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Abstract

Recent advances in Reinforcement Learning from
Human Feedback (RLHF) typically model a re-
ward function by maximizing its likelihood of gen-
erating observed human preferences. However,
due to the diverse backgrounds of individuals,
these preference signals are inherently stochastic.
This inherent uncertainty in the preference sig-
nals can lead to unstable or unsafe behaviors in
the process of reward and policy updates. In this
work, we introduce the uncertainty-aware prefer-
ence alignment in RLHF by learning a distribu-
tional reward model and a risk-sensitive policy
from the offline preference dataset. Specifically,
we propose a Maximum A Posteriori (MAP) ob-
jective for updating the reward associated with a
trajectory. This updating process incorporates an
informative prior to account for the uncertainty in
human preferences. Utilizing this updated reward
sample, we develop a generative reward model to
represent the reward distribution. Driven by the
inherent stochasticity in the reward models, we
utilize the offline distributional Bellman operator
and the Conditional Value-at-Risk (CVaR) metric
to learn a risk-sensitive policy from the offline
dataset. Experimental results show that the risk-
sensitive RLHF agent can effectively identify and
avoid states with significant stochasticity, thereby
enabling risk-averse control in different tasks.

1. Introduction
In recent years, Reinforcement Learning has achieved re-
markable success in addressing a variety of sequential deci-
sion problems across different domains, such as electronic
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games (Mnih et al., 2015; Vinyals et al., 2019; Berner et al.,
2019), board games (Silver et al., 2016; 2017), and robotic
manipulation (Fang et al., 2019). However, in the process of
scaling these successes to real-world applications, a notable
challenge is the difficulty in precisely specifying the rewards
in the RL objective. Existing manually designed rewards
cannot ensure that the learned policy aligns with the actual
needs of the industry.

To develop a reliable reward function, Reinforcement
Learning from Human Feedback (RLHF), also known as
Preference-based Reinforcement Learning (PbRL) (Knox &
Stone, 2008), aims to align rewards with human preferences
by solving a learning-to-rank problem. Recent advances
in RLHF algorithms (Christiano et al., 2017; MacGlashan
et al., 2017; Lee et al., 2021; Kim et al., 2023; Wu et al.,
2023b; Zhu et al., 2023; Casper et al., 2023; Zhan et al.,
2024a) commonly learn reward functions by maximizing
the likelihood of the observed pairwise comparisons in the
preference dataset. In practice, this preference dataset is col-
lected from a diverse pool of individuals with varying back-
grounds, knowledge, and beliefs. Consequently, these pref-
erence signals are inherently stochastic. However, driven by
the Bradley-Terry model (Bradley & Terry, 1952), the maxi-
mum likelihood estimation used in RLHF lacks sensitivity
to the inherent uncertainty in human preferences, thus the
resulting policy tends to be risk-neutral without considering
the safety of sequential decisions.

Striving for uncertainty-aware reward learning, a recent
study (Liang et al., 2022) developed an ensemble of de-
terministic reward functions and employed the variance of
model predictions to assess the "novelty" of the learned re-
wards. These novelty signals are primarily designed to guide
exploration in online settings, whereas a more common
application involves learning from offline datasets. More
importantly, despite its empirical success, the underlying
mechanism linking estimated prediction variance to uncer-
tainty in human preferences remains largely unexplained.

In this paper, we introduce an uncertainty-aware RLHF al-
gorithm that accounts for the confidence levels in human
preferences within an offline dataset. Specifically, we for-
mulate a Maximum A Posteriori (MAP) objective for pref-
erence alignment, thereby incorporating signals from an
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informative prior to the reward updates. By interpreting
preference assignment as a voting process, we intention-
ally select Beta distribution to implement this prior. To
ensure computational tractability, we parameterize the Beta
distribution with neural functions and train the model via
variational inference, guided by an Evidence Lower Bound
(ELBo) objective. Intuitively, this probabilistic prior as-
signs higher probabilities to trajectories that are compared
more frequently, reflecting the confidence levels associated
with human preferences. For each observed trajectory, we
compute its reward using an iterative update rule, which is
theoretically motivated by the optimality conditions of our
MAP objective. From these point-wise reward estimates,
we then construct the reward distribution by training a gen-
erative reward model based on sequential state-action pairs.

To justify the effectiveness of the learned reward distribution,
we train a risk-averse policy using the offline distributional
Bellman operator for policy evaluation, with the Conditional
Value-at-Risk (CVaR) metric for policy improvement. Em-
pirical results demonstrate the importance of considering the
inherent uncertainty in the preference signals and the risk-
sensitive ability of the proposed method, which outperforms
other baselines in terms of the worst-case performance.

2. Related Works
In this section, we introduce the previous works that are
most related to our approach.

Reinforcement Learning from Human Feedback. Unlike
classic RL algorithms (Sutton & Barto, 2018) that rely on
pre-defined rewards to guide policy updates, RLHF con-
siders aligning the policy with human preferences, circum-
venting the requirement for explicit reward signals (Knox
& Stone, 2008; MacGlashan et al., 2017; Warnell et al.,
2018). Such paradigm is particularly useful in applications
where defining precise reward functions is challenging, but
human feedback is readily available (e.g., dialogue sys-
tem (Yang et al., 2023), question answering (Nakano et al.,
2021), text summarization (Stiennon et al., 2020), language
model training (Bai et al., 2022; Wu et al., 2023b) and
virtual game agents (Ibarz et al., 2018)). Previous stud-
ies combine RLHF to Deep RL agent (Christiano et al.,
2017) and high-dimensional image space (Ibarz et al., 2018).
To scale RLHF to more settings, recent advancements ex-
tend RLHF to unsupervised pre-learning (Lee et al., 2021),
non-Markovian rewards (Kim et al., 2023), offline RL set-
ting (Zhan et al., 2024a), diffusion planner (Dong et al.,
2024), k-wise comparison (Zhu et al., 2023) and reward-
agnostic setting (Zhan et al., 2024b). Some recent stud-
ies (Rafailov et al., 2023; An et al., 2023; Song et al., 2024;
Yuan et al., 2023; Liu et al., 2024) consider supervised
fine-tuning that directly optimizes generative models with
human preferences. The majority of RLHF algorithms uti-

lize the Bradley-Terry model (Bradley & Terry, 1952) to
model the likelihood of human preference based on reward
signals. However, such a maximum likelihood method is
insensitive to the underlying confidence in human prefer-
ence (Newman, 2023). How to handle the uncertainty in
human preference and derive risk-sensitive policies remain
a critical challenge (Casper et al., 2023).

Distributional Reinforcement Learning. While the ma-
jority of RL research traditionally focuses on maximizing
the expected cumulative rewards (Sutton & Barto, 2018),
(Bellemare et al., 2017) introduces a distributional perspec-
tive on RL, utilizing the distributional Bellman operator for
value function updates. Such distributional value functions
are sensitive to the aleatoric uncertainty in the environment
dynamics (Mavrin et al., 2019), enabling the formulation of
risk-sensitive policies (Lim & Malik, 2022; Keramati et al.,
2020) and better controlling performance (Bellemare et al.,
2023). Some previous studies propose utilizing categorical
distribution (Bellemare et al., 2017; Sui et al., 2023), quan-
tile functions (Dabney et al., 2018b;a; Zhang & Yao, 2019;
Zhou et al., 2020; 2021; Luo et al., 2022) and diffusion
models (Wu et al., 2023a) for representing and updating
the distributional value function. In this work, we utilize
quantile functions since the statistical benefit of quantile
regression is most well-understood (Rowland et al., 2023).
Some recent studies extend distributional RL to offline learn-
ing (Ma et al., 2021; Wu et al., 2023a), multi-dimensional
rewards (Zhang et al., 2021), and multi-agent control (Hu
et al., 2022; Sun et al., 2021). However, none of the previous
works have considered Preference-based RL (PbRL) from a
distributional perspective.

3. Problem Formulation
Markov Decision Process (MDP). The agent optimizes the
control policy under a Markov Decision Process (MDP)
M = (S,A, R, pT , µ0, γ), where 1) S and A denote
the state and action spaces, 2) pT : S × A → ∆S de-
notes the stochastic transition function, where the sim-
plex over S, ∆S = {ν ∈ [0, 1]S :

∑
s∈S ν(s) = 1}, 3)

R : S × A → [Rmin, Rmax] denotes the reward function,
4) µ0 ∈ ∆S denotes the initial state distribution, and 5)
γ ∈ (0, 1] denotes the discounting factor. For brevity, we
denote M/R to denote the MDP without knowing the re-
ward. In this work, we mainly study the episodic MDPs
where the planning stops at a terminating state s̃, and the
corresponding terminating time is denoted as T ∈ (0,∞).

Risk-Sensitive Reinforcement Learning. Under an MDP,
the objective is to learn a policy π : S → A, which opti-
mizes the following objective:

π = argmax
π

ραµ0,pT ,π[

T∑
t=0

R(st, at)].
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Figure 1. An illustrative example of D-RLHF. In this maze environment, states exhibit greater transition stochasticity in the bottom-right
map (shaded in light orange color). Humans uniformly sample and compare pairs of trajectories generated by deterministic policies π1

and π2. The trajectory τ2 is shorter in expectation, so τ2 is more likely to outperform the average trajectory compared to the longer τ1.
However, its estimation exhibits a higher variance because the greater stochasticity induces π2 to generate more diverse trajectories, leading
to fewer comparisons from humans and thus greater uncertainty for each trajectory. Such uncertainty is captured by the distributional
reward model, which steers the risk-averse policy to navigate through a less stochastic but longer path on the top-left map.

Instead of optimizing the risk-neutral expected cumu-
lative rewards, we consider a risk-sensitive measure
ραµ0,pT ,π where the confidence level α < 1. Specifi-
cally, by implementing π under the MDP M, we gen-
erate a trajectory τ ∈ (S × A)T . The correspond-
ing trajectory-generating probability can be defined as
pπ(τ) = µ0(s0)

∏T−1
t=0 π(at|st)pT (st+1|st, at). We de-

fine the corresponding risk envelope Uπα = {ζα : Γ →[
0, 1

α

]
|
∑
τ∈Γ ζ(τ)p

π(τ) = 1} to be a compact, convex,
and bounded set, based on which the risk measure can be in-
duced by the distorted probability distribution pπζ = ζ·pπ . In
this work, we study the CVaR such that ρπα[

∑T
t=0 γ

tRt] =

supζα∈Uπα Eτ∼pπ [ζα(τ)
∑T
t=0 γ

tRt] due to its time consis-
tency and convexity (Rockafellar et al., 2000).

Distributional Reinforcement Learning from Human
Feedback (D-RLHF). In many applications, the rewards
are not readily available, and the RLHF system learns
the reward function from human feedback. Previous re-
search in RLHF typically learns a deterministic reward func-
tion (Christiano et al., 2017; Lee et al., 2021; Kim et al.,
2023; Casper et al., 2023) under a maximum likelihood
objective. However, in real-world applications, human pref-
erences are commonly collected from a heterogeneous pool
of individuals with varying backgrounds, knowledge, and
beliefs. As a result, these preference signals are inherently
stochastic (Swamy et al., 2024). Intuitively, if a trajectory
and its counterparts have only been assessed a few times,
the corresponding preference signals should have large un-
certainty. The more frequently humans compare these tra-
jectories with their counterparts, the more confidence we
have about the optimality of these trajectories.

To better accommodate the underlying uncertainty in hu-
man preference, we study an uncertainty-aware objective for
achieving D-RLHF. Specifically, we capture the uncertainty
of human preferences by learning a distributional reward
model frφ : S × A → ∆[Rmin,Rmax] (Section 4), and in-

corporate these uncertainty signals into policy learning by
utilizing the offline distributional policy evaluation and the
risk-averse policy improvement (Section 5).

To better align the uncertainty in preferences with environ-
mental stochasticity, we assume that the preference dataset
is generated as follows:

Procedure 3.1. (Preference Dataset). For each candidate
policy πl ∈ [π1, . . . , πL], we generate Nl trajectories in the
environment M/R. We uniformly sample a pair of them
(τ, τ ′) from a total number of Nl · L generated trajectories.
Humans express preferences by mapping (τ, τ ′) to (τ i, τ j)
where τ i ranks higher than τ j . We repeat the sampling and
mapping process until we generate the dataset D.

This sampling procedure is essential to align the confidence
of human preference to the underlying aleatoric uncertainty
in environment dynamics. For example, in Figure 1, policy
π2 visits states with stochastic transitions, resulting in the
generation of more diverse trajectories τ21 , . . . , τ

2
N2

, com-
pared to the deterministic trajectories τ11 , . . . , τ

1
N1

from π1.
Owing to this diversity, a specific trajectory such as τ2n2

and
its similar counterparts are less likely to be chosen during
uniform sampling. Consequently, these trajectories receive
fewer human evaluations, resulting in lower confidence in
assessing their preferences.

Based on the dataset D, we consider the Offline D-RLHF
problem, where the agent has access solely to an offline
dataset that records labeled trajectories instead of interacting
directly with environments.

4. Learning Generative Reward Model from
Human Feedback

In this section, we introduce our approach to estimating the
stochastic reward model by proposing 1) an MAP objective
for inferring rewards from human preference, 2) an informa-
tive Beta-prior for modeling uncertainty, and 3) the method
of learning generative rewards.
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4.1. Maximum A Posteriori Objective for Reward
Inference

Previous RLHF algorithms commonly utilize the Bradley-
Terry model (Bradley & Terry, 1952) to represent the log-
likelihood of generating human preferences with the reward
function:

(1)

L(φ,D) =
1

|D|
∑

(τ i,τj)∈D

ωτ
i,τj log

e[rφ(τ
i)]

e[rφ(τ
i)] + e[rφ(τ

j)]
,

where rφ(τ) =
∑T
t=0 γ

trφ(st, at) denotes the trajectory
segment rewards (φ represents the reward model parame-
ter), (τ i, τ j) denotes a pair of trajectories where τ i ranks
higher than τ j , and ωτ

i,τj denotes the frequency of such
pairs appearing in the dataset D. The maximum likelihood
objective implicitly imposes a uniform prior for rφ(τ) such
that p0(rφ(τ)) = 1/(Rmax

1−γ − Rmin

1−γ ). It places a vanishing
fraction of its weight on arbitrarily large values (intuitively,
a large rφ(τ) increases p0 to 1 in an exponential rate, which
is not likely to be observed in practice), which causes diver-
gence in the reward function’s parameters (Newman, 2023).

To derive a more useful prior for the reward function, we en-
force the geometric mean strength to be one (

∏
n e

rφ(τ
n) =

1, i.e.,
∑
n rφ(τ

n) = 0) and thus the probability of a player
with strength erφ(τ) winning against the average player
(whose strength erφ(τ

′) = 1) is ϕ(τ) = erφ(τ)/(erφ(τ)+1).
For brevity, we use ϕ as a shorthand of ϕ(τ) to represent
the meaning of prior. Then the prior on the reward function
can be defined as:

p0(rφ(τ)) = p0(ϕ)
dϕ

drφ(τ)
= p0(ϕ)

dϕ

derφ(τ)
derφ(τ)

drφ(τ)

= p0(ϕ)
erφ(τ)

(erφ(τ) + 1)2
, (2)

where p0(ϕ) is the prior which has different representations.
This update enables the definition of an MAP objective:

(3)p(rφ(τ)|D) ∝ p(D|rφ(τ))p0(rφ(τ))

=
∏

(τ i,τj)∈D

[
e[rφ(τ

i)]

e[rφ(τ
i)]+e[rφ(τ

j)]

]ωτi,τj∏
τ i

p0(ϕ)
e[rφ(τ

i)]

(e[rφ(τ
i)]+1)2

.

Instead of maximizing the likelihood, maximizing this poste-
rior probability can integrate prior knowledge and regularize
the reward values, preventing them from diverging.

An essential prerequisite for implementing D-RLHF with
this MAP objective is the construction of an informative
prior, p0(ϕ). This prior incorporates the inherent uncertainty
of human preferences into the reward learning process. We
introduce the estimation of p0(ϕ) in the following section.

4.2. Learning Informative Beta Priors from Human
Preference

In this study, we employ the Beta distribution as an in-
formative prior, i.e., p0(ϕ|D) = Beta(α, β), since 1) the
Beta distribution is the conjugate prior for the Bernoulli
distribution, facilitating the update of our beliefs with new
evidence; 2) the parameters α and β of the Beta distribution
can be effectively interpreted as representing the count of
positive and negative human feedback, respectively, for a
trajectory τ . As the number of such ’votes’ increases, our
confidence in the inferred probability improves, resulting
in a more precise (or ’sharper’) distribution. This approach
enables quantitatively incorporating the confidence level of
the Bernoulli probability estimation into our model.

To learn the distribution of ϕ, we propose the variational
inference approach to approximate p0(ϕ|D) by estimat-
ing the approximate posterior qψ(ϕ|D) (i.e., p0(ϕ|D) ≃
qψ(ϕ|D)). The goal of our variational inference ap-
proach is to learn an approximate posterior distribution
qψ(ϕ|D) by minimizing the Kullback–Leibler (KL) diver-
gence Dkl(qψ(ϕ|D)∥p(ϕ|D)):

Dkl

(
qψ(ϕ|D)∥p(ϕ|D)

)
(4)

=−Er∼q
[
log p(D|ϕ)

]
+Dkl

[
qψ(ϕ|D)∥p(ϕ)

]
+log

[
p(D)

]
.

Minimizing the above objective is equivalent to maxi-
mizing the Evidence Lower Bound (ELBo) log [p(D)] −
Dkl(qψ(ϕ|D)∥p(ϕ|D)). By following Equation (5), ELBo
can be represented as:

Er∼q
[
log p(D|ϕ)

]
−Dkl

[
qψ(ϕ|D)∥p(ϕ)

]
. (5)

The corresponding trajectory-wise objective can be reinter-
preted as follows:

max
ψ

Eτ
[
Eqψ,(τ,τ ′)∈D[log ϕ(τ)]− Eqψ,(τ ′,τ)∈D[log ϕ(τ)]

−Dkl[qψ(ϕ|τ)∥p(ϕ)]
]
, (6)

where 1) qψ(ϕ|τ) = Beta(ατ , βτ ), where [ατ , βτ ] =
fBeta
ψ (τ) and fBeta

ψ denotes a neural network parameterized
by ψ, 2) p(ϕ) = Beta(α0, β0) where α0, β0 defines our
initial belief (hyper-parameters), and 3) ϕ(τ) denotes the
Bernoulli probability that τ ranks higher than τ ′. Since both
the posterior distribution qψ(ϕ|τ) and the prior distribution
p(ϕ) are beta-distributed, we represent the KL divergence
term by following the Dirichlet VAE (Joo et al., 2020):

Dkl[qψ(ϕ|τ)∥p(ϕ)] = log
(Γ(ατ + βτ )

Γ(α0 + β0)

)
+ log

(Γ(α0)Γ(β0)

Γ(ατ )Γ(βτ )

)
+ (ατ − α0)

[
Ψ(ατ )−Ψ(ατ + βτ )

]
+ (βτ − β0)

[
Ψ(βτ )−Ψ(ατ + βτ )

]
, (7)
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where 1) [α0, β0] and [ατ , βτ ] are parameters from the prior
and the posterior functions, and 2) Γ and Ψ denote the
gamma and the digamma functions.

4.3. Learning Generative Reward Model

In this work, we leverage a conditional generative model frφ
to represent the joint distribution of the step-wise rewards
in a trajectory, i.e., r̂(τ) ∼ p(r|τ) = frφ(τ), where r̂(τ) =∑T
t=0 γ

tr̂t denotes the trajectory reward. To enable efficient
estimation, we derive an iterative update rule based on the
MAP objective and estimated Beta prior. In specific, each
time we sample rewards from the joint distribution, we
update these rewards based on the following iterative update
rule:

r̂k+1(τ) = (8)

log
ατ/[e

r̂k(τ)+1]+
∑
j ω

τ,τjer̂
k(τj)/[er̂

k(τ)+er̂
k(τj)]

βτ/[er̂
k(τ)+1]+

∑
i ω

τ i,τ/[er̂k(τ)+er̂k(τ i)]
,

where ωτ,τ
j

and ωτ
j ,τ are calculated based on the dataset

D. The design of this iterative update rule is based on the
following theorem:

Theorem 4.1. Let the informative prior p0(ϕ) be a beta dis-
tribution Beta(α, β) and er(τ) be the strength of a trajectory
segment τ . Assuming the geometric mean strength to be 1,
i.e.,

∏
er(τ) = 1, the iteration of Equation (8) will converge

to the maximum of its MAP objective (i.e., Equation (3) with
p0(ϕ) the Beta prior), from any starting point, whenever a
maximum exists.

The proof can be found in Appendix A. To train the genera-
tive reward model, we 1) sample rewards from this model,
2) refine these rewards based on the specified update rule
(Equation (8)) under the guidance of human preference,
and 3) update the reward model by fitting it to the updated
rewards (see Algorithm 1).

Model Implementation. In this work, we implement frφ by
a distributional reward transformer parameterized by φ. For
each trajectory τ , we sample the initial step-wise rewards
[r00, . . . , r

0
T ] from this reward model frφ(τ) and calculate

r̂0(τ) =
∑T
t=0 γ

tr̂0t . By utilizing the reward update process
(Equation (8)), we compute the updated segment rewards
r̂K(τ) after K iterations, which are the actual MAP values
due to Theorem 4.1. The corresponding loss function can
be modeled as:

min
φ

ED
[
dist(r̂K(τ), r̂0(τ))

]
where r̂0t ∼ N (µt, σt), (9)

where r̂0t is sampled from a Gaussian distribution param-
eterized by mean µt and variance σ2

t . To derive tractable
gradients, we apply the reparameterization trick to generate
r̂0t = µt + σt · ϵ where ϵ denotes samples from standard

Gaussian distribution. Both µt and σt are the predictions of
a causal transformer such that:

[(µt, σt)
T
t=0]=CausalTransformer(s0, a0, . . . , sT , aT). (10)

5. Risk-Sensitive Policy Optimization
In this section, we introduce the approach to learning risk-
sensitive policy that aligns with the inherent uncertainty in
human preferences. Specifically, we employ the distribu-
tional Bellman operator to model the distribution of dis-
counted cumulative rewards from the offline dataset. Given
the estimated value distribution, we carry out policy im-
provement by maximizing the CVaR.

5.1. Offline Distributional Policy Evaluation

To enable distributional policy evaluation, we incorporate
the learned reward generator frφ to the original MDP M/R

without knowing the ground-truth reward. The resulting
running environment is denoted as M/R ∪ frφ. For brevity,
we denote it as M̂.

Given a policy π, our goal is to learn a distributional
action-value function Zπ

M̂
(s, a) to estimate the distribu-

tion of discounted cumulative reward
∑∞
t=0 γ

tR(st, at)
where the initial state-action pair (s0, a0) is based on an
offline dataset D. We represent the distribution of Zπ

M̂
by a uniform mixture of supporting quantiles such that
Zπ
M̂
(st, at) = Eξ∼U(0,1)[δθξ(st,at)], where θξ estimates the

quantile at the quantile level ξ and δθξ denotes a Dirac dis-
tribution at θξ.

To implement offline update for the model parameters θ, we
utilize the following Conservative Distribution Evaluation
(CDE) objective (Ma et al., 2021):

min
θ

LTD(θ)+λEξ∼U [0,1]

[
Es∼D(log

∑
a

exp θξ(s, a))

− E(s,a)∼D (θξ(s, a))
]
, (11)

LTD(θ) = ED

[
E(ξ,ξ′)∼U(0,1)

[
ρξκ (r̂t + γθξ′(st+1, at+1)

−θξ(st, at))]
]
, (12)

where 1) λ is the penalty weight, 2) ρξκ is the ξ-Huber quan-
tile regression loss at threshold κ (Huber, 1964), and 3)
(st, at, st+1, at+1) is uniformly sampled from the trajecto-
ries in the dataset D while r̂t is sampled from our reward
generator frφ.

5.2. Risk-averse Policy Improvement

To better handle the underlying uncertainty in human pref-
erence, we adopt risk-averse policy updates by maximizing
the estimate of CVaR within the distribution of cumulative
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rewards. However, (Lim & Malik, 2022) indicates that
directly integrating CVaR-based policy improvement with
distributional policy evaluation does not necessarily guar-
antee convergence to the optimal policy. To overcome this
issue, we utilize the following distributional policy improve-
ment objective for static CVaR (Lim & Malik, 2022):

π(at+1|st+1) = (13)

argmax
at+1

Eξ∼ U [0,1]

[
−(q(st+1)−θξ(st+1, at+1))

+
]
,

where q(st+1) = (q(st)− rt)/γ keeps track of the reward
history with the initial value of qα = Ea∼π

[
F−1
Zπ(s,a)(α)

]
,

where F−1
Zπ(s,a) denotes the inverse cumulative density func-

tion of distribution Zπ(s, a). As is shown in (Bäuerle & Ott,
2011), π converges to the optimal static CVaR policy by it-
eratively calculating q and updating π under an MDP whose
state space is augmented by q (i.e., s̃ = (s, q) ∈ S × R).
Intuitively, q is a moving threshold keeping track of the
accumulated rewards so far.

The complete D-RLHF algorithm is shown in Algorithm 1.

Algorithm 1 Distributional Reinforcement Learning from
Human Feedback (D-RLHF)

1: Input: The preference dataset D, reward learning
epochs N , maximum iterations K.

2: Initialize the reward model frφ, the action-value model
Zπ
M̂
(s, a) and the policy π(a|s).

3: Build a buffer Bτ that records all the trajectories in D.
4: Update the informative Beta prior with Objective (6).
5: for n = 1, 2, · · · , N do
6: for τ ∈ Bτ do
7: Sample rewards [r̂0, . . . , r̂T ] ∼ frφ(τ) and calcu-

late r̂(τ) =
∑T
t=0 γ

tr̂t.
8: Estimate the beta prior [α̂(τ), β̂(τ)] = fBeta

ψ (τ).
9: Calculate the updated r̂K(τ) with Objective (8)

based on the preference dataset D.
10: Update the reward model frφ with Objective (9).
11: end for
12: end for
13: for τ ∈ Bτ do
14: Sample step-wise rewards [r̂0, . . . , r̂T ] ∼ frφ(τ) for

the trajectory τ .
15: Update the distributional action-value function

Zπ
M̂
(s, a) with Objective (11).

16: Update the policy model π(a|s) with Objective (13).
17: end for

6. Empirical Evaluation
In the empirical study, we start by illustrating the learned
reward model in a discrete Gridworld environment (Sec-
tion 6.1). Next, we construct three Risky PointMaze en-

vironments and evaluate the effectiveness of the proposed
D-RLHF algorithm with the trajectory visualization (Sec-
tion 6.2). Lastly, to demonstrate the model performance in
the complex environment, we study robot navigation tasks,
including a Risky Swimmer and a high-dimensional Risky
Ant environment for evaluation (Section 6.3).

Experiment Settings. Our experiments primarily utilize
the public platform Uni-RLHF (Yuan et al., 2024), which is
tailored for offline RLHF. Additionally, to accommodate the
underlying risks during the preference learning processes,
we introduce risky regions by incorporating noise into tran-
sitions within them. The risky regions induce larger un-
certainties in environments and preferences. We create the
offline dataset by uniformly sampling from the expert poli-
cies trained online and then generating preferences based
on their true rewards and risky steps. Please check Ap-
pendix B.2 for more details.

By following (Ma et al., 2021), we evaluate each approach
using 100 test episodes by reporting both the mean and
CVaR0.1 (i.e., the average over the worst 10 episodes) for
studied metrics, including: 1) episodic rewards, which cal-
culate the cumulative rewards within an episode, and 2)
episodic violations, which aggregate the total number of
time steps spent inside the risky region. Each experiment
is repeated with four random seeds, and the results are pre-
sented with mean ± standard deviation (std).

6.1. Reward Visualization in Gridworld

Gridworld 1 Offline Trajectories

π

π1

2

Reward Distribution in Gridworld 1

Figure 2. (Left) The Gridworld environment and offline trajecto-
ries. (Right) The learned risk-sensitive reward distributions repre-
sented by the probability density function. Please refer to Figure 6
in Appendix D.1 for the mean and standard deviation values of
each distribution and the results in the remaining two settings.

In this experiment, we construct a Gridworld environment
to better illustrate the case previously described in Figure 1.
As shown in the left plot of Figure 2, the objective for the
agent is to navigate from an initial position (green arrow) to
a specified target (blue circle) while avoiding the walls (grey
blocks). Within the bottom-right area (red markers), the
environment demonstrates a degree of stochasticity, where,
with specific probabilities (p = 0.1), it receives a random
action instead of the agent’s intended action (refer to Ap-
pendix C.1 for more details). Intuitively, the trajectories
τ2 generated by π2 (passing through right-bottom) exhibit
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higher rewards in expectation. To accommodate this sit-
uation, we assign greater preference to τ2 by setting the
expected chance of observing the preference that τ2 ranks
higher than τ1 to be 0.6.

The right plot of Figure 2 illustrates the learned reward dis-
tributions at each state, where we utilize the blue and red col-
ors to represent the rewards at risk-averse and risky regions,
respectively. We find that the distributional reward model
successfully captures the underlying uncertainty within the
offline dataset in the sense that the rewards in risky regions
exhibit a larger expectation but a higher variance. This leads
to the result that the generated risk-averse policy avoids
the risky area and navigates through the top-left map. Ad-
ditionally, we also construct two distinct Gridworlds and
illustrate the corresponding rewards. Please check Figure 6
in Appendix D.1 for complete results.

6.2. Model Performance in Risky PointMaze

Figure 3. Three Risky PointMaze settings with green, blue, and
red markers indicating the starting, target, and risky locations,
respectively.

Task Description. In this experiment, we extend Gridworld
to the continuous domain by constructing three PointMaze
environments, as shown in Figure 3. In the risky regions
denoted by red markers, the environmental transitions are
influenced by additional Gaussian noise calculated such
that pT (st+1|st, at) = f (st, at) +N (µ1, σ1), where f(·)
denotes the original transition function. Please check Ap-
pendix C.2 for more environmental details.

Comparison Methods. Besides our D-RLHF algorithm
that learns a distributional reward model with a risk-averse
policy, the following baselines are compared: 1) regular
RLHF (RLHF) (Christiano et al., 2017) that learns a re-
ward model through the Maximum Likelihood Estimation
(MLE) objective, 2) Ensemble RLHF (E-RLHF) (Liang
et al., 2022) that learns an ensemble of reward functions
(we use five ensembles) and constructs the final reward as
a combination of mean and standard deviation of these en-
sembles. Both of them utilize the Conservative Q-learning
(CQL) (Kumar et al., 2020) for offline policy optimization.

Results Analysis. Table 1 shows the evaluation perfor-
mance, with the best results in each setting (highest rewards
or lowest violations) highlighted in bold. Please check Fig-
ure 7 in Appendix D.2 for evaluation results with the com-

Table 1. Evaluation results in three Risky PointMaze settings. Each
value is reported as the mean ± standard deviation calculated from
100 episodes and 4 seeds.

Method RLHF E-RLHF D-RLHF (ours)

PointMaze

Setting 1

Rewards
Mean 30.8± 27.4 40.7± 18.6 32.6± 33.5

CVaR0.1 -60.0± 0.0 -60.0± 0.0 -16.6± 58.9

Violations
Mean 272.7± 20.2 265.8± 12.2 86.1± 86.4

CVaR0.1 450.7± 23.6 452.4± 46.0 187.3± 134.4

PointMaze

Setting 2

Rewards
Mean 63.2± 5.0 64.0± 6.4 65.4± 11.2

CVaR0.1 42.3± 16.7 43.0± 17.3 53.1± 10.5

Violations
Mean 121.2± 5.9 125.9± 15.3 5.2± 7.3

CVaR0.1 150.3± 23.4 163.9± 31.9 50.8± 71.7

PointMaze

Setting 3

Rewards
Mean 64.2± 11.9 68.6± 7.5 63.8± 19.2

CVaR0.1 22.7± 51.7 41.8± 16.7 48.9± 55.1

Violations
Mean 71.1± 71.7 107.1± 71.2 27.7± 33.1

CVaR0.1 167.5± 120.3 185.0± 61.5 117.7± 96.4

plete training phase. The results show that D-RLHF con-
sistently outperforms other methods with higher CVaR0.1

rewards and fewer violations in both mean and CVaR0.1

metrics. This underscores the risk-averse policy in D-RLHF
avoids passing through the regions with high uncertainty.
When it comes to the mean rewards, D-RLHF still achieves
compatible performance due to its superior CVaR0.1 perfor-
mance. We also find that RLHF and E-RLHF sometimes
achieve higher mean rewards than D-RLHF. This is because
the two methods do not acknowledge the risky regions and
solely pursue expected cumulative rewards, resulting in
traversing through risky areas.

Results Visualization. Figure 4 illustrates 10 evaluation
rollouts from RLHF and D-RLHF in the first setting of Risky
PointMaze (check Figure 8 in Appendix D.2 for complete
results). We find that D-RLHF drives a risk-averse policy
that navigates to the longer but less stochastic path. By
contrast, the traditional RLHF method struggles to perceive
such uncertainties and tends to navigate through the risky
region directly, where the noisy transition (i.e., aleatoric un-
certainty) occasionally induces unsafe movements, leading
to its poor CVaR0.1 performance.

Figure 4. The trajectories generated by RLHF (left) and D-RLHF
(right) during evaluation.

6.3. Model Performance in Risky Robot Navigation
Task Description. To better evaluate the performance of
the proposed D-RLHF and baseline methods, we follow Ma
et al. (2021) and construct more complicated robot naviga-
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Table 2. Evaluation results in the Risky Ant and the Risky Swimmer environments. Each value is reported as the mean ± standard
deviation calculated from 100 episodes and 4 random seeds.

Method CQL-HF CODAC-HF D-RLHF-Uniform D-RLHF-Neutral D-RLHF(ours)

Risky

Ant

Reward
Mean -1814.6± 96.4 -1582.9± 75.4 -2060.5± 100.3 -1768.3± 44.1 -1896.2± 69.7

CVaR0.1 -3092.0± 63.5 -2922.2± 99.0 -2577.2± 114.3 -2635.1± 104.3 -2215.3± 98.6

Violation
Mean 58.4± 4.9 68.5± 6.5 44.4± 7.9 53.2± 6.6 21.8± 3.9

CVaR0.1 218.5± 34.9 289.0± 43.7 172.8± 11.7 209.5± 37.4 124.5± 22.9

Risky

Swimmer

Reward
Mean -2821.7± 265.3 -2698.4± 192.3 -2711.2± 276.9 -2575.1± 188.0 -2912.8± 183.6

CVaR0.1 -4512.8± 432.1 -4316.1± 310.4 -3856.2± 299.8 -4070.4± 246.5 -3498.2± 230.9

Violation
Mean 332.9± 22.6 316.7± 31.9 252.4± 19.8 230.8± 29.7 113.6± 11.5

CVaR0.1 563.4± 47.0 512.3± 56.1 426.3± 32.0 381.9± 44.1 175.5± 17.8

tion tasks, including a high-dimensional Risky Ant environ-
ment and a Risky Swimmer environment.

Figure 5. Risky Ant.

For example, under the Ant envi-
ronment shown in Figure 5 (Ap-
pendix C.3 covers more details),
the goal is to travel from a starting
point to a destination ( green ball),
where there exists a risky region
(red plane) in the middle of the
route. The environmental transition within the red circle is
subject to a Gaussian noise N (µ2, σ2), which introduces
the risk. While a risk-neutral agent might pass through the
risky region regardless of the underlying risk, a risk-aware
agent should avoid it.

Comparison Methods. We use the following baselines
alongside the proposed D-RLHF for comparison: 1) Conser-
vative Q-Learning with Human Feedback (CQL-HF) (Ku-
mar et al., 2020) and 2) Conservative Offline Distributional
Actor Critic with Human Feedback (CODAC-HF) (Ma
et al., 2021) that learns a non-distributional conservative
Q-function and a conservative return distribution. Both of
them utilize the typical MLE reward model. In addition,
we perform ablation studies where 3) D-RLHF-Uniform
replaces the informative Beta prior with a uniform one (i.e.,
α = β = 1), and 4) D-RLHF-Neutral replaces the CVaR
objective with a risk-neutral one (i.e., expectation).

Results Analysis. The empirical results in the Risky Ant
and Risky Swimmer environments are shown in Table 2.
We find that all the methods will inevitably encounter the
risky region due to the intention of reward maximization.
However, compared to other methods, D-RLHF exhibits
better performance with higher CVaR0.1 rewards and fewer
violations (both mean and CVaR0.1), which demonstrates
the performance of its risk-averse policy. Note that although
CODAC-HF with the distributional critic obtains the high-
est mean rewards in Risky Ant, it struggles to optimize the
worst-case (i.e., CVaR0.1) rewards and commits the highest
number of violations. Interestingly, we find that the ablation

methods D-RLHF-Uniform and D-RLHF-Neutral exhibit
relatively better performance than CQL-HF and CODAC-
HF in terms of the violations, which indicates the effective-
ness of the distributional reward model and the risk-averse
policy optimization.

7. Limitation
Offline Setting. This paper mainly focuses on the offline
RLHF setting, where the agent can not interact with the
environment and update human preferences. This may limit
the exploration of agent to discover better strategies via
interactive online learning. However, the proposed method
can also be generalized to the online RLHF setting to learn
a risk-aware policy from diverse human preferences.

Comparison with Direct Preference Optimization. Our
study primarily adheres to the traditional RLHF framework,
which involves initially learning a reward model from hu-
man preferences, followed by policy optimization. Under
this consideration, we do not compare with the Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2023) methods
which directly optimizes the policy with human preferences
without explicit reward modeling. This limitation can be
potentially resolved by our future research.

8. Conclusion
In this paper, we introduce an uncertainty-aware preference
alignment framework for Reinforcement Learning from Hu-
man Feedback (RLHF). We propose a Maximum A Poste-
riori (MAP) objective for learning a distributional reward
model with an informative Beta prior and then utilize the
distributional Bellman operator with the Conditional Value-
at-Risk (CVaR) metric to develop a risk-sensitive policy,
which is aware of the inherent uncertainty in human pref-
erences. Empirical results demonstrate the effectiveness
of the risk-sensitive ability of our approach. Future direc-
tions involve incorporating uncertainty awareness into direct
preference optimization (DPO)-based methods with diverse
human preferences.
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Appendix
A. Proof of Theorem 4.1
We prove the theorem in two steps.

The first step. We prove that the MAP objective of Equation (3) with p0(ϕ) = Beta(α, β) reaches its maximum when:

r̂k(τ) = log
ατ/[e

r̂k(τ) + 1] +
∑
j ω

τ,τjer̂
k(τj)/[er̂

k(τ) + er̂
k(τj)]

βτ/[er̂
k(τ) + 1] +

∑
i ω

τ i,τ/[er̂k(τ) + er̂k(τ i)]
. (14)

Proof. To incorporate the informative Beta prior p0(ϕ) = Beta(α, β) into the iterative update objective, we start by rewriting
the prior on the rewards as follows:

p(r(τ)) = p0(ϕ)
er(τ)

(er(τ) + 1)2
(15)

=
ϕατ−1(1− ϕ)βτ−1

B(ατ , βτ )
· er(τ)

(er(τ) + 1)2
(16)

=

(
er(τ)

er(τ)+1

)ατ−1 (
1

er(τ)+1

)βτ−1

B(ατ , βτ )
· er(τ)

(er(τ) + 1)2
. (17)

where ατ > 0, βτ > 0 are the prior parameters for trajectory τ , and B(ατ , βτ ) =
∫ 1

0
tατ−1(1 − t)βτ−1dt is the Beta

function serving as a normalization constant. Substitute the above prior into Equation (3), we get:

p(r(τ)|D) ∝ p(D|r(τ))p(r(τ))

=
∏
ij

[
e[r(τ

i)]

e[r(τ i)] + e[r(τj)]

]ωτi,τj ∏
i

(
e[r(τ

i)]

e[r(τi)]+1

)ατi−1 (
1

e[r(τi)]+1

)βτi−1

B(ατ i , βτ i)

e[r(τ
i)]

(e[r(τ i)] + 1)2
. (18)

For simplicity, we denote e[r(τ
i)] as si, and ατi , βτi as αi, βi in the remaining part of the proof. The log-likelihood can be

represented as:∑
ij

ωτ
i,τj log si −

∑
ij

ωτ
i,τj log(si + sj) +

∑
i

(αi − 1) log si −
∑
i

(αi − 1) log(si + 1)

−
∑
i

(βi − 1) log(si + 1)−N logB(αi, βi) +
∑
i

log si −
∑
i

2 log(si + 1)

=
∑
ij

ωτ
i,τj

(
log(si)− log(si + sj)

)
+
∑
i

(
αi log(si)− (αi + βi) log(si + 1)

)
−N logB(αi, βi), (19)

where N is the number of i. Differentiating the above equation with respect to si for any i and setting the result to zero, we
get:

∑
j

ωτ
i,τj

si
−
∑
j

ωτ
i,τj + ωτ

j ,τ i

si + sj
+
αi
si

− αi + βi
si + 1

= 0. (20)

After rearranging the above equation, we obtain,

si =
αi/(si + 1) +

∑
j ω

τ i,τjsj/(si + sj)

βi/(si + 1) +
∑
j ω

τj ,τ i/(si + sj)
. (21)
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The second step. We prove that iteration of Equation (8) will converge to its global maximum (Equation 14), from any
starting point, whenever a maximum exists.

Proof. For simplicity, we rewrite the iteration objective (Equation (8)) as follows:

s′i =
αi/(si + 1) +

∑
j ω

τ i,τjsj/(si + sj)

βi/(si + 1) +
∑
j ω

τj ,τ i/(si + sj)
. (22)

Consider an asynchronous update scheme. It is worth noting that: 1) any fixed point of this iteration corresponds to a
stationary point of the posterior probability; 2) the iteration only produces non-negative values of si (given non-negative
initial values); 3) the MAP objective (3) is bounded. Therefore, if the posterior probability under s′i increases after applying
the iteration, the converged fixed point is indeed the global maximum.

Let’s examine the step where a specific si is updated. We define a function f(si) as the sum of the current term in the
log-likelihood of the posterior probability (i.e., Equation 19) that is dependent on si.

f(si) =
∑
j

ωτ
i,τj log

(
si

si + sj

)
−
∑
j

ωτ
j ,τ i log(si + sj)+αilog(si)−(αi + βi)log(si + 1)−N logB(αi, βi)

=
∑
j

ωτ
i,τj log

(
si

si + sj

)
−
∑
j

ωτ
j ,τ i log(si + sj)+αilog

(
si

si + 1

)
−βilog(si + 1)−N logB(αi, βi).

Suppose we update si into s′i using Equation (22), we have

f(s′i) =
∑
j

ωτ
i,τj log

(
s′i

s′i + sj

)
−
∑
j

ωτ
j ,τ i log(s′i + sj)+αilog

(
s′i

s′i + 1

)
−βilog(s′i + 1)−N logB(αi, βi)

(a)

≥
∑
j

ωτ
i,τj log

(
si

si + sj

)
+
s′i − si
s′i

∑
j

ωτ
i,τj sj

si + sj
−
∑
j

ωτ
j ,τ i log(si + sj)− (s′i − si)

∑
j

ωτ
j ,τ i

si + sj

+ αi log

(
si

si + 1

)
+ αi

s′i − si
s′i(si + 1)

− βi log(si + 1)− βi
s′i − si
si + 1

−N logB(αi, βi)

(b)
=f(si) + (s′i − si)

 1

s′i

∑
j

ωτ
i,τj sj

si + sj
−

∑
j

ωτ
j ,τ i

si + sj
+

αi
s′i(si + 1)

− βi
si + 1


=f(si). (23)

• (a) holds due to Equation (16) and (17) in (Newman, 2023) (treat πi = si, π′
i = s′i and πj = sj), along with two

inequalities that log(x/(x+1)) ≥ log(y/(y+1))+(x−y)/(x(y+1)) and − log(x+1) ≥ − log(y+1)−(x−y)/(y+1).

• (b) holds due to the iteration given by Equation (22).

Consequently, applying Equation (22) for updates increases f(si) and also the posterior probability until a fixed point is
reached, where s′i = si. Once the global maximum is attained for all si, the MAP objective (14) reaches its maximum value.
This completes the proof.

B. Implementation Details
B.1. Experimental Setting

In this paper, we utilized a total of 8 NVIDIA GeForce RTX 4090 GPUs, each equipped with 24 GB of memory. The
random seeds in the continuous environments are 0, 123, 321, and 666. We trained the agents for 500 epochs in the offline
setting and chose the final epoch for evaluation over 100 episodes. For fairness, we implement the reward model for each
method the same, by a causal transformer like Kim et al. (2023). We also utilize a transformer-based architecture for the
Beta model utilized in our method for learning informative priors.
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B.2. Offline Preference Dataset
Based on Procedure 3.1, we create the offline preference dataset as follows: For Gridworld and PointMaze environments,
we train two deterministic policies: one that navigates the shorter path through the risky region (risky), and the other that
avoids the risky region by taking a longer route (risk-averse). Then we perform uniform sampling over them. As a result,
the risky one’s trajectories are more diverse because of the random noise in the risky region (as shown in the left column
of Figure 6). To assess the risk-awareness of our methods, we encourage policies to embrace riskier actions by assigning
higher preference to trajectories produced by risky policies. Specifically, we establish the expected likelihood of a risky
trajectory outranking a risk-averse one to be 0.6. Following Yuan et al. (2024), we compare the trajectory segments with a
length of 8 in Gridworld and a length of 100 in PointMaze.

For the risky robot navigation task (i.e., Risky Ant and Risky Swimmer), we train two Distributional Soft Actor Critic
(DSAC) (Duan et al., 2021) agents online in each environment over 1000 episodes: one optimizing for expected returns
and the other for CVaR returns. These agents are then employed to generate expert trajectories and we uniformly sample
from them as the dataset for offline RL training. Consequently, trajectories produced by the former agent tend to be riskier,
favoring shorter paths through risky regions for higher expected rewards, while trajectories from the latter aim to avoid risk
due to CVaR optimization. Following this, we generate the preference labels as follows: for a pair of trajectories (τ1, τ2), if
|r(τ1)− r(τ2)| > t, we prioritize the trajectory with higher rewards, otherwise, we select the trajectory with more steps in
risky regions. Here t is a threshold and we set t = 10. The trajectory segment length is 100 in each environment.

B.3. Hyperparameters
As our approach primarily relies on the Conservative Offline Distributional Actor Critic method (Ma et al., 2021) for
offline policy learning, we maintain the CODAC-specific hyperparameters consistent with the original study and only adjust
the learning rate and Lagrange threshold. Regarding the reward model, we adhere to the architecture of the preference
transformer model (Kim et al., 2023) as implemented in the Uni-RLHF benchmark (Yuan et al., 2024). Additionally,
we employ the transformer architecture for the Beta model to learn sequential representations. We summarize the main
hyperparameters in Table 3.
Table 3. List of the utilized hyperparameters in the proposed D-RLHF. To ensure equitable comparisons, we maintain consistency in the
parameters of the same neural networks across different models.

Parameters Risky PointMaze Risky Ant Risky Swimmer

General
Max Episode Length 600 400 1000
Discount Factor 0.99 0.99 0.99
Training Epochs 50 500 500

Policy Model
Actor Network 256, 256 256, 256 256, 256
Critic Network 256, 256 256, 256 256, 256
Actor Learning Rate 3e-6 3e-5 3e-5
Critic Learning Rate 3e-5 3e-5 3e-5
Min Q Weight 5 10 10
Lagrange Threshold 10 10 10
Number of Quantiles 32 32 32
Huber Regression Threshold 1 1 1
Entropy Tuning True True True
Risk Level 0.1 0.1 0.1

Reward Model
Network 256 256 256
Learning Rate 5e-5 5e-5 5e-5
Number of Attention Heads 4 4 4
Number of Layers 1 1 1
Batch Size 64 64 64

Beta Model
Network 256 256 256
Learning Rate 3e-5 3e-5 3e-5
Number of Attention Heads 4 4 4
Number of Layers 1 1 1
Batch Size 64 64 64
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C. Environmental Setting
C.1. Gridworld

The Gridworld environment consists of a map with several grids for movement. We create three unique scenarios, as
shown in the left column of Figure 6. The agent’s objective is to navigate from a starting location to a target location while
avoiding the specified walls. At each step, the agent can choose from four possible actions, each corresponding to one of
the four cardinal directions (up, down, left, right). Starting from the initial position, the agent receives a reward of 1 upon
successfully reaching the target location, and a reward of 0 in all other cases. The game continues until a maximum of 50
time steps is reached. Additionally, we introduce risky regions to the environment where the transition exhibits a degree of
uncertainty. Specifically, within the risky regions, with a predetermined probability (p = 0.1), the environment executes a
random action instead of the intended action chosen by the agent.

C.2. Risky PointMaze

The PointMaze environment is a continuous domain that generalizes from the discrete Girdworld. In this scenario, the
objective is to control a 2-degree-of-freedom (DoF) ball to reach a designated goal in a closed maze. As shown in Figure 3,
we keep the same starting, target, wall, and risky locations as the previous Gridworld environment for the sake of evaluation
in the continuous domain. The risky regions are characterized by adding Gaussian noise to the environmental transition
functions, introducing stochasticity and risk into the agent’s movements. Specifically, the transition in risky regions is
pT (st+1|st, at) = f (st, at)+N (µ1, σ1), where f(·) is the original transition function. We fix µ1 = 0 and σ1 = 0.05 across
the environments. The maximum step is 600.

C.3. Risky Robot Navigation

Risky Swimmer In this environment, the agent controls a robot with two rotors connecting three segments, whose goal is
to navigate from a starting state [1, 1] to a target state [5, 5] as quickly as possible. There is a risky region centered at [5, 5]
with a radius of 1. The agent’s dynamics remain consistent with the MuJoCo Swimmer environment. At each timestep, the
agent’s reward is calculated as the negative Euclidean distance to the goal plus 0.1 times its velocity. If the agent enters the
risky regions, its transition will be influenced by a Gaussian noise N (0, 0.05). The episode terminates when the Euclidean
distance between the agent and the target is less than 1 or reaches the maximum steps of 1000.

Risky Ant In this environment, the agent controls a high-dimensional ant robot with four legs, featuring 113 dimensions
of observation. The goal is to navigate from the starting state [2, 2] to the target state [8, 8]. A risky region is centered at [5,
5] with a radius of 2. The agent’s dynamics are identical to those of the MuJoCo Ant environment. At each timestep, the
agent’s reward is calculated as the negative Euclidean distance to the goal plus 0.1 times its velocity, encouraging rapid
progress toward the target. If the agent enters the risky region, its transitions will be affected by Gaussian noise N (0, 0.05).
The episode terminates when the Euclidean distance between the agent and the target is less than 1, or when the maximum
of 400 steps is reached.

D. More Experimental Results
D.1. Gridworld

In Figure 6, the middle column of plots illustrates the learned risk-sensitive reward distributions by our method. It is evident
that rewards in high-risk regions exhibit both a higher expectation and greater variance compared to those in risk-averse
regions. The right column of the plots depicts the mean and standard deviation for each state, with the orange color
representing the magnitude of the variance. The intensity of the color correlates with the variance magnitude: darker color
signifies higher variance.

D.2. PointMaze

Figure 7 illustrates the evaluation results in three PointMaze environments over 100 episodes and 4 random seeds along the
training procedure.

Figure 8 illustrates the trajectories generated by the traditional RLHF (top row) and the proposed D-RLHF (bottom row) in
three PointMaze environments. We find that D-RLHF demonstrates a risk-averse strategy by selecting a longer path with
lower variance.
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Figure 6: (Left) The Gridworld environment and offline trajectories, where solid trajectories are
generated by risk-averse policy π1 and dotted trajectories are generated by risky policy π2. (Middle)
The learned risk-sensitive reward distributions by our method. (Right) The mean and standard
deviations of learned rewards. In terms of three distinct settings, Gridworld 1 is on the top, Gridworld
2 is in the middle, and Gridworld 3 is on the bottom.

D.2 PointMaze688

Figure 7 illustrates the evaluation results in three PointMaze environments over 100 episodes and 4689

random seeds along the training procedure.690

Figure 8 illustrates the trajectories generated by the traditional RLHF (top row) and the proposed691

D-RLHF (bottom row) in three PointMaze environments. We find that D-RLHF demonstrates a692

risk-averse strategy by selecting a longer path with lower variance.693
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Figure 6. (Left) The Gridworld environment and offline trajectories, where solid trajectories are generated by risk-averse policy π1 and
dotted trajectories are generated by risky policy π2. (Middle) The learned risk-sensitive reward distributions by our method. (Right) The
mean and standard deviations of learned rewards. In terms of three distinct settings, Gridworld 1 is on the top, Gridworld 2 is in the
middle, and Gridworld 3 is on the bottom.
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Figure 7: The evaluation results along the whole training procedure in three PointMaze settings,
where the top row denotes episode rewards and the bottom row denotes the episode violations.

Figure 8: Each column refers to a PointMaze scenario. We illustrate the trajectories generated by
traditional RLHF (top row) and D-RLHF (bottom row).
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Figure 7. The evaluation results along the whole training procedure in three PointMaze settings, where the top row denotes episode
rewards and the bottom row denotes the episode violations.

Figure 7: The evaluation results along the whole training procedure in three PointMaze settings,
where the top row denotes episode rewards and the bottom row denotes the episode violations.

Figure 8: Each column refers to a PointMaze scenario. We illustrate the trajectories generated by
traditional RLHF (top row) and D-RLHF (bottom row).
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Figure 8. Each column refers to a PointMaze scenario. We illustrate the trajectories generated by traditional RLHF (top row) and D-RLHF
(bottom row).
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E. Broader Impacts
The development of a risk-aware preference alignment framework for Reinforcement Learning from Human Feedback
(RLHF) holds significant potential for both positive and negative societal impacts. On the positive side, incorporating
risk awareness into RLHF can enhance the safety and reliability of AI systems, leading to more ethical and trustworthy
applications in critical areas such as healthcare, autonomous driving, and finance. This can result in improved decision-
making processes that better align with human values and societal norms, ultimately fostering greater public trust in AI
technologies. However, the negative impacts must also be considered. A risk-aware framework might inadvertently prioritize
conservative approaches, potentially circumventing innovation and reducing the efficiency of AI systems. Additionally,
if not properly designed, such systems could reinforce existing biases or inequalities by overly relying on feedback from
specific groups, thereby marginalizing underrepresented voices. Balancing these risks and benefits is crucial to ensuring that
the deployment of RLHF technologies promotes broad societal welfare while mitigating potential harm.
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