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Abstract

Understanding the phenotypic characteristics of cells in culture and detecting per-
turbations introduced by drug stimulation is of great importance for biomedical
research. However, a thorough and comprehensive analysis of phenotypic hetero-
geneity is challenged by the complex nature of cell-level data. Here, we propose a
novel Latent Eigenvalue Analysis (LEA) framework and apply it to high-throughput
phenotypic profiling with single-cell and single-organelle granularity. Using the
publicly available SARS-CoV-2 datasets stained with the multiplexed fluorescent
cell-painting protocol, we demonstrate the power of the LEA approach in the
investigation of phenotypic changes induced by more than 1800 drug compounds.
As a result, LEA achieves a robust quantification of phenotypic changes introduced
by drug treatment. Moreover, this quantification can be biologically supported by
simulating clearly observable phenotypic transitions in a broad spectrum of use
cases. In conclusion, LEA represents a new and broadly applicable approach for
quantitative and interpretable analysis in routine drug screening practice.

1 Introduction

In the cell-based drug screening, the emergence of novel fluorescent imaging protocols allows to
reveal relevant cellular components and organelles (e.g., Nucleus (DNA), Endoplasmic reticulum
(ER), Actin (Actin), Nucleolus and cytoplasmic RNA (RNA), Golgi and plasma membrane (Golgi))
in a highly multiplexed, high content manner. Following the cell-painting protocol (Bray et al., 2016),
two large-scale drug screening datasets RxRx19 (a, b) (Cuccarese et al., 2020) have been recently
released, which include more than 1800 drug compounds with up to 8 di↵erent concentrations
that are tested on 3 di↵erent cell-lines. These high-throughput phenomic libraries have indeed
stimulated the development of novel approaches for analyzing phenotypic e↵ects introduced by drug
treatments (Cuccarese et al., 2020). However, current methods failed to fully utilize the single-cell
and highly multiplexed nature of these datasets, leaving much to be discovered.

In existing studies (Cuccarese et al., 2020; Koh et al., 2021), researchers usually start the analysis by
downsizing the raw image read-outs or by exclusion of some fluorescent channels (Koh et al., 2021).
In a supervised manner, classification features of the entire image can then be learned to determine
the phenotypic changes of a cell population induced by di↵erent drug compounds and can be linked to
treatment e�cacy (Cuccarese et al., 2020) (Fig. 1 (a)). But, it is still an open and essential question to
conduct a more in-depth analysis at the single-cell and/or single-organelle level for understanding the
drug e↵ects in a concentration-specific manner. From a technical perspective, handling such massive
datasets poses further statistical challenges (Johnstone & Titterington, 2009). New approaches for the
comprehensive quantification of data heterogeneity are needed for the analysis of high-dimensional
datasets (Wiles et al., 2021) in di↵erent domains.

In the biomedical domain, statistical tests such as the F-test (Richard & Hahs-Vaughn, 2007) and
Student’s t-test (Owen, 1965) are commonly used to examine the statistical discrepancy between two
collections of heterogeneous tabular data. Despite demonstrable success in theoretical studies (Peters
et al., 2016; Heinze-Deml et al., 2018; Gamella & Heinze-Deml, 2020), it is far from straightforward
to apply them to real-world multi-dimensional cases. For instance, Wu et al. (2022) found that the
p-values computed with these statistical tests (Richard & Hahs-Vaughn, 2007; Owen, 1965; Levene,
1961; Wilcoxon, 1992) are not robust when applied to real-world clinical data, and then undermine
the accuracy of identifying causal associations between diagnostic features and patient outcome.
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Figure 1: Model illustrations for the baseline method (Cuccarese et al., 2020) (a) and proposed single-cell
LEA approach (b). a, In the baseline method, a variant model of DenseNet-161 is trained on the downsized
multiplexed fluorescent images for classifying the drug compounds (Remdesivir, Tofacitinib, Bortezomib shown
as exemplars). Then, the learned features are utilized to analyze the e↵ectiveness of di↵erent drugs. b, In LEA,
we start the pipeline by pre-training the decoder on center-cropped single-cell images in an unsupervised manner
for each fluorescent channel. Then, we learn robust latent representations with a residual-based encoder (Alaluf
et al., 2021) for reconstructing these single-cell images. For quantifying the drug e↵ects, we compute the
eigenvalues with learned single-cell representations and support our quantitative results with clearly observable
phenotypic transitions.

In the deep learning domain, the importance of measuring the di↵erence (heterogeneity) between
fake and real data has been recognized in parallel to the development of generative adversarial nets
(GAN) (Goodfellow et al., 2014; Heusel et al., 2017; Karras et al., 2020). To measure the quality of
GAN reconstructions, researchers have proposed a variety of evaluation methods such as Fréchet
Inception Distance (dFID) (Heusel et al., 2017), Inception Score (Salimans et al., 2016) and Kernel
Inception Distance (dKID) (Bińkowski et al., 2018). These approaches could be used to di↵erentiate
image data distributions for the analysis of biomedical datasets. Nevertheless, it is not trivial to
derive a multi-dimensional quantitative understanding with these scores, nor can we directly support
them with plausible visual explanations. Therefore, they are less satisfactory for critical biomedical
applications. Motivated by the emergence of (unsorted) eigenvalues in the improved implementation
of dFID, Wu & Koelzer (2022) recently suggested comparing sorted eigenvalues (dEig) as a simple
alternative to dFID. For i = 1, 2, let Zi := (zi

1, . . . , z
i
ni

) be a collection of ni p-dimensional vectors.
This leads to the following definition that can provide informative measurements along principal axes
and facilitate a more complete analysis of data heterogeneity:
Definition 1. Let Si =

1
ni

ZiZT
i be the sample covariance matrix (SCM) of Zi, then we define

dEig(S1,S2)2 =

pX

j=1

(
q
� j

1 �
q
� j

2)2, (1)

where � j
i is the j-th largest eigenvalue of Si.

2 Proposed LEA

Quantification of phenotypic heterogeneity. Based on the theoretical foundation behind dEig (Wu &
Koelzer, 2022), we propose a novel latent eigenvalue analysis (LEA) for high-throughput phenotypic
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profiling (Fig. 1). In the study of dEig, Zi is usually the collection of features obtained with the
penultimate layer (pool3) of an Inception V3 model (Szegedy et al., 2016), where the model is trained
for an ImageNet classification task. However, such an Inception model trained with ImageNet is not
suitable for deriving meaningful features of multiplexed single-cell images. Alternatively, we utilize
the approach of GAN inversion (Xia et al., 2022) and propose to learn the latent representations
Zi,c on the c-th fluorescent channel of center-cropped single-cell images (Fig. 1 (b)). To address the
infeasible deployment of dEig to cases where we obtain imbalanced values of dEig w.r.t. di↵erent
channels, we subsequently propose
Definition 2. For i = 1, 2 and k = 1, . . . , c, let Si = ( 1

ni,1
Zi,1ZT

i,1, . . . ,
1

ni,c
Zi,cZT

i,c) be the collection of
SCMs of Zi,k, then we define

dLEA(S1,S2) =
cX

k=1

p0X

j=1

(
q
� j

1,k �
q
� j

2,k)2

� j
1,k

, (2)

where p0 ⌧ p and S1 is the reference SCM.

Similar to Principal Component Analysis (PCA) (Shlens, 2014), we only utilize the p0 ⌧ p largest
eigenvalues that reflect the largest variances and the most critical information. As the 5 largest
eigenvalues dominate > 95% of the overall values in the experiments, we set p0 = 5 throughout the
article (Please see also Appendix Sec. A.1 and A.2). The reference S1 can be concretely determined
in a given dataset, e.g., the SCM of mock cell read-outs in this study. We thus propose a novel
quantitative method for phenotypic profiling of cells at single-organelle resolution.

Visualization of phenotypic transitions. Complementary to the dLEA that measures the eigenvalue
di↵erence along each principal axis, we simulate observable phenotypic transitions by manipulating
the principal component(s). This enables direct linkage of the observed phenotypic heterogeneity
in the given datasets with human-interpretable biological information. Notably, there have been
previous studies in understanding latent semantic transitions for natural images (Shen & Zhou, 2021;
Härkönen et al., 2020; Patashnik et al., 2021; Wu et al., 2021). To probe the latent semantics of
generative models, many of these investigations conducted image manipulations on fake images,
where the manipulations are either unrelated or loosely related to a quantitative measurement. For
example, Härkönen et al. (2020) proposed to edit fake images by adding weighted eigenvectors to
its latent representations. Similarly, Shen & Zhou (2021) utilized the closed-form factorization to
determine the manipulation direction. Since such manipulation directions are not parallel to the
principal axes, they cannot be directly used to explain the eigenvalue heterogeneity embedded in
dLEA. To resolve this gap, we propose to output a single-cell image sequence by manipulating the
largest principal component(s) of latent representations Zi,k (Def. 2), where Zi,k are derived from real
single-cell images.
Definition 3. Following the specifications of � j

i,k,Zi,k of Def. 2, let �i,k = diag(�1
i,k, . . . , �

p
i,k) be

decomposed as �i,k =
1

ni,k
Z̃i,kZ̃T

i,k, where Z̃i,k = OT
i,kZi,k are the principal components w.r.t. the

orthogonal eigenbasis Oi,k. Given j 2 {1, . . . , p0}, we interpret the di↵erence between � j
1,k and � j

2,k

(Eq. 2) by visualizing � j
i,kZ̃i,k manipulated on the j-th principal component that brings

�̃ j
i,k =

1
ni,k

(� j
i,k)2Z̃i,kZ̃T

i,k = (� j
i,k)2�i,k,where � j

i,k = diag(1, . . . , 1, � j
i,k, 1, . . . , 1). (3)

To guarantee the consistency and to simulate clearly interpretable phenotypic transitions, image
sequences w.r.t. � j

i,kZ̃i,k are always obtained by step-wise assigning � j
i,k = 2m in this study, where

m = (�1.8,�1.2,�0.6, 0, 0.6, 1.2, 1.8). By combining the quantification and visualization components,
we proposed the Latent Eigenvalue Analysis (LEA) pipeline. Our contribution is two-fold:

• By comparing the largest eigenvalues, we propose the numerically robust quantification
dLEA of phenotypic heterogeneity in multiplexed fluorescent image datasets. As a direct
application of dLEA, we refine the high-throughput cell-based drug analysis to single-cell
and single-organelle granularity.
• By manipulating the largest principal components, we provide phenotypically plausible

visual explanations to dLEA. In the context of domain knowledge, these transitions can
support novel interpretations of drug e↵ects and drug response heterogeneity.
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Figure 2: Reconstruction visualization of LEA and quantitative comparison of drug responses between the
baseline (Cuccarese et al., 2020) and dLEA (Proposed). a (VERO) and f (HRCE): The reconstructed samples
obtained by LEA. b (VERO) and g (HRCE): The quantitative comparison between the hit score (Cuccarese et al.,
2020) and dLEA with the latent representations of all concentrations. c (VERO) and h (HRCE): The violin plot
of overall comparison between the hit score and dLEA. d (VERO) and i (HRCE): The quantitative comparison
between the hit score and dLEA with the latent representations of optimal drug concentration. e (VERO) and j
(HRCE): The hierarchical clustering of top 50 drug compounds (if exist) w.r.t. the 5 largest eigenvalues of the
latent representations of optimal drug concentration.

4



Under review as a workshop paper at MLDD 2023

3 Results

Here, we report the application of LEA to two large-scale phenomic libraries RxRx19 (a,b) released
by Recursion (Cuccarese et al., 2020), which document the e↵ects of more than 1800 drug candidates
on Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) infection and associated
systemic inflammation using the multiplexed fluorescent cell painting protocol on human and animal
cell-lines. We set the drug hit score proposed by Cuccarese et al. (2020) as the baseline and
demonstrate the performance of dLEA. To investigate the phenotypic e↵ects of drug candidates at
single-cell resolution, we carried out cell segmentation using the DNA channel (Please see the
Mahotas documentation (Coelho, 2012)). Accordingly, we derive 23 million 64 ⇥ 64 single-cell
training images from 0.37 million raw images. This allows us to analyze drug e↵ects on individual
cell organelle components, greatly extending the range of detectable phenotypic perturbations. As
shown in Fig. 1 (a, b), our approach using unsupervised training on the center-cropped cell images for
the individual fluorescent channels indeed di↵ers greatly from the published baseline using supervised
training on the entire image read-outs. As the phenomic library (RxRx19a) has four cell conditions:
Mock control (Mock), irradiated control (Irradiated), infected without drug treatment (Infected), and
infected with di↵erent drug treatments (Drug), we set the reference S1=Mock (Eq. 2) corresponding
to the ‘Mock’ latent representations and then determine the e↵ect of a drug based on whether it
reverses the phenoprint of infected cells. Besides, we report dLEA ⇥ 100 (e.g., percentage) for clearer
visualization in the following plots.
Definition 4. Following the specification of SCMs SMock,SInfected,SDrug as Eq. 2, we define

A drug is
(

positive, if dLEA(SMock,SDrug) < dLEA(SMock,SInfected).
negative, else.

(4)

LEA benchmarking. Throughout this study, we consider StyleGAN2 pSp the default architecture
for conducting drug screening experiments. Concretely, we take StyleGAN2 (Karras et al., 2019)
as the decoder and the residual-based ‘pixel2style2pixel’ (pSp) (Richardson et al., 2021) encoder to
build the LEA model. We refer interested readers to Appendix Sec. A.2 for more toy and ablative
studies on model designs. For experiments carried out on both human (Human renal cortical epithelial
cells, HRCE) and animal (Kidney epithelial cells of African green monkey, VERO) cell-lines, we start
our investigation by comparing the reconstruction quality between the proposed LEA – trained on
individual fluorescent channels and ensemble LEA – trained on all the channels. For more discussions
please see Appendix Sec. A.1.

Overall comparison. For a thorough comparison, we screened all drug compounds tested on VERO
and HRCE cell-lines (with the exclusion of three drugs that have duplicated or ambiguous names).
Despite fundamentally di↵erent model designs (Fig. 1 (a,b)), our quantitative score dLEA demonstrates
an overall consistent correlation to the baseline hit score (Cuccarese et al., 2020), that is, the lower
the dLEA is, the higher the baseline hit score is. Importantly, the e↵ect estimation for a given drug
compound can be directly derived from dLEA, while a manual threshold determination is required
for the hit score (Cuccarese et al., 2020). As displayed in Fig. 2 (b, c) of the VERO experiments,
dLEA shows a mild yet meaningful decreasing trend with growing hit scores and identifies Remdesivir
and its prodrug GS-441524 as e�cacious compounds when using all their latent representations that
are independent of concentration. Further, LEA allows to take the optimal drug concentration into
consideration, and thus achieves a superior resolution in identifying e↵ective drug candidates as
illustrated in Fig. 2 (d). Importantly, Remdesivir and GS-441524 remain the top e↵ective candidates
among all the drug compounds. The superior e↵ectiveness of Remdesivir and GS-441524 can also be
di↵erentiated from other drugs by examining the hierarchical clustering (Fig. 2 (e)). For example, we
observe distinct patterns of latent representations of ER, RNA and Golgi channels for Remdesivir
and GS-441524. This corresponds to the successfully reversed phenoprint reflected by the largest
eigenvalues, e.g., Mock:1.33, GS-441524:1.33, Remdesivir:1.36, and Infected:1.66 for ER (⇥105);
Mock:1.75, GS-441524:1.76, Remdesivir:1.79, and Infected:2.20 for RNA (⇥105); Mock:3.23, GS-
441524:3.20, Remdesivir:3.23, and Infected:3.69 for Golgi (⇥105). Similar to the VERO experiment,
Fig. 2 (g) and (h) show that dLEA remain well correlated with the baseline in the HRCE experiment.
Strikingly, Remdesivir and GS-441524 are identified as strongly e�cacious when computing the
eigenvalues on the latent representations of the optimal drug concentration (Fig. 2 (i)), indicating
verifiable positive drug e↵ects achieved by both candidates. On the other hand, Chloroquine and
Hydroxychloroquine demonstrate contradictory e↵ects on both the latent representations of the cells
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treated with di↵erent drug concentrations and the optimal drug concentration, both of which are
identified as negative by the dLEA(SMock,SInfected) threshold (Fig. 2 (g) and (i)). Such inconsistency
between the ine↵ective identification on the human cell-line and the e↵ective identification on the
animal cell-line undermines its fidelity in clinical treatment, which can be explained by the fact that
neither of them is recommended in treating hospitalized COVID-19 patients according to clinical
studies (Roustit et al., 2020; Saghir et al., 2021). If we examine the latent representations in more
detail, Fig. 2 (j) highlights the unique patterns presented in ER, Actin, and RNA channels for
Remdesivir and GS-441524, which reveal novel and subtle phenotypic changes that were previously
unidentified. Cell-level phenotype analysis by dLEA can therefore provide novel insights and patterns
in high-throughput drug-screening experiments as candidates for subsequent biological exploration.

Fine-grained quantification and visual interpretation. We report the fine-grained quantification on
both VERO and HRCE experiments for individual fluorescent channels and drug concentration levels.
As for the overall analysis, the small di↵erence between mock and irradiated control is correctly
captured in individual fluorescent channels for both experiments, which serves as an important sanity
check for the stratified quantification. Regarding the drugs of interest presented in Fig. 3 (a) and Fig. 4
(a), we observe a consistently improved phenoprint rescue with an increasing dose level of the drug.
This reflects the biologically plausible observation of increased inhibitory e↵ects on cellular infection
by SARS-CoV-2 with increasing drug concentrations. For VERO and HRCE cell-lines, Remdesivir
and GS-441524 are consistently identified as e↵ective compounds w.r.t. individual fluorescent
channels as well as all channels, which supports the clinical utility of Remdesivir approved by U.S.
Food and Drug Administration (FDA) 1. Meanwhile, the heterogenous e↵ects of Chloroquine and
Hydroxychloroquine are also revealed in our refined analysis. For instance, the negative hit results in
Actin, RNA and Golgi channels eventually undermine the overall performance of both candidates and
provide the negative evidence for both drugs derived from real-world clinical studies (Avezum et al.,
2022). Furthermore, the PCA plots displayed in (b) of Fig. 3 and 4 clearly support the e�cacious hit
results achieved by Remdesivir. With the k-means clustering on the largest principal component(s),
we observe meaningful groups based on the nucleus morphology (DNA) for both VERO and HRCE.
Besides, interesting and striking phenotypic transitions arise in other understudied channels. Taking
the RNA channel as a concrete example, the largest eigenvalue (⇥105) of mock and infected cells
are 1.75, 1.23 versus 2.20, 1.28 for VERO and HRCE resp. As shown in (b) of Fig. 3 and 4, the
cellular sequences presented from left to right with enlarging the largest principal component(s) imply
increased RNA production in the cytoplasm. This observation is biologically plausible, as SARS-
CoV-2 expresses RNA-dependent RNA polymerase as well as a large number of supporting factors to
transcribe and replicate the viral genome in infected cells (Malone et al., 2022). Viral infection of
host cells thus leads to massive upregulation of the production of viral RNA in the cytoplasm, which
is correctly identified by the dLEA analysis at subcellular resolution. Importantly, Remdesivir acts as a
nucleoside analog and stalls the RNA-dependent RNA polymerase of coronaviruses (Kokic et al.,
2021). Our analysis identifies this e↵ect at the phenotypic level, as Remdesivir treatment calms the
hyper state reflected by shifting the largest eigenvalue from 2.20 to 1.79 (VERO) and from 1.28 to
1.26 (HRCE). Taking the 5 largest eigenvalues as a whole, we further robustify and di↵erentiate the
positive drugs from negative ones, while demonstrating persistent transitions for all channels.

From in vitro to in vivo studies.

In the cell-based in vitro studies, we have shown the refinement and improvement of LEA on the
animal (VERO) and human (HRCE) cell-lines. Importantly, the key takeaways of drugs of interest
can be well supported by relevant clinical studies. Nevertheless, we acknowledge the limitation of
LEA on the human umbilical vein endothelial (HUVEC) cell-line (RxRx19b), which models cytokine
storm conditions in severe COVID-19 (Hu et al., 2021). As displayed in Appendix Fig. 9, the overall
drug identifications achieved by LEA are less consistent under these conditions with the baseline
results. Although the least e↵ective drug candidates identified by (Cuccarese et al., 2020) are likely
to be assigned with high dLEA score, the association is less clear in regards to drug candidates with a
positive baseline hit score (e.g., c-MET inhibitors in Fig. 9 (b)). Such inconsistency between LEA
and the baseline approach (Cuccarese et al., 2020) suggests the current level of evidence remains
inconclusive. Whether this observation is due to a high level of variance or a true lack of e�cacy of
these drug candidates requires follow-up in vivo studies.

1https://www.fda.gov/drugs/emergency-preparedness-drugs/coronavirus-covid-19-drugs
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Figure 3: Identification of drug-concentration dependent e↵ects and visual interpretation for key drugs of
interest in the VERO cell-line. a, The proposed dLEA of di↵erent drug concentrations for individual and all
fluorescent channels. Here, we report the mean dLEA (with standard deviation) averaged on 4 randomly sampled
cell collections. b, The PCA plots and phenotypic transitions driven by manipulating the largest (top) and 5
largest (bottom) principal component(s). The bounding box indicates the reconstructed image.
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Figure 4: Identification of drug-concentration dependent e↵ects and visual interpretation for key drugs of
interest in the HRCE cell-line. a, The proposed dLEA of di↵erent drug concentrations for individual and all
fluorescent channels. Here, we report the mean dLEA (with standard deviation) averaged on 4 randomly sampled
cell collections. b, The PCA plots and phenotypic transitions driven by manipulating the largest (top) and 5
largest (bottom) principal component(s). The bounding box indicates the reconstructed image.
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A Appendix

VERO (Proposed) VERO (Ensemble) HRCE (Proposed) HRCE (Ensemble)

DNA PSNR 35.24 ± 1.87 34.67 ± 2.29 44.32 ± 2.48 38.25 ± 3.66
SSIM 0.95 ± 0.01 0.95 ± 0.02 0.99 ± 0.01 0.95 ± 0.05

ER PSNR 35.31 ± 1.94 32.20 ± 2.11 35.27 ± 2.36 29.42 ± 3.12
SSIM 0.96 ± 0.01 0.93 ± 0.02 0.95 ± 0.02 0.83 ± 0.09

Actin PSNR 33.54 ± 2.70 31.74 ± 2.72 33.68 ± 3.21 29.22 ± 3.44
SSIM 0.93 ± 0.02 0.90 ± 0.03 0.92 ± 0.04 0.78 ± 0.09

RNA PSNR 36.93 ± 1.51 34.59 ± 1.87 39.00 ± 2.56 33.87 ± 3.07
SSIM 0.97 ± 0.01 0.95 ± 0.02 0.96 ± 0.02 0.90 ± 0.06

Golgi PSNR 37.23 ± 2.24 33.84 ± 2.08 36.48 ± 2.44 32.69 ± 3.29
SSIM 0.95 ± 0.02 0.92 ± 0.02 0.95 ± 0.03 0.87 ± 0.07

Total PSNR 35.27 ± 1.86 33.14 ± 2.11 36.26 ± 2.40 31.36 ± 2.95
SSIM 0.95 ± 0.01 0.93 ± 0.02 0.95 ± 0.02 0.87 ± 0.07

Table 1: The numerical comparison of reconstruction results between the proposed and ensemble LEA on VERO
and HRCE.

A.1 LEA benchmarking

For each fluorescent channel, the proposed LEA outperforms the ensemble variant on both cell-line
experiments in terms of overall better peak signal-to-noise Ratio (PSNR) and structural similarity
index measure SSIM scores (Appendix Tab. 1). This indicates superior reconstruction quality by
the proposed LEA over the ensemble approach (Please see Fig. 2 (a) and (f) for visual results).
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Importantly, the proposed LEA is well calibrated by the small distance between mock control and
irradiated control cells (Fig. 2 (b,d,g,i)), which is consistent with the expected similar phenotypic and
biological characteristics shared by the control conditions ‘mock’ (cells in culture medium without
viral stimulation) and ‘irradiated’ (cells in culture medium incubated with the inactivated virus). In
contrast, such a verifiable calibration cannot be reproduced with the ensemble approach. For the
HRCE experiment, Fig. 6 (c, d) in the Appendix shows an inexplicably small di↵erence between
mock and infected cell populations as compared to the control conditions, which contradicts the
expected phenoprint heterogeneity induced by the virus. In terms of the largest eigenvalues, p0 = 5
robustifies the drug e↵ect quantification of dLEA and shows an improved consistency with the hit
score (Cuccarese et al., 2020), which clearly di↵ers from p0 = 1, a balanced alternative of dEig (See
Fig. 7 (VERO) and 8 (HRCE) in the Appendix for more detail).

A.2 Toy Results

In reference to Fig. 1(b), here we describe the architecture of LEA in detail and provide insights into
the evaluation of model performance. This is done by conducting a separate series of experiments
on the HAM10000 dataset, a large collection of multi-source dermatoscopic images of common
pigmented skin lesions (Tschandl et al., 2018). Complementary to above drug screening studies,
these experiments support the technical robustness of the LEA pipeline to various types of input
data and showcase its domain-agnostic facet. As HAM10000 includes clinical images of human
skin lesions, it is easily interpretable by domain experts and allows conceptual validation of the LEA
results in the context of well-established disease categories. Concretely, the HAM10000 (Tschandl
et al., 2018) dataset has 7 categories of skin lesion images including actinic keratoses (akiec), basal
cell carcinoma (bcc), benign keratosis (bkl), dermatofibroma (df), melanocytic nevi (nv), melanoma
(mel) and vascular skin lesion (vasc). As the RGB channels of skin lesion images jointly inform the
clinical presentation, we train the LEA pipeline on images with all RGB channels simultaneously. For
the sake of probing dLEA within such a distinct domain, we design simple interpolation experiments
among di↵erent categories as follows. Considering the benign nevus (‘nv’) collection of images as
the reference and comparing this to the malignant counterpart (e.g., malignant melanoma, mel), we
randomly mix the images of ‘nv’ and ‘mel’ (e.g., xmel,1, . . . , xmel,nmel , xnv,1, . . . , xnv,nnv ) according to the
interpolation weight w = nnv

nnv+nmel
. Then, we measure the distribution di↵erence between nv and the

mixed collection by dLEA. Ideally, we should observe that dLEA converges to 0 when w is shifted from
0 to 1 with the increasing inclusion of ‘nv’ (nnv ") and exclusion of ‘mel’ images (nmel #) (Fig. 5 (b)).
To avoid the sample imbalance between the reference (nv, 6705 images) and compared categories, we
take mel (1113), bkl (1099), and bcc (512) for comparison.

HAM10000 StyleGAN2 pSp (Default) StyleGAN2 e4e StyleGAN3 pSp StyleGAN3 e4e

nv PSNR 30.61 ± 2.20 26.40 ± 1.36 31.60 ± 2.62 30.12 ± 2.44
SSIM 0.89 ± 0.06 0.85 ± 0.07 0.90 ± 0.06 0.87 ± 0.06

mel PSNR 28.13 ± 2.39 24.80 ± 1.69 28.60 ± 2.55 27.28 ± 2.53
SSIM 0.85 ± 0.06 0.80 ± 0.08 0.86 ± 0.06 0.83 ± 0.07

bcc PSNR 28.95 ± 2.60 25.49 ± 1.58 29.48 ± 2.80 28.28 ± 2.72
SSIM 0.82 ± 0.07 0.75 ± 0.08 0.83 ± 0.07 0.79 ± 0.07

bkl PSNR 29.06 ± 2.54 25.50 ± 1.48 29.55 ± 2.65 28.34 ± 2.56
SSIM 0.83 ± 0.07 0.78 ± 0.08 0.85 ± 0.06 0.81 ± 0.07

df PSNR 30.01 ± 2.29 25.96 ± 1.27 30.49 ± 2.38 29.34 ± 2.37
SSIM 0.85 ± 0.06 0.79 ± 0.07 0.86 ± 0.05 0.83 ± 0.06

vasc PSNR 30.52 ± 2.77 25.78 ± 1.35 31.15 ± 3.14 29.72 ± 2.92
SSIM 0.88 ± 0.07 0.84 ± 0.08 0.89 ± 0.07 0.86 ± 0.08

akiec PSNR 27.71 ± 2.09 24.86 ± 1.32 28.21 ± 2.21 27.07 ± 2.12
SSIM 0.79 ± 0.06 0.71 ± 0.08 0.80 ± 0.06 0.76 ± 0.07

Total PSNR 29.98 ± 2.49 26.01 ± 1.54 30.81 ± 2.88 29.40 ± 2.71
SSIM 0.87 ± 0.07 0.83 ± 0.08 0.88 ± 0.06 0.85 ± 0.07

Table 2: The numerical comparison of reconstruction results among di↵erent model architectures on HAM10000.
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A.2.1 Model architecture

Motivated by the impressive achievements of GAN inversion (Bermano et al., 2022), we instanti-
ate LEA with the state-of-the-art GAN inversion model (Fig. 1(b)). Firstly, we learn the decoder
(generator) under the StyleGAN (Karras et al., 2019; 2021) framework, which has proved to be suc-
cessful in hallucinating high-quality natural images. Based on the training protocols suggested in the
widely-used repositories23, we pre-train the StyleGAN2 (Karras et al., 2019) and StyleGAN3 (Karras
et al., 2021) on HAM10000 to obtain such a decoder (generator) that can synthesize faithful skin
lesion images (Please see the Appendix Fig. 10). Next, we launch the encoder training to learn robust
latent representations for image reconstruction. Specifically, we apply two practical architectures
‘encoder for editing’ (Tov et al., 2021) (e4e) and ‘pixel2style2pixel’ (Richardson et al., 2021) (pSp)
for comparison, both of which start with a ResNet backbone and then concatenate a feature pyra-
mid network (Lin et al., 2017). Similar to the loss design of these studies that enable high-fidelity
image reconstruction, we determine our objective to be L = �1Lmoco + �2L2, where Lmoco is the
contrastive loss that is superior in visual representation learning (He et al., 2020), and L2 is the l2
reconstruction loss. Eventually, we report the quantitative reconstruction results in Tab. 2 among
compared architectures.

A.2.2 pSp VS e4e

In terms of quantitative scores such as PSNR and SSIM, it is clear to see that the pSp encoder in
combination with either StyleGAN2 or 3 decoder outperforms e4e by a clear margin, suggesting
superior image reconstruction qualities. This can also be verified by the image samples presented
in Fig. 5 (a), the images reconstructed from the representations of pSp encoder reserve finer detail
of lesion demarcation and skin pigmentation, while the e4e encoder tend to produce more blurry
reconstructions. As a result, we take the pSp architecture as the default encoder.

A.2.3 StyleGAN2 VS StyleGAN3

Following the encoder architecture comparison, we investigate the variants of StyleGAN decoder.
While StyleGAN3 pSp achieves better PSNR and SSIM scores than StyleGAN2 pSp, the qualitative
di↵erence in image reconstruction appears marginal (Fig. 5 (a)). Furthermore, when examining the
dLEA behavior with the increasing interpolation weight, we found notable di↵erences between the two
architectures. Compared to StyleGAN2, Fig. 5 (b) shows that dLEA computed with StyleGAN3 e4e
increases unexpectedly from w = 0.25 to w = 0.5 for the mixture data collection of nv and mel
images, which is in conflict with the fact that more inclusion of benign mole images should reduce
the distance to the nv reference category. With regards to nv, dLEA of StyleGAN3 pSp surprisingly
suggests a larger data di↵erence of bkl (bcc) than mel. This is also counter-intuitive as malignant
neoplasm is more likely to present alert appearances in lesion size and pigmentation heterogeneity that
clearly di↵erentiate itself from the benign mole. Besides, we notice that the learned representations
of StyleGAN3 tend to be more convoluted and are thus more challenging to support clear biological
interpretation (See for example Appendix Fig. 11). Since StyleGAN3 is motivated by the texture-
sticking drawback occurring in natural images and imposes equivariant translation and rotation on
learned representations (Karras et al., 2021), it may explain why StyleGAN3 does not adapt well to
biomedical images from substantially distinct modalities. This is also reflected by the drawbacks
identified by Alaluf et al. (2022) for natural images.

In summary, we consider StyleGAN2 pSp the default architecture for conducting drug screening and
skin lesion experiments through this article.

A.2.4 Further comparisons

Next, we investigate the dLEA performance with regards to the amount p0 of the largest eigenvalues
utilized in Eq. 2. As we can see in Fig. 5 (b), dLEA shows comparable decreasing scores with the
increasing weight of including more nv images for p0 = 1, . . . , 4, 5. Such results demonstrate the
feasibility and robustness of dLEA computed with the largest eigenvalues for the RGB imaging. In
combination with the multiplexed imaging for drug screening, we narrow down the amount p0 of

2StyleGAN2: https://github.com/rosinality/stylegan2-pytorch.git
3StyleGAN3: https://github.com/NVlabs/stylegan3.git
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the largest eigenvalues to 5 in this paper. In addition, we compare dLEA with the sota statistical tests
and widely used scalar-valued scores. For the former, we report the (average) p-values computed
with two collections of eigenvalues. In the meantime, we compute dKID with multiple subsets of
randomly sampled latent representations and dEig with two SCMs (Def. 1). Regarding statistical tests,
we have witnessed either contradictory behaviors obtained by F test or uninformative Levene test
and Wilcoxon test, which confirms the challenging adaption to high-dimensional cases, as discussed
in the introduction. Although meaningful decreasing curves can be obtained with dKID, it shows clear
fluctuations with large standard deviations. This is mainly due to the additional randomness that
comes from subset selection, which is not present in other measurements. Without the imbalance
issue introduced in the skin lesion dataset, dEig shows plausible decreasing trends similar to dLEA.

A.2.5 Clinical Interpretations

As shown in Fig. 5 (c), clear patterns in terms of lesion size emerge in two di↵erent groups clustered
with k-means. This has been persistently presented among di↵erent categories. If we manipulate the
largest principal component (top rows of Fig. 5 (c)) with increasing �1

i,k (from left to right), the ‘nv’
images show a poor lesion demarcation, further increase in lesion size and pigmentation heterogeneity,
with the lesions displayed the right-most images highlights clear pathological changes towards a
clinically suggestive appearance of malignancy. Considering the largest eigenvalue (⇥105) 4.41 for nv
versus 6.04 for mel, the appearance shift towards malignancy by enlarging the principal component of
nv representations can indeed explain the eigenvalue di↵erence 4.41 < 6.04. Comparable observations
can be also made when investigating the 5 largest principal components. Apart from similar lesion
size patterns arising from the k-means clustering, we show some distinct samples clustered in the two
groups (Bottom rows of Fig. 5 (c)). Accordingly, the PCA plots regarding the 5 largest eigenvalues
verify the distinguished yet consistent heterogeneity quantification among mel, bcc, bkl and nv.
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Figure 5: The data interpolation quantification and visual interpretation on HAM10000 experiments. a,
The reconstructed samples obtained by 4 di↵erent architectures. b, The dLEA comparison of data interpolation
regarding di↵erent architectures, number of the largest eigenvalues, and existing measurements. Here, we report
the mean dLEA and compared measurements (with standard deviation) averaged on 4 randomly sampled data
mixtures given the interpolation weight. c, The PCA plots and morphological transitions driven by manipulating
the largest principal components. The bounding box indicates the reconstructed image.
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a b

c d

Figure 6: Quantification comparison of cell-based COVID-19 drug responses between the baseline (Cuc-
carese Cuccarese et al. (2020)) and dLEA (Ensemble). a (VERO) and c (HRCE): The quantitative comparison
between the hit score (Cuccarese et al., 2020) and dLEA (Ensemble) with the latent representations of all drug
concentrations. b (VERO) and d (HRCE): The quantitative comparison between the hit score and dLEA with the
latent representations of optimal drug concentration.
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Figure 7: Quantification result dLEA of VERO w.r.t. di↵erent amount of the largest eigenvalues. a:
dLEA computed with the latent representations of all drug concentrations. b: dLEA computed with the latent
representations of optimal drug concentration.
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Figure 8: Quantification result dLEA of HRCE w.r.t. di↵erent amount of the largest eigenvalues. a:
dLEA computed with the latent representations of all drug concentrations. b: dLEA computed with the latent
representations of optimal drug concentration.
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HUVEC (Proposed) HUVEC (Ensemble)

DNA PSNR 44.70 ± 3.24 41.03 ± 3.25
SSIM 0.99 ± 0.02 0.98 ± 0.02

ER PSNR 38.11 ± 3.27 36.90 ± 3.80
SSIM 0.97 ± 0.02 0.95 ± 0.03

Actin PSNR 45.04 ± 2.68 42.68 ± 2.72
SSIM 0.98 ± 0.01 0.97 ± 0.02

RNA PSNR 42.28 ± 2.60 41.93 ± 2.97
SSIM 0.98 ± 0.01 0.97 ± 0.02

Mitochondria PSNR 45.11 ± 2.20 42.93 ± 2.04
SSIM 0.98 ± 0.01 0.98 ± 0.02

Golgi PSNR 42.02 ± 2.78 39.59 ± 2.95
SSIM 0.98 ± 0.01 0.96 ± 0.03

Total PSNR 41.83 ± 2.66 40.03 ± 2.95
SSIM 0.98 ± 0.01 0.97 ± 0.02

Table 3: The numerical comparison of reconstruction results among di↵erent model architectures on HUVEC.
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Figure 9: The quantification results of HUVEC experiment. a, The quantitative comparison between the
hit score (Cuccarese et al., 2020) and dLEA with latent representations of all drug concentrations (left) and
the optimal drug concentration (right). Our drug e↵ects (positive/negative) are thresholded by the dLEA of
storm-severe cells without drug treatment. b, The proposed dLEA of di↵erent drug concentrations for individual
and all fluorescent channels. Here, we report the mean dLEA (with standard deviation) averaged on 4 randomly
sampled cell collections.
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StyleGAN2 StyleGAN3

Figure 10: The non-existent skin lesion images synthesized by StyleGAN2 (left) and StyleGAN3 (right).

nv nv

Group1 Group2

Figure 11: The phenotypic transitions driven by manipulating the largest principal component, which are
derived from the latent representations of StyleGAN3 psp.
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