
Proceedings of Machine Learning Research vol 284:1–13, 2025 19th Conference on Neurosymbolic Learning and Reasoning

Neuro-Symbolic Inverse Constrained Reinforcement
Learning

Oliver Deane oliver.deane@bristol.ac.uk and Oliver Ray csxor@bristol.ac.uk

University of Bristol, Bristol, United Kingdom

Editors: Leilani H. Gilpin, Eleonora Giunchiglia, Pascal Hitzler, and Emile van Krieken

Abstract

Inverse Constrained Reinforcement Learning (ICRL) is an established field of policy learn-
ing that augments reward-driven exploratory optimisation with example-driven constraint
inference aimed at exploiting limited observations of expert behaviour. This paper pro-
poses a generalisation of ICRL that employs weighted constraints to better support lifelong
learning and to handle domains with potentially conflicting social norms. We introduce a
Neuro-Symbolic ICRL approach (NSICRL) with two key components: a symbolic system
based on Inductive Logic Programming (ILP) that infers first-order constraints which are
human-interpretable and generalise across environment configurations; and a neural sys-
tem based on Deep Q learning (DQL) that efficiently learns near-optimal policies subject
to those constraints. By weighting the high-level ILP constraints (based on the order in
which they are learnt) and encoding them as low-level state-action penalties in the DQL
reward function, we effectively allow earlier constraints to be overridden by later ones.
Unlike prior work in ICRL, our approach is able to continue working when exposed to
newly encountered expert behaviours that reveal more nuanced exceptions to previously
learnt constraints. We evaluate NSICRL in a simulated traffic domain, which shows how
it outperforms existing methods in terms of efficiency and accuracy when learning hard
constraints; and which also shows the utility of learning defeasible norms in an ICRL con-
text. To the best of our knowledge, this is the first approach that places equal emphasis
on exploratory and imitative learning while also being able to infer defeasible norms in an
interpretable way that scales to non-trivial examples.

1. Introduction

This paper presents a neuro-symbolic (NS) approach to Inverse Constrained Reinforcement
Learning (ICRL). Our method generalises prior work in the field of Neuro-Symbolic Re-
inforcement Learning (NSRL) (Acharya et al., 2023) which has successfully integrated the
interpretability of symbolic methods with the noise tolerance and scalability of neural net-
works in an RL setting. We extend those ideas with ICRL mechanisms that further enable
the discovery of implicit constraints by combining exploration with knowledge extracted
from expert demonstrations. This allows an agent to learn operational constraints within
an environment without requiring exhaustive mathematical specification in advance (Scobee
and Sastry, 2019; Liu et al., 2024).

Our proposed approach, Neuro-Symbolic Inverse Constrained Reinforcement Learning
(NSICRL), combines NS methods with ICRL to learn a neural policy for efficiently operating
in complex environments while simultaneously inferring constraints as high-level, human-
interpretable symbolic rules. Representing constraints in a high-level symbolic language also
allows for transferability across environmental configurations. For example, a constraint

© 2025 O. Deane & O. Ray.



Deane Ray

like “Do not drive through a red light” can be reused in a variety of problem settings with
varying road positions and junction layouts. Moreover, associating constraints with finite
weights also enables us to represent defeasible ‘norms’ that facilitates lifelong learning by
allowing newly acquired examples of expert behaviour to serve as exceptions to previously
learned norms (without having to retrain the entire system from scratch). For example,
after initially learning a norm “Do not drive off the road” from a limited set of expert
observations, NSICRL can subsequently learn what could be considered an exception in the
form of a more highly weighted norm “Drive off the road to avoid an obstacle” when later
presented with an enlarged set of expert observations (as could easily happen in a lifelong
or active learning setting or in domains with conflicting social norms).

In the remainder of this paper, we introduce relevant background concepts (Section 2),
before outlining a formal implementation of the NSICRL system (Section 3). We validate
efficacy with respect to prior research using a Traffic Simulator environment, including a
demonstration of the utility of defeasible norm generation (Section 4). Finally, we discuss
the key contributions of NSICRL in the context of related work (Sections 5) and discuss
avenues for future research (Section 6).

2. Background

2.1. Reinforcement Learning

Reinforcement Learning (RL) provides a robust method for learning optimal policies through
exploration that maximise cumulative reward over time Kaelbling et al. (1996). It is highly
effective for solving complex, multi-step problems in dynamic environments and enables sys-
tems to make decisions that consider both immediate and long-term benefits (Mnih et al.,
2013). RL problems are typically framed as episodic Markov Decision Processes (MDPs),
where the goal is to learn a policy π that selects the optimal action a in a given state s
to maximise the expected discounted cumulative reward. Among various RL algorithms,
a widely used approach is Q-learning, a model-free, value-based method that learns the
optimal action-value function Q∗ and commonly follows a policy that selects actions based
on the highest estimated value, i.e., a = argmaxa∈AQ(s, a). The concept of Deep Q-
Learning (DQL) extends Q-learning by using deep neural networks to approximate Q∗ in
high-dimensional state spaces (Mnih et al., 2013). Traditional Q-learning relies on a tabular
approach, which becomes infeasible as the state space grows. In contrast, DQL employs a
Deep Q-Network (DQN) that approximates the Q-value function to map states to Q-values
for each possible action.

2.2. Inverse Constrained Reinforcement Learning

To enforce compliance with environmental constraints, the MDP can be modified to a
Constrained Markov Decision Process (CMDP) MC . This extends a standard MDP by
imposing a set of constraints C ⊆ S×A, which restrict the set of valid actions in each state,
where the valid action set in state s is defined as: AC(s) = A(s) \ {a ∈ A(s) | (s, a) ∈ C}
(Altman, 1999). Inverse Constrained Reinforcement Learning (ICRL) is a framework for
learning these constraints from expert trajectories. For instance, Maximum Entropy Inverse
Constrained RL (Scobee and Sastry, 2019) is a widely used method for discrete state-

2



Neuro-Symbolic Inverse Constrained Reinforcement Learning

action spaces; it first learns a policy in an unconstrained MDP, then iteratively infers
constraints by identifying state-action pairs that are likely under the learned policy but
have low probability in expert trajectories. Existing approaches represent constraints as
individual state-action pairs, cost functions, or trajectory-based restrictions (Malik et al.,
2021; McPherson et al., 2021; Subramanian et al., 2024). This hampers interpretability,
particularly when managing a large set of constraints, and makes it difficult to discern which
aspects of the expert observations influenced learning. Furthermore, as these representations
are tied to specific state-action pairs or trajectory structures, they often fail to generalise
to new configurations of an environment (Baert et al., 2023). Logic-Constrained Q-learning
(LCQL) (Baert et al., 2023) is a extension of ICRL that begins to address this problem
by using logic-based machine learning to learn symbolic constraints which were used to
remove state-action entries from Q-table of a conventional RL system. But the use of an
explicit Q-table significantly hinders scalability (to the extent LCQL cannot be practically
applied to the examples in this paper) and their restriction to hard constraints prevents the
incremental refinement of constraints and does not accommodate exceptions to previously
learned norms. We are proposing to continue in this vein by using NS methods in order to
overcome both these limitations of LCQL.

2.3. Inductive Logic Programming

Like (Baert et al., 2023), we use a logic-based machine learning approach called Inductive
Logic Programming (ILP) to derive symbolic norms using the optimised policy and expert
examples (Muggleton, 1991; Cropper et al., 2020). ILP infers a logic program (hypothe-
sis) that explains observed data through formal rules and relations. It takes as input a
background knowledge base, positive examples (instances the hypothesis should cover), and
negative examples (instances it should exclude). ILP searches for a hypothesis that max-
imises coverage of positive examples while minimising coverage of negatives. The search
space is restricted by a user-defined language bias, which limits the form and complexity
of potential hypotheses. Here, we use the ILP system ALEPH, which employs a top-down
search strategy with a “bottom clause” to constrain the search space (Srinivasan, 2001). We
learn logical rules that define conditions for norm violating behaviour, thus we treat expert
demonstration trajectories as negative examples, and policy-generated state-action pairs
that deviate from expert behaviour (so-called seed constraints) as positives (see Section 3).

2.4. The Traffic Domain

We evaluate NSICRL using the SUMO Traffic environment in which agents must follow
accepted norms and road rules, namely “stay on the road” and “do not enter junctions on
a red light” (see Figure 1) (Lopez et al., 2018). This setting, used in previous research
(Baert et al., 2023), extends the standard discrete gridworld benchmark for evaluating
ICRL methods (Liu et al., 2022) by incorporating high-level concepts (roads and junctions).
Expert examples are generated using the SUMO simulator which uses car control algorithms
to generate realistic car journey trajectories. These trajectories are discretised to align with
a grid-based set up. The resulting trajectories consist of a list of successive state-action
pairs. A state consists of four values: the (x, y) position of the agent, a traffic light signal

3



Deane Ray

Figure 1: The original small (left) and our larger complex (right) Traffic environments.

value (0 or 1), and a binary indicator of whether the position lies on the road. Each action
corresponds to movement in one of four cardinal directions (0-3) or stay still (4).

The equivalent logic representation of any given scenario comprises a set of logical
predicates: at/3 denotes agent position, tls/2 represents the traffic light signal, and go/2
gives the agent’s selected action. NSICRL also takes a Background Knowledge (BK) con-
taining logical facts required for the ILP to induce hypotheses. For the Traffic domain,
the onRoad(X,Y ) auxiliary predicate informs that a position (X,Y ) is on a road. The
atJunction(X,Y,D) predicates state that position (X,Y ) is immediately before a junction
if travelling in direction D. The move(X,Y,D,X1, Y 1) predicate defines agent movements
over a single time step where X and Y are original positions, and X1 and Y 1 are subse-
quent positions after moving in direction D. These predicates are simple encodings of the
environmental state along with the state transition rules represented in the DQL. To facil-
itate comparison with prior work, we use the state-space encoding of Baert et al. (2023),
where tls represents a global traffic light value where 1 means ”Green” for cars on latitu-
dinal roads (East-West) and ”Red” for cars on longitudinal roads (North-South). Thus, to
improve readability of hypotheses, we added a predicate, tls local, to define a normalised
traffic signal - where a value of 1 means ”Green” for any agent, irrespective of which road
they are on (see Appendix B for the complete BK).

3. Implementation

In this section, we outline how the above concepts interact to form our NSICRL system,
using the Traffic Domain as an example use case. Figure 2 depicts the overall structure; it
takes as input a set of expert Trajectories T , a nominal (unconstrained)MDP , a background
knowledge B and a hypothesis space defined by a language bias M . The output is a set
of logical constraints C containing learned norms in the form of logical hypotheses (H)
induced at each iteration, as well as a constrained policy π.

NSICRL leverages two sub-modules to iteratively build and refine C. The first consists
of a Deep Q Learner (DQL) which learns an approximate optimal policy for the given MDP1.
Using a constraint inference method inspired by the Maximum Entropy ICRL (ME-ICRL)
approach proposed by Scobee and Sastry (2019), NSICRL identifies state action pairs which
are optimal according to this learned policy but are unlikely with respect to the set of expert
trajectories. We consider these pairs ‘Seed Constraints’. We use the ILP algorithm ALEPH
as the induction module; using T as negative examples and the seed constraint as positive,
it generalises the seed to a logical hypothesis H which captures the necessary conditions for
a norm violation. All state-action pairs satisfying H are subsequently used to update the

1. For small environments, this can feasibly be a single-layer approximate Q-learner (e.g., a perceptron).

4



Neuro-Symbolic Inverse Constrained Reinforcement Learning

Figure 2: NSICRL interleaves a policy optimiser (DQL) and a constraint generator (ILP) to
iteratively build a set of (defeasible) constraints (C). Seed constraints (visualised
in the centre) are selected from the policy and generalised by ILP.

agent’s nominal policy via an interaction with the policy optimiser’s reward function. A
new seed constraint is inferred from the updated policy, and this process continues as the
set of logical constraints C is iteratively augmented.

3.1. Inferring Seed Constraints

The DQL first learns an approximate optimal policy from goal-directed exploration using
a nominal reward function. In the Traffic case, it receives state inputs as floats consisting
of the agent’s position, traffic light value, and a binary flag indicating whether the agent
is located on a road. It outputs actions as discrete numerical encodings mapping to the
four cardinal directions (0-3) or stay still (4): for instance, an agent selecting north when
at position (2, 1) when the light is red is [(2, 1, 0, 0), 1]. The nominal reward function is
derived from the simulated sumo environment whereby reward is delivered when the agent
reaches a final goal state. To infer the Seed Constraint, we generate the set of all unique
state-action pairs T ′ from the set of expert trajectories T whereby T ′ =

⋃
τ∈T . We order T ′

by state visitation frequency to generate T rank, thus prioritising common constraints. Seeds
are selected based on divergence from expert behaviour; for each state in T rank, the policy
is queried for an optimal action, and if the action is not in T ′, the associated state-action
pair becomes the seed constraint. Grounding this in the Traffic example, a nominal policy
would go directly to the goal, going off-road in the process; the action that takes the agent
off road would be captured as a seed constraint because it is not contained in T ′.

3.2. Hypothesis Induction

The hypothesis induction module, ALEPH, generalises seeds to a logical hypothesis H
which captures conditions for a norm violation. ALEPH takes a set of positive examples
E+, negative examples E−, a logical program representing environment background knowl-
edge B, and a search space M . B is a set of logical facts defining relations and entities
within the environment (for Traffic, this is onRaod/2, atJunction/3, move/4, see Section
2). Because we want to learn conditions for violations, E+ consists of a seed constraint

5



Deane Ray

represented by an id, where the state and action for that id is encoded into the background
knowledge and is logically represented by normV iolation(id). E− is the set of atoms of the
form normV iolation(id) for every id representing a state-action pair in the set of expert
trajectories T ′. M and E− are initialised at the outset and are not updated.

Unlike the DQL which represents state-action pairs with floats, ALEPH requires input
as first-order logic facts. We therefore define a mapping that translates between the two. For
instance, [(2, 1, 0), 1] would translate to logical form: at(id, 2, 1). tls(id, red). go(id, north).
ALEPH generalises seeds to a logical hypothesis H. H comprises clauses taking the form
normV iolation(ID) :- b1, . . . , bm. The head is the target predicate applied to a variable
(here, an ID representing a given state-action pair), and the body is a conjunction of literals
defining the conditions required for the head to hold true. The ID represents a sample which
consists a state and an action, as well as the other auxiliary information encoded in the
background knowledge.

A representation of H is used to update the DQL policy for use in future iterations.
To achieve this, Selective Linear Definite (SLD) clause resolution derives all state-action
pairs consistent with B ∪H, and the resulting pairs are mapped back to state-action space
(hereby referenced as SAc). SAc is subsequently used to update the DQL weights to ensure
its policy abides by the novel rules in H.

3.3. Updating the Nominal Policy

We update the policy used for seed identification via an interaction with the DQL’s reward
function. During training, each constrained state-action pair satisfying H is associated with
a penalty term. This ensures the DQL’s weights are updated to generate an approximate
policy that avoids norm-violating actions in associated states. We include a constrained
meta-policy which converges on a set of coefficients that mediate the relative strength of
penalties. This applies a graded penalty to each (s, a) ∈ SAc. The method learns a set of
penalty values for state-action pairs associated with each H (within the set of hypotheses
C) that maximise the reward function while minimising violations, with the additional
meta-constraint that penalties for state-actions associated with hypotheses induced in early
iterations are smaller than those learned in recent iterations. As a result, NSICRL learns
“defeasible” norms that can be overridden when updates to T introduce exceptions and
contradictions.

4. Results

4.1. Learned Hypothesis

When tested on the Traffic Simulation environment, the NSICRL loop delivers a hypothesis
containing a high-level symbolic representation of the inferred norms:

normViolation(ID) :- at(ID,X, Y ), go(ID,D),move(X,Y,D,X2, Y 2), (1)

not(onRoad(X2, Y 2)).

normViolation(ID) :- at(ID,X, Y ), go(ID,D),move(X,Y,D,X2, Y 2), (2)

atJunction(ID,X2, Y 2)), tls local(ID, red).

6



Neuro-Symbolic Inverse Constrained Reinforcement Learning

Here, ID is a variable standing for the identifier used to look up a given state-action
within the background knowledge. Clause 1 discourages actions within state-actions that
take the agent to an off-road state, irrespective of the agent’s cardinal direction (D).
Clause 2 prohibits the agent from moving into a central junction when the light is red
(tls local(ID, red)).

4.2. Learning Hard Constraints

To validate NSICRL against prior work, we conduct experiments measuring norm violation
rates and cumulative reward. We compare these results to similar methods for constraint
inference in discrete domains: standard ICRL with Maximum-Entropy ICRL (ME-ICRL)
and Logic-constrained Q-learning (LCQL) (Scobee and Sastry, 2019; Baert et al., 2023)2.
First, we explore whether NSICRL can achieve equal performance for hard constraints
in the small environments used in prior work (see Figure 1 (left)). We test optimised
policies constrained by each method’s inferred constraints, counting the number of times
the agent following this policy violated a ground truth norm (”stay on road” and ”don’t
cross junctions on red light”). For each method, we train 4 policies each reaching one of four
goal states positioned at the north-, east-, south-, and west-most points on the road. We
measure violation count after every iteration over 100 test runs. For NSICRL and LCQL,
an iteration consists of inferring a new seed constraint, generalising it to a hypothesis and
applying it to the policy (via graded penalties for NSICRL, and Q-table deletions for LCQL).
For ME-ICRL, an iteration is the inference of a single state-action (seed) constraint applied
to the policy with uniform penalties 3.

As illustrated in Figure 3a, NSICRL, similar to LCQL, successfully acquires all norms
after an average of six iterations. Thereafter, their respective policies make minimal viola-
tions. As ME-ICRL learns at the state-action level, more iterations are required to achieve
the same level of adherence. Similarly, NSICRL compares favorably when tested on its abil-
ity to transfer learned rules to new environments. We take the updated policy after each
iteration and apply it to an alternative environment configuration where road and junction
positions are altered. Figure 3b gives total constraint violations of each method when tested
the on the novel configuration (over 100 runs). NSICRL matches LCQL in being able to
transfer learned norm rules to the new environment (shown by immediate adherence), while
ME-ICRL must re-learn from scratch. This transfer requires minimal manual intervention,
needing only an update to the road and junction positions in the background knowledge.

Additionally, we demonstrate how NSICRL uniquely handles large state-action spaces
while remaining interpretable (see Figure 1 (right) for a large complex grid). As shown
in Figure 3c, for simple 5x5 grids, both methods effectively infer rule sets in reasonable
time. However, as grid size increases beyond 25x25, LCQL becomes intractable due to the
explosion of the state-action table.

2. We instantiate NSICRL with a perceptron as the DQL module. Experiments used a 2GHz Quad-Core
Intel i5 CPU. Policies were trained in Python and executed on MacOS 15.3.1.

3. For all cases, we choose to only use a single seed constraint at each iteration.

7



Deane Ray

Figure 3: Left: Number of constraint violations with increasing iterations. Middle: Transfer
Learning whereby NSICRL and LCQL have few violations in new configurations
from outset. Right: Comparing NSICRL and LCQL in time taken to induce a
final hypothesis for increasing grid sizes (we cut off after 15 minutes).

4.3. Learning Defeasible Constraints

A major advantage of our approach is that learned norms can be overridden by novel ones
introduced by updates to the set of expert examples. We demonstrate this attribute using
an extension of the traffic test domain. Given an initial set of expert trajectories T , an
initial hypothesis is induced (see Clause 1). All trajectories within T cover a small 5x5
grid. We then introduce an augmented set of expert trajectories T+ which represents a
larger 10x10 grid. Crucially, the northern section of this enlarged environment contains an
obstacle on the road; here, we envision this as a pothole that the agent should aim to avoid.
To navigate this, a learning agent would have to violate the stay − on − road constraint,
leave the road, bypass the obstacle, and return to continue its journey to the goal.

Any method exclusively inducing hard constraints would not learn this exception. By
using a graded penalisation factor applied to the reward function, NSICRL can learn the
added constraint that stops the agent from entering the Pothole state:

normViolation(ID) :- at(ID,X, Y ),before pothole(X,Y,D), go(ID,D) (3)

The action of leaving the road remains permissible, all-be-it with a penalty. Without re-
quiring retraining from scratch, the system successfully learns to violate the past constraint
as this is penalised less heavily than the newly-learned pothole constraint, and the learner
can still continue on to learn an approximate optimal policy for reaching its goal.

Figure 4: Pothole Scenario. Left: an agent reaches the goal (circle) following the initial
’Stay-on-road’ constraint. Middle: Hard constraints inhibit navigation of the ob-
stacle (red square). Right: Defeasible constraints allow for a policy that overrides
previous constraint to proceed to the goal.

8



Neuro-Symbolic Inverse Constrained Reinforcement Learning

We demonstrate this experimentally using this pothole example, where ground truth
norms are: ”stay on road” and ”do not enter potholes”. The ”stay on road” is defeasible
meaning agents must never enter potholes and must only go off road when encountering
potholes. As described, policies are first learned in a 5x5 grid before a 10x10 grid containing
a pothole cell in the northern region is introduced. Policies are tested in the 10x10 grid and
points are rewarded for reaching any of the 4 goals (north, east, south, and west).

A study into constraint violations revealed that NSICRL’s policies achieve the desired
behaviour at test time, only violating the ”stay-on-road” norm when necessary and never
entering a pothole state. An alternative method whereby penalties are enforced uniformly
(e.g., ME-ICRL), does not handle this differentiation and violates each constraint with a
probability of approximately 0.5. Figure 5 presents the cumulative reward at test time after
each iteration (i.e., after each time an H is induced) summed over all policies. NSICRL is
able to navigate past the pothole to reach the northern goal (as well as all others). LCQL’s
hard constraints inhibit this navigation, meaning it does not achieve the same average
reward because it never reaches the northern goal.

Figure 5: Defeasibility: NSICRL’s policies navigate to all goals and maximises reward, while
LCQL’s hard constraints block access to the northern goal, limiting cumulative
reward. As in Figure 3, MEICRL will require considerably more iterations to
reach the same level of norm compliance.

5. Related Work

In the field of ICRL, many methods have leveraged the principles of Inverse RL to learn
constrained policies operable in various environment settings (deterministic and stochastic)
with different state-action representations (discrete and continuous) (e.g., Scobee and Sastry
(2019); Malik et al. (2021); McPherson et al. (2021)). Typically, constraints are derived
as a point in feature space which does not occur in expert data but would elicit greater
performance. In essence, we build on this idea with inferred constraints that generalise over
larger areas of feature space. A subset of ICRL research infers soft constraints by integrating
a penalisation term and permitting occasional violations until cumulative penalties exceed
a threshold (Gaurav et al., 2022; Papadimitriou et al., 2022; Subramanian et al., 2024).
However, this is built for stochastic environments operating with aleatoric uncertainty and is
not designed for overriding legacy constraints based on newly provided expert examples (as
is proposed here). Further, existing methods do not focus on human-level interpretability;

9



Deane Ray

an important differentiation as transparency is frequently considered a necessity in AI ethics
and safety (e.g., Dignum (2017); Tubella et al. (2019)).

Existing ILP systems can derive general interpretable rules from observed trajectories,
such as in Inductive General Game Play which infers rules from game traces (Cropper et al.,
2020). However, it follows the closed-world assumption, treating unobserved atoms as false.
NSICRL avoids this by using seed constraints as the positive set and not automatically in-
validating state-action pairs outside the expert example set. Logic-Constrained Q-Learning
is closely related to our work in that it uses logical inference to generalise constraints to
high-level interpretable concepts (Baert et al., 2023). By enforcing constraints via a state-
action table, they do not focus on incremental evolution of constraints, are restricted to
learning hard constraints in small environments, and do not attempt to learn weighted con-
straints that can be overridden by newly-learned norms (see Appendix A for a complete
method comparison table).

6. Discussion and Conclusion

In sum, we present a neuro-symbolic framework for learning social norms in the form of high-
level, interpretable, symbolic constraints by combining autonomous exploration with expert
imitation, in which exceptions to previously-learned constraints are enabled through an
interaction with the agent’s reward function. We demonstrate experimentally how NSICRL
is able to a) match prior work in learning interpretable hard constraints that generalise
across environment configurations, b) better scale to more complex state-action spaces, and
c) handle conflicting norms with defeasible constraints.

We argue that symbolic representations of norms are essential for interpretability, ed-
itability, and transferability across environments. ILP is particularly well-suited for this
compared to alternative propositional rule learners, as rules can be refined by users and
can be enriched with background knowledge. This forms the foundation for future work
to further leverage ILP’s strengths — such as utilising recent interactive mechanisms pro-
posed by Ray and Moyle (2021) that would enable users to intervene to shape hypotheses
and prevent potentially lengthy chains of exceptions. Meanwhile, neural policy learners are
essential for the exploration-driven component of NSICRL, as they have been demonstrably
efficient and accurate in approximating complex value functions (Li, 2017). Notably, our
evaluation was limited to a discrete, deterministic domain. Future work could extend NSI-
CRL to continuous and relational domains to better leverage neural networks, exploiting
research in logical neural networks to constrain the learned policy (Zambaldi et al., 2018;
Riegel et al., 2020; Hoernle et al., 2022; Dang-Nhu, 2020).

Finally, we motivate our work as learning exceptions due to limited expert data. As
highlighted by Neufeld et al. (2021), exceptions can also arise in the face of contradicting
ethical principals where a system must handle such dilemmas by selecting a ”lesser of 2 evils”
option (Neufeld et al., 2021). For example, they provide a variation of Pacman in which
an agent must learn not to eat scared ghosts, but should choose to do so when cornered by
other forbidden states. Their method handles this by enforcing pre-defined defeasible logical
programs. While such cases are beyond the scope of this paper, preliminary experiments
suggest NSICRL is capable of learning the necessary programs, and by extension policies,
to address them.

10



Neuro-Symbolic Inverse Constrained Reinforcement Learning

References

Kamal Acharya, Waleed Raza, Carlos Dourado, Alvaro Velasquez, and Houbing Herbert
Song. Neurosymbolic reinforcement learning and planning: A survey. IEEE Transactions
on Artificial Intelligence, 5(5):1939–1953, 2023.

Eitan Altman. Constrained Markov decision processes. Routledge, 1999.

Mattijs Baert, Sam Leroux, and Pieter Simoens. Inverse reinforcement learning through
logic constraint inference. Machine Learning, 112(7):2593–2618, 2023.

Andrew Cropper, Richard Evans, and Mark Law. Inductive general game playing. Machine
Learning, 109:1393–1434, 2020.

Raphaël Dang-Nhu. Plans: Neuro-symbolic program learning from videos. Advances in
Neural Information Processing Systems, 33:22445–22455, 2020.

Virginia Dignum. Responsible autonomy. arXiv preprint arXiv:1706.02513, 2017.

Ashish Gaurav, Kasra Rezaee, Guiliang Liu, and Pascal Poupart. Learning soft constraints
from constrained expert demonstrations. arXiv preprint arXiv:2206.01311, 2022.

Nick Hoernle, Rafael Michael Karampatsis, Vaishak Belle, and Kobi Gal. Multiplexnet:
Towards fully satisfied logical constraints in neural networks. In Proceedings of the AAAI
conference on artificial intelligence, volume 36, pages 5700–5709, 2022.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning:
A survey. Journal of artificial intelligence research, 4:237–285, 1996.

Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

Guiliang Liu, Yudong Luo, Ashish Gaurav, Kasra Rezaee, and Pascal Poupart.
Benchmarking constraint inference in inverse reinforcement learning. arXiv preprint
arXiv:2206.09670, 2022.

Guiliang Liu, Sheng Xu, Shicheng Liu, Ashish Gaurav, Sriram Ganapathi Subramanian, and
Pascal Poupart. A comprehensive survey on inverse constrained reinforcement learning:
Definitions, progress and challenges. arXiv preprint arXiv:2409.07569, 2024.

Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang
Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and
Evamarie Wießner. Microscopic traffic simulation using sumo. In 2018 21st international
conference on intelligent transportation systems (ITSC), pages 2575–2582. IEEE, 2018.

Shehryar Malik, Usman Anwar, Alireza Aghasi, and Ali Ahmed. Inverse constrained rein-
forcement learning. In International conference on machine learning, pages 7390–7399.
PMLR, 2021.

David L McPherson, Kaylene C Stocking, and S Shankar Sastry. Maximum likelihood
constraint inference from stochastic demonstrations. In 2021 IEEE Conference on Control
Technology and Applications (CCTA), pages 1208–1213. IEEE, 2021.

11



Deane Ray

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

Stephen Muggleton. Inductive logic programming. New generation computing, 8:295–318,
1991.

Emery A Neufeld, Ezio Bartocci, Agata Ciabattoni, and Guido Governatori. A normative
supervisor for reinforcement learning agents. In CADE, pages 565–576, 2021.

Dimitris Papadimitriou, Usman Anwar, and Daniel S Brown. Bayesian methods for con-
straint inference in reinforcement learning. 2022.

Oliver Ray and Steve Moyle. Towards expert-guided elucidation of cyber attacks through in-
teractive inductive logic programming. In 2021 13th International Conference on Knowl-
edge and Systems Engineering (KSE), pages 1–7. IEEE, 2021.

Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Is-
mail Yunus Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma,
et al. Logical neural networks. arXiv preprint arXiv:2006.13155, 2020.

Dexter RR Scobee and S Shankar Sastry. Maximum likelihood constraint inference for
inverse reinforcement learning. arXiv preprint arXiv:1909.05477, 2019.

Ashwin Srinivasan. The aleph manual. 2001.

Sriram Ganapathi Subramanian, Guiliang Liu, Mohammed Elmahgiubi, Kasra Rezaee, and
Pascal Poupart. Confidence aware inverse constrained reinforcement learning. arXiv
preprint arXiv:2406.16782, 2024.

Andrea Aler Tubella, Andreas Theodorou, Virginia Dignum, and Frank Dignum. Gover-
nance by glass-box: Implementing transparent moral bounds for ai behaviour. arXiv
preprint arXiv:1905.04994, 2019.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin,
Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, et al. Relational deep
reinforcement learning. arXiv preprint arXiv:1806.01830, 2018.

Appendix A. Method Comparison Table

12



Neuro-Symbolic Inverse Constrained Reinforcement Learning

Table 1: Table comparing NSICRL to alternative ICRL methods

Method Interpretable General Continual Learning Defeasible Complex Envs
ME-ICRL ✓*
LCQL ✓ ✓ ✓
BICRL ✓ ✓
NSICRL ✓ ✓ ✓ ✓ ✓

Appendix B. Background Knowledge for the Traffic Environment

t l s l o c a l (S ,V1) :− at (S ,X,Y) , atJunct ion (X,Y,D) ,
(D=north ;D=south ) , t l s (S ,V) , V1 i s V.

t l s l o c a l (S ,V1) :− at (S ,X,Y) , atJunct ion (X,Y,D) ,
(D=eas t ;D=west ) , t l s (S ,V) , V1 i s 1−V.

move(X,Y, east ,X1 ,Y) :− X1 i s X+1.
move(X,Y, north ,X,Y1) :− Y1 i s Y+1.
move(X,Y, west ,X1 ,Y) :− X1 i s X−1.
move(X,Y, south ,X,Y1) :− Y1 i s Y−1.
move(X,Y, zero ,X,Y) .
atJunct ion (X,Y,D) :− move(X,Y,D, 3 , 3 ) .
onRoad (X, 3 ) .
onRoad (3 ,Y) .
onRoad (X, 7 ) .

Listing 1: Full Background Knowledge for the Traffic Environment

13


	Introduction
	Background
	Reinforcement Learning
	Inverse Constrained Reinforcement Learning
	Inductive Logic Programming
	The Traffic Domain

	Implementation
	Inferring Seed Constraints
	Hypothesis Induction
	Updating the Nominal Policy

	Results
	Learned Hypothesis
	Learning Hard Constraints
	Learning Defeasible Constraints

	Related Work
	Discussion and Conclusion
	Method Comparison Table
	Background Knowledge for the Traffic Environment

