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ABSTRACT

Masked Autoencoder (MAE) is a notable method for self-supervised pretrain-
ing in visual representation learning. It operates by randomly masking image
patches and reconstructing these masked patches using the unmasked ones. A
key limitation of MAE lies in its disregard for the varying informativeness of dif-
ferent patches, as it uniformly selects patches to mask. To overcome this, some
approaches propose masking based on patch informativeness. However, these
methods often do not consider the specific requirements of downstream tasks, po-
tentially leading to suboptimal representations for these tasks. In response, we
introduce the Multi-level Optimized Mask Autoencoder (MLO-MAE), a novel
framework that leverages end-to-end feedback from downstream tasks to learn an
optimal masking strategy during pretraining. Our experimental findings highlight
MLO-MAE’s significant advancements in visual representation learning. Com-
pared to existing methods, it demonstrates remarkable improvements across di-
verse datasets and tasks, showcasing its adaptability and efficiency.

1 INTRODUCTION

In the rapidly evolving field of self-supervised learning (Balestriero et al., 2023; Gui et al., 2023),
particularly in visual representation learning, Masked Autoencoder (MAE) (He et al., 2022) has
emerged as a prominent approach, which draws inspiration from the successful masked language
models like BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019). Similar to how BERT
learns textual representations by predicting randomly masked tokens, MAE is designed to learn
visual representations by masking random patches of an image and then reconstructing them using
the remaining unmasked ones.

Although MAE has shown empirical success, it applies a uniform random approach to mask patches,
overlooking the varying distribution of information across different image regions (Chen et al., 2023;
Kong & Zhang, 2023; Wang et al., 2023; Liu et al., 2023). It assumes equal informativeness across
all parts of an image, an assumption that does not always hold true. Some image areas may hold
more critical information than others, a factor not considered in MAE’s current design. Such over-
sight might hinder the model’s capability and efficiency in learning representations. This lack of
distinction between more and less informative regions in the MAE could lead to disproportionate al-
locations of computational resources. Consequently, the model might spend excessive effort on less
significant areas while inadequately processing and capturing the nuances in regions that contain
more valuable information.

To mitigate this limitation, various strategies have been suggested for masking patches contingent
on their informativeness. Key approaches include masking regions with high attention scores to
prioritize areas of interest (Li et al., 2021; Kakogeorgiou et al., 2022); employing semantic segmen-
tation to identify and mask regions rich in information (Li et al., 2022); automatically learning a
masking module (Madan et al., 2024); and learning a differentiable mask generator via adversarial
training (Chen et al., 2023). These approaches aim to refine the masking process by prioritizing
patches based on the level of information they contain, rather than treating all patches uniformly.

Although these methods are promising, they mask patches without incorporating feedback from
downstream tasks. Their process involves two separate stages: initially employing a specific mask-
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ing strategy to pretrain an image encoder, then using this encoder to perform downstream tasks (via
finetuning (He et al., 2022) or linear probing (He et al., 2022)), with the hope that the encoder pre-
trained using this strategy will be effective for these tasks. During this process, the design of the
masking strategy is not influenced by the requirements of the downstream tasks. As a result, the rep-
resentations developed through this strategy may not be well-aligned with the needs of these tasks,
which could limit their effectiveness.

To bridge this gap, we propose a downstream task guided masking strategy learning framework
based on multi-level optimization (MLO) (Vicente & Calamai, 1994). Our approach utilizes feed-
back from downstream tasks to autonomously learn the optimal masking strategy. It pretrains an
image encoder and applies the pretrained encoder to perform a downstream task in an end-to-end
manner, allowing the downstream task’s performance to directly influence the masking process dur-
ing pretraining. Our method learns a masking network to mask patches. It processes an input image
to identify specific patches for masking. Our method consists of three interconnected stages. In the
first stage, a preliminary version of the masking network masks certain patches, followed by the pre-
training of an image encoder tasked with reconstructing these masked patches. In the second stage,
we utilize this encoder to construct a downstream model, which is subsequently trained using the
training dataset specific to a downstream task. The final stage involves evaluating the downstream
model using a held-out validation dataset. The effectiveness of the masking network is indirectly
measured by the downstream model’s validation performance. An inferior masking network might
fail to correctly identify the optimal patches for masking, leading to ineffective pretraining of the im-
age encoder. When applied to the downstream task, the encoder’s inadequate representation learning
capabilities will lead to suboptimal validation performance of the downstream model. To prevent
this, we continuously refine the masking network, ensuring it maximizes downstream validation
performance. Each of these stages is formulated as one level of optimization problem in our MLO
framework. The three levels of optimization problems are mutually dependent on each other and
solved jointly. This enables the three stages to be conducted end-to-end, where the downstream
validation performance closely guides the learning of the masking network.

The major contributions of this work include:

• We propose a multi-level optimization based end-to-end framework to learn an optimal
masking strategy in Masked Autoencoder by leveraging feedback from downstream tasks.

• Our approach outperforms a range of leading-edge methods in learning representations, as
evidenced across various datasets such as CIFAR-10, CIFAR-100, and ImageNet-1K.

• Our method showcases remarkable transfer learning abilities, in fine-grained classifica-
tion, semantic segmentation, and object detection tasks, demonstrated on datasets including
CUB-200-2011, Stanford Cars, iNaturalist 2019, ADE20K, and MS-COCO.

2 RELATED WORKS

2.1 MASKED AUTOENCODERS

Following the success of masked language models in the field of natural language processing (Devlin
et al., 2018), various masked image models have been proposed (Chen et al., 2020; Bao et al., 2022).
Among them, Masked Autoencoder (MAE) has become a promising methodology for generic visual
pretraining (He et al., 2022). MAE is a denoising autoencoder that randomly masks the input image
and tries to reconstruct the missing pixels. It uses a high masking ratio (75% in MAE compared
to 15% in BERT) and a lightweight decoder architecture that forces the encoder to learn meaning-
ful visual representations. Zhang et al. (2022) propose a theoretical framework to understand the
role of masking in MAE, and introduce a Uniformity-enhanced MAE (U-MAE) to address the di-
mensional collapse issue. Despite MAE’s effectiveness, recent works underscore the importance
of replacing the random patch masking method in MAE with more sophisticated masking strate-
gies (Kakogeorgiou et al., 2022; Shi et al., 2022). For instance, MST (Li et al., 2021) utilizes
attention maps to guide the masking process, selectively obscuring less attended regions to main-
tain important information. SemMAE (Li et al., 2022) combines a StyleGAN-based decoder with
the MAE decoder and leverages attention maps from the StyleGAN decoder to provide semantic
cues for patch masking. Furthermore, some recent methods propose to use a learnable masking
module to generate masking strategies and optimize the masking module in the pretraining pro-
cess. For example, AutoMAE (Chen et al., 2023) links a differentiable mask generator with MAE
using Gumbel-Softmax (Jang et al., 2016), following a similar two-stage setup as in SemMAE.
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Figure 1: An overview of MLO-MAE, which consists of three stages performed end-to-end. Mod-
ules with learnable parameters are indicated in orange, and those with frozen parameters are in blue.

CL-MAE (Madan et al., 2024) leverages curriculum learning to enhance MAE by progressively
increasing the complexity of the masks generated from a learnable masking module. Compared
to these existing methods, the key distinction of our approach lies in the utilization of feedback
from downstream tasks to inform the development of masking strategies, a mechanism absent in the
current methodologies.

2.2 BI-LEVEL AND MULTI-LEVEL OPTIMIZATION

Recently, Bi-level Optimization (BLO) and Multi-level Optimization (MLO) techniques have been
widely applied for meta-learning (Feurer et al., 2015; Finn et al., 2017), neural architecture
search (Cai et al., 2019; Xie et al., 2019; Xu et al., 2020; Hosseini et al., 2021) and hyperparameter
tuning (Feurer et al., 2015; Baydin et al., 2017). BLO, a formulation that consists of two levels
of nested optimization problems, has been broadly applied in numerous machine learning applica-
tions (Liu et al., 2018; Liang et al., 2019). BLO based methods have enabled automatic and efficient
learning of upper-level parameters, such as meta parameters and neural architectures, thereby re-
ducing the need for extensive hyperparameter tuning through manual efforts. Following the success
of BLO, MLO - which has more than two levels of nested optimization problems (Hosseini & Xie,
2022; Hosseini et al., 2023; Sheth et al., 2021; Garg et al., 2021) - has been used to solve machine
learning tasks with more complicated dependencies. These works develop multi-stage pipelines,
with each stage corresponding to one level of optimization problem (OP). Different stages are exe-
cuted end-to-end by solving all levels of interdependent OPs jointly. Despite its effectiveness, MLO
based methods increase memory and computation costs due to their growing number of optimization
levels. To tackle this challenge, Choe et al. (2022) develop software that integrates multiple approx-
imation algorithms to efficiently compute the hypergradients within BLO and MLO problems.

3 METHODS

3.1 OVERVIEW

We introduce the Multi-level Optimized MAE (MLO-MAE), a self-supervised visual representation
learning method that automatically learns an optimal masking strategy in a Masked Autoencoder by
leveraging end-to-end guidance from a downstream task. For simplicity, we use image classification
as the downstream task. Experiments in Section 4.4 demonstrate that the image encoder, pretrained
with guidance from a classification task, transfers effectively to other tasks such as semantic seg-
mentation and object detection. As illustrated in Figure 1, the MLO-MAE architecture comprises
three key components: a masking network T , a Vision Transformer (ViT) (Dosovitskiy et al., 2020)
based image encoder E, and a classification head C. Given an input image, the masking network
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identifies the patches to be masked. The image encoder extracts a representation for an input image.
It is pretrained by reconstructing masked patches from unmasked ones. The classification head C
predicts a class label from an image representation extracted by the encoder. Similar to MAE and
other self-supervised learning methods, our method performs pretraining primarily on an unlabeled
dataset Du. The learning of the masking network is guided by a downstream classification task with
an image classification dataset D, comprising pairs of images and their corresponding class labels.
This dataset is divided into a training subset Dtr and a validation subset Dval.

Our method operates in three end-to-end stages. In the first stage, a tentative version of the masking
network masks input images from Du. Then the image encoder is pretrained on these masked im-
ages. In the second stage, the pretrained encoder extracts representations for images in the training
set Dtr. These representations, along with their corresponding labels, are used to train the classifi-
cation head by minimizing classification losses. In the third stage, the pretrained encoder extracts
representations for images in the validation set Dval. The trained classification head then uses these
representations to predict labels. Validation loss is computed by comparing these predictions with
the actual labels in Dval. As shown later, the validation loss is a function of the masking network T .
This loss serves as a metric for assessing the effectiveness of T . To enhance the functionality of T ,
we focus on minimizing this loss.

Our method employs a multi-level optimization approach, involving several nested optimization
problems. Optimal parameters obtained at each lower level serve as inputs for the loss functions at
the subsequent upper levels. Conversely, non-optimal parameters from the upper levels are utilized
to define the loss functions at lower levels. Each of the three aforementioned stages corresponds
to a single level of optimization. Different stages are executed end-to-end by solving problems at
different levels jointly.

3.2 MULTI-LEVEL OPTIMIZATION FRAMEWORK

The framework of our proposed MLO-MAE is structured into three interconnected stages. These
three stages are integrated within a multi-level optimization framework.

Stage I: pretrain image encoder. Given an input image X ∈ Du divided into N non-overlapping
patches of equal size, denoted as {Pi}Ni=1, the masking network T takes X as input and generates a
probability σ(Pi, X;T ) for each patch Pi, which represents the likelihood that Pi should be masked.
Given a masking ratio r, a hyperparameter dictating the proportion of patches to be masked, we first
rank all patches in descending order based on their masking probabilities. We then select the top
N × r patches denoted asM(X;T, r), those with the highest probabilities, and mask them. The
remaining patches, denoted as X−M(X;T, r), are unmasked. Then we feed the unmasked patches
into an autoencoder (He et al., 2022), which consists of the image encoder E and a decoder D, to
reconstruct the masked patchesM(X;T, r). In detail, the unmasked patches are first processed by
the image encoder E, which is responsible for extracting their representations. Then, these represen-
tations are input into the decoder D. The decoder’s role is to accurately predict the pixel values of
the masked patches. To evaluate the performance of this reconstruction, we employ a reconstruction
loss, Lrec, defined as the squared differences between the predicted and ground truth pixel values of
the masked patches. Importantly, the reconstruction loss for the j-th masked patchMj(X;T, r) is
weighted according to its masking probability σ(Mj(X;T, r), X;T ). This probability reflects the
likelihood of a patch being masked and thus, guides the autoencoder to prioritize the reconstruction
of patches deemed more likely to be masked.

In this stage, we provisionally hold the masking network T constant, and focus on training the image
encoder E and decoder D, by solving the following optimization problem:

E∗(T ), D∗ = argmin
E,D

∑
X∈Du

N×r∑
j=1

σ(Mj(X;T, r), X;T )Lrec(X −M(X;T, r),Mj(X;T, r);E,D). (1)

The notation E∗(T ) indicates that the optimal solution E∗ is a function of T , as E∗ is determined
by the loss function which in turn depends on T .

Stage II: train classification head. Utilizing the pretrained image encoder E∗(T ) from Stage
I, we develop an image classification model for a downstream task. This model comprises the
encoder E∗(T ) and the classification head C. For any given input image, it is first processed by the
encoder to generate a representation. This representation is then input into the classification head to
determine the class label. In this stage, we keep the encoder parameters fixed and focus on training
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the classification head. This is achieved by minimizing a cross-entropy classification loss Lcls on
the training dataset Dtr:

C∗(E∗(T )) = argmin
C
Lcls(Dtr;E∗(T ), C). (2)

Stage III: update masking network. In Stage III, we assess the classification model developed
in Stage II on the validation set Dval. This model integrates the image encoder, E∗(T ), which was
pretrained in Stage I, and the classification head, C∗(E∗(T )), trained in Stage II. The validation loss
serves as an indirect measure of the efficacy of the masking network T . Our objective is to enhance
the performance of T by minimizing this validation loss:

min
T
Lcls(Dval;E∗(T ), C∗(E∗(T ))). (3)

Multi-level optimization. Integrating the three optimization problems together, we have the fol-
lowing multi-level optimization problem:

min
T

Lcls(Dval;E∗(T ), C∗(E∗(T )))

s.t. C∗(E∗(T )) = argmin
C

Lcls(Dtr;E∗(T ), C)

E∗(T ), D∗ = argmin
E,D

∑
X∈Du

N×r∑
j=1

σ(Mj(X;T, r), X;T )Lrec(X −M(X;T, r),Mj(X;T, r);E,D)

(4)

In this formulation, the three levels of optimization problems are mutually dependent. The first
level’s output, E∗(T ), defines the loss function in the second level. Both the outputs of the first
and second levels are fed into the loss function of the third level. Simultaneously, the third level’s
optimization variable, T , influences the loss functions in the first two levels. By concurrently solving
these optimization problems across all three levels, we enable an integrated, end-to-end execution
of the three stages.

Optimization algorithm. Inspired by Liu et al. (2018), we develop an efficient hypergradient-
based method to solve the problem in Eq.(4). First, we approximate the optimal solutions E∗(T )
and D∗ by executing several iterations (termed as unrolling steps) of gradient descent updates of E
and D against the loss function at the first level. The approximation of E∗(T ) is then plugged into
the second-level loss, and C∗(E∗(T )) is similarly approximated using multiple steps of gradient
descent updates of C against this approximate loss. The approximations of E∗(T ) and C∗(E∗(T ))
are then applied to the third-level loss, enabling the gradient descent update of T . This iterative
process of updating continues until convergence is achieved. Details of this optimization algorithm
are deferred to Appendix A and Algorithm 1.

4 EXPERIMENTS

4.1 DATASETS

We evaluated our MLO-MAE method on three benchmark image classification datasets: CIFAR-
10 (Krizhevsky et al., a), CIFAR-100 (Krizhevsky et al., b), and ImageNet-1K (Deng et al., 2009).
CIFAR-10 and CIFAR-100 contain 50K training images and 10K test images from 10 and 100
classes, respectively. ImageNet contains 1.3M training images and 50K validation images (used as
test set) from 1000 classes. In our approach, we divide the original training set of each dataset into
two subsets with a ratio of 8:2, which are used as the Dtr and Dval in Eq.(4), respectively. To
ensure that our method does not unfairly use more data than baselines, we use the input images in
Dtr (excluding their labels) as the unlabeled images Du in MLO-MAE’s first stage, while noting
that this is not a requirement of our method: Du and Dtr could be different sets of images. Baseline
methods are trained on the unsplit original training set. To assess the model’s transferability to fine-
grained classification tasks, we further tested it on the CUB-200-2011 dataset (Wah et al., 2011),
Stanford Cars dataset (Krause et al., 2013), and iNaturalist 2019 dataset (Van Horn et al., 2018).
Additionally, we evaluated MLO-MAE’s semantic segmentation and object detection capabilities
using the ADE20K (Zhou et al., 2017) and MS-COCO (Lin et al., 2014) datasets, respectively.
For comprehensive details about these datasets, please refer to Appendix B.1. In all experiments,
performance on the test set is reported.
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Table 1: Top-1 accuracy (%) on the test sets of CIFAR-10, CIFAR-100, and ImageNet, in fine-tuning
experiments. The baseline methods SemMAE and AutoMAE are not included in the comparison on
CIFAR-10 and CIFAR-100, due to the absence of reported results for these datasets in their original
publications and the unavailability of their implementation code for conducting evaluations on these
datasets.

(No Pretraining) (Random Masking) (Learnable Masking)

ViT MAE U-MAE SemMAE AutoMAE MLO-MAE (Ours)

CIFAR-100 56.4 64.0 64.6 – – 79.4

CIFAR-10 82.3 93.7 94.3 – – 96.2

ImageNet-1K 77.9 83.6 83.0 83.3 83.3 84.8

4.2 EXPERIMENTAL SETTINGS

Model setup and hyperparameters. In our method, the masking network is structured with mul-
tiple layers. Initially, there is a linear layer, where the input size is determined by the product of the
number of patches (196 for ImageNet and 256 for CIFAR) and the embedding dimension (we used
the patch embedding method in ViT, with a dimension of 768), and it has a hidden size of 512. This
is followed by a ReLU layer. Next, there is another linear layer, which takes an input size of 512 and
produces an output size equivalent to the number of patches. Finally, a sigmoid activation function
is applied to the output to generate probabilities in the range of 0 to 1. Implementation details are
described in Appendix B.2. Following MAE (He et al., 2022), an asymmetric ViT (Dosovitskiy
et al., 2020) encoder-decoder architecture was used for mask reconstruction. Recognizing the con-
straints of computational resources, we primarily employed the ViT-B (Dosovitskiy et al., 2020) as
the image encoder, ensuring a balance between efficiency and performance. The classification head
consists of a single linear layer. It is intentionally made simple to focus on evaluating the effective-
ness of the learned representations. The patch size was set to 2 for CIFAR-10 and CIFAR-100, and
16 for ImageNet. For all experiments, unless otherwise specified, we used the default mask ratio of
75% as suggested in MAE (He et al., 2022).

The number of unrolling steps in the algorithm for solving the MLO problem was set to 2. We
employed the AdamW optimizer (Loshchilov & Hutter, 2017) with β values of 0.9 and 0.95 for
optimizing all parameters. The learning rates were set specifically for different components: 1e− 4
for the image encoder, and 4e − 5 for both the classification head and the masking network. We
used a batch size of 256. For training, we set the epoch number to 50 for the ImageNet dataset and
to 200 for the CIFAR datasets. All experiments were conducted on Nvidia A100 GPUs. Further
information on our experimental settings can be found in Appendix B.

Baselines. We conducted comparisons with several baselines, including: 1) vanilla MAE (He
et al., 2022) and U-MAE (Zhang et al., 2022), which employ uniform random masking of images; 2)
SemMAE (Li et al., 2022) and AutoMAE (Chen et al., 2023), which mask patches according to their
informativeness; and 3) the Vision Transformer (ViT) (Dosovitskiy et al., 2020) without pretraining
by MAE methods (i.e., directly trained for classification from scratch). ViT-B was used as the image
encoder in these methods. Following their original papers, the number of pre-training epochs for
MAE, U-MAE, SemMAE, and AutoMAE on ImageNet are 1600, 200, 800, and 800 respectively.
The patch size in all methods is 16 for ImageNet.

Evaluation protocols. In the literature on self-supervised learning, including MAE methods, there
are two standard approaches for evaluating pretrained image encoders in downstream classification
tasks (He et al., 2022). The first one is fine-tuning, which fine-tunes the pretrained encoder (together
with training a randomly initialized classification head) by minimizing a classification loss on the
downstream training data. The second approach is linear probing, which keeps the pretrained en-
coder fixed and only trains the classification head. Our experiments used both protocols. For each
dataset D, pretraining was conducted on unlabeled images in D; fine-tuning and linear probing were
conducted on D as well, utilizing both images and their associated labels.

It is important to note that our method does not unfairly utilize more labeled data than the baselines.
The labeled data used in Stage II and III of our framework is identical to that used in the fine-tuning
phrase of the baselines.
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Table 2: Test accuracy (%) in linear probing experiments.

MAE U-MAE SemMAE AutoMAE MLO-MAE (Ours)

CIFAR-100 46.6 50.4 – – 63.8

CIFAR-10 73.5 77.1 – – 84.3

ImageNet-1K 68.0 58.5 65.0 68.8 70.2

Table 3: Accuracy (%) on fine-grained image
classification datasets. All methods use ViT-
B as the backbone with a patch size of 16.

Method iNaturalist CUB Cars

MAE 79.5 83.3 92.7
SemMAE 79.6 82.1 92.4
AutoMAE 79.9 83.7 93.1
MLO-MAE (Ours) 80.1 84.0 93.4

Table 4: Semantic segmentation results on
ADE20K.

Method mIoU

Supervised Pretraining 45.3

MAE 48.1
SemMAE 46.3
AutoMAE 46.4
MLO-MAE (Ours) 49.8

4.3 MAIN RESULTS

Fine-tuning results. Table 1 shows the results. On the CIFAR-100 dataset, MLO-MAE demon-
strates superior performance, achieving a test accuracy of 79.4%, substantially outperforming
MAE’s 64% and U-MAE’s 64.6%. This trend of outperformance is also evident on the CIFAR-10
dataset, where MLO-MAE surpasses both MAE and U-MAE by 2.5% and 1.9% (absolute percent-
age) respectively. Moreover, on the ImageNet dataset, MLO-MAE performs better than all baseline
methods. Specifically, MLO-MAE outperforms AutoMAE and SemMAE by 1.5% (absolute) im-
provements in top-1 accuracy.

These outcomes underscore MLO-MAE’s strong capability in learning effective visual representa-
tions across datasets of varying scales, from the large-scale ImageNet to the smaller-sized CIFAR
datasets. The superiority of MLO-MAE over MAE and U-MAE stems from its advanced masking
strategy that selectively targets informative patches, a significant enhancement over the indiscrim-
inate, random masking approach of the two baselines. Furthermore, MLO-MAE surpasses Au-
toMAE and SemMAE by integrating feedback from downstream classification tasks into its mask-
ing process. This dynamic adaptation contrasts with the static masking strategies of AutoMAE and
SemMAE, which do not account for the specific requirements of downstream tasks, limiting their
effectiveness.

Linear probing results. Table 2 shows the linear probing results. Our method MLO-MAE demon-
strates superior performance compared to baselines across various datasets. Specifically, on Im-
ageNet, MLO-MAE achieves an accuracy of 70.2%, substantially surpassing MAE’s accuracy of
55.4% and U-MAE’s 58.5%. Similarly, on the CIFAR-100 dataset, MLO-MAE continues to out-
perform, attaining an accuracy of 63.8%, significantly higher than the 46.6% accuracy of MAE and
50.4% accuracy of U-MAE.

The superiority of MLO-MAE compared to baseline methods stems from its unique approach of
integrating the pretraining of the image encoder and linear probing in a seamless, end-to-end work-
flow. Specifically, MLO-MAE conducts pretraining at the first level and linear probing at the second
level within a unified framework. This integration allows the linear probing performance, evaluated
at the third level, to directly inform and enhance the pretraining process. Consequently, this leads
to a pretrained encoder that is more effectively tailored for the downstream linear probing task. In
contrast, baseline methods handle pretraining and linear probing as distinct, separate stages, where
the performance of linear probing does not impact or contribute to the pretraining phase.

4.4 TRANSFER LEARNING

4.4.1 FINE-GRAINED IMAGE CLASSIFICATION

In MLO-MAE, the masking network is trained using a specific downstream classification dataset,
raising concerns about potential overfitting and limited generalizability to other datasets. To address
this, we performed transfer learning experiments. The experimental setup for both our method and

7
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Table 5: Object detection result of MLO-MAE and baselines on MS-COCO detection task.

Method AutoMAE MAE MLO-MAE

APbox (%) 50.5 50.3 51.1

Table 6: Continued pretraining on PDDB and PAD-UFES. All settings are initialized with weights
of ViT-B pretrtained by MAE on ImageNet. Runtime measured in GPU hours on A100.

PDDB PAD-UFES
Method Acc(%) Runtime Acc(%) Runtime

No continued pretraining 88.6 2132 75.0 2132
MAE continued pretraining 89.3 2132 + 39 75.4 2132+3
MLO-MAE continued pretraining 92.7 2132 + 37 77.6 2132 + 3

the baseline methods is identical: first, pretrain a ViT-B model on ImageNet; next, fine-tune the
pretrained model on labeled ImageNet; and finally, further fine-tune this model on labeled fine-
grained classification datasets including iNaturalist 2019, CUB-200-2011, and Stanford Cars. It is
important to note that the comparison between our method and the baselines is fair because the
class labels in ImageNet used in Eq.(4) of our method are also utilized by the baselines during their
fine-tuning on labeled ImageNet. Classification accuracy results, as presented in Table 3, show that
MLO-MAE surpasses all baselines across these datasets. This indicates that the masking network, as
learned by MLO-MAE for a particular downstream classification dataset, is capable of generalizing
its effectiveness to additional datasets, rather than being overly tailored to that specific downstream
classification dataset.

4.4.2 SEMANTIC SEGMENTATION AND OBJECT DETECTION

We also explored the transferability of the masking network, initially learned through a downstream
classification task, to other tasks including semantic segmentation and object detection. Given a
ViT-B model pretrained on ImageNet using MLO-MAE or a baseline and subsequently fine-tuned
on ImageNet, to transfer it for semantic segmentation, we integrated it as a backbone model into
the UPerNet (Xiao et al., 2018) semantic segmentation framework. It was then further fine-tuned on
the challenging ADE20K dataset (Zhou et al., 2017) containing 25K images spanning 150 semantic
categories. The fine-tuning was conducted by the AdamW optimizer for over 160,000 iterations,
with a batch size of 8 and a learning rate of 0.0001. In Table 4, MLO-MAE showcases a significant
improvement over the baselines. Specifically, MLO-MAE attains enhancements in mean Intersec-
tion over Union (mIoU) by margins of 3.7% and 3.4% when compared to these baselines. This
performance highlights the capability of MLO-MAE in executing dense prediction tasks.

Following MAE, we also adapt MLO-MAE pretrained ViT-B model for the use of an FPN backbone
in Mask R-CNN. As shown in Table 5, MLO-MAE pretrained backbone model performs better than
all baselines (51.1 comparing to 50.5 and 50.3, APbox). We did not include SemMAE and U-MAE
as they did not report on MS-COCO detection. Due to space limits, we defer the results of object
detection on PASCAL VOC 2007 to Appendix D.1.

4.5 CONTINUED PRETRAINING

We further investigated the effectiveness of MLO-MAE in a continued pretraining setting. Starting
with a ViT-B model pretrained by MAE on ImageNet, we applied MLO-MAE pretraining to 2
datasets, PDDB (Barbedo et al., 2018) and PAD-UFES (Pacheco et al., 2020). Table 6 compares
the test accuracy (%) across three settings: (1) no continued pretraining, where the model is directly
fine-tuned using labels; (2) continued pretraining on target dataset using MAE, followed by fine-
tuning; and (3) continued pretraining on target dataset using MLO-MAE, followed by fine-tuning.
Our results show that continued pretraining with MLO-MAE significantly outperforms both MAE-
based pretraining and no pretraining in both datasets. This highlights the practical advantage of
MLO-MAE: by leveraging MAE pretraining once, subsequent tasks can benefit from fast, efficient
continued pretraining with MLO-MAE, delivering substantial performance gains without requiring
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Figure 3: Impact of different masking ratios on linear probing
performance on CIFAR-10.

the computationally expensive process of large-scale pretraining from scratch for each downstream
task.

4.6 ABLATION STUDIES

Reduction to two levels. To investigate the importance of maintaining three levels in the MLO-
MAE framework, we simplified it to two levels, by combining the first and second levels, leading to
the following bi-level optimization (BLO) problem (referred to as BLO-MAE):

min
T
Lcls(Dval;E∗(T ), C∗)

s.t. E∗(T ), D∗, C∗ = argmin
E,D,C

Lcls(Dtr;E,C) + γ
∑

X∈Du

N×r∑
j=1

σ(Mj(X;T, r), X;T )Lrec(X −M(X;T, r),Mj(X;T, r);E,D),

(5)

where γ is a tradeoff parameter. Here, the image encoder E is trained using a multi-task learning
strategy, which involves minimizing the weighted sum of the pretraining loss and the downstream
classification loss. Figure 2 presents the results. The BLO-MAE method leads to a notable decrease
in accuracy by 2.8% compared to MLO-MAE. This highlights the significance of employing a three-
stage process over a two-stage one. In the BLO-MAE approach, the lower level addresses a multi-
task learning challenge by optimizing a weighted sum of losses from two distinct tasks. This scenario
often leads to task competition, where minimizing the loss for one task inadvertently increases the
loss for the other. Balancing these competing losses requires meticulous adjustment of the tradeoff
parameter γ, a process that is both challenging and time-consuming. In contrast, our MLO-MAE
method tackles this challenge through a sequential process integrated into an end-to-end framework.
Initially, the method involves pretraining the encoder. Following this, the pretrained encoder is
transitioned to the next stage, where the classification head is trained. The pretraining task in MLO-
MAE aids the classification task by providing an effective image encoder, instead of competing with
the classification task.
Unrolling steps. In this study, we explored how the number of unrolling steps in the Optimization
Algorithm, as detailed in Section 3.2, affects the final performance. The study was performed on
CIFAR-10, with linear probing as the evaluation protocol. Table 7 shows linear probing accuracy
under different unrolling steps. The results reveal that an increase in the unrolling steps leads to
a gradual improvement in accuracy. This enhancement can be attributed to the fact that a higher
number of unrolling steps allows for more frequent updates to the image encoder weights (with
more iterations in Stage I), prior to any updates being made to the classification head and masking
network. Consequently, this yields a more refined gradient estimation for the parameters of the
classification head and masking network, as these estimations are based on the image encoder that
has undergone more extensive training. However, it is important to note that increasing the number
of unrolling steps also brings in a notable computational overhead. In this context, our observations
indicate that while increasing the unrolling step from one to two leads to a 0.5% boost in CIFAR-10
linear probing performance, the gain diminishes to just 0.3% when the unrolling steps are further
raised from two to five. This suggests a diminishing return in performance improvement relative to
the increased computational demand.
Masking ratios. We studied how the masking ratio during pretraining affects downstream task
performance, using the CIFAR-10 dataset and a linear probing protocol. The results, illustrated in
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Table 7: Linear probing accuracy (%) on
CIFAR-10 under different unrolling steps.

Unrolling steps 1 2 5

Accuracy (%) 83.8 84.3 84.6

Table 8: Linear probing accuracy (%) on
CIFAR-10 under different patch sizes.

Patch size 2 4 8

Accuracy (%) 84.3 82.1 81.9

Table 9: Pretraining time (GPU hours measured on A100).

MAE SemMAE AutoMAE MLO-MAE (Ours)

ImageNet-1K 2132 hrs 1154 hrs 1344 hrs 1083 hrs

Figure 3, reveal that intermediate masking ratios deliver optimal performance. When the masking
ratio is too low, the reconstruction task becomes overly simple, failing to push the image encoder to
develop robust representations. Conversely, an excessively high masking ratio makes the task overly
challenging, which also impedes the learning of effective representations. Notably, our method
demonstrates resilience to changes in masking ratios ranging from 60% to 80%. Within this interval,
there is minimal fluctuation in the results of linear probing. Additional experiment on dynamic mask
ratio can be found in Appendix D.4.
Patch sizes. In this study, we investigated the impact of different image patch sizes on the perfor-
mance of our method when applied to the CIFAR-10 dataset, utilizing the linear probing evaluation
protocol. Our experiments focused on three patch sizes: 2 × 2, 4 × 4, and 8 × 8. The results, pre-
sented in Table 8, show that the 2× 2 patch size achieves a linear probing accuracy of 84.3%, which
is 2.4% (absolute) higher than that obtained with the larger 8× 8 patch size. These findings suggest
that MLO-MAE is more effective when employing a larger number of smaller patches, particularly
for small images, such as those in the CIFAR-10 dataset with a size of 32 × 32. The reason is that
smaller patches allow for more precise and detailed candidate masks. This leads to better feature
representation learning. Moreover, smaller patches provide a finer grid over the image, allowing the
model to capture more detailed and subtle features. This is particularly beneficial for small images,
where each pixel can carry significant information.

4.7 COMPUTATIONAL COSTS

Although MLO-MAE introduces additional computational overhead due to its multi-level optimiza-
tion, this is balanced by its lower epoch requirement for achieving convergence. In contrast to the
800 epochs needed for standard MAE and SemMAE, MLO-MAE converges in just 50 epochs. This
significant reduction in the number of epochs effectively offsets the increased computational de-
mands. The total GPU hours (on Nvidia A100 GPU) for MLO-MAE on ImageNet, as shown in
Table 9, amount to 1083. This number is less than those of baselines while our method achieves
better test accuracy than baselines as shown in Tables 1 and 2.

5 CONCLUSION

In this paper, we proposed MLO-MAE, a method that automatically learns an optimal masking
strategy in Masked Autoencoder (MAE) by leveraging feedback from downstream tasks. Unlike
the vanilla MAE which applies uniform patch masking irrespective of their informativeness, MLO-
MAE adaptively concentrates on more informative image regions. Different from other MAE meth-
ods that do not utilize feedback from downstream tasks for masking-strategy optimization, MLO-
MAE uniquely capitalizes on such feedback to refine its masking approach. Our experiments across
various datasets demonstrate that MLO-MAE outperforms MAE baselines by learning downstream
task guided masking strategies. Furthermore, the representations generated by MLO-MAE exhibit
high transferability to a range of downstream tasks, including fine-grained classification, semantic
segmentation, and object detection, highlighting our method’s versatility and effectiveness.

6 REPRODUCIBILITY STATEMENT

We provided details in architecture and hyperparameter settings in Section 4 and Appendix B. We
have also uploaded the code to reproduce our major results in this paper as the supplementary mate-
rial.
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A OPTIMIZATION ALGORITHM

We develop an efficient optimization algorithm to solve the MLO-MAE problem demonstrated in
Figure 1. Notations are given in Table 10.

Table 10: Descriptions of notations used in optimization algorithm in Appendix A.

Notation Description
E Backbone encoder that takes in input patches and generates representation embedding

D Backbone decoder that takes in representation embedding and generates the reconstructed image

C Classification head

T Masking network

D Image classification dataset

Dtr Train set split based on D
Dval Validation set split based on D
Du Unlabeled dataset based on D
X An arbitrary image from D
M(.) Masked image

Lrec(.) MAE image reconstruction loss

Lcls(.) Cross entropy image classification loss

σ(.) Sigmoid activation function that produces masking probability given our masking network

ηE Learning rate for updating the encoder

ηC Learning rate for updating the classification head

ηT Learning rate for updating the the masking network

r Masking ratio

A.1 IMPLICIT DIFFERENTIATION FOR GRADIENT COMPUTATION

In the MLO-MAE framework, we adopt implicit differentiation as a key tool for computing gradients
in scenarios characterized by complex, nested optimization structures. This approach is particularly
effective when dealing with variables implicitly interconnected. To solve the MLO-MAE optimiza-
tion problem, we utilize a robust algorithm first introduced in (Choe et al., 2022). This algorithm is
underpinned by a solid theoretical framework, and its convergence properties have been extensively
examined in recent scholarly contributions. Each stage of the optimization process necessitates the
identification of an optimal solution, denoted with an asterisk (*) and positioned on the left-hand side
of the equation. Computing this exact optimal solution is typically resource-intensive. To manage
this efficiently, we apply the strategy proposed in (Liu et al., 2018), which involves approximating
the optimal solution via a one-step gradient descent update. This approximation is then integrated
into the next level of the optimization process. In our analysis, the symbol ∂·

∂· is used to represent
partial derivatives, while d·

d· signifies ordinary derivatives. The term∇2f(X,Y ) denotes the second-

order partial derivative of f(X,Y ) with respect to Y and X , formalized as ∂2f(X,Y )
∂X∂Y . The initial

phase of our methodology involves approximating E∗(T ) as follows:

E∗(T ) ≈ E′ = E−ηE ·∇E

∑
X∈Du

N×r∑
j=1

σ(Mj(X;T, r), X;T )Lrec(X−M(X;T, r),Mj(X;T, r);E,D)

(6)

where ηE denotes the learning rate. Subsequently, E′ is substituted into Lcls(E
′(T ), C,Dtr) to

yield an approximated objective function. Similarly, C∗(E∗(T )) is approximated using a single-
step gradient descent with respect to this approximated objective:

C∗(E∗(T )) ≈ C ′ = C − ηC · ∇CLcls(Dtr;E′(T ), C) (7)
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Finally, E′(T ) and C ′(E′(T )) are incorporated into Lcls(E
′(T ), C ′(E′(T )),Dval) to obtain an

approximated version of the objective function. The parameter T is then updated using gradient
descent:

T ← T − ηT · ∇TLcls(Dval;E′(T ), C ′(E′(T ))) (8)

By applying the chain rule to this approximation, we obtain:

∇TLcls(Dval;E′(T ), C ′(E′(T ))) =
∂Lval

cls

∂T
+

∂Lval
cls

∂E′
∂E′

∂T
+

∂Lval
cls

∂C ′
∂C ′

∂E′
∂E′

∂T
(9)

where:

∂E′

∂T
= −ηE ·∇2

E,T

∑
X∈Du

N×r∑
j=1

σ(Mj(X;T, r), X;T )Lrec(X−M(X;T, r),Mj(X;T, r);E,D)

(10)

and

∂C ′

∂E′ = ηC · ∇2
C,E′Ltr

cls (11)

Here, Lval
cls = Lcls(Dval;E′(T ), C ′(E′(T ))) and Ltr

cls = Lcls(Dtr;E′(T ), C).

A.2 FINITE DIFFERENCE APPROXIMATION FOR GRADIENT ESTIMATION

To reduce the complexity of solving MLO-MAE, we utilize the Finite Difference Approximation
(FDA) method, particularly in estimating gradients where analytical differentiation is challenging.
Specifically, directly computing Jacobian vector multiplication with MLO problems is computation-
ally expensive, which can be efficiently approximated by FDA methods (Choe et al., 2022).

FDA approximates the gradient of a function by computing the change in the function value for a
small perturbation in the input. For example, for a function f(x), the gradient approximation is
given by:

∇f(x) ≈ f(x+ δx)− f(x)

δx
(12)

In our experimental framework, we extended the formula above to compute hypergradients in MLO
problems. Specifically, we incorporated the bi-directional finite difference approximation (FDA)
method for gradient estimation within complex, nested optimization contexts. This technique is par-
ticularly pertinent in scenarios where traditional analytical gradient computation is either impractical
or excessively resource-intensive.

The bi-directional FDA extends the conventional finite difference approach by introducing perturba-
tions in both positive and negative directions relative to the current parameter values. This method-
ology provides a more nuanced and accurate gradient estimation compared to one-sided finite dif-
ference methods.

Each parameter in our current optimization problem undergoes an initial positive perturbation, de-
termined by a predefined small step size ϵ. Post this perturbation, we compute the loss and the
corresponding gradients with respect to the preceding optimization problem’s parameters. A sub-
sequent negative perturbation, amounting to double the initial epsilon, shifts the parameters below
their original values for a re-evaluation of the loss and re-calculation of gradients.

In our Multi-level Optimization (MLO) framework, the bi-directional FDA offers substantial bene-
fits. It enables efficient gradient estimation in situations where conventional backpropagation may
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fail, especially in handling the complex, implicit dependencies between parameters. This approach
is instrumental in enhancing our optimization techniques within intricate MLO settings.

Our implementation of the bi-directional FDA is finely tuned to strike a balance between compu-
tational efficiency and the accuracy of gradient estimation. The selection of the epsilon value is
critical, aiming to minimize numerical instability while maintaining sensitivity to changes in param-
eters. This balance is essential for ensuring the robustness of the gradient estimation process in the
stochastic realm of machine learning models.

A.3 INTEGRATION OF METHODS

Implicit differentiation and finite difference approximation are integrated to balance theoretical ac-
curacy with computational feasibility. This combination enhances the robustness and efficiency
of our optimization process in the MLO-MAE framework. In the application of these optimiza-
tion methods, several key considerations are taken into account. Firstly, the choice of ∆T in the
finite difference approximation is a critical factor, as it directly influences the accuracy and stabil-
ity of the gradient estimation. An appropriate value for ∆T ensures a balance between precision
and numerical stability. Secondly, we address the computational complexity problem inherent in
implicit differentiation. This aspect is particularly relevant in deep network architectures, where
computational resources can be a limiting factor. To mitigate this, we optimize the use of implicit
differentiation to balance computational demands with the need for accurate gradient computation.
Lastly, maintaining numerical stability is paramount in both methods. Techniques such as gradient
normalization and careful arithmetic handling are employed to ensure that the computations remain
stable, especially in scenarios where small numerical errors can significantly impact the overall re-
sults. This comprehensive optimization algorithm is pivotal in enabling the efficient training and
validation of the MLO-MAE framework.

Algorithm 1 MLO-MAE Optimization Algorithm

1: Input: Training dataset Dtr, validation dataset Dval

2: Output: Optimized parameters E∗(T ), D∗(T ), C∗(E∗(T )), T ∗

3: procedure MAE PRETRAINING(Du, T )
4: Initialize encoder E and decoder D
5: for each image Xi ∈ Du do
6: Patchify image into X̄i

7: Compute masked image using σ(Mj(X;T, r), X;T )

8: Update E, D by minimizing
∑

X∈Du

N×r∑
j=1

σ(Mj(X;T, r), X;T )Lrec(X −

M(X;T, r),Mj(X;T, r);E,D)
9: end for

10: return E∗(T ), D∗(T )
11: end procedure
12: procedure CLASSIFICATION HEAD TRAINING(E∗(T ),Dtr)
13: Freeze E∗(T ), initialize classifier C
14: for each image Xi ∈ Dtr do
15: Update C by minimizing Lcls(Dtr;E

∗(T ), C)
16: end for
17: return C∗(E∗(T ))
18: end procedure
19: procedure VALIDATION OPTIMIZATION(E∗(T ), C∗(E∗(T )),Dval)
20: Freeze E∗(T ), C∗(E∗(T ))
21: Optimize T by minimizing Lcls(Dval;E

∗(T ), C∗(E∗(T )))
22: return T ∗

23: end procedure
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A.4 DIFFERENTIABILITY OF MLO-MAE FRAMEWORK

In the initial phase of our Multi-level Optimization Masked Autoencoder (MLO-MAE) framework,
the focus is on the reconstruction loss and its differentiability relative to the parameters of the learn-
able masking network. This network is pivotal, as it determines the masking patterns for the input
data, directly impacting the autoencoder’s reconstruction loss. The key to effective gradient-based
optimization lies in ensuring the differentiability of this reconstruction loss with respect to the mask-
ing network’s parameters. Due to the inherently discrete nature of mask selection, integrating the
masking network directly into the MAE’s reconstruction loss initially leads to non-differentiability
issues. To circumvent this, our approach employs a sigmoid activation function, denoted as σ(.),
to generate soft masks. These soft masks assign a continuous value between 0 and 1 to each image
patch, indicating the likelihood of that patch being masked. This likelihood is learned from both
masked and unmasked patches. In this first phase, we tackle non-differentiability by utilizing the
MAE reconstruction loss together with the masking probability. This is achieved as illustrated in
Equation (1), which allows the proportional contribution of each patch to influence the overall loss,
facilitating differentiation with respect to the network parameters through the application of σ(·).
To further address the non-differentiability issue in our MLO-MAE framework incurred by mask
selection, the SoftSort (Prillo & Eisenschlos, 2020) technique—a differentiable approximation of
sorting operations—replacing the conventional, non-differentiable ”argsort” operation, can be inte-
grated. SoftSort enables the learning of a continuous relaxation of sorting, vital for gradient-based
optimization and for crafting nuanced, performance-enhancing masks. This represents a significant
leap in refining the effectiveness of the reconstruction process. However, given the computational
demands of SoftSort, we propose a simplified approach that approximates the base Jacobian with
an identity matrix similar to (Choe et al., 2023), thereby simplifying the gradient during backprop-
agation and enhancing the efficiency by ”jumping over” the non-differentiable argsort operation.
By treating non-differentiable operations as identity functions during backpropagation, this method
allows gradients from the reconstruction loss to flow as if the masking operations were inherently
differentiable. This strategy significantly speeds up training by enabling the use of standard gradient-
based optimization techniques. In our MLO-MAE, the masking network employs soft masks, which,
through a sigmoid activation function σ(.), assign each image patch a continuous value from 0 to
1. This assignment reflects the probability of masking, informed by both masked and unmasked
patches. By approximating the gradients for non-differentiable functions as identity functions dur-
ing backpropagation, our method enables the differentiation of the MAE reconstruction loss, Lrec,
relative to the masking network parameters T . This differentiation is facilitated by incorporating the
output probabilities of σ(.) into the reconstruction loss Lrec, as detailed in Equation (1).

B DETAILED EXPERIMENTAL SETTINGS

B.1 DATASETS

CIFAR-10 (Krizhevsky et al., a): CIFAR-10 is a fundamental dataset for image classification,
comprising 60,000 32x32 color images across 10 classes, with 6,000 images per class. It is widely
used in machine learning research because of its manageable size and diversity of images. CIFAR-
10 tests the ability of our MLO-MAE framework to capture essential features in small-scale images
and generalize across a variety of everyday objects.

CIFAR-100 (Krizhevsky et al., b): CIFAR-100 is similar to CIFAR-10 in image size and total
number of images but is significantly more challenging due to its 100 classes, each containing 600
images. The increased number of classes in CIFAR-100 allows us to evaluate the capability of
MLO-MAE in a more granular classification context, providing insights into how well the model
differentiates between a larger number of categories with fewer examples per category.

ImageNet-1K (Deng et al., 2009): ImageNet, a subset of the larger ImageNet database, is one of
the most influential datasets in the field of image classification. It contains 1.3M training images
and 50K validation images categorized into 1,000 classes. The dataset’s extensive size and diversity
present a rigorous test for any machine learning model. Our use of ImageNet is aimed at assess-
ing the scalability and robustness of the MLO-MAE framework in handling complex, large-scale
classification tasks.
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CUB-200-2011 (Wah et al., 2011): The CUB-200-2011 dataset is a specialized collection de-
signed for fine-grained bird species classification, developed by the California Institute of Technol-
ogy. It contains 11,788 images, representing 200 bird species, with a focus on North American
birds. Each image in the dataset is accompanied by detailed annotations, including bounding boxes,
part locations, and attribute labels, making it ideal for detailed image analysis tasks. The dataset is
widely used in computer vision research, particularly in tasks that require distinguishing between
visually similar sub-categories.

Stanford Cars (Krause et al., 2013): The Stanford Cars dataset is a large collection of car images
created by researchers at Stanford University, it contains 16,185 images of 196 classes of cars. The
data is split into 8,144 training images and 8,041 testing images, where each class has been split
roughly in a 50-50 split. Classes are typically at the level of Make, Model, Year, ex. 2012 Tesla
Model S or 2012 BMW M3 coupe.

iNaturalist 2019 (Van Horn et al., 2018): The iNaturalist 2019 dataset is a comprehensive bio-
diversity collection used for machine learning and research, created by the iNaturalist project, a
collaboration between the California Academy of Sciences and the National Geographic Society. It
features over 859,000 high-quality images of 1,010 species, each with detailed metadata including
species name, observation location, date, and time. This extensive dataset is crucial for species iden-
tification and, distribution modeling, and is utilized in the annual iNaturalist Challenge to enhance
automated species recognition technologies.

ADE20K (Zhou et al., 2017): ADE20K is a comprehensive dataset for semantic segmentation,
containing more than 20,000 images annotated for a variety of scenes and objects, making it one of
the most diverse datasets available for this task. Each image in ADE20K is annotated with pixel-level
segmentation masks, encompassing a wide range of objects and scene categories. The complexity
and richness of ADE20K make it an ideal choice for testing the efficacy of the MLO-MAE frame-
work in understanding and segmenting complex visual scenes. The dataset challenges the model
to not only recognize a diverse array of objects but also understand their spatial relationships and
boundaries within various contexts.

MS-COCO (Lin et al., 2014): MS-COCO is a comprehensive large-scale dataset used for tasks
such as object detection, segmentation, keypoint detection, and image captioning, containing a total
of 328,000 images. Initially released in 2014, the dataset was split into 83,000 training images,
41,000 validation images, and 41,000 test images. In 2015, an expanded test set was introduced,
adding 40,000 new images to the existing test set for a total of 81,000 test images. Responding
to feedback from the research community, the 2017 version adjusted the training/validation split
to 118,000 training images and 5,000 validation images, while maintaining the same images and
annotations as previous versions. The 2017 test set consists of 41,000 images, a subset of the 2015
test set, and the release also includes a new unannotated dataset of 123,000 images.

PASCAL VOC 2007 (Everingham et al.): The PASCAL VOC 2007 dataset is a prominent bench-
mark in the field of object detection and image segmentation. It consists of 9,963 images annotated
with 24,640 objects across 20 distinct classes, including everyday items like cars, cats, and chairs.
The dataset provides comprehensive bounding box annotations for each object, facilitating the train-
ing and evaluation of object detection models. Additionally, it includes segmentation annotations,
although they are more limited compared to later versions. The images in PASCAL VOC 2007
vary in size and aspect ratio, reflecting diverse real-world conditions. This dataset is divided into
training, validation, and test sets, with the test set publicly available, making it an invaluable re-
source for benchmarking and comparing the performance of different object detection algorithms.
Its widespread adoption in the research community has contributed to significant advancements in
computer vision, serving as a foundational dataset for evaluating the effectiveness of new detection
methods and models.

B.2 MASKING NETWORK

To facilitate the mask generation process, we design a lightweight masking network with two lin-
ear layers, one ReLU layer in between, and one sigmoid activation. The first linear layer can be
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Table 11: MLO-MAE ImageNet Pretraining Settings.

MLO-MAE Stage Config value

Stage I

model ViT-B
optimizer AdamW
base learning rate 1e− 4
weight decay 0.05
image size 224
patch size 16× 16
optimizer momentum β1, β2 = 0.9, 0.95
batch size 256
learning rate scheduler cosine anneal
unrolling steps 1
mask ratio 0.75

Stage II

learning rate 4e− 5
weight decay 0.05
image size 224
optimizer momentum β1, β2 = 0.9, 0.95
batch size 256
learning rate scheduler cosine anneal
unrolling steps 1

Stage III

learning rate 4e− 5

masking network

nn.Linear(num patches × emb dim, 512)
nn.ReLu

nn.Linear(512, num patches)
torch.sigmoid()

weight decay 0.05
image size 224
optimizer momentum β1, β2 = 0.9, 0.95
batch size 256
learning rate scheduler cosine anneal
unrolling steps 1

expressed in PyTorch code as nn.Linear(num patches × emb dim, 512), where num patches is the
number of patches from the original image (e.g. ImageNet sample of size 224 × 224 with patch
size of 16 × 16 will generate 14 × 14 = 196 patches) and emb dim is the embedding dimension
from ViT-B (768 in our case). We use a hidden size of 512 for the output dimension of the first and
the second linear layer. The ReLU layer is expressed as nn.ReLU(). The second linear layer can
be expressed as nn.Linear(512, num patches) where the output is the masking probability for each
image patch with corresponding order. We pass the resulting tensor from the second linear layer
through the sigmoid activation to generate values between 0 and 1.

B.3 IMAGENET

We adopt the default ViT-B model that has been employed in the original MAE. In total, we train 50
epochs for all three stages. For ImageNet experiments, we use an image size of 224× 224.

Pretraining Detailed three-stage MLO-MAE pretraining setting is in Table 11. We follow MAE
settings on data augmentations by only using RandomResizedCrop and RandomHorizontalFlip. For
MLO-MAE in Table 1 experiment, we train MLO-MAE using xavier uniform (Glorot & Bengio,
2010). We follow the linear lr scaling as used in the MAE. We randomly split the training set of
ImageNet by a ratio of 80/20 to be the new training set and the new validation set. We use the same
new training set in Stage I and Stage II for training, while use the new validation set in Stage III
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Table 12: MLO-MAE CIFAR-10/100 Pretraining Settings.

MLO-MAE Stage Config value

Stage I

model ViT-B
optimizer AdamW
base learning rate 1e− 3
weight decay 0.05
image size 32
patch size 2× 2
optimizer momentum β1, β2 = 0.9, 0.95
batch size 128
learning rate scheduler cosine anneal
unrolling steps 2
mask ratio 0.75

Stage II

learning rate 1e− 3
weight decay 0.05
image size 32
optimizer momentum β1, β2 = 0.9, 0.95
batch size 128
learning rate scheduler cosine anneal
unrolling steps 1

Stage III

learning rate 1e− 3

masking network

nn.Linear(num patches × emb dim, 512)
nn.ReLu

nn.Linear(512, num patches)
torch.sigmoid()

weight decay 0.05
image size 32
optimizer momentum β1, β2 = 0.9, 0.95
batch size 128
learning rate scheduler cosine anneal
unrolling steps 1

for training the masking network. We use the original ImageNet validation set to report validation
accuracy in Stage II.

Linear Probing Due to the inherent design of our three-level optimization framework, we do not
conduct separate linear probing and directly report the Stage II testing accuracy (test dataset not seen
in MLO-MAE training). Therefore, we report the training setting as in Stage II shown in Table 11.

Fine-tuning We directly followed the MAE fine-tuning experiments and did not make additional
changes. Detailed settings can be found in Table 9 of MAE (He et al., 2022).

B.4 CIFAR

We adopt the same ViT-B architecture as in B.3 but change the input image size and patch size to be
32 and 2 respectively. In total, we train MLO-MAE 50 epochs for all three stages.

Pretraining We pretrain our model from scratch (i.e. no pretrained initialization from other
datasets) using the MLO-MAE method on two CIFAR datasets. Table 12 shows the detailed train-
ing setting for CIFAR-10 and CIFAR-100 experiments. We adopted a similar setting from the Im-
ageNet experiment, with minor modifications on learning rate, data augmentation, image size, and
patch size. We use conventional RandomCrop and RandomHorizontalFlip on both CIFAR-10 and
CIFAR-100. We pretrain with MLO-MAE for 200 epochs.
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Linear Probing Similar to section B.3, we report the training setting as in Stage II shown in Table
12.

Fine-tuning For CIFAR fine-tuning, we use lr=1e− 4, weight decay=5e− 5, optimizer=AdamW,
batch size=64, and epoch=100. We use default data augmentation on CIFAR, including Random-
Crop, Resize, and RandomHorizontalFlip. We maintain the image size to be 32. This experiment is
performed on top of MLO-MAE CIFAR-10/100 pretrained weights respectively.

B.5 CLASSIFICATION ON FINE-GRAINED DATASETS

We perform image classification using MLO-MAE pretrained ViT-B on CUB-200-2011 (Wah et al.,
2011), Stanford Cars (Krause et al., 2013), and iNaturalist 2019 (Van Horn et al., 2018) fine-grained
datasets. We follow the setting from MAE (He et al., 2022) with minor adjustments on learning
rate and epochs. These experiments are performed on top of MLO-MAE ImageNet-1K pretrained
weights respectively.

B.6 SEMANTIC SEGMENTATION ON ADE20K

We use the semantic segmentation code implementation of MAE by MMSegmentation (Contrib-
utors, 2020). Given a ViT-B model pretrained on ImageNet using MLO-MAE or a baseline and
subsequently fine-tuned on ImageNet, to transfer it for semantic segmentation, we integrated it as a
backbone model into the UPerNet (Xiao et al., 2018) semantic segmentation framework. It was then
further fine-tuned on the challenging ADE20K dataset (Zhou et al., 2017) containing 25K images
spanning 150 semantic categories. The fine-tuning was conducted by the AdamW optimizer for over
160,000 iterations, with a batch size of 8 and a learning rate of 0.0001.

C VISUALIZATION

C.1 MASKING PATTERN VISUALIZATION

We randomly sampled five images from ImageNet and visualized the masked patches learned by
our method MLO-MAE. We also included visualizations for baseline methods, including MAE,
SemMAE, and AutoMAE, with a masking ratio of 10%. As shown in Figure 4, the majority of
the masked patches learned by MLO-MAE are on foreground objects directly relevant to the class
labels of these images. In contrast, MAE, SemMAE, and AutoMAE place the majority of masked
patches on background regions irrelevant to image class labels. These results indicate that MLO-
MAE encourages the encoder network to focus on learning effective representations for objects
rather than background regions. By focusing on correctly reconstructing the masked patches in
object regions, the encoder can effectively capture the intrinsic properties of the objects.

MLO-MAE achieves this ability by leveraging the downstream classification task to guide the pre-
training of the encoder and the learning of the masking strategy. Minimizing the validation loss of
the downstream classification task in Stage III of MLO-MAE encourages the pretrained encoder to
learn discriminative representations that can distinguish between different classes. To learn these
discriminative representations, MLO-MAE emphasizes masking and reconstructing patches in ob-
ject regions, as these objects are directly related to the class labels. In contrast, SemMAE and
AutoMAE use the attention maps produced by StyleGAN and adversarial learning to mask patches.
These attention maps are created without leveraging guidance from the class labels of the down-
stream classification task, resulting in SemMAE and AutoMAE being less effective at masking
class-label-relevant objects compared to MLO-MAE.

It is worth noting that MLO-MAE emphasizes masking objects directly related to the image class
label rather than any objects. For instance, in the fourth image, which contains two types of objects
- eel and starfish, MLO-MAE places more masked patches on the eel because the class label of the
image is eel. Although starfish are prominent objects in this image, MLO-MAE masks fewer patches
on it since the image’s class label is not starfish. Again, this targeted masking strategy is learned with
guidance from the downstream image classification task, aimed at enhancing classification accuracy.
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Figure 4: Visualization of the masking patterns of MLO-MAE and baselines on randomly sampled
ImageNet images.

Original MAE MLO-MAEAnnotations MAEOriginal MLO-MAEAnnotations Original MAE MLO-MAEAnnotations

Figure 5: Visualizing 2D activations of MAE and MLO-MAE pretrained ViT-B weights on 12
examples of ADE20K validation set using GradCAM. For each set of images, from left to right, are
original image, ground truth annotations, MAE activation map, and MLO-MAE activation map. For
both MAE and MLO-MAE models, features are extracted from the norm1 layer from the last ViT
block. Red colors high activation region.

C.2 GRADCAM VISUALIZATION

To delve into the representation learning prowess of MLO-MAE, we also present a visual analysis
of activation maps generated by both the pretrained MAE and MLO-MAE ViT-B models. Specif-
ically, we examine 12 examples from the ADE20K validation set, as depicted in Figure 5. These
activation maps are derived from features extracted from the norm1 layer within the final ViT block
of the backbone architecture. Our comparative analysis reveals that MLO-MAE consistently pro-
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Figure 6: t-SNE visualizations of representations learned by MAE, DINO, and MLO-MAE for
CIFAR-10 test images.

duces activation maps of notably higher semantic coherence compared to MAE. This enhancement
is attributed to the tailored guidance provided by task-specific masking during the pretraining phase.
Notably, MLO-MAE demonstrates a proficiency in pinpointing highly informative regions, demon-
strating the efficacy of the MLO-based pretraining methodology in refining visual representation
learning.

C.3 T-SNE VISUALIZATION

Table 13: Ratio of average intra-class similarity to inter-class similarity for representations ex-
tracted by encoders pretrained using MLO-MAE, MAE, and DINO on the test images of CIFAR-10,
CIFAR-100, and ImageNet.

Method Ratio on CIFAR-10 Ratio on CIFAR-100 Ratio on ImageNet

MAE 1.25 1.19 1.08
DINO 1.31 1.27 1.11
MLO-MAE 1.59 1.52 1.43

We utilized the encoders learned by MLO-MAE, MAE, and fully supervised method, DINO ??, to
extract representations for the test images of CIFAR-10. These representations were then visualized
using t-SNE, as shown in Figure 6. The visualization indicates that in the MLO-MAE representation
space, different classes are better separated, with images from the same class grouped together. In
contrast, the MAE and DINO representations show a mixing of different classes. Furthermore, we
measured the ratio between intra-class similarity and inter-class similarity. For intra-class similarity,
we calculated the cosine similarity between the representations of each pair of images within the
same class and averaged these values. Likewise, for inter-class similarity, we computed the average
cosine similarity for pairs of images from different classes. The results are in Table 13. MLO-
MAE achieves the highest ratios across all datasets, demonstrating its learned representations can
better distinguish between different classes. This can be attributed to our method’s use of validation
loss from the downstream classification task to guide pretraining, resulting in more discriminative
representations.

D ADDITIONAL EXPERIMENTS

D.1 OBJECT DETECTION

We evaluate the transfer ability of MLO-MAE ViT-B model to object detection task on PASCAL
VOC 2007 dataset. Following a similar setup as in Section 4.4, we directly train the pretrained model
for the object detection task using the following procedure. The dataset is downloaded and orga-
nized into training, validation, and test sets. Images are preprocessed to a fixed size (e.g., 512x512
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Table 14: Object detection result of MLO-MAE on PASCAL VOC 2007 detection task.

Method ViT-B MAE MLO-MAE

mAP (%) 79.1 82.8 83.5

pixels) and augmented with techniques such as random cropping, flipping, and normalization to en-
hance model robustness. The ViT-Base backbone is pretrained using MAE and MLO-MAE on a
large corpus of unlabeled images to learn rich visual representations. An object detection head is
then attached to the backbone, consisting of fully connected layers for predicting bounding boxes
and class labels. The training process employs a combination of classification loss (cross-entropy)
and bounding box regression loss (smooth L1), optimized using the AdamW optimizer with a learn-
ing rate of 1e-4 and weight decay of 1e-4. We use a batch size of 16 and train the model for
50-100 epochs, incorporating early stopping based on validation performance. During training, the
backbone is initialized with MAE-pretrained weights, and forward passes are performed to extract
features and make predictions. The total loss is computed and backpropagation is used to update the
model weights. Periodic validation monitors performance and guides hyperparameter adjustments.
Evaluation metrics include mean Average Precision (mAP), precision, and recall at different IoU
thresholds, alongside inference speed. For final evaluation, the trained model predicts bounding
boxes and class labels on the PASCAL VOC 2007 test set, and performance is benchmarked using
the mAP metric. Results may be submitted to the PASCAL VOC evaluation server for standardized
comparison with other models, demonstrating the efficacy of the MAE-pretrained ViT-Base back-
bone in object detection tasks. Table 14 shows the result. MLO-MAE surpasses supervised ViT-B
and MAE with 4.4% and 0.7%, respectively.

D.2 ROBUSTNESS

Table 15: Robustness evaluation on ImageNet variants. We use IN-1K finetuned ViT-B and directly
reported from Table 1 without further training. Results are top-1 accuracy.

Dataset MAE MLO-MAE

ImageNet-A 35.9 46.2
ImageNet-B 18.4 46.3
ImageNet-C 51.7 55.5
ImageNet-R 48.3 55.6
ImageNet-S 34.5 41.8

We evaluate the robustness of our ViT-B models on different variants of ImageNet validation sets.
Following MAE’s setup, we use the fine-tuned model from Table 1 without further training and only
run inferences on the ImageNet robustness variants. Table 15 shows our MLO-MAE surpasses MAE
in all variants with large margin.

D.3 COMPUTATIONAL EFFICIENCY

Table 16: Test accuracy on CIFAR-100 with different update frequencies.

Update frequency Per epoch runtime (GPU hrs) Test accuracy on CIFAR-100 (%)

Every iteration 0.6 79.4
Every 5 iterations 0.4 79.1

In Section 4.7 of the main paper, we compared the computational cost of our method to that of
baseline methods, including MAE, SemMAE, and AutoMAE. The overall runtime of our method is
similar to that of the baselines. Our method converges in fewer epochs but has a higher per-epoch
runtime compared to the baselines. To reduce the per-epoch training time, we can decrease the
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Table 17: Ablation on curriculum masking ratio from 0.5 to 0.9.

Masking ratio Test Accuracy on CIFAR 100

0.75 79.4
0.5-0.9, linear increase 76.5

Table 18: Test accuracy on CIFAR-100 with full fine-tuning in stage II.

Method Test Accuracy on CIFAR 100 Runtime (days on 8 GPUs)

Linear probing in stage II 79.4 0.7
Full fine-tuning in stage II 79.5 1.1

update frequency of the masking network; instead of updating it every iteration (mini-batch), we
update it every few iterations (e.g., every five iterations), while still updating the encoder and linear
head at each iteration. Calculating the hypergradient of the masking network requires computing
Jacobian matrices and performing their multiplication with vectors, which is more computationally
intensive than calculating the gradient of the encoder and linear head. By reducing the update
frequency of the masking network, we can significantly lower the overall computational costs. We
experimented with this approach on CIFAR-100, parallelized across 8 GPUs as shown in Table 16.
As can be seen, the per epoch training time is significantly reduced. Meanwhile, we empirically
found that reducing the update frequency of the masking network does not significantly impact
classification accuracy. This is likely because once an intermediate masking strategy is learned, it
can be used for a while to pretrain the encoder without needing frequent updates.

D.4 CURRICULUM MASK RATIO

Experiments performed in section 4 use fixed masking ratio, following the baseline setup. To further
explore the impact of different masking behavior (fixed and dynamic masking ratio) on MLO-MAE,
we experimented with a curriculum masking ratio setting. We dynamically increased the masking
ratio of our method from 0.5 to 0.9 as training progressed, with a linear schedule. The results on
CIFAR-100, shown in the Table 17, indicate that using a dynamic ratio does not outperform a fixed
ratio of 0.75.

D.5 FULL FINE-TUNE IN STAGE II

min
T

Lcls(Dval;F ∗(E∗(T )), C∗)

s.t. F ∗(E∗(T )) = argmin
F,C

Lcls(Dtr;F,C) + λ∥F − E∗(T )∥22

E∗(T ), D∗ = argmin
E,D

∑
X∈Du

N×r∑
j=1

σ(Mj(X;T, r), X;T )Lrec(X −M(X;T, r),Mj(X;T, r);E,D)

(13)

We experimented with full fine-tuning of the encoder during Stage II, parallelized across 8 GPUs.
In this setup, full fine-tuning of the pretrained encoder involves training an encoder to have a small
L2 distance from. Equation 13 is the formulation for performing full fine-tuning of the pretrained
encoder during Stage II in MLO-MAE. Table 18 shows the results on CIFAR-100. As can be seen,
full fine-tuning the encoder during stage II does not significantly outperform linear probing but
incurs much higher computational costs. Therefore, it is preferable to fix the encoder during Stage
II.

E BROADER IMPACT

Our paper presents the Multi-level Optimization for Masked Autoencoders (MLO-MAE) frame-
work, enhancing self-supervised learning in visual data processing. MLO-MAE can have a broad

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

impact across various fields like medical imaging, autonomous vehicles, and content moderation. In
the healthcare sector, it could improve disease detection and diagnosis. Similarly, in the realm of
autonomous driving, it may enhance object recognition for safer vehicle automation. However, we
also recognize the ethical considerations and potential risks associated with the application of our
work. The increased capability of image processing models can lead to concerns around privacy,
surveillance, and the potential misuse of technology in unauthorized or harmful ways. The deploy-
ment of such technologies must be guided by ethical principles and regulatory frameworks to protect
individual privacy and prevent misuse.
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