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ABSTRACT

We introduce the Dynamic Capacity Network (DCN), a neural network that can
adaptively assign its capacity across different portions of the input data. This is
achieved by combining modules of two types: low-capacity sub-networks and
high-capacity sub-networks. The low-capacity sub-networks are applied across
most of the input, but also provide a guide to select a few portions of the input
on which to apply the high-capacity sub-networks. The selection is made using a
novel gradient-based attention mechanism, that efficiently identifies the modules
and input features for which the DCN’s output is most sensitive and to which we
should devote more capacity. We focus our empirical evaluation on the cluttered
MNIST and SVHN image datasets. Our findings indicate that DCNs are able to
drastically reduce the number of computations, compared to traditional convolu-
tional neural networks, while maintaining similar performance.

1 INTRODUCTION

Deep neural networks have recently exhibited state-of-the-art performance across a wide range of
tasks, including object recognition (Szegedy et al., 2014) and speech recognition (Graves & Jaitly,
2014). Top-performing systems, however, are based on very deep and wide networks that are com-
putationally intensive. Those networks lead to time-consuming training and inference (prediction),
in large part because they require a larger number of weight/activation multiplications.

In this work we exploit the observation that task-relevant information is often not uniformly dis-
tributed across the input data. For example, objects in images are spatially localized, i.e. they exist
only in specific sub-regions of the image. Yet, an underlying assumption of many deep models is
that all input regions contain the same amount of information. Indeed, convolutional neural networks
apply the same set of filters uniformly across the spatial input (Szegedy et al., 2014), while recurrent
neural networks apply the same input-to-hidden transformation at every time step (Graves & Jaitly,
2014). We argue that we should be able to drastically reduce computations, without significant
loss in performance, by applying high capacity sub-networks only on the input’s most informative
regions. Such reduction in computations would be especially beneficial when dealing with very
high-dimensional inputs, such as long and high-resolution videos. This is the same motivation be-
hind much of the recent surge of interest in attention-based systems (Mnih et al., 2014), that learn
to focus the model capacity on salient sub-regions of the input. However, the models proposed so
far require defining an explicit predictive model of attention, whose training can pose challenges.

We introduce the Dynamic Capacity Network (DCN) that adaptively assigns its capacity across
different portions of the input data via a gradient-based attention process that avoids the difficult
task of training a separate attention network. The DCN combines two types of modules: small, low-
capacity, sub-networks that are active on the whole input, and large, high-capacity, sub-networks
which are directed, via our attention mechanism, to task-relevant sub-regions of the input.

The DCN model can be trained end-to-end, where we jointly learn the low and high-capacity mod-
ules. We validate this end-to-end approach in an image classification task using the cluttered MNIST
dataset (Mnih et al., 2014), on which we outperform the state-of-the-art. Furthermore, we demon-
strate that DCNs can be leveraged in a transfer-learning scenario where the low and high capacity
modules are trained independently and only combined at test-time. We investigate this transfer-
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learning setting in a more challenging task of transcribing multi-digit sequences from natural images
using the Street View House Numbers (SVHN) dataset (Netzer et al., 2011). In particular, we show
that DCN is able to efficiently recognize multi-digit sequences, directly from the original images,
without using any prior information on the digits location.

2 DYNAMIC CAPACITY NETWORKS

We start by considering a separation of the computations in a deep neural network into two parts:
the bottom layers and the top layers. Often, This separation should be made strategically, such that
the bulk of computations are made within the bottom layers. For instance, in a convolutional neural
network, the bottom layers would contain most of the convolutional and pooling layers, while the
top layers would consist mostly of the network’s fully connected layers. In the remainder of this
paper, we will focus our description of the DCN in the context of this specific case.

We denote the decomposition into top layers and bottom layers as h(x) = g(f(x)) with g and f
representing the top and bottom layers respectively. We consider the application of two alternative
sub-networks for the bottom layers: the coarse layers fc or the fine layers ff . As bottom layers,
the coarse and fine layers both operate directly on the input and produce feature maps, i.e. feature
vectors for each position (e.g. 2D spatial positions for images) in the input. However, coarse and fine
layers differ in their capacity. The fine layers correspond to a high-capacity sub-network which has a
high-computational requirement, while the coarse layers constitute a low-capacity sub-network. As
for the top layers g, they can take features from either type of bottom layers and output a distribution
over labels.

Consider applying the top layers only on the fine features, i.e. h(x) = g(ff (x)), where x is some
input data. We refer to the composition h = g ◦ ff as the fine model. We assume that the fine
model can achieve very good performance, but is computationally expensive. Alternatively, consider
applying the top layers only on the coarse features of x, i.e. hc(x) = g(fc(x)). We refer to this
composition hc = g ◦ fc as the coarse model. Conceptually, the coarse model can be much more
computationally efficient, but is expected to have worse performance than the fine model.

The key idea behind DCN is to have g use features from either the coarse or fine models in an adap-
tive, dynamic way. Specifically, we apply the coarse layers fc on the whole input x, and leverage
the fine layers ff only on a few “important” subsets of the input, where the fine features replace the
coarse features. This way, the DCN can leverage the capacity of ff , but at a lower computational
cost, by applying the fine features only on salient subsets of the input. To achieve this, we have two
requirements.

First, we must define an attentional mechanism, whose task is to identify the positions of features in
fc(x) that are good candidates to be replaced by the corresponding features from ff (x). For this,
we use a novel approach for attention that uses backpropagation to identify the features to which the
distribution over the class label is most sensitive. This mechanism, along with the complete process
for computing the DCN’s output, is described in Section 2.1.

Second, we require that the learned representations in ff (x) and fc(x) be interchangeable. We
impose that the output number of feature maps in ff (x) and fc(x) have to be the same1. This will
allow us to construct a heterogeneous input to g that can mix dimensions from both ff and fc.

We propose a procedure to train the DCN model end-to-end, which leverages our attention mech-
anism to learn ff and fc jointly, and encourages their representations to be both discriminative for
the task at hand and comparable. Training the DCN is described in detail in Section 2.2. In addition,
we also explore in Section 4.2 applying DCN to a transfer-learning scenario, where the outputs of
pre-trained ff and fc are combined using our attention mechanism.

In the remainder of this section, we focus on 2-dimensional inputs. However, our DCN model can
be easily extended to be applied to any type of N-dimensional data.
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Figure 1: DCN overview. Our model applies the coarse layers on the whole image to get fc(x), ap-
plies the fine model only on the salient patches Xs to obtain few fine features ff (Xs), and combines
them to make the final prediction.

2.1 ATTENTION-BASED INFERENCE

As mentioned, inference in the DCN model starts by computing all coarse features of fc and then
identifying a few input region positions at which to use instead the fine features of ff .

Given an input image x, we first apply the coarse layers on all input regions to compute the coarse
feature maps fc(x) ∈ Rc×d1×d2 , where d1 and d2 are spatial dimensions and c is the number of
features. We can think of fc(x) as a collection of c-dimensional feature vectors each located in a
specific spatial location. We denote the a feature vector located at the position (i, j) in the coarse
feature maps by fc(x)i,j . Each one of those feature vectors corresponds to a specific receptive field
or a patch (input region), in the input image x. We then compute the output of the model based on
the coarse feature maps, i.e. the coarse model’s output hc(x) = g(fc(x)).

Next, we would like to obtain better predictions than those made by the coarse model, by selecting
few positions in fc(x) where we replace the coarse feature vectors with fine ones. The corresponding
receptive fields of the selected feature vectors defines our salient input regions. We propose to
identify those salient input regions using an attentional mechanism that exploits a saliency map
generated from the coarse model output. The specific measure of saliency we choose is based on the
entropy of the coarse model output, defined as:

H = −
C∑
l=1

h(l)c log h(l)c , (1)

where hc = g(fc(x)) is the output of the coarse model and C is the number of class labels. The
saliency M at position (i, j) is given by the norm of the gradient of the entropy H with respect to
the coarse feature vector fc(x)i,j at that position:

Mi,j = ||∇fc(x)i,jH||2 =

√√√√ c∑
s=1

(
∂

∂fc(x)i,j,s
−

C∑
l=1

h
(l)
c log h

(l)
c

)2

, (2)

where M ∈ Rd1×d2 . Our use of entropy gradient encourages the selection of feature vectors that
could most affect the model’s prediction uncertainty. In addition, computing the entropy of the
output distribution does not require observing the true label, which makes it applicable at inference
time. Note that computing all entries in matrix M can be done using a single backward pass of
backpropagation and is thus efficient and simple to implement.

Using the saliency map M, we select a set of k positions of feature vectors with the highest saliency
values. We denote the set of feature positions by Is = {(i, j); i ∈ [1, d1] , j ∈ [1, d2]}. The set of
corresponding patches is Xs = {xi,j ; (i, j) ∈ Is}, where xi,j is the receptive field of the feature
located at (i, j). Next we apply the fine layers ff on the selected patches and obtain a small set of
fine features, ff (Xs) = {ff (xi,j);xi,j ∈ Xs}. We assume that ff (xi,j) ∈ Rc, i.e. they have the

1The spatial size of ff (x) and fc(x) can be different, as long as the top layers can dynamically adapt to
different input sizes, e.g. using pooling.
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same dimensionality as the coarse features, allowing us to swap in the fine features in place of the
corresponding coarse features. As a result, we obtain refined feature maps fr(x) composed of both
coarse and fine features:

fr(x) =

{
ff (xi,j), if xi,j ∈ Xs

fc(xi,j), otherwise.
(3)

Finally, the DCN output is obtained by feeding our refined feature maps into the top layers, g(fr(x)).
We denote the composition g ◦ fr by the refined model.

2.2 TRAINING

In the context of image classification, suppose we have a training setD = {(x(i), y(i)); i = 1 . . .m},
where each x(i) ∈ Rh×w is an image, and y(i) ∈ {1, . . . , C} is its corresponding label. We denote
the parameters of the coarse, fine and top layers by θc, θf , and θt respectively. We learn all of these
parameters (denoted as θ) by minimizing the cross-entropy objective function (which is equivalent
to maximizing the log-likelihood of the correct labels):

J = −
m∑
i=1

log p
(
y(i) | x(i); θ

)
, (4)

where p(. | x(i); θ) = g(fr(x
(i))) is the conditional multinomial distribution defined over the C

labels given by the refined model (Figure 1). Gradients are computed by standard back-propagation
through the refined model, i.e. propagating gradients at each position into either the coarse or fine
features, depending on which was used.

An important aspect of the DCN model is that the final prediction is based on combining features
from two different sets of layers, namely the coarse layers fc and the fine layers ff . Intuitively, we
would like those features to have close values such that they can be interchangeable. This is impor-
tant for two reasons. First, we expect the top layers to have more success in correctly classifying the
input if the transition from coarse to fine features is smooth. The second is that, since the saliency
map is based on the gradient at the coarse feature values and since the gradient is a local measure of
variation, it is less likely to reflect the benefit of using the fine features if the latter is very different
from the former.

To encourage similarly between the coarse and fine representations, we use a hint-based training
approach inspired by Romero et al. (2014). Specifically, we add an additional term to the training
that minimizes the the squared distance between coarse and fine representations:

k∑
i=1

‖fc(xs
i )− ff (xs

i )‖22. (5)

There are two important points to note here. First, we use this term to optimize only the coarse
layers. That is, we encourage the coarse layers to mimic the fine ones, while letting fine layers
focus only on the signal coming from top layers. Secondly, computing the above hint objective
over features at all positions would be as expensive as computing the full fine model; therefore, we
encourage similarity only over the selected salient patches. The role of this term is discussed further
in Section 6.3.

3 RELATED WORK

This work can be classified as a conditional computation approach. The goal of conditional com-
putation, as put forward by Bengio (2013), is to train very large models for the same computational
cost of smaller ones, by avoiding certain computation paths depending on the input. There have
been several attempts in this direction. Bengio et al. (2013) use stochastic neurons as gating units
that activate specific parts of a neural network. Our approach, on the other hand, uses an attention
mechanism that helps the model to focus its computationally expensive paths only on important
input regions, which helps in both scaling to larger effective models and larger input sizes.
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Model Test Error

DRAW 3.36%
Coarse Model 3.69%
Fine Model 1.70%
DCN, 8 patches, 14x14 1.39%

Table 1: Results on Cluttered MNIST dataset.

Several recent contributions use various attention mechanisms to capture visual structure with bi-
ologically inspired, foveation-like methods, e.g. (Larochelle & Hinton, 2010; Denil et al., 2012;
Ranzato, 2014; Mnih et al., 2014; Ba et al., 2014; Gregor et al., 2015). In Mnih et al. (2014); Ba
et al. (2014) a learned sequential attention model is used to make a hard decision of as to where to
look in the image, i.e. which glimpse of the image is considered in each time step. This so-called
“hard” attention mechanism can reduce computation for inference. The learning of the attention
mechanism is formulated as a policy search problem in a reinforcement learning setup. In practice,
this approach can be computationally expensive during training, as a result of needing to sample
multiple interaction sequences with the environment. On the other hand, the DRAW model (Gregor
et al., 2015) uses a “soft” attention mechanism that is fully differentiable, but requires processing
the whole input in each time step. Our approach provides a simpler attention mechanism with com-
putational advantages in both inference and learning.

The use of a regression cost for enforcing representations to be close has been exploited for achieving
model compression (Bucilu et al., 2006; Hinton et al., 2015; Romero et al., 2014). The goal of model
compression is to train a small model, which is faster in deployment, to imitate a much larger model
(or an ensemble of models). Furthermore, Romero et al. (2014) have shown that middle layer hints
can improve learning in deep and thin neural networks. In contrary to these approaches, our DCN
model does not require training a large model a priori.

Other works such as matrix factorization (Jaderberg et al., 2014; Denton et al., 2014) and quantiza-
tion schemes (Chen et al., 2010; Jégou et al., 2011; Gong et al., 2014) focus on speeding-up at the
expense of slightly deteriorating their performances. Those works apply the same transformation on
the model weights in “input-independent” fashion. By contrast, DCN effectively speeds-up a model
in an adaptive, “input-dependent” way, by assigning its capacity differently across portions of the
input. Such approaches are complementary to DCN and could be used to further speed-up the DCN
model.

4 EXPERIMENTS

In this section, we present an experimental evaluation of the proposed DCN model. To validate the
effectiveness of our approach, we first investigate the Cluttered MNIST dataset (Mnih et al., 2014).
We then apply our model in a transfer-learning setting to a real-world object recognition task using
the Street View House Numbers (SVHN) dataset (Netzer et al., 2011).

4.1 CLUTTERED MNIST

We use the 100× 100 Cluttered MNIST digit classification dataset (Mnih et al., 2014). Each image
in this dataset is an MNIST hand-written digit located randomly on a 100 × 100 black canvas and
cluttered with digit-like fragments. Therefore, the dataset has the same size of MNIST: 60000
images for training and 10000 for testing.

In this experiment, we use 2 convolutional layers as coarse layers, 5 convolutional layers as fine
layers, and one convolutional layer followed by global max pooling as the top layers. Details of this
architecture can be found in Appendix 6.1. We take here patches of size 14 × 14 pixels, and feed
them to the fine layers, which map each patch into one spatial location.

Results of the fine model, coarse model and the DCN model with eight 14×14 patches are shown in
Table 1. We can see that DCN performs significantly better than the previous state-of-the-art result
achieved by DRAW. It also outperforms the fine model, which is a result of being able to focus only
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(a) Sample of selected Patches. (b) Number of patches vs. test error.

Figure 2: Left: Performance/computation trade-off in Cluttered MNIST. The more patches we se-
lect the better is the performance, but also the greater is the computation. Right: Quantitative and
qualitative evaluation of the selected patches on Cluttered-MNIST.

on the digit and ignore clutter. To show how the attention mechanism of the DCN model can help it
focus on the digit, we plot in Figure 2(a) the patches it finds in some images from the validation set,
after only 9 epochs of training.

The DCN model is also more computationally efficient. In this experiment, a forward pass through
the fine layers requires about 79.2M multiplications, while the coarse layers require only about 2.6M
multiplications. Computing each patch using the fine model requires 1.15M multiplications, so
computing 8 patches results in 9.2M multiplications, which in addition to the 2.6M multiplications
from the coarse model would give 11.8M multiplications. The attention mechanism of the DCN
model, however, requires an additional forward and backward pass through the top layers. Each
pass through the top layers here requires 5.3M multiplications. Therefore, the fine model has a
total of 5.3 + 79.2 = 84.5M multiplications, while the DCN model has 3 × 5.3 + 11.8 = 27.7M
multiplications. As a result, the DCN model here has 3 times fewer multiplications than the fine
model.

We show in Figure 2(b) how the test error behaves when we increase the number of patches. We
can see that choosing a lot of patches can be a waste of computation, and that performance does not
improve significantly by taking more than 10 patches.

4.2 SVHN

We tackle in this section a more challenging task of transcribing multi-digit sequences from natural
images using the Street View House Numbers (SVHN) dataset (Netzer et al., 2011). SVHN is
composed of real-world pictures containing house numbers and taken from house fronts. The task
is to recognize the full digit sequence corresponding to a house number, which can be of length 1
to 5 digits. The dataset has three subsets: train (33k), extra (202k) and test (13k). In the following,
we trained our models on 230k images from both the train and extra subsets, where we take a 5k
random sample as a validation set for choosing hyper-parameters.

The typical experimental setting in previous literature, e.g. (Goodfellow et al., 2013; Ba et al., 2014;
Jaderberg et al., 2015), uses the location of digit bounding boxes as extra information. Input images
are generally cropped, such that digit sequences are centred and most of the background and clutter
information is pruned. We argue that our DCN model can deal effectively with real-world noisy
images having large portions of clutter or background information. To demonstrate this ability, we
investigate a more general problem setting where the images are uncropped and the digits locations
are unknown. We apply our models on SVHN images in their original sizes and we do not use any
extra bounding box information.

An important property of the SVHN dataset is the large discrepancy between the train/extra sets
and the test set. Most training images have little background and are well-centred around the digits,
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while most test images have large backgrounds with unrelated information. We discuss this further
in Appendix 6.4. Given the specific architecture of DCN, we can leverage this training/test dataset
discrepancy in a transfer-learning setting. We train the coarse and fine model independently on the
training images that have little background-clutter, and then apply the DCN inference at test time to
let our attention mechanism select where to apply the fine model. We show in the remainder of this
section that our “test-time” variant of DCN can effectively deal with large background-clutter and
apply the fine model on few input regions to refine predictions of the coarse model.

4.2.1 MODEL DESCRIPTION

We follow the model proposed in (Goodfellow et al., 2013) for learning a probabilistic model of the
digit sequence given an input image x. The output sequence S is defined using a collection of N
random variables, S1, . . . , SN , representing the elements of the sequence and an extra random vari-
able S0 representing its length. The probability of a given sequence s = {s1, . . . , sn} is given by:

p(S = s | x) = p(S0 = n | x)
n∏

i=1

p(Si = si | x), (6)

where p(S0 = n | x) is the conditional distribution of the sequence length and p(Si = si | x) is the
conditional distribution of the i-th digit in the sequence. In particular, our models on SVHN have 6
outputs; the length of the sequence (from 1 to 5), and the identity of each digit or a null character
if no digit is present (11 categories). Training is done by maximizing log p(S | x) on the training
set using SGD with a gradient computed using the backpropagation algorithm. We train coarse and
fine models (details of their architectures can be found in Appendix 6.2). We convert all images to
grayscale, and for the purposes of training only we resize images to 64× 128.

4.2.2 INFERENCE WITH VARIABLE SIZED IMAGES

At test time, our baseline models (coarse and fine models) are applied, in a fully-convolutional way,
on images in their original and variable sizes. Given an image x, the model produces a probability
map P which has a spatial size d1 × d2, where the values of d1 and d2 depend on the image input.
We denote the model’s prediction for the i-th output at a specific spatial location j, k by p(Si,j,k | x)
where Si,j,k is a random variable representing the i-th element of the sequence at the j, k location.
The final prediction is computed by taking an average of the distributions over all spatial locations,
i.e.

p(Si | x) =
1

d1 × d2

∑
j,k

p(Si,j,k | x). (7)

Since background information is expected to be dominant in input images, we argue that it is possi-
ble to improve model predictions by emphasizing predictions from “important” spatial locations. As
in Section 2.1, we can leverage the entropy of the location-specific output as a measure of its impor-
tance. We can therefore define a “soft”-attention model which takes into account all location-specific
outputs of the coarse but weighs them by their inverse entropies, i.e.

p(Si | x) =
∑
j,k

wi,j,kp(Si,j,k | x). (8)

We define wi,j,k as the normalized inverse entropy of the i-th output distribution as predicted by the
location j, k in P, i.e.

wi,j,k =
∑
p,q

H−1
i,j,k

H−1
i,p,q

, (9)

where Hi,j,k is defined as:

Hi,j,k = −
C∑
l=1

p(Si,j,k = sl | x) log p(Si,j,k = sl | x). (10)
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Figure 3: Number of multiplications in the
Coarse, Fine and DCN models given different
image input sizes.

Model Test Error

Coarse model, 1 scale 40.6%
Coarse model, 2 scales 40.0%
Coarse model, 3 scales 40.0%

Fine model, 1 scale 25.2%
Fine model, 2 scales 23.7%
Fine model, 3 scales 23.3%

Soft-attention, 1 scale 31.4%
Soft-attention, 2 scales 31.1%
Soft-attention, 3 scales 30.8%

DCN, 6 patches, 1 scale 20.0%
DCN, 6 patches, 2 scales 18.2%
DCN, 9 patches, 3 scales 16.6%

Table 2: Results on SVHN dataset without
using bounding box information.

Figure 4: A sample of the selected patches in SVHN images. The images are processed by the DCN
inference procedure in their original sizes. They are resized here for illustration purposes.

4.2.3 TEST-TIME DCN

In order to apply the DCN approach for this task, we need first to modify our gradient-based attention
mechanism to handle multiple outputs. Consider the entropy associated with the i-th output:

Hi = −
C∑
l=1

p(Si = sl | x) log p(Si = sl | x). (11)

We compute the total entropy, denoted as H , by summing the entropy of all outputs. The saliency
map is computed by taking the gradient of the total entropy H with respect to the input of the
coarse model’s last layer. We compute here one saliency map based on all outputs because, as we
describe shortly, we will use each selected patch to predict the full sequence independently. Using
the saliency map, we select the ktest most salient patches, and then give them to the fine model,
producing ktest independent predictions. Finally, we take the average of these predictions, each of
them weighted by their normalized inverse entropies, as we did in equation (8).

We extend this procedure to a multi-scale approach by processing each image several times at mul-
tiple resolutions. This allows the fixed-size patch to capture larger areas of the image and helps us
deal with scale variations in the data. We combine the ktest patches selected at each resolution and
feed them to the fine model to get ktest ×Nscale independent predictions, where Nscale is the number
of scales. These predictions are again combined by taking their weighted average.
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4.2.4 EMPIRICAL EVALUATION

In Table 2, we report the test errors of the coarse, fine, soft-attention and DCN models on the SVHN
datasets, using directly the original images.

Applying the coarse model directly on the images, in a fully convolutional fashion, leads to an
error rate of 40.6%. By using our proposed soft-attention mechanism, we decrease the error rate
to 31.4%. This confirms that the entropy is a good measure for identifying important regions when
task-relevant information is not uniformly distributed across input data.

The fine model, on the other hand, achieves a better error rate of 25.2%, but is more computationally
expensive. Our DCN model, which selects only 6 regions on which to apply the high-capacity fine
model, achieves an error rate of 20.0%. The DCN model can therefore outperform, in terms of
classification accuracy, the other baselines, even in a “test-time” only setting where the fine and
coarse model are trained independently. This verifies our assumption that by applying high capacity
sub-networks only on the inputs most informative regions, we are able to obtain high classification
performance. Figure 4 shows a sample of the selected patches by our attention mechanism.

An additional decrease of the test errors can be also obtained by increasing the number of processed
scales. In the DCN model, taking 3 patches at 2 scales (original and 0.75 scales), leads to 18.2%
error, while taking 3 patches at 3 scales (original, 0.75 and 0.5 scales) leads to an error rate of 16.6%.
Our DCN model can reach its best performance of 11.6% by taking all possible patches at 3 scales,
but it does not offer an computational benefits over the fine model.

We also investigate the computational benefits of the DCN approach as the dimensions of the input
data increase. Table 3 reports the number of multiplications the fine model, coarse model and the
DCN model require, given different input sizes. As described before, DCN is composed by coarse
“low-capacity” and fine “high-capacity” sub-networks, which are convolutional models in our case.
The number of multiplications in a convolutional model scales linearly with the input size. In DCN,
we need to apply the “low-capacity” sub-network on the whole input while the “high-capacity” sub-
network is used only for a fixed number of patches. Consequently, as the dimensions input size
increase, the DCN’s number of computations grows at the same rate as the coarse model, but the
number of computations devoted to the “high-capacity” module remains constant as the input size
grows. Most of the computational benefits of the DCN approach therefore appears for large inputs.

We verify the actual computational time of these models by taking the largest 100 images in the
SVHN test set, and computing the average inference time taken by all the models 2. The smallest
of these images has a size of 363 × 735 pixels, while the largest has a size of 442 × 1083 pixels.
On average, the coarse and the soft-attention models take 8.6 milliseconds, while the fine model
takes 62.6 milliseconds. On the largest 100 SVHN test images, the DCN requires on average 10.8
milliseconds for inference.

5 CONCLUSIONS

We have presented the DCN model, which is a novel approach for conditional computation. We have
shown that using our visual attention mechanism, our network can adaptively assign its capacity
across different portions of the input data, focusing on important regions of the input. Our model
achieved state-of-the-art performance on the Cluttered MNIST digit classification task, and provides
computational benefits over traditional convolutional network architectures. We also validated our
model on the SVHN dataset, where we tackled the multi-digit recognition problem without using
any a priori information on the digits’ location. We have shown that our model outperforms a coarse
convolutional baseline, while still remaining computationally efficient for inputs with large spatial
dimensions.
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6 APPENDIX

6.1 CLUTTERED MNIST EXPERIMENT DETAILS

• Coarse layers: 2 convolutional layers, with 7 × 7 and 3 × 3 filter sizes, 12 and 24 filters,
respectively, and a 2 × 2 stride. Each feature in the coarse feature maps covers a patch of
size 11 × 11 pixels, which we extend by 3 pixels in each side to give the fine layers more
context. The size of the coarse feature map is 23× 23.

• Fine layers: 5 convolutional layers, each with 3× 3 filter sizes, 1× 1 strides, and 24 filters.
We apply 2 × 2 pooling with 2 × 2 stride after the second and fourth layers. We also use
1 × 1 zero padding in all layers except for the first and last layers. This architecture was
chosen so that it maps a 14× 14 patch into one spatial location.

• Top layers: one convolutional layer with 4×4 filter size, 2×2 stride and 96 filters, followed
by global max pooling. The result is fed into a 10-output softmax layer.

We use rectifier non-linearities in all layers. We use Batch Normalization (Ioffe & Szegedy, 2015)
and Adam (Kingma & Ba, 2014) for training our models. In DCN we train the coarse layers with a
convex combination of cross entropy objective Eq. (4) and hints Eq. (5).

6.2 SVHN EXPERIMENT DETAILS

• Coarse model: the model is fully convolutional with 7 convolutional layers. First three
layers have 24, 48, 128 filters respectively with size 5 × 5 and stride 2 × 2. Layer 4 has
192 filters with 4× 5 and stride 1× 2. Layer 5 has 192 filters with size 1× 4. Finally, the
last two layers are 1 × 1 convolutions with 1024 filters. We use stride of 1 × 1 in the last
3 layers and do not use zero padding in any of the coarse layers. The corresponding patch
size here is 54× 110.

• Fine layers: 9 convolutional layers, followed by 3 fully connected layers. The first 5 con-
volutional layers have 48, 64, 128, 160 and 192 filters respectively, with size 5 × 5 and
zero-padding. After layers 1, 3, and 5 we use 2 × 2 max pooling with stride 2 × 2. The
following layers have 3 × 3 convolution with 192 filters. Each of the 3 fully connected
layers has 1024 hidden units.

Here we use SGD with momentum and exponential learning rate decay. While training, we take
54×110 random crop from images, and we use 0.2 dropout on convolutional layers and 0.5 dropout
on fully connected layers.

6.3 EFFECT OF HINTS ON CLUTTERED MNIST TRAINING

Figure 5 shows the effect of adding the hint objective in Eq. (5) to the DCN objective during training
on Cluttered MNIST. We notice that it can indeed minimize the squared distance between coarse
and fine representations. This has a regularization effect, where we observe a drop in test error to
1.71% when we do not add it to the training objective.

6.4 SVHN TRAINING/TEST DISCREPANCY

Figure 6 shows samples from the extra and test subset of SVHN. The extra subset images dominate
training data and are mostly composed of images with well-centred digits and little cluttered back-
ground. This is not the case for test images, which can have more variety in terms of digit location
and background clutter.
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Figure 5: The effect of using the hints objective. We show the squared distance between coarse and
fine features over salient regions during training in two cases: with and without using the hints ob-
jective. We observe that this regularizer helps in minimizing the distance and improves the model’s
generalization.

Figure 6: The 4 left images are samples from the extra subset, and the 4 right images are samples
from the test subset. We notice that extra images are well-centred have much less background
compared to test images.
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