
Workshop track - ICLR 2016

LEARNING TO DECOMPOSE FOR OBJECT DETECTION
AND INSTANCE SEGMENTATION

Eunbyung Park & Alexander C. Berg
Department of Computer Science
University of North Carolina at Chapel Hill
{eunbyung,aberg}@cs.unc.edu

ABSTRACT

Although deep convolutional neural networks(CNNs) have achieved remarkable
results on object detection and segmentation, pre- and post-processing steps such
as region proposals and non-maximum suppression(NMS), have been required.
These steps result in high computational complexity and sensitivity to hyperpa-
rameters, e.g. thresholds for NMS. In this work, we propose a novel end-to-end
trainable deep neural network architecture, which consists of convolutional and
recurrent layers, that generates the correct number of object instances and their
bounding boxes (or segmentation masks) given an image, using only a single net-
work evaluation without any pre- or post-processing steps. We have tested on
detecting digits in multi-digit images synthesized using MNIST, automatically
segmenting digits in these images, and detecting cars in the KITTI benchmark
dataset. The proposed approach outperforms a strong CNN baseline on the syn-
thesized digits datasets and shows promising results on KITTI car detection.

1 INTRODUCTION

State-of-the-art object detection methods are based on a combination of region proposals (possibly
using a deep network) and deep convolutional neural networks(CNNs) for classification. The cur-
rently typical recipe is to propose many object candidate boxes based on an objectness measure and
classify each proposed box. This first became standard practice with work from van de Sande et al.
(2011), and is now part of the best performing systems, using deep CNNs as classifiers(Girshick
et al., 2014; Girshick, 2015; Ren et al., 2015), sometimes using deep networks for proposing can-
didate reagions as well. Post-processing, such as non-maximal suppression, is performed to prune
out many false positives and is known to be one of the critical factors that affect performance(Wan
et al., 2015). The tension between more object proposals in order to cover any possible object and
the difficulty of later pruning out high-scoring but incorrect bounding boxes—and the computational
cost of evaluating all the candidate boxes—is one of the challenges in current detector design. Some
work, like Ren et al. (2015) tried to solve this problem by using a deep CNN to generate a rela-
tively small number of high-quality candidates, but still require several hundreds of box evaluations.
Another tack, e.g., Redmon et al. (2015), removes the region proposal step and directly predicts mul-
tiple objects and their locations with a single CNN evaluation. However that method is restricted
to a predefined number of outputs (e.g. 49 in a 7x7 grid) even when there are fewer or more ob-
jects present, and its performance falls short compared to previous region-based detectors. Our aim
is to produce a network that generates the correct number of object instances and their bounding
boxes (or segmentation masks) given an image, using only a single network evaluation without any
pre- and post-processing steps, such as region proposals and non-maximal suppression. Building
these together into a single framework enables much more straightforward end-to-end training of
multiple-class multiple-object detectors, potentially allowing easier and wider application, as well
as better performance.

Some recent results address sub-components of this problem and indicate that a solution may be
possible. Predating the region proposal and deep-network-based classifier evaluation approaches,
Krizhevsky et al. (2012) showed that their network applied to a whole image had enough informa-
tion to predict a single object bounding box location per image. Looking into spatial information
contained in activation maps at intermediate layers in deep networks, work from Simonyan et al.

1

Workshop track - ICLR 2016

(2014); Zhou et al. (2015) and others have shown the ability to localize objects in images. However,
these works either do not handle multiple-object detection (instead only producing a single detection
per image), or rely on iteratively evaluating a further classifier over possible bounding boxes (chosen
based on the activation map). Other approaches try to directly count objects without explicitly ad-
dressing recognition or localization Zhang et al. (2015). Toward general computational savings, Ren
et al. (2015), showed deep CNN features can be shared for both object proposals and classification.
The approach in this paper builds on several of these ideas to move from a single detection or a fixed
number of detections per image to a full multi-class and variable number of instances detector that
can also produce instance segmentations.

We present a novel end-to-end trainable deep neural network architecture consisting of both convo-
lutional and recurrent layers for multi-class multi-object detection and instance segmentation with a
single network evaluation. Object detection is a function of an image that produces multiple bound-
ing box locations and category labels. The number of objects detected and their categories can vary
between images. Recurrent layers play a critical role in making structure of network produce vari-
able length of outputs according to the inputs. The structure of our proposed network is shown in
Figure 1. An input image is processed to produce multi-scale activation maps for each of the target
object categories. Each of these activation maps is fed into a recurrent network that produces a vari-
able number of object detection maps that mask out the location of individual instances. In order
to train this network, we proposed a new mask-based loss function that considers precise individual
instance location and the total number of object instances simultaneously, allowing the proposed
network to produce a the number of object instances appropriate for each image.

2 DECOMPNET

In this section, we describe the proposed network architecture, decompNet. Fundamentally, it differs
from previous work in two aspects. First of all, decompNet produces object category response maps
and decomposes them into multiple individual instance maps. This is the opposite of previous meth-
ods. Most previous work on object detection first finds object candidates, and then determines the
object category(Girshick et al., 2014; Erhan et al., 2014). This approach can require a great deal of
computation since it has to go through classification for every object candidate. Our decomposition
is relatively light-weight compared to the classification process.

Secondly, the decomposition stages of decompNet look at the entire response map and each stage of
the recurrent network can return a single instance. This is also very different from existing methods
that divide input images into spatial grids and produce one or multiple predictions per cell by only
looking at the local cells in the grid. Region proposal network in Ren et al. (2015) produces k region
proposals per each cell. Redmon et al. (2015) produce one object per one location of a 7x7 output
grid. Stewart & Andriluka (2015) produce multiple faces of people per cell of the last convolutional
feature maps. We believe this is mainly because there is an architectural limitation of feed forward
CNNs and dividing the image into spatial grid with multiple bins is a simple solution to design feed
forward CNNs to produce multiple outputs. These works might have difficulty recognizing larger
objects since it is known that the empirical size of receptive fields are not large enough(Zhou et al.,
2015). They also might have difficulty when there are objects in same cell location.

2.1 CATEGORY DECOMPOSITION

The goal of the first part of the network is to produce response maps of each object category. We
keep high resolution response maps because they will try to give precise location and size of objects
to the second part of the network.

The proposed network, depicted in figure 1, is an all convolutional network inspired by Springenberg
et al. (2015); Lin et al. (2013); Noh et al. (2015). We didn’t use any fully connected layers since
they only increased the number of parameters without notable performance improvement. We used
strided convolution instead of max-pooling for downsampling and used deconvolution layers for
recovering the resolution back to half or original size of the input image. At the final layers, we put
a 1x1 convolution with the same number of filters as the number of categories. Thus, the outputs
of the final convolutional layer are response maps for each category. We adopted a mask based

2

Workshop track - ICLR 2016

Figure 1: Overall architecture of decompNet. The lower network processes an image into an activa-
tion map for each category(section 2.1). The upper part of the network decomposes each cagtegory-
specific activation map into multiple instances(section 2.2). We synthesized a detection dataset from
MNIST using digits 3, 6, and 9 (section 3.1).

loss function for penalizing activations at the location where there is no object corresponding to the
category (Szegedy et al., 2013).

N∑
i=1

|C|∑
c=1

Dλ(f
c,i,

T (c,i)∑
t=1

mc,i
t) (1)

The network is trained over N training examples with modified L2 distance between response map
f c,i and sum of instance ground truth masks

∑T (c,i)
t=1 mc,i

t , where mc,i
t ∈

{
0, 1
}M

is the tth instance
ground truth mask for category c. T (c, i) returns the number of instances of in the category c in the
ith image. The distance function is defined

Dp(x, y) = ||
√
Diag(y) + pI(x− y)|| (2)

As mentioned in Szegedy et al. (2013),
√
Diag(y) + pI term played a key role in avoiding trivial

solutions producing all zero outputs. The most important part was the fact that we encoded over-
lapped regions of instances in the loss function. Every individual instance mask is a binary mask.
We sum all of the individual masks, which results in higher values at the overlapped regions so that
we can make the second part of network aware of the presence of multiple objects at the location.
This was very critical to the performance.

2.2 INSTANCE DECOMPOSITION

Once we have category response maps the second part of the network, which is shown in the upper
part of the figure 1, takes response maps and produces response maps of the same size that only
contain one instance at a time. The category response map consists of several blobs of responses
and each blob represents one instance of the category. Thus this network is responsible for splitting
several response blobs into one individual blob. The job of this network is relatively simple, as
classification and localization, have been performed by the former network. Thus, the computational
cost of the recurrent network is not too expensive despite havin several stages to allow detecting
multiple instances.

3

Workshop track - ICLR 2016

Figure 2: Various RNN alternatives. The first one is only based on fully connected layers. In the
second network, we used convolution for first two layers to reduce the input resolution and other
layers are constructed by fully connected layers. In the third network, we used convolutional layers
except for the bottleneck fully connected recurrent layers. We also tried all convolutional recurrent
network dipicted in the last column.

We used a recurrent neural network in order to realize two important aspects of this job. The network
should be able to produce variable length outputs and memorize previous states so that it can gener-
ate individual response blobs that it has not produced so far. Figure 2 shows several alternatives of
network architectures. The first and second require many parameters and do not give us any better
results. The third and fourth give us similar performance and we used the third one for all of our
experiments. The intuition behind this network is the following. We can think of each blob as an
object in the image. It will recognize individual blobs from the first one or two convolutional layers
and generate instance response map with the last one or two convolutional layers. With bottleneck
recurrent layers, the network will memorize the blobs that were already generated and give new
blobs to higher convolutional layers.

N∑
i=1

|C|∑
c=1

[T (c,i)∑
t=1

Dλ(g
c,i
t ,mc,i

idx(t)) + ηDγ(

T (c,i)∑
t=1

gc,it ,

T (c,i)∑
t=1

mc,i
t)

]
(3)

The loss function consists of two distance terms, Dλ and Dγ . λ, γ, and η are hyperparameters.
The idx() function returns the corresponding id of ground truth masks. We find the best bipartite
matching between outputs of network and ground truth masks based on L2 distance. The first
distance term is for comparing individual instances with ground truths. This term will penalize
response maps that have more than one instance blob. The second distance term works as a stop
condition of the recurrent network. This term is the distance between sum of instance maps that the
network has generated and sum of ground truth masks. So, it will penalize the network if the network
produced more instances than the ground truth. It turns out that this term was very important. The
network produced a lot of instance maps and didn’t know when to stop without this term, which
resulted in very low precision for object detection tasks.

2.3 BOUNDING BOX REGRESSION

We performed bounding box regression given each instance response map. It predicts a bounding
box as tuple best = (x,y,w,h) where x and y are center coordinates of the box, and w and h are width
and height respectively. x, y, w, h are each scaled from 0 to 1. We could have written a simple
program for drawing bounding boxes given each instance response map, but there is sometimes
noise in response maps. So, We applied simple regression based method with dropout that gave us
robust bounding box prediction. We used a simple feed forward neural network that was constructed
by 1 hidden layer with 4K hidden units. We strictly followed the smooth L1 loss function in Girshick
(2015).

smoothL1(x, y) =
{
0.5(x− y)2 if |x− y| < 1

|x− y| − 0.5 otherwise,
(4)

4

Workshop track - ICLR 2016

We computed a score for each detected object based on agreement between estimated bounding box
and intensity values in the instance map produced by our network. Given an instance map g and
corresponding bounding box estimation best we defined score function as following,

score(g, best) = g>M(best)/A(best) (5)

, where M(best) and A(best) returns the vectors of binary mask and area of bounding box estimation
respectively.

2.4 INSTANCE SEGMENTATION

Recently, object instance segmentation has gained much attention since people have collected large-
scale instance segmentation datasets(Liang et al., 2015; Hariharan et al., 2014; Lin et al., 2014).
Unlike semantic segmentation, individual instances of an object category have to be segmented out
separately. One good thing about decompNet and an our proposed mask-based loss function is that
they can directly apply to instance segmentation without any modification. Our network produces
activation values close to 1 at confident place and close to 0 at low confident place. Thus, we defined
a score as average activation over a instance map

score(g) =
∑
i

gi1[gi > δ]
/∑

i

1[gi > δ] (6)

, where g is a instance map that the network produces at each time step and δ is threshold value for
ignoring noise activation values.

3 EXPERIMENTS

3.1 SYNTHESIZED DATASET

Dataset. In order to evaluate proposed methods, we synthesized an object detection and instance
segmentation dataset based on MNIST dataset. We considered three key aspects in making our
dataset. Objects are randomly distributed across an entire image, have various scale, and are allowed
to be moderately overlapped with each other. We randomly chose the number of objects from 5 up
to 10 per image. The size of each image is 100x100. We selected 3 categories out of 10, which
are the digits 3, 6, and 9. Each object in the image was randomly picked from the original MNIST
dataset and scaled by a factor of 0.5 up to 2. We allowed overlapping between objects up to 0.2
IoU(Intersection over Union). For realistic scenarios, we added 30 noisy pen strokes per image
in the same way as Mnih et al. (2014). Ground truth labels came for free when we generated the
images. Bounding boxes are easily obtained with tight bounds of each object. Segmentation labels
are also obtained as a mask whose values are 1 if the corresponding pixel values are greater than
zero. Some samples from the dataset are shown in section 3 and 6. We have 30,000 training images
and 10,000 testing images.

CNN baseline object detection. We built and trained a strong baseline method for comparison. We
trained a deep CNN for classification with 4 categories, 3, 6, 9, and background. The structure of
this CNN is the same as the one we used for category decomposition for fair comparison. During the
training, we take random image patches with ≥ 0.5 IoU overlap with ground truth boxes as positive
examples (Girshick et al., 2014). Existing region proposal methods didn’t work well on our dataset.
Thus, we adopted simple yet powerful sliding window approaches. We gave the baseline method a
very strong prior. We assumed that the object is square and minimum and maximum size are known.
In this way, sliding window with 5 different size square boxes could achieve 99% recall with step
size 5 pixels. We ended up evaluating about 3000 and 1000 boxes for step size 3 and 5 respectively.
Finally, we applied non-maximal suppression after evaluating all candidate boxes with threshold 0.3
(Girshick et al., 2014).

Qualitative study. Figure 3 shows some examples of qualitative results for object detection task. In
instance maps, we can easily see that our networks put high response values at very precise locations
of actual objects. Every time step, our proposed recurrent network tried to produce only one blob.
It also handled overlapped instances very well. The overlap between different categories was easily
differentiated by our category decomposition network. Overlapping within the same category is
handled by a scheme of summing each instance map. Note that category 6 in the first image and

5

Workshop track - ICLR 2016

Figure 3: Examples of object detection results: The leftmost column is input images. The instance
maps are presented in the order of digit 3, 6, and 9. The first response map is the sum of all instance
maps for each category. Therefore, it contains all instances that our network produced. And every
instance map is arranged in the same order as produced by the network. The last instance map for
each category is usually a black image and it works as a stop sign. Red boxes are the outputs of
bounding box regression given the instance map and green boxes are ground truth bounding boxes.

Figure 4: Precision-recall (pr) curves of object detection task: Each column shows pr curves for one
category with IoU threshold 0.5. rcnn step3 means baseline detector with step size 3 sliding window
and rcnn step5 means size 5 sliding window. decomp is our proposed network with instance maps
half the size of the original image. decomp full has instance maps same size as the original image.

category 3 in the third image have overlapped regions and those regions are more highly activated
than the other object regions. There are some failures because the network didn’t completely succeed
in seperating each instance blob. For example, in the 4th instance map of category 9 in the first input
image, and the 3rd instance map of category 6 in the third image, they have additional small blobs
that bounding box regression was not able to draw a correct bounding box for.

Quantitative results. We computed precision recall curves for comparison with baseline meth-
ods(Fig 4). For digit 3, our proposed network matched the performance of our strong baseline
method with much lower computational cost. We achieved 0.74 recall with very high 0.84 preci-
sion. It was helpful to produce high resolution instance maps as we noticed from the difference
between decomp and decomp full. For digit 6 and 9, our proposed network outperforms our strong
baseline methods. This is mainly because our baseline was confusing these two categories when the
image patches were shifted too much from the center of the objects and there was too much noise
around the objects.

6

Workshop track - ICLR 2016

Figure 5: Precision-recall (pr) curves of instance segmentation task: similar to figure 4. Each graph
shows the results of decomp for a category evaluated with different IoU thresholds.

Instance segmentation results. Figure 6 shows the results of instance segmentation. Not only could
our network localize individual object instances separately, but it also segmented out each digits very
precisely. However, it often failed to seperate each instance completely if the instances were close.
For example, for category 6 in the first input image and category 3 in the second input image, there
are unnecessary blobs close to the segmented instances. Figure 5 shows the precision-recall curve
based on IoU metric similar to the detection task. An instance map is correct if its segmentation over-
laps with the segmentation of a ground truth instance by more that pre-defined threshold(Hariharan
et al., 2014; Liang et al., 2015). With same network architecture decomp, we could achieve similar
performance to the detection task for the category ’3’ and slightly better performance for the cate-
gory ’6’ and ’9’. For the segmentation task, we tried individual recurrent networks for each category
hoping that we could get better results. However, we couldn’t find notable improvement.

4 RELATED WORK

Mnih et al. (2014); Ba et al. (2015) both proposed visual attention models. They designed the
glimpse network that is responsible for explicitly indicating next location of an image to be pro-
cessed. Then, the classification network processes only a small part of the image associated with the
position. We have shown that it is possible to train the network to look at different places at different
time steps implicitly without an extra network. The trained network decided where to look by itself
and produced an instance map at each time steps. In terms of computational cost, the attention model
could save computation since it doesn’t have to process the entire image. However, if there are many
objects across the image, it would end up processing the entire area of the image. Furthermore, it
might have to process the same regions multiple times if there is overlap between region patches.
Our network needs only one evaluation, and repetitive computations in instance decomposition stage
are performed by smaller networks.

Very recently, Liang et al. (2015) proposed a new instance segmentation method based on feed
forward CNN. It is related to our work in terms of the fact that it classified category first, and then
divided it into multiple instances. It regresses the number of instance and instance location maps
per category. With this information, they applied spectral clustering to separate multiple instances
as a post-processing step. In contrast, our network implicitly predicted the number of instances and
learned how to cluster response maps, and it is end-to-end trainable. Furthermore, their method
is only applicable when there is a segmentation label. However, our method will work as object
detection when there is no segmentation label.

Stewart & Andriluka (2015) used LSTM to detect multiple people’s faces. It generated multiple
instances by looking at only one cell in the spatial grid of the last convolutional feature maps.
This would result in running 300(15x20) distinct LSTM for evaluation. They introduced a stitch-
ing algorithm to perform non-maximal suppression for dealing with many outputs from many cells.
Our method looks at an entire region to produce multiple instances and we don’t require any post-
processing steps. And, we can deal with multiple scale objects while they focused only on recog-
nizing very small objects. Finally, their design cannot deal with multiple categories.

7

Workshop track - ICLR 2016

Figure 6: Examples of segmentation results: similar to figure 3. We omitted the map of sum of
instance maps and stop signs. We considered response values higher than 0.1 as final segmentation.

5 CONCLUSION AND FUTURE WORK

Our proposed network has demonstrated it is possible to extract high resolution information for each
object instance with a single evaluation. We showed that this information can be used for important
computer vision tasks, such as object detection and instance segmentation.

In this paper, we used a regression-based loss function with high resolution masks. Although it has
worked quite well, it was not very robust to many learning factors, such as initialization, learning
rate, other parameters, and showed slow convergence rate. We believe this is mainly because it has
too many degrees of freedom and we could replace it with a pixel-wise classification loss function,
which is commonly used in segmentation tasks. In addition, we also strongly believe that spatial
regularity of instance maps, such as CRF, would be more effective to achieve better performance
and faster learning speed.

We could remove the category decomposition network and attach an instance decomposition net-
work to the CNN directly. However, one of the main motivations for category decomposition is
to reduce computational complexity. The recurrent network, which will be running several times
according to the number of objects in the image, is currently light weight. All the important jobs
can be done by the CNN and category decomposition network. Thus, we can design a relatively
small network for the recurrent network and share it across all object categories. Another design
choice would be to regress bounding box directly without high resolution instance maps for object
detection task. We leave it as future work.

ACKNOWLEDGMENTS

We acknowledge support from NSF 1446631, 1452851 and from NVIDIA for GPU hardware. We
also would like to thank Hadi Kiapour, Wei Liu, and Phil Ammirato for helpful discussions.

REFERENCES

Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition with visual
attention. In Proceedings of the International Conference on Learning Representations (ICLR),
2015.

Ronan Collobert, Koray Kavukcuoglu, and Clement Farabet. Torch7: A matlab-like environment
for machine learning. In BigLearn, NIPS Workshop, 2011.

Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov. Scalable object
detection using deep neural networks. June 2014.

Ross Girshick. Fast r-cnn. In International Conference on Computer Vision (ICCV), 2015.

8

Workshop track - ICLR 2016

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2014.

Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Simultaneous detection and
segmentation. In European Conference on Computer Vision (ECCV), 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems (NIPS). 2012.

Xiaodan Liang, Yunchao Wei, Xiaohui Shen, Jianchao Yang, Liang Lin, and Shuicheng Yan.
Proposal-free network for instance-level object segmentation. arXiv:1509.02636, 2015.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv:1312.4400, 2013.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common
objects in context. arXiv:1405.0312, 2014.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. CVPR (to appear), November 2015.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and koray kavukcuoglu. Recurrent models of visual
attention. In Advances in Neural Information Processing Systems (NIPS). 2014.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for seman-
tic segmentation. In 2015 IEEE International Conference on Computer Vision (ICCV), 2015.

Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. arXiv:1506.02640, 2015.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time object
detection with region proposal networks. In Advances in Neural Information Processing Systems
(NIPS), 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Proceedings of the International Conference on Learning Representations (ICLR),
2015.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv:1312.6034, ICLR workshop
track, 2014.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller. Striving
for simplicity: The all convolutional net. arXiv:1412.6806, ICLR workshop track, 2015.

Russell Stewart and Mykhaylo Andriluka. End-to-end people detection in crowded scenes.
arXiv:1506.04878, 2015.

Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep neural networks for object detec-
tion. In Advances in Neural Information Processing Systems (NIPS). 2013.

K. E. A. van de Sande, J. R. R. Uijlings, T. Gevers, and A. W. M. Smeulders. Segmentation as
selective search for object recognition. In IEEE International Conference on Computer Vision
(ICCV), 2011.

Li Wan, David Eigen, and Rob Fergus. End-to-end integration of a convolution network, deformable
parts model and non-maximum suppression. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2015.

Jianming Zhang, Shugao Ma, Mehrnoosh Sameki, Stan Sclaroff, Margrit Betke, Zhe Lin, Xiaohui
Shen, Brian Price, and Radomir Mech. Salient object subitizing. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2015.

Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio Torralba. Object detec-
tors emerge in deep scene cnns. In Proceedings of the International Conference on Learning
Representations (ICLR), 2015.

9

Workshop track - ICLR 2016

APPENDIX

A. OBJECT DETECTION ON KITTI DATASET

In order to show that our proposed network would work for real and more complicated scenarios,
we have tested on KITTI object detection dataset, especially for the car category. KITTI has very
high resolution images around 370x1224 and there are many object instances in each image. Some
images have more than 15 objects. The size of objects vary from very small objects occupying only
25 pixels in height to large objects occupying more than 300 pixels in height. Furthermore, many
objects are highly overlapped each other. Many objects are occluded by more than half of their size.

Figure 7 shows good examples of car detection. One interesting thing we found out is there is
specific ordering during the instance decomposition process. During the training process, we didn’t
specify any ordering of instances. However, the recurrent network first looks at the center of the
image. Then it goes to the left side of the image and then to the right. We observed this phenomenon
across many images. This is mainly because many images have similar patterns(e.g. large cars on
both sides of the image, and smaller cars in the middle of the image) and the network found optimal
ordering for those patterns. This was not the case for the synthesized digit dataset because it was
randomly generated.

We admit that our current simple recurrent network does not achieve very good results for large
number of objects in an image. In KITTI dataset, some images have more than 10-20 cars in an
image. In this case our network performed poorly. We plan to apply LSTM style network for dealing
with long term dependency and better performance. In addition, we also suffered from recognizing
small objects. We also plan to apply weighted loss function for activation maps in order to consider
the size of the objects.

B. IMPLEMENTATION DETAILS

Deconvolutional layer is defined as flipped version of convolutional layers and introduced in
Long et al. (2015). conv and deconv has 5 parameters, which are the number of input and
output channels, filter size, and stride. The number hidden units in fully connected recur-
rent layerrnn-fc was set to 2048. Batch normalization and rectifier linear unit were used
after every layers. The stride 2 was used for down and upsampling. The network ar-
chitecture used in this paper for synthesized dataset is following. The category decompo-
sition network is conv(1,32,5,2)-conv(32,32,5,2)-conv(32,64,3,2)-conv(64,64,3,1)-conv(64,64,3,2)-
conv(64,64,3,1)-deconv(64,64,3,2)-deconv(64,64,3,2)-deconv(64,64,3,2)-deconv(64,3,1,1). The in-
stance decomposition network is conv(1,32,5,2)-conv(32,32,3,2)-conv(32,32,3,2)-rnn-fc-rnn-fc-
deconv(32,32,3,1)-deconv(32,32,3,1)-deconv(32,32,5,1)-deconv(32,1,1,1).

We used standard stochastic gradient descent method and performed two stage training procedure.
First we trained category decomposition network with the loss function described in section 2.1).
Once we trained, we fixed it when we train the second part of network with loss function described
in section 2.2. Finally, we combined both together and end-to-end trained the whole network. We
could train the whole network from the scratch. However, it was very sensitive to the setting of
hyperparameters. The hyperparameter λ and γ was important. If it is too small, it decreased learning
speed. However, if it is too large the network gave trivial solution with producing all zeros. So, we
first used small value of λ = γ = 0.3, after 1 epochs, we increased λ = γ = 1.0. For η we set to 1
in every experiments.

We trained category decomposition network first. And we trained instance decomposition network
without updating category network. And then, we fine-tuned all networks together. For KITTI
dataset, we used pretrained VGG16 network(Simonyan & Zisserman, 2015). We attach deconvolu-
tional layers to it. Similarly, we trained each network seperately, and fine-tuned the network all the
way down to the first convolutional layer of VGG16 network. All implementations were based on
torch deep learning library(Collobert et al., 2011).

10

Workshop track - ICLR 2016

Figure 7: Examples of object detection results on the KITTI car dataset: The red boxes are estimated
bounding boxes and the green boxes are ground truth. The first column is input image and the second
column is the sum of all instance maps. The instance map without any boxes indicates false positive.

11

Workshop track - ICLR 2016

Figure 8: Training evolution over iterations: The first row shows input image and corresponding
ground truth mask of digit ’3’ for instance segmentation. From the second row to the last row, the
second column shows the sum of instance maps that our network produced. From the third to the
last column shows each instance map at each time step.

12

Workshop track - ICLR 2016

Figure 9: More examples of object detection results

13

Workshop track - ICLR 2016

Figure 10: More examples of instance segmentation results

14

	Introduction
	DecompNet
	Category decomposition
	Instance decomposition
	Bounding box regression
	Instance segmentation

	Experiments
	Synthesized dataset

	Related Work
	Conclusion and Future work

