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ABSTRACT

Explaining the decisions made by machine learning classifiers aids individuals in
identifying critical factors and charting future plans. Recent studies have shown that
incorporating causal graphs of input features provides more realistic explanations;
however, this also introduces new challenges such as handling noisy graphs and
efficiently performing inference with black-box classifiers. In this work, we tackle
these issues by presenting an efficient reinforcement learning (RL)-based approach
with an idea of conditional intervention. Our intervention method is theoretically
preferable and considers both feature dependencies and incompleteness of graphs.
Simultaneously, the RL-based method offers the capacity to learn the intervention
process while guarantees computational complexity at inference stage. In the
experiments, we showcase the efficiency and superior performance of our solution
when compared to baseline methods on both synthetic and real datasets.

1 INTRODUCTION

Explaining machine learning models in decision making can be beneficial in practice. For example, a
customer who is rejected by a loan approval system may expect not only the decision but also some
advice for getting approval next time. Relevant topics are counterfactual explanation and algorithmic
recourse. Counterfactual explanation or CE (Wachter et al., 2017) finds a minimum feature set that
can be intervened to change the classifier output. Algorithmic recourse or AR (Mahajan et al., 2019;
Verma et al., 2022; Kanamori et al., 2020), on the other hand, is based on CE but puts more attention
on avoiding impractical suggestions (e.g., reducing age). A recent trend for achieving practical
explanations is considering constraints or dependency between features. For example, Mahajan
et al. (2019) propose to introduce structural causal models (SCMs) into the CE algorithm. OrdCE
(Kanamori et al., 2021) finds explanations by solving an optimization problem constrained by causal
graphs. As an accurate causal graph can be difficult to obtain, Karimi et al. (2020) propose Bayesian-
based approaches to train models with incomplete structural equations. However, the approach
requires the decision maker to be differentiable, or brute-force search and feature discretization are
needed, making it infeasible and suboptimal in general.

In this work, we propose Conditional Intervention for Algorithmic Recourse (CIAR) for efficiently
generating explanations with incomplete causal graphs. The idea of conditional intervention is
motivated by the existence of unobserved factors. An example is illustrated in Figure 1, where the
unobserved factors, muscle and bone densities, exist and can offer extra paths for influencing weight.

Figure 1: A causal graph of height
and weight with unobserved factors,
muscle and bone density.

This setting brings two challenges. First, the existence of the
unobserved factors is unkown. Second, the extra intervention
needs to depend on existing causal effects so that the desired
output can be achieved (i.e., +2 kg on weight considering
height to achieve +8 kg). To do this, we propose to formulate
the intervention on weight by P (do(weight) | height) and at-
tempt to approximate the distribution by learning from data.
Intuitively, the estimated distribution implies the impact of
possibly unobserved factors and a reasonable range for inter-
vention. Compared with Karimi et al. (2020), our problem
setting is more realistic yet challenging as the uncertainty of
intervention are considered.
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To generate explanations with conditional interventions, we propose a novel reinforcement learning
(RL) approach featuring a stable and efficient policy network. The most relevant work to ours could
be FastAR (Verma et al., 2022). FastAR is a RL method focusing on fast AR generation given a
SCM; however, we note that the intervention on endogenous features is not well handled. Therefore,
the causality can be overwritten. Also, we find FastAR can suffer from the discretized action space
and the encoding of categorical features.

The advantages of our model is summarized as follows.

• The proposed idea, conditional intervention, shares the same motivation with (Mahajan
et al., 2019) but improves the formulation. Our objective function derived from the proposed
intervention is theoretically more general and optimal.

• The experiments on both synthetic and real datasets show that CIAR outperforms other
competitors and can significantly improve the efficiency. Specifically, CIAR is around 15
times faster than FastAR when generating explanations.

• CIAR has low requirements to use. The proposed algorithm does not assume complete
causal graphs and can work with mixtures of numerical and categorical features. Also,
CIAR can explain black-box classifiers without sacrificing efficiency.

2 PRELIMINARIES

2.1 PROBLEM STATEMENT

We first introduce the concept of parametrized action space, which is crucial to the implementation of
interventions in AR with RL. Then we describe the setting of the causal models that we use to ensure
causality between features after interventions. Finally we define our proposed concept of conditional
intervention and clearly formulate the RL-based process of interventions for AR.

Parametrized action space of AR with RL Solving AR problems with RL is non-trivial. At each
step, the RL agent determines W (which feature to intervene upon) and V (what value to intervene
to). In the researches of RL, Masson et al. (2016) formalized this kind of action as parametrized
actions with the action space A =

⋃
w∈Ad

{(w, v) | v ∈ Ωw}, where every action in A contains a
discrete action w ∈ Ad and a continuous action v ∈ Ωw. For AR tasks, Ad is the set of all actionable
features. Ωw is the domain of feature Xw.

Causality and intervention in AR To ensure interventions in AR respect the causal relationships
between features, it requires a structural causal model (SCM) (Pearl, 2009).
Definition 1 (Structure Causal Model). A structural causal model (SCM) is an ordered triple
< G,H,F >, where G is the set of exogenous features (variables); H is the set of endogenous
features; and F is the set of structural equations that determines the values of H from other features
in G ∪H . For each Xi ∈ H and Fi ∈ F , Xi = Fi(PAi, Ei), where PAi denotes the parents of Xi

and Ei is the randomness that depicts the stochastic mapping from PAi to Xi.

A causal model can be represented by a directed acyclic graph (DAG). Figure 2 is an example of a
causal model in DAG form. In Figure 2, {U0, X3, X4} ⊂ H with others in G. In an SCM, when a
feature is intervened upon, it will have treatment effects on its descendants (endogenous). However,
this does not imply the endogenous features themselves cannot be intervened upon. In the real world,
it is unlikely we collect all the causes (parents) of an endogenous feature. We can have unobserved
causes and that is where Ei in Definition 1 arises from. Figure 2 demonstrates this concept. We could
lose U0, U1, U2 in the causal model, so {X3, X4} ⊂ H with others in G. When X3 is intervened
upon with its parent X2 fixed, it actually means that the unobserved causes U0, U2 are intervened
upon implicitly. Therefore, we can still have an intervention on an endogenous feature. We should
determine this intervention according to the extent it is determined by its parents. The less it is
determined by their parents, the more space we can intervene.
Definition 2 (Conditional intervention). In comparison with regular intervention do(Xi = x′i), where
x′i is sampled from the sample space Ω(Xi), conditional intervention do(Xi = x′i | pai) has the
intervention value x′i sampled from the distribution p(Xi | pai). Then we assume

Pr(Xi = x′i | pai) ≥ threshold, (1)
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which means given the parent values of Xi, the value of of intervention, x′i, should be a value that is
likely to be observed (i.e, above a pre-determined threshold).

Figure 2: An example of causal graph. Categori-
cal features are labeled with orange color. Fea-
tures with dashed line are assumed unobserved. Figure 3: The illustration of CIAR.

Problem formulation Given an instance (input features) x, a classifier f , the target class y′ and
the SCM that describes the causal relationships between features, our goal is to generate, with RL, a
sequence of conditional interventions {at = (wt, vt); t = 0, . . . , T − 1} that in conjunction with
the SCM, maps x to its counterfactual instance (AR) x′ s.t. the following requirements are satisfied.

1. f(x′) = y′.
2. T (number of steps) ≤ p (number of actionable features).
3. x′ preserves causal relationships between features.

4.
∑T−1
t=0 ∥vt − xtw∥ is minimized, where xtw is the feature value vt is to replace.

2.2 RELATED WORK

Most previous works formulate AR (CE) problems as solving optimization problems at inference
stage (Wachter et al., 2017; Mothilal et al., 2020; Karimi et al., 2019; Kanamori et al., 2020). For
better efficiency, Nemirovsky et al. (2020) and Pawelczyk et al. (2020) propose generative methods.
Methods above provide the final AR results without clear reasoning. RL-based AR methods (Verma
et al., 2022; Chen et al., 2022), on the other hand, are attractive in providing a clear sequence of
actions for users to follow and are more efficient than the optimization-based methods (Wachter
et al., 2017; Mothilal et al., 2020; Karimi et al., 2019; Kanamori et al., 2020). In the context of RL
researches, to deal with the parametrized action space for AR, with most RL algorithms, one should
unify the action spaces of the two sets of actions (Sherstov & Stone, 2005), leading to compromise
in performance. Wei et al. (2018) proposed a hierarchical approach PASVG(0) for parametrized
action space, where a discrete action is firstly determined, and a continuous action is then determined
by conditioning on the known discrete action. The other work, P-DQN (Xiong et al., 2018), first
determines the continuous action explicitly. Afterward, the Q network examines all the discrete
actions to find the one that is the most consistent with the continuous action. The latter is not as
efficient due to the nature of DQN (Mnih et al., 2013), having to examine all the discrete actions.
For RL-based AR methods, FastAR (Verma et al., 2022) discretized the action space, which could
hamper the performance. ReLAX (Chen et al., 2022) solved the parametrized action space using
P-DQN (Xiong et al., 2018). Neither FastAR nor ReLAX directly decode categorical features.

To preserve causality in AR tasks, Mahajan et al. (2019) proposed incorporating the SCM and
minimizing a causal proximity for endogenous features, which can be applied in limited cases where
the conditional (on parents) features are close to the likes of normal distributions. However, even
with normality assumption, the minimizer to this proximity is still not optimal for causality (as we
derived the optimum loss in section 3.1). Kanamori et al. (2021) proposed OrdCE that optimizes
the active actions by generating ordered interventions given the SCM, solved by mixed integer
programming. It only works for linear SCMs and non-blackbox classifiers. Karimi et al. (2020)
enforces the probabilistic treatment effects of interventions by learning the interventional distributions
with CVAE (Sohn et al., 2015). Verma et al. (2022) proposed FastAR, an RL-based algorithm that
also enforces the treatment effects. For Karimi et al. (2020) and Verma et al. (2022), intervention on
endogenous features is not conditional on parents, which could overwrite the causality. On the other
hand, disallowing intervention on endogenous features greatly limits the search space of AR.
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3 METHODOLOGY

Overview Figure 3 illustrates our algorithm. At step t, the RL agent determines the intervention at
based on state st. The intervention cost (IC) helps ensure each intervention on an endogenous feature
is a conditional intervention as in definition 2. The RL transition function enforces the treatment
effects (TE) on the descendants of the intervened feature to preserve the causal relationships. The
intervened feature values xt+1 will query the classifier f and get a reward. This process repeats until
the classifier output is changed to the target class or all features are intervened upon. An example is
in figure 5, which we will explain in the end of the section. In Section 3.1, we introduces IC for AR
methods. Section 3.2 elaborates the RL agent with the focus on the parametrized action space, the
RL transition function combined with TE, and the incorporation of IC to the RL agent.

3.1 INTERVENTION COST (IC)

Intervention cost is a novel, differentiable loss function to help find the intervention value x′i for
endogenous feature Xi that satisfies definition 2. It finds out to what extent Xi is determined by its
parents. We intervene upon Xi only if it is not fully determined by its parents. We can intervene
upon multiple features. To ensure a likely intervention profile, we consider the joint distribution of all
features p(x1, . . . , xp). With Causal Markov condition (Hausman & Woodward, 1999),

p(x1, . . . , xp) = p(xexo)ΠXi∈endop(xi | pai), (2)

where exo and endo denotes exogenous and endogenous features respectively.
Exogenous features are not constrained by parents. Let x′ be the intervened feature vector. We
consider the following likelihood function.

p(x′
endo | x′

exo) = ΠXi∈endop(x
′
i | pa′i). (3)

The solution to x′
endo is supposed to maximize this likelihood function given x′

exo. Hence, we
minimize the negative log-likelihood

− log p(x′
endo | x′

exo) = −
∑

Xi∈endo

log p(x′i | pa′i). (4)

Numerical case Let’s first consider the case where

Xi | pa′i ∼ N (µ(Xi | pa′i), σ(Xi | pa′i)), (5)

i.e., Xi | pa′i follows Gaussian distribution where its mean and standard deviation depends on its
parent values. In this case, from Eq. 4, the intervention cost for intervening upon Xi to x′i is

IC(do(Xi = x′i | pa′i), pa′i) = (
x′i − µ(Xi | pa′i)√

2σ(Xi | pa′i)
)2 + log σ(Xi | pa′i). (6)

From Eq. 6, we also see that the causal proximity from Mahajan et al. (2019), which only considers
the first conditional moment, is not optimum even under normality assumption. For non-Gaussian
cases, while we may estimate the conditional distribution p(Xi | pai) using generative models or
kernel density estimation (Rosenblatt, 1956), it is extremely demanding for both data quality and
quantity, especially when pai is high-dimensional (multiple parents features). Instead, motivated by
Eq. 6, we make use of the conditional mean and conditional variance, reducing the problem from
estimating infinite number of moments to estimating the first and second moments. We construct an
interval

Ix′
i|pa′i,κ = {x′i : |x′i − µ(Xi | pa′i)| ≤ σ(Xi | pa′i) · κ} (7)

for x′i to reside in. By Chebyshev’s inequality, Pr(Xi | pa′i /∈ Ix′
i|pa′i,κ) ≤

1
κ2 . That is, given parent

values, Ix′
i|pa′i,κ captures a suitable range for Xi despite its distribution. µ(Xi | pa′i) and σ(Xi | pa′i)

can be easily estimated without assumptions on distributions. We leave the details to the Appendix.
Finally, in general cases, the intervention cost for the conditional intervention do(Xi = x′i | pa′i) is

ICκ(do(Xi = x′i | pa′i), pa′i) = max(0, |x
′
i − µ(Xi | pa′i)
σ(Xi | pa′i)

| − κ)2, (8)

minimizing which will enforce x′i fall into the interval Ix′
i|pa′i,κ, so we can ensure do(Xi = x′i | pa′i)

to have the property in Eq. 1.
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Categorical case When we need to intervene upon a categorical endogenous feature Xi, the AR
methods model a discrete distribution Pm(X ′

i) and sample x′i it. We want this distribution close to
P (Xi | pa′i). In discrete case, P (Xi | pa′i) can be easily estimated with multi-class classifiers. The
generalization of intervention cost to a categorical endogenous feature Xi is

IC(do(Xi ∼ Pm(X ′
i) | pa′i), pa′i) = DKL(P (Xi | pa′i)∥Pm(X ′

i)), (9)

where DKL denotes Kullback–Leibler divergence (Csiszar, 1975). The notation do(Xi ∼ Pm(X ′
i) |

pa′i) denotes that given parent values, the intervention value on Xi is sampled from Pm(X ′
i).

Remark 1. The greater uncertainty of Xi | pa′i corresponds to the smaller intervention cost.

In numerical cases, we can measure the uncertainty of Xi | pa′i by σ(Xi | pa′i). It can be seen from
Eq. 8 that greater conditional standard deviation σ(Xi | pa′i) leads to smaller intervention cost.

In categorical cases, Eq. 9 can also be expressed by

IC(do(Xi ∼ Pm(X ′
i) | pa′i), pa′i) = H(P (Xi | pa′i)), Pm(X ′

i))−H(P (Xi | pa′i)), (10)

where H(·) and H(·, ·) denote entropy and cross entropy respectively. Hence, the intervention cost
decreases as the uncertainty (conditional entropy) of P (Xi | pa′i) increases.

The total intervention cost sums over all endogenous features, so the optimization process in AR
could find out which endogenous features are less determined by its parents (higher uncertainty)
and focuses on intervening them if they are important to the classifier output.

One thing to notice is that if one would like to optimize IC(do(Xi ∼ Pm(X ′
i) | pa′i), pa′i) through its

gradient, optimize g(IC(do(Xi ∼ Pm(X ′
i) | pa′i), pa′i)) instead, where g is a non-linear increasing

function in [0,∞]. This is to prevent vanishing of H(P (Xi | pa′i)) in the gradient.

3.2 THE RL AGENT

At each step, the RL agent determines an intervention on the original instance x. After several
interventions, the modified input x′ is expected to lead to the target classifier output. The process can
be formulated as a Markov Decision Process (MDP).

3.2.1 NOTATION

We denote a random feature vector by X and its realization by x. The subscript Xi or xi denotes the
ith dimension of the vector. Xi also represents the ith feature in the dataset. The superscript Xt or
xt means the vector at step t. wtb is the action record, which records the features ever chosen by the
agent before step t. M and C represent the set of the numerical and categorical features respectively.
We assume the number of actionable feature p.

3.2.2 THE MDP SPECIFICATION

Actions: The actions (interventions) are represented by a sequence {at = (wt, vt) | t =
0, 1, ..., T − 1}, where wt is the feature intervened upon and vt is the value of intervention.

States: Since we intervene upon each feature at most once, in order to control the actions, the policy
should be aware of the action record wtb = {w0, ..., wt−1} at step t. Hence, the state st = (xt, wtb).

Transition function and treatment effects: The transition function Φ(st, at) maps state st and
action at to the next state st+1. Assume wt = Xk. Then xt+1

k = vt. The chosen feature Xk is added
to the action record, wt+1

b = wtb ∪ {Xk}. In the language of causality, we have do(Xk = vt) or
do(Xk = vt | patk). The later occurs when Xk is endogenous. Also, when feature Xk is intervened
upon, it will have treatment effects on its descendants; hence the descendants will also be updated by

xt+1
i = xti − fi(pa

t
i) + fi(pa

t+1
i )∀Xi ∈ desc(Xk), (11)

from Pearl’s abduction-action-prediction (Pearl, 2009). Note that we should update Xi ∈ desc(Xk)
when all the features in parents(Xi)∩desc(Xk) have updated. Hence, the order of update ofXi when
Xk is intervened upon is calculated by the longest path length between Xi and Xk. It’s recommended
to compute pair-wise longest path lengths with Floyd-Warshall algorithm.

5



Under review as a conference paper at ICLR 2024

Reward function: Without loss of generality, we assume a binary classifier f(x) ∈ {0, 1} and the
target class is 1. At step t, the reward for action (wt, vt) when observing st is

rt = f(xt+1)− λ

t∑
i=0

dist(vt, xtw), (12)

where xtw is the feature value that vt will replace; λ controls the scale of interventions. We can also
have pre-defined ranges for features, e.g. education level ∈ [0, 20] or pre-defined constraints, e.g.
height cannot decrease. If (wt, vt) fails the constraints, set rt = −5. We optimize the cumulative
reward Rt = ΣT−1

i=t γ
i−trt, where γ is the discount factor.

3.2.3 A STABLE AND EFFICIENT POLICY NETWORK

The policy network Π models the action space discussed in Section 2.1 by the joint distribution of
At = (W t, V t). We follow the hierarchical sampling mechanism in PASVG(0) (Wei et al., 2018).
Although PASVG(0) can be unstable due to the joint-learning between the discrete action policy and
parameter policy, pointed out by the authors, we found some architectural corrections will fix it. The
network guarantees number of accesses to the classifier as O(p), which to our knowledge, no other
iterative methods does.

Output: Given state st, to determine at = (wt, vt), Π outputs the joint distribution of random
vector At = (W t, V t). The distribution of At can be expressed as

P (At) = P (W t)P (V t |W t). (13)

We first sample wt (which feature) from P (W t), and then sample vt from P (V t | W t = wt) to
determine the value. Figure 4 is the model architecture of the agent. The sub-network MLPw outputs
the parameters of a multinomial distribution ψtw to model P(W t). The dimension of ψtw is p. The ith
element of ψtw represents the probability that feature Xi is sampled. We allowed each feature to be
chosen at most once. For features in the action record wtb, we set their probability to 0. We achieve
this by masked softmax.

mt
i =

{
1, if Xi ∈ wtb,

0, otherwise
ψtw = SoftMax(lt)⊙mt

SoftMax(lt)·mt ,

(14)
where lt is the logits output by the network and mt

i is the ith element of the mask mt; ⊙ denotes
element-wise product. Different from ReLAX (Chen et al., 2022), our RL agent is based on a policy
network, which does not require examining the rewards for all discrete actions. Therefore, CIAR
guarantees the number of accesses to classifier as O(p).

After deciding wt, MLPv takes ψtw and wt as inputs and outputs the distribution parameters ψtv to
model P (V t |W t = wt). Assume the sampled feature is Xk (wt = Xk). Then,

• for Xk ∈ C, ψtv specifies the parameters of a multinomial distribution. The dimension of
ψtv is the number of classes in Xk;

• for Xk ∈ M, ψtv specifies the parameters of a two-component gaussian mixture model
(GMM) to possibly model either increasing or decreasing xk. Empirically, we find GMM
outperforms a single gaussian distribution. The parameter ψtv includes g1, g2, µ1, µ2, σ1, σ2.

We sample vt from the density fvt|wt(vt) =
∑2
k=1 gk

1√
2πσ2

k

exp− (vt−µk)
2

2σ2
k

.

Baseline function: The function b(st) estimates E(Rt(st)), used to stabilize the training process.

Objective function: The first objective for Π is to make sure the classifier output the target class. We
optimize the cumulative reward Rt derived from the theory of REINFORCE (Williams, 1992).

LtAR =− (Rt − bt) log pψt
w,ψ

t
v
(at | st)

=− (Rt − bt) log pψt
w
(wt | st)− (Rt − bt) log pψt

v
(vt | wt, st).

(15)

Intuitively, when observing state st, if the action at corresponds to a positive cumulative reward
compared to baseline (Rt − bt), we should increase the log probability of choosing at.
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The second objective is to make sure the action pair (wt = Xk, v
t) forms an conditional intervention

do(Xk = vt | patk), as in definition 2. From Eq. 10 and Eq. 8,

Ltcau =

{
IC(do(Xk ∼ ψtw | patk), patk) if Xk ∈ C,
IC(do(Xk = vt | patk), patk), if Xk ∈M.

(16)

Besides, we encourage Π to explore diverse actions by adding Ltentro, the negative entropy of the
policy distribution to the objective function. If wt ∈ M, V t is modeled with a GMM and has no
closed-form entropy. Hence, we maximize the lower bound of its entropy (Huber et al., 2008). Lastly,
the objective function for b(st) is the square error Ltb = (Rt − bt)2. The total objective function for
the agent is Lagent = ΣT−1

t=0 L
t
AR + Ltb + βLtentro + ηLtcau.

Alleviating the instability Intuitively and empirically, the key of our model to alleviating the
instability issue of PASVG(0) is by direct sampling of wt from ψtw and passing ψtw to MLPv to
retain the gradient, instead of using Gumbel-Softmax (Jang et al., 2017). Note that to correctly model
P(V t |W t = wt), MLPv requires a clear representation of wt. Sampling using Gumbel-Softmax
leads to an obscure representation of wt. Although this can be solved by straight-through trick (Jang
et al., 2017), it induces another problem – biased gradient, making training very difficult.

Figure 4: Model architecture of the RL agent.
Figure 5: An example of CIAR. The causal graph
is based on Figure 2. Blue arrows: interventions
by the agent. Red arrows: the treatment effects
caused by the interventions.

Example: Figure 5 is a real case example based on the causal model in Figure 2. At step 0,
w0 = X3, the agent takes an conditional intervention do(X3 = 5.4 | x02 = −0.5) since in figure
2, feature X3 has a parent feature X2. The value vt = 5.4 is constrained within µ(X3 | x2 =
−0.5)± κσ(X3 | x2 = −0.5) due to the intervention cost. On the other hand, X4 is a descendant
of X3, the RL transition function enforces the treatment effect of do(X3 = 5.4 | x02 = −0.5) to X4.
The process continues until the classifier outputs the target class or all features are intervened upon.

4 EVALUATION

We compare CIAR to other causality-based AR/ CE methods on three datasets and six metrics that
reflect feasibility of ARs in the real world. The formulae of the metrics, the details of datasets and
the training environments are left to the Appendix.

4.1 METRICS

Validity: The score is the proportion of counterfactual instances that truly change the classifier output
f(·) to achieve the desired outcome.
Causal edge score (CES): CES reflects the preservation of causality between the endogenous features
and their parents. CES is originally proposed by Mahajan et al. (2019) while we slightly modify the
formula to adjust the score range. CES represents the likelihood ratio of between the counterfactual
and the original instances. Since CES can be affected by extreme values, we also report median.
Constraint: The score measures the proportion of counterfactual instances that satisfy pre-defined
constraints. Each counterfactual instance is counted valid only when all the constraints are satisfied.
Proximity: It measures the L1 distance between original and intervened numerical features.
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Table 1: Performance of each method in the metrics. (A) denotes considering interventions only.

Data #Test Method Validity CES (median) Constraint Prox. (A) Spars-num (A) Spars-cat (A) Time

Syn 405
DG-SCM 0.995 -0.195 (-0.214)

NA
0.44 (0.45) 0 (0) 0.36 (0.53) 87

OrdCE 1.0 -0.583 (-0.371) 0.57 (0.48) 0.26 (0.26) 0.99 (0.69) 3354
CIAR 0.998 -0.186 (0.012) 0.47 (0.46) 0.65 (0.65) 0.64 (0.90) 7

San 666
DG-SCM 0.991 0.204 (0.086)

NA
0.64 (0.47) 0 (0)

NA
331

OrdCE 0.719 -1.614 (-1.396) 1.21 (1.46) 0.48 (0.04) 11998
CIAR 1.0 0.300 (0.200) 1.11 (0.27) 0.13 (0.80) 13

Adu 3628

DG-SCM 0.690

NA

0.69 1.09 (1.09) 0.51 (0.49) 0.73 (0.73) 11822
OrdCE 0.991 0.49 1.76 (1.78) 0.30 (0.24) 0.89 (0.89) 147714
FastAR 0.259 1.0 0.01 (0.01) 0.99 (0.99) 0.86 (0.86) 2308
CIAR 0.994 1.0 1.87 (1.77) 0.37 (0.59) 0.85 (0.85) 164

Sparsity: It measures the proportion of features in the counterfactual instances that remain unchanged.
Sparsity is computed for numerical and categorical features respectively.
Time: The total inference time in testing.
Given an SCM or causal constraints, we also compute proximity and sparsity of interventions (i.e.
the treatment effects are considered natural, so not counted), denoted by (A). Proximity (A) can be
higher than regular proximity if an AR method does not reflect the treatment effects of interventions.

4.2 DATASETS, BASELINES AND EXPERIMENT SETUP

We include two real world datasets Sangiovese (San) (Magrini et al., 2017) and Adult (Adu) (Dua &
Graff, 2017), for evaluation. Different from the original setting, we drop a feature CapitalGain in
Adu since we find generally any method can simply increase it to change the classifier output, making
the solutions too trivial. We also generate a synthetic (Syn) dataset according to the causal model in
Figure 2. The generation process is provided in the Appendix.

We compare CIAR with methods that utilize SCMs. We include FastAR (Verma et al., 2022) and
OrdCE (Kanamori et al., 2021) introduced in Section 2.2 as competitors. An issue of FastAR is
that in a graph allowing multi-hop propagation of treament effect, the node order would be unclear.
Therefore, we only evaluate FastAR on Adult.

For more comprehensive evaluation, we propose a variant of DiCE-Genetic (DG) (Mothilal et al.,
2020) which is genetic algorithm method. Specifically, we combine DG with the causal proximity
from Mahajan et al. (2019) to introduce a SCM. We call the variant DiCE-Genetic-SCM (DG-SCM).

We evaluate all the AR/ CE methods with a Multi-layer perception classifier (Pedregosa et al., 2011)
which has one hidden-layer and is trained with Adam (Kingma & Ba, 2017) optimizer. Regarding the
synthetic dataset, since OrdCE does not support non-linear SCM, we obtain an approximate linear
SCM via a solver (Shimizu et al., 2011) built in OrdCE.

4.3 RESULTS

Table 1 shows the performance of each algorithm. We summarize our observations as follows.
Validity: CIAR reaches high validity across all datasets. We attribute this to the design of the
architecture. Specifically, CIAR relates the decision of which feature and what value in one policy
network. It is designed for both numerical and categorical features without unifying the action space.
It may be worth noting that the performance of FastAR is inconsistent with the original paper, which
is due to our more challenging settings introduced in Section 4.2.
Causality and constraints: CIAR outperforms other baselines in CES and constraint. In Sangiovese,
the difference between CIAR and DG-SCM is relatively small because Sangiovese, as an conditional
linear gaussian network, exactly meets the required assumptions of the causal proximity from Mahajan
et al. (2019). Nonetheless, in the synthetic dataset, DG-SCM performs poorly in CES (median).
OrdCE does not perform well in CES and constraints due to the fact that some descendants of a
intervened feature may by fixed, not reflecting the treatment effects. FastAR is perfect in satisfying
constraints in Adult. Note that the constraint score is only computed for the counterfactual instances
that do change the classifier output, i.e., 25.9% of all instances for FastAR.
Proximity and sparsity: Considering validity, CIAR provides acceptable proximity and high sparsity,
especially when we discuss the intervention (but treatment effects) only. The high sparsity is due to
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(a) Synthetic (b) Sangiovese

Figure 6: Causal-edge socre (CES) at different settings of IC and TE.

(a) w/o IC-TE (b) w/ IC-TE

Figure 7: The intervention patterns on X2, X3 in the synthetic dataset w/ or w/o IC-TE.

the fact that CIAR intervenes upon one feature at each step.
Speed: FastAR and CIAR are based on RL while CIAR is much faster. The difference is that CIAR
only needs one step to intervene upon a feature. On the other hand, FastAR takes several steps to
modify a feature because the continuous action space is discretized.

5 DISCUSSION

Ablation Study Figure 6 shows the effect of intervention cost (IC) and treatment effects (TE) on
causal-edge score (CES). η is the scale of IC; the dashed line represents the CES when neither IC
nor TE works. The jump from the dashed line to point point at η = 0 indicates the pure effect of TE.
With η going larger, IC kicks in and CES goes higher, showing the effectiveness of IC on CES. IC
and TE together form an effective mechanism for preserving feature causality.

Intervention patterns with IC-TE Figure 7 visualizes the effect of IC-TE in the synthetic dataset
from 2. In this case, X3 is an important predictor for the classifier. Smaller values of X3 lead to
higher probability of target classifier output. Without IC-TE, the RL agent pushes most of the test
data to the minimum values in x3 − axis. With IC-TE, since X2 is the parent of X3, when we
intervene upon X2, we also update X3 by Eq. 11. When we intervene upon X3, we are actual
performing an causal intervention do(X3 = vt | xt2), which confines vt within a suitable range
µ(X3 | x2)± 2.5σ(X3 | x2)(the light blue area). It can be seen that for x2 < 0, σ(X3 | x2) becomes
smaller, so there’s not much space we can intervene upon X3 directly. Therefore, the RL agent
seek to increase the value of X2, which then has a treatment effect (decrease) on X3. It can further
intervene upon X3 if needed, but IC will still constrain X3 within a suitable range given x2.

6 CONCLUSION

In this work, we propose CIAR, a novel reinforcement learning-based algorithm able to find practical
ARs efficiently. We demonstrate that CIAR is especially superior to existing methods in preserving
causality. The effectiveness mainly comes from the theoretically preferable loss function and the
stable policy network. Furthermore, the policy network is designed to have a bounded number of
querying the classifier, which greatly improves efficiency at the inference stage.
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A ESTIMATOR OF CONDITIONAL VARIANCE

From the equation
Var(Xi | pai) = E(X2

i | pai)− E2(Xi | pai), (17)
we can estimate Var(Xi | pai) from the second moment E(X2

i | pai) and square of the first moment
E2(Xi | pai).
Assuming we already have E(Xi | pai), then we should estimate E(X2

i | pai). However, we need to
enforce a constraint

Var(Xi | pai) ≥ 0. (18)
Instead of predicting E(X2

i | pai) with this constraint, it is easier to predict Var(Xi | pai) with a
neural network MLPvar(pai) with non-negative activation and minimize the loss

(MLPvar(pai) + E2(Xi | pai)− x2i )
2. (19)

B EXPERIMENTAL DETAILS

B.1 METRICS

Since if an counterfactual instance does not actually change the classifier output to the target, then
CES, Proximity, sparsity are meaningless for them. Therefore CES, Proximity, sparsity are only
computed for CE that really change the classifier output to the target. Let x·,n, xnum,n, xcat,n, xv,n
denotes the nth (row in dataset) feature vector, numerical feature vector, categorical feature vector
and vth dimension feature respectively. H is the set of all endogenous features. N is the size of a
dataset and p is the number of features. 1(x·,n) = 1 if f(x·,n) = y′ else 0.

Validity Validity is the proportion of CE that truly change the classifier output f(·) to the target y′.

V alidity =
1

N

N∑
n=1

1(x′·,n). (20)

Causal edge score (CES) CES reflects the preservation of causality between the endogenous
features and their parents. We design a new version of CES from Mahajan et al. (2019). This version
represents a log likelihood ratio, which is more common in statistics. Since CES can be affected by
extreme values, we also report the median of CES.

1

|H|
∑N
n=1 1(x·,n)

N∑
n=1

∑
v∈H

log
p
(
x′v,n | pa(xv,n)′

)
p (xv,n | pa(xv,n))

1(x·,n). (21)

For conditional distribution that cannot be expressed by closed-form function, we estimate it with
kernel density estimation in Statsmodels Seabold & Perktold (2010).
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Constraint Constraint measures the proportion of CEs that satisfy the pre-defined constraints. In
our experiments, there are three kinds of constraints. Each CE instance is counted valid only when all
constraints are satisfied.

• Feature A is not actionable.

• Feature A can cannot increase (decrease).

• Feature A increases =⇒ Feature B increases.

Proximity Proximity measures the difference between the original numerical features and perturbed
numerical feature. Proximity is calculated under standardized scale.

1∑N
n=1 1(x·,n)

N∑
n=1

∥xnum,n − x′num,n∥11(x·,n). (22)

Sparsity Sparsity measures the proportion of features in CE that remain unchanged. Sparsity is
computed for numerical and categorical features respectively.

1− p
1∑N

n=1 1(xnum/cat,n)

N∑
n=1

∥x·,n − x′·,n∥01(x·,n). (23)

B.2 DATASETS

Synthetic We generate a dataset with 8 features and a binary outcome according to the causal model
in Figure 2. X1, X4 and U2 are categorical and the rest are numerical. All features are assumed
actionable. The data generation process is shown in the followings.

X0 :=N (50, 15)

X1 :=Multinomial(0.3, 0.2, 0.25, 0.25)

X2 :=N (2, 1)

U0 :=
√
|X2|+N (2, 1)

U1 :=N (0, 0.3)

U2 :=Bernoulli(0.5)

X3 :=(X2 − 3)2 +N (−3, 0.5) ∗ U2 +N (3.5, 0.5) ∗ (1− U2) + U0

X4 :=Multinomial(p1, p2, p3)

(24)

where
p1 :=|X0|/100 + 0.1 ∗ 1(X1 = 0) + 0.1 ∗ 1(X1 = 2) ∗

√
|X3|

p2 :=0.3 ∗ 1(X1 = 1) + 0.4 ∗ 1(X1 = 4) +X3/10

p3 :=X0 ∗X3/1000 + 0.1

(25)

We drop three features U0, U1 and U2 to simulate the situation of unobserved parents of the endoge-
nous features.

Sangiovese (Magrini et al., 2017) Sangiovese is a dataset with 13 numerical features and one
categorical features. (Magrini et al., 2017) fit a conditional linear gaussian network Lauritzen &
Spiegelhalter (1988) on the dataset with some expert knowledge. Like in (Mahajan et al., 2019), we
drop the categorical feature for simplicity. All variables are assumed actionable. The pre-processed
dataset is downloaded from https://github.com/divyat09/cf-feasibility.

Adult (Dua & Graff, 2017) Adult contains numerical and categorical features. We drop a feature
CapitalGain since if it exists, almost every method choose to simply increase it to change the classifier
output. The solution then becomes trivial. Dropping CapitalGain makes the problem much more
challenging. The pre-processed dataset is downloaded from https://github.com/vsahil/
FastAR-RL-for-generating-AR.
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(a) synthetic (b) sangiovese (c) adult

Figure 8: The learning curve of each dataset.

B.3 EXPERIMENTAL RESOURCES

All experiments run on Intel Xeon cpu E5-2650v4@2.20GHz. In addition to the inference time
reported in Table 1, CIAR and FastAR Verma et al. (2022) require training. It takes about 50, 20 and
40 minutes to train CIAR on the synthetic, sangiovese and adult datasets respectively. It takes about 2
hours to train FastAR on Adult dataset.

B.4 ALGORITHM-SPECIFIC SETTING

CIAR The discount factor γ is set to 0.95. λ (that controls regularization), β (that controls
exploration) and η (that controls the scale of intervention cost) are treated as hyperparameters and
tuned manually.

OrdCE (Kanamori et al., 2021) The interaction matrices for Sangiovese and Adult dataset are
given. Since it does not support non-linear causal model, we solved a linear causal model using
OrdCE’s built-in causal discovery method (Shimizu et al., 2011). The optimization process takes too
long, so we set the time limit to 10 seconds for each instance, but the solver may not really respond
to the setting in some cases.

Fastar (Verma et al., 2022) Categorical features, like in the original implementation, are treated as
numerical. We round the value to its closest integer-encoded category and then one-hot encode it, so
it can be fed to the classifier.

B.5 LEARNING CURVES

Figure 8 shows the learning curves of each dataset. Each point represents the average result of 64
random samples.

C ADDITIONAL EXPERIMENTS

C.1 STUDY OF REPLACING GUMBEL-SOFTMAX

Table 2 shows the performance of CIAR with direct sampling or with gumbel-softmax. The results are
close. However, during our experiments, we observed that using gumbel-softmax could occasionally
cause model weights to go to Not-a-Number error when running on Sangiovese dataset.
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Table 2: Performance of CIAR with direct sampling or with gumbel-softmax. CIAR-G denotes the
gumbel-softmax version.

Data #Test Method Validity CES (median) Constraint Prox. (A) Spars-num (A) Spars-cat (A) Time

Syn 405 CIAR 0.998 -0.186 (0.012) NA 0.47 (0.46) 0.65 (0.65) 0.64 (0.90) 7
CIAR-G 0.993 -0.283 (0.093) 0.51 (0.50) 0.64 (0.65) 0.62 (0.87) 7

San 666 CIAR 1.0 0.300 (0.200) NA 1.11 (0.27) 0.13 (0.80) NA 13
CIAR-G 1.0 0.489 (0.267) 1.24 (0.20) 0.01 (0.91) 9

Adu 3628 CIAR 0.994 NA 1.0 1.87 (1.77) 0.37 (0.59) 0.85 (0.85) 164
CIAR-G 0.996 1.0 2.82 (2.79) 0.48 (0.54) 0.87 (0.87) 163
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