0(n,p)√

M
, then Eq. (4) holds.

Corollary 5. Suppose Assumptions 1, 2, and 6 hold. For any given T and c such that 0 < c < 3
5 ,

set the learning rate as η = 1√
dT

and c0(n, p) := max

{√
8σ2

n log 6
c ,
√

8(B+β)2

p2 log 6
3−5c

}
.
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When the system adversary is adaptive or when the system adversary is static but with τ(t) ≤
2
p2 log

6
c , we have

1

T

T−1∑
t=0

E [∥∇F (w(t))∥1] ≤
1

c

[
(F (w(0))− F ∗)

√
d√

T
+

L
√
d

2
√
T

+ 2d
c0(n, p)√

M
+ 4d

(B + β)
∑T−1

t=0 τ(t)

pTM

]
.

On the other hand, when the system adversary is static with τ(t) > 2
p2 log

6
c , we have

1

T

T−1∑
t=0

E [∥∇F (w(t))∥1] ≤
1

c

[
(F (w(0))− F ∗)

√
d√

T
+

L
√
d

2
√
T

+ 2d
c0(n, p)√

M
+ 6d

(B + β)
∑T−1

t=0 τ(t)

TM

]
.

D PROOFS

D.1 AGGREGATION FUNCTIONS

Proof. [Proof of Proposition 1 (Equivalent to Majority Vote)] The intuition behind this proof
is to show that the signs of all the aggregation rules mentioned in the theorem statement, given
ûm ∈ {±1}d for m ∈ S, are equivalent to the sign of the k-trimmed-mean aggregation rule.

We first show that for any k < |S|/2, the signs of the outputs of the signs of the aggregation rule
aggtrimmed,k are the same. When k < |S|/2, it holds that Ri ̸= ∅ for each i ∈ [d]. Thus, the
aggregation rules aggtrimmed,k with k < |S|/2 is deterministic.

For any given coordinate i ∈ [d], if the sign of aggtrimmed,k is 0, by definition, we know that there
are equal numbers of 1 and −1 in {ûmi : m ∈ Ri}, and that the top (resp. bottom) k elements
removed from {ûmi : m ∈ S} are 1 (resp.−1). That is, there are equal numbers of 1 and −1 in
{ûmi : m ∈ S}. Hence, for any k′ ̸= k, as long as the remained set R′

i after trimming is nonempty
(which is ensured by the condition that k′ < |S|/2), it holds that aggtrimmed,k′ ({ûmi : m ∈ S}) = 0.

If the sign of aggtrimmed,k is−1, we know that there are more−1 than 1 in {ûmi : m ∈ Ri}, and that
the bottom k elements in {ûmi : m ∈ S} are all−1 whereas the number of 1 in the top k elements is
at most k. That is, there are more −1 than 1 in {ûmi : m ∈ S}. Hence, we know that for any k′, as
long as the remained set R′

i after trimming is nonempty, the sign of aggtrimmed,k′ ({ûmi : m ∈ S})
is −1. Similarly, we can show the case when the sign of aggtrimmed,k is 1.

The above argument, combined with the definition of aggmaj, immediately implies that when k <
|S|/2, the signs of aggtrimmed,k and aggmaj are the same.

Finally, since aggavg is aggtrimmed,0 and aggmedian = aggtrimmed,⌊ |S|−1
2 ⌋, the signs of aggavg, aggmedian,

and aggtrimmed,k for k < |S|/2 are all the same, proving the theorem.

D.2 PRIVACY PRESERVATION

Theorem 5. (Dwork et al., 2014, Corollary 3.15) Let Mi : Rd → {±1}d be an ϵi-differentially
private algorithm for i ∈ [k]. Then M[k](x) := (M1(x), · · · ,Mk(x)) is

∑k
i=1 ϵi-differentially

private.

Proof of Theorem 1 (Necessity of β). We first consider the setting when β = 0. Let

G = {g ∈ Rd : ∃i s.t.min{|gi −B|, |gi +B|} ≤ 1}.
Let g ∈ G. Without loss of generality, let us assume that |g1 −B| ≤ 1, where g1 is the first entry of
g. If g1 ≥ B, then there exists g′ ∈ Rd such that g′ ̸= g, g′

1 ∈ (−B,B), and ∥g − g′∥1 ≤ 1. Let
ĝ1 and ĝ′

1 be the compressed values of g1 and g′
1 under our compressor in Eq. (2). It holds that

P
{
ĝ′
1 = −1

}
P {ĝ1 = −1}

=

B−clip{g′
1,B}

2B
B−clip{g1,B}

2B

=
B − clip {g′

1, B}
B − clip {g1, B}

=
B − clip {g′

1, B}
B −B

=∞.
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If g1 ∈ (−B,B), then there exists g′ ∈ Rd such that g′ ̸= g, g′
1 ≥ B, and ∥g − g′∥1 ≤ 1. We have

P {ĝ1 = −1}
P {ĝ′

1 = −1}
=

B−clip{g1,B}
2B

B−clip{g′
1,B}

2B

=
B − clip {g1, B}
B − clip {g′

1, B}
=

B − clip {g1, B}
B −B

=∞.

Since a finite differential privacy quantification does not hold for any pair of gradients g and g′, no
differential privacy implies as per Definition 1, proving the first part of the theorem.

When β > 0, for any g, g′ ∈ Rd such that g′ ̸= g and ∥g − g′∥1 ≤ 1, and for each coordinate
i ∈ [d], it holds that

P {ĝ′
i = −1}

P {ĝi = −1}
=

B+β−clip{g′
1,B}

2B+2β

B+β−clip{g1,B}
2B+2β

=
B + β − clip {g′

1, B}
B + β − clip {g1, B}

≤ 2B + β

β
.

Similarly, we can show the same upper bound for P {ĝ′
i = 1} /P {ĝi = 1}. That is, for the i-th co-

ordinate, the compressorMB,β is coordinate-wise log
(

2B+β
β

)
- differentially private. By Theorem

5, we conclude that the compressor MB,β is d · log
(

2B+β
β

)
- differentially private for the entire

gradient.

Proof of Theorem 2 (Smaller Collection of Gradients). For each coordinate i ∈ [d], it holds that

P {ĝ′
i = −1}

P {ĝi = −1}
=

B+β−clip{g′
i,B}

2B+2β

B+β−clip{gi,B}
2B+2β

=
B + β − clip {g′

i, B}
B + β − clip {gi, B}

=
B + β − clip {gi, B}+ clip {gi, B} − clip {g′

i, B}
B + β − clip {gi, B}

≤ 1 +
|gi − g′

i|
B + β − clip {gi, B}

(7)

≤ 1 +
∆1

B + β − clip {gi, B}

≤ 1 +
∆1

β + dist (gi, CB)
.

By Theorem 5, we conclude that the compressorMB,β is maxg∈G
∑d

i=1 log
(
1 + ∆1

β+dist(gi,CB)

)
-

differentially private for all gradients g ∈ G.

Proof of Corollary 1 (Bounded DP with Bounded Sensitivity). By Theorem 2, we conclude that
the compressor MB,β is maxg∈G

∑d
i=1 log

(
1 + ∆1

β+dist(gi,CB)

)
- differentially private for all gra-

dients g ∈ G. It turns out that this bound can be relaxed, and we start the derivation from Eq.
(7):

(7) ≤ 1 +
|gi − g′

i|
β

.

Now consider the coordinate collection of the gradient pair, by Theorem 5, it remains to bound
d∑

i=1

log

(
1 +
|gi − g′

i|
β

)
≤ d log

[
1

d

d∑
i=1

(
1 +
|gi − g′

i|
β

)]
[Jensen’s inequality]

≤ d log

(
1 +

∆1

dβ

)
≤ ∆1

β
[follows from log(1 + x) < x when x > 0.]
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Proof of Proposition 2 (Equivalent as a Composition). Let g ∈ Rd be an arbitrary gradient. To
show this proposition, it is enough to show P {[MB,β ]i(g) = 1} = P {[MB,flip ◦MB,0]i(g) = 1}
holds for any i ∈ [d].

To see this,

P {[MB,flip ◦MB,0]i(g) = 1} = P {[MB,0]i(g) = 1&MB,flip(1) = 1}
+ P {[MB,0]i(g) = −1&MB,flip(−1) = −1}

=
B + clip {gi, B}

2B

2B + β

2(B + β)
+

B − clip {gi, B}
2B

β

2(B + β)

=
B + β + clip {gi, B}

2(B + β)

= P {[MB,β ]i(g) = 1} .

D.3 CONVERGENCE RESULTS

Proposition 3 (Bounded Random Variable Variance Bound). Given a random variable X and a
clipping threshold B > 0, if µ = E [X] ∈ [−B,B], then var (clip (X,B)) ≤ var (X) = σ2.

Proof of Proposition 3.

var (clip (X,B)) :=E
[
(clip(X,B)− E [clip(X,B)])

2
]

=E
[
(clip(X,B)− E [X])

2
]
− (E [clip(X,B)−X])

2

≤E
[
(clip(X,B)− E [X])

2
]
. (8)

For ease of exposition, we assume X admits a probability density function f(x). General distribu-
tions of X can be shown analogously. It follows that

E
[
(clip(X,B)− E [X])

2
]

=

∫ ∞

B

(B − µ)2f(x)dx+

∫ B

−B

(x− µ)2f(x)dx+

∫ −B

−∞
(−B − µ)2f(x)dx

≤
∫ ∞

B

(x− µ)2f(x)dx+

∫ B

−B

(x− µ)2f(x)dx+

∫ −B

−∞
(x− µ)2f(x)dx

= var (X) = σ2. (9)

Combining (8) and (9), we conclude var (clip (X,B)) ≤ var (X) = σ2.

D.3.1 SUB-GAUSSIAN AND HEAVY-TAILED DISTRIBUTIONS

Proof of Theorem 3 (Light and Heavy-tailed Sign Error). Recall that

ĝmi(t) =

{
[MB,β ]i

(
1
n

∑n
j=1 g

j
mi(t)

)
if m ∈ N (t);

∗ if m ∈ B(t),

where ∗ is an arbitrary value in {-1,1}. For any client m ∈ [M ] and any coordinate i ∈ [d], let

Xmi = 1{m∈S(t)}1{ĝmi ̸=sign( 1
M

∑M
m=1 gmi)},

and X̃mi = 1{m∈S(t)}1{[Mβ ]i(
1
n

∑n
j=1 gj

mi(t)) ̸=sign( 1
M

∑M
m=1 gmi)}.

Notably, if m ∈ B(t), then it is possible that Xmi ̸= X̃mi; otherwise, Xmi = X̃mi.

Without loss of generality, we assume the true aggregation is negative, i.e., sign (∇iF (w(t))) =
−1. The case when sign (∇iF (w(t))) = 1 can be shown analogously.
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For ease of exposition, we drop a condition of w(t) in the conditional probability expressions unless
otherwise noted. It holds that

P

{
sign

(
1

M

M∑
m=1

ĝmi

)
̸= −1

}
≤ P

{
M∑

m=1

Xmi ≥
|S(t)|
2

}

= P

 ∑
m∈N (t)

X̃mi +
∑

m∈B(t)

Xmi ≥
|S(t)|
2


= P

 ∑
m∈N (t)

X̃mi ≥
|S(t)|
2
−

∑
m∈B(t)

Xmi


≤ P


M∑

m=1

X̃mi ≥
|S(t)|
2
−

∑
m∈B(t)

Xmi

 . (10)

Next, we bound
∑M

m=1 X̃mi and
∑

m∈B(t) Xmi separately.

When the system adversary is static, i.e., the system adversary does not know S(t), it corrupts
clients independently of S(t). Hence,∑

m∈B(t)

Xmi ≤
∑

m∈B(t)

1{m∈S(t)}. (11)

We know that if τ(t) ≤ 2
p2 log

6
c , then

∑
m∈B(t) 1{m∈S(t)} ≤ 2

p2 log
6
c . Otherwise, with probability

at least 1− c
6 , it is true that

∑
m∈B(t) 1{m∈S(t)} ≤ 3

2pτ(t).

On the other hand, when the system adversary is adaptive, it chooses B(t) based on S(t). In partic-
ular, if |S(t)| ≤ τ(t), then the adversary chooses B(t) = S(t). Otherwise, i.e., |S(t)| > τ(t), the
adversary chooses an arbitrary subset of S(t). In both cases, it holds that∑

m∈B(t)

Xmi ≤
∑

m∈B(t)

1{m∈S(t)} ≤ min{τ(t), |S(t)|} ≤ τ(t). (12)

For ease of exposition, we first focus on adaptive adversary and will visit the static adversary towards
the end of this proof. Observe that |S(t)| =

∑M
m=1 1{m∈S(t)}. Let Ỹmi = X̃mi −

1{m∈S(t)}
2 .

Conditioning on the mini-batch stochastic gradients g1
mi, · · · , gn

mi, we have

E
[
Ỹmi | g1

mi, · · · , gn
mi

]
= E

[
X̃mi | g1

mi, · · · , gn
mi

]
− p

2
=

p

2B + 2β
clip

 1

n

n∑
j=1

gj
mi, B

 .

Taking expectation over g1
mi, · · · , gn

mi, we get

E
[
E
[
Ỹmi | g1

mi, · · · , gn
mi

]]
= E

[
E
[
Ỹmi | g1

mi, · · · , gn
mi

]
− p

1
n

∑n
j=1 g

j
mi

2B + 2β

]
+

pgmi

2B + 2β

= E

[
E
[
Ỹmi | g1

mi, · · · , gn
mi

]
− p

1
n

∑n
j=1 g

j
mi

2B + 2β

]
+

pgmi

2B + 2β
.

(13)

It turns out that E
[
E
[
Ỹmi | g1

mi, · · · , gn
mi

]
− p

1
n

∑n
j=1 gj

mi

2B+2β

]
is small:

1

p
E

[
E
[
Ỹmi | g1

mi, · · · , gn
mi

]
− p

1
n

∑n
j=1 g

j
mi

2B + 2β

]

=
BP

{
1
n

∑n
j=1 g

j
mi ≥ B

}
−BP

{
1
n

∑n
j=1 g

j
mi ≤ −B

}
2B + 2β︸ ︷︷ ︸

(A)

+
E
[
− 1

n

∑n
j=1 g

j
mi1{| 1n

∑n
j=1 gj

mi|≥B}
]

2B + 2β︸ ︷︷ ︸
(B)

.
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We bound (A) and (B) for sub-Gaussian and heavy-tailed noise separately.

First, for sub-Gaussian distributions with Assumption 4, we have

(A) ≤ B

2B + 2β
P

 1

n

n∑
j=1

gj
mi − E

 1

n

n∑
j=1

gj
mi

 ≥ B − E

 1

n

n∑
j=1

gj
mi


≤ B

2B + 2β
exp

(
−n (B − gmi)

2

2σ2
mi

)

≤ B

2B + 2β
exp

(
−nϵ20B

2
0

2σ2
mi

)
≤1

2
exp

(
−n

2

)
[since ϵ0 >

σ

B0
],

and

(B) =
E
[
− 1

n

∑n
j=1 g

j
mi1{| 1n

∑n
j=1 gj

mi|≥B}
]

2B + 2β

=

∫ −B

−∞ P
{

1
n

∑n
j=1 g

j
mi < t

}
dt−

∫ +∞
B

P
{

1
n

∑n
j=1 g

j
mi > t

}
dt

2B + 2β

≤

∫ −B

−∞ P
{

1
n

∑n
j=1 g

j
mi − E

[
1
n

∑n
j=1 g

j
mi

]
< t− E

[
1
n

∑n
j=1 g

j
mi

]}
dt

2B + 2β

≤

∫ −B

−∞ exp
(
− (t−gmi)

2

2σ2
mi/n

)
dt

2B + 2β
[Mill’s ratio Gordon (1941)]

=
1

2B + 2β

∫ −B

−∞

[
− 2σ2

mi/n

2 (t− gmi)

] [
−2 (t− gmi)

2σ2
mi/n

]
exp

[
− (t− gmi)

2

2σ2
mi/n

]
dt

≤ σ2
mi/n

(2B + 2β) (B + gmi)

∫ −B

−∞

[
−2 (t− gmi)

2σ2
mi/n

]
exp

(
− (t− gmi)

2

2σ2
mi/n

)
dt

≤ σ2
mi

nϵ0B0(2B + 2β)
exp

(
−nϵ20B

2
0

2σ2
mi

)
≤ σ2

mi

2nϵ20B
2
0

exp

(
−nϵ20B

2
0

2σ2
mi

)
[β > 0 and B := (1 + ϵ0)B0 > ϵ0B0]

≤ 1

2n
exp

(
−n

2

)
,

where the last inequality follows from the choice of ϵ0 > σ
B0

. Combining the bounds of (A) and

(B), we get E
[
E
[
Ỹmi | g1

mi, · · · , gn
mi

]
− p

1
n

∑n
j=1 gj

mi

2B+2β

]
≤ p exp

(
−n

2

)
. Hence,

E
[
Ỹmi

]
≤ p exp

(
−n

2

)
+

pgmi

2B + 2β
. (14)
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Second, for heavy-tailed distributions with Assumption 5, we have

(A) ≤ B

2B + 2β
P

 1

n

n∑
j=1

gj
mi − E

 1

n

n∑
j=1

gj
mi

 ≥ B − E

 1

n

n∑
j=1

gj
mi


≤ B

2B + 2β
P


∣∣∣∣∣∣

n∑
j=1

gj
mi − E

 n∑
j=1

gj
mi

∣∣∣∣∣∣
p′

≥ np′
|B − gmi|p

′


≤ B

2B + 2β

E
[∣∣∣∑n

j=1 g
j
mi − E

[∑n
j=1 g

j
mi

]∣∣∣p′]
np′ |B − gmi|p

′ [Markov’s inequality]

≤
B
∑n

j=1 E
[∣∣∣gj

mi − E
[
gj
mi

]∣∣∣p′]
+B

(∑n
j=1 E

[∣∣∣gj
mi − E

[
gj
mi

]∣∣∣2]) p′
2

(2B + 2β)np′ |B − gmi|p
′︸ ︷︷ ︸

Rosenthal-type inequality Merlevède & Peligrad (2013)

≤1

2

nMp′ + n
p′
2 Mp′

np′ |B − gmi|p
′ [M

1
2
2 ≤M

1
p′

p′ for p′ ≥ 4]

≤ Mp′

n
p′
2 ϵp

′

0 Bp′

0

≤ 1

n
p′
2

and

(B) =
E
[
− 1

n

∑n
j=1 g

j
mi1{| 1n

∑n
j=1 gj

mi|≥B}
]

2B + 2β

=

∫ −B

−∞ P
{

1
n

∑n
j=1 g

j
mi < t

}
dt−

∫ +∞
B

P
{

1
n

∑n
j=1 g

j
mi > t

}
dt

2B + 2β

≤

∫ −B

−∞ P
{

1
n

∑n
j=1 g

j
mi − E

[
1
n

∑n
j=1 g

j
mi

]
< t− E

[
1
n

∑n
j=1 g

j
mi

]}
dt

2B + 2β

≤ 1

2B + 2β

∫ −B

−∞

2Mp′

n
p′
2 |t− gmi|p

′ dt [similar argument as in (A)]

≤ 1

2B + 2β

1

ϵp
′−1

0 Bp′−1
0 (p′ − 1)n

p′
2

≤ 1

(p′ − 1)n
p′
2

≤ 1

n
p′
2

,

where the last inequality follows from the choice of ϵ0 >
M

1
p′
p′

B0
. Combining the bounds of (A) and

(B), we get E
[
E
[
Ỹmi | g1

mi, · · · , gn
mi

]
− p

1
n

∑n
j=1 gj

mi

2B+2β

]
≤ 2p

n
p′
2

. Hence,

E
[
Ỹmi

]
≤ 2p

n
p′
2

+
pgmi

2B + 2β
. (15)

Let us consider two mutually complement events E1 and E2:

E1 :=

{
1

2(B + β)

M∑
m=1

clip

(
1

n

n∑
j=1

gj
mi, B

)
− E

[
1

2(B + β)

M∑
m=1

clip

(
1

n

n∑
j=1

gj
mi, B

)]
≤ c0(n, p)

4(B + β)

√
M

}
,

E2 :=

{
1

2(B + β)

M∑
m=1

clip

(
1

n

n∑
j=1

gj
mi, B

)
− E

[
1

2(B + β)

M∑
m=1

clip

(
1

n

n∑
j=1

gj
mi, B

)]
>

c0(n, p)

4(B + β)

√
M

}
.
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We have

P

{
M∑

m=1

X̃mi ≥
|S(t)|
2
− τ(t)

}
≤ P

{
M∑

m=1

Ỹmi ≥ −τ(t) | E1

}
+ P {E2} . (16)
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where the last inequality holds because c0(n, p) ≥
√

8(B+β)2

p2 log 6
3−5c .

Therefore, for adaptive system adversary, choosing c0(n, p) =
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The remaining proof follows the above argument for adaptive adversary.

Proof of Theorem 4 (Sub-Gaussian and Heavy-tailed Convergence Rate). By Assumption 2,
we have
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In the following proof, we denote A = A1, Ξ(n) = Ξ1(n) for sub-Gaussian noise and A = A2,
Ξ(n) = Ξ2(n) for heavy-tailed noise.

We now have two cases:
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Second, when the system adversary is static with τ(t) > 2
p2 log

6
c , follow a similar proof as above,

we get
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D.3.2 GAUSSIAN DISTRIBUTION

Proof of Corollary 2 (Gaussian Tail Sign Errors). Most of the proofs are the same with Theorem
3. We start from Eq. 13.
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It turns out that E
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where (A) and (B) follow because of Mill’s ratio Gordon (1941).

Combining (A), (B), and (C), we get
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where the last inequality follows because ϵ0 > σ
B0

and B := B0 + ϵ0B0 > ϵ0B0.
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For the first term in the right hand side of Eq. (16), we have
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where the last inequality holds because c0(n, p) ≥
√

8(B+β)2

p2 log 6
3−5c .

The remaining proof follows the arguments in Theorem 3.

Proof of Corollary 3 (Gaussian Tail Convergence Rate). This proof follows from Theorem 4.
We also consider two cases here.
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Second, when the system adversary is static with τ(t) > 2
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D.4 BOUNDED STOCHASTIC GRADIENTS

Proof of Corollary 4 (Bounded Gradient Sign Errors). This proof follows from Theorem 3. No-
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The remaining proof also follows the arguments in Theorem 3.

Proof of Corollary 5 (Bounded Gradient Convergence Rate). This proof follows from Theorem
4. We also consider two cases here.
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E EXPERIMENT DETAILS

E.1 DATASETS AND PREPROCESSING

• MNIST LeCun et al. (2009). MNIST contains 60, 000 training images and 10, 000 testing images
of 10 classes.

• CIFAR-10 Krizhevsky et al. (2009). CIFAR-10 contains 50, 000 training images and 10, 000
testing images of 10 classes.

Implementation. We build our codes upon PyTorch Paszke et al. (2019). We run all the experiments
with 4 GPUs of type Tesla P100 and 1 GPU of type RTX 3060.

E.2 PARAMETERS

Communication rounds: 500 for both datasets in the section of client sampling. For the other
sections, 80 and 300 communication rounds for MNIST and CIFAR-10, respectively.

Dataset partition: Clients’ local datasets are evenly partitioned into balanced subsets. However,
the distributions are non-IID since they follow Dirichlet distribution with a concentration α.

We consider a constant learning rate in all cases, and the choices are tuned through grid search.
Specifically, η ∈ {0.0001, 0.001, 0.01, 0.1}, B ∈ {0.001, 0.01, 0.1, 1}. Although our theory indi-
cates the algorithm is not sensitive to mini-batch size, we set a large batch size n = 256 for both
datasets.

Universal β-Stochastic Sign SGD FedAvg
Learning Rate η Mini-batch Size n Hidden Units B Local Epochs

MNIST 0.01 256 64 0.01 1
CIFAR-10 0.01 256 200 0.01 1

Table 4: Hyperparameters

E.3 BYZANTINE BASELINE COMPARISONS

In this section, we reuse the network model and parameter settings in Table 4, set local epoch to be
1 for non-signed aggregation rules. We evaluate the algorithms on MNIST dataset and partition in
a same manner as Appendix.E.1. We consider a total of 100 clients under full-participation with 20
Byzantine clients. The aggregation-rule-specific parameters are illustrated in the following part. All
the experiment results are collected with 5 repetitions.

We compare our β stochastic sign compressor with Krum Blanchard et al. (2017), geometric median
Chen et al. (2017), centered clipping Karimireddy et al. (2021) under three adversary models, in-
cluding label flipping, inner product manipulation Xie et al. (2020), the ”A little is enough” Baruch
et al. (2019). Following Karimireddy et al. (2021), τ is set to be 10 in centered clipping since
momentum is switched off. We first illustrate the adversary models below:
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• Label flipping: Suppose original label is x, the adversary will replace it with 9− x;
• Inner Product Manipulation: The adversaries send − γ

|N |
∑

i∈N ∇f(wi), instead of honest
messages, to mislead the parameter server, where ϵ is the strength of the adversary. Let γ = 0.1.

• A Little is Enough: The adversaries estimate the benign clients’ mean µN and standard deviation
σN . Then, they will construct new messages as µN + zσN and upload to the parameter server,
where z is the strength of the adversary. We choose z according to Baruch et al. (2019):

z = max
z

(
Φ(z) <

M − s

M

)
,

where z = ⌊M2 + 1⌋ − |B(t)|, and Φ is the cumulative distribution function of standard normal
distribution. For us, z ≈ 0.5.

In Section 7, we present the performance of our compressor under flipping sign attacks. For sign-bit
messages, this is the worst-case scenario as adversaries’ messages cannot escape a binary value.
Otherwise, it will be detected by PS and filtered out.

We consider a milder condition than the sign flipping attacks for a fair of competition. We allow
adversaries to manipulate the mini-batch stochastic gradient but assume an honest compressor that
will send out the correctly compressed corrupted messages to PS.
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Figure 4: Comparisons with baselines: Krum, Geometric Median, Centered Clipping under Label
Flipping, Inner Product Manipulation, and the ”A Little is Enough” Adversaries,
where 1-STO refers to our β stochastic sign compressor with β = B = 0.01.

Throughout the experiments, it is observed that our β stochastic sign compressor outperforms all
other baseline algorithms when β = 0 or β = B. Notably, our compressor saves up to 31x commu-
nications and is differentially private when β > 0.
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