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ABSTRACT

Many real-world time series involve repeated patterns that evolve gradually by
following slow underlying trends. The evolution of relevant features prevents con-
ventional learning methods from extracting representations that separate differing
patterns while being consistent over the whole time series. Here, we present an
unsupervised learning method to finding representations that are consistent over
time and which separate patterns in non-stationary time-series. We developed
an on-line version of t-Distributed Stochastic Neighbor Embedding (t-SNE). We
apply t-SNE to the time series iteratively on a running window, and for each dis-
placement of the window, we choose as the seed of the next embedding the final
positions of the points obtained in the previous embedding. This process ensures
consistency of the representation of slowly evolving patterns, while ensuring that
the embedding at each step is optimally adapted to the current window. We ap-
ply this method to the song of the developing zebra finch, and we show that we
are able to track multiple distinct syllables that are slowly emerging over multiple
days, from babbling to the adult song stage.

1 INTRODUCTION

Conventional unsupervised learning algorithms rely on the underlying assumption that the relevant
features to learn are stable across the whole dataset. However, in many real-world time series, the
assumption of stationarity is compromised by slowly evolving trends (heteroscedasticity in financial
time series, increasing popularity of a social website, emergence of syllables in bird song). Learning
representations on the whole dataset risks reducing the separation between different patterns because
of their respective evolution in time. Learning representations locally in time risks losing consistency
of the representation across the different epochs.

Our method learns a slowly changing representation online by using a sliding window.
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2 METHOD

Our method is based on t-distributed stochastic neighbor embedding (t-SNE), a recent technique
for embedding high-dimensional data into a low-dimensional space that preserves relevant structure
(Van der Maaten & Hinton (2008)).

We choose a time-window T, long enough so that each pattern of interest appears at least a few times
in the window length, regardless of the position of the window in the time-series.

Then, we scroll the position of the window through the whole time series, with a time-step dt<<T.
For each position of the window, we compute the t-SNE embedding of the data points in the time
window. Note that each embedding is specific to the window on which it is computed, ensuring that
it captures local structure optimally.

In order to compute t-SNE, we need to choose the initial coordinates of the data points in the low-
dimensional space. Because dt<<T, two successive embeddings share most of their data points.
For all the shared data points, we match their initial coordinates in the present embedding to their
final coordinates in the previous embedding. This step ensures that the patterns are consistent across
successive embeddings.

3 RESULTS

In order to prove the applicability of this method to real world non-stationary time-series, we applied
it to samples of zebra finch song recorded over development.

Zebra finches sing a repertoire of distinct syllables that emerge during development from unstruc-
tured babbling, and have become a fruitful model for studying the neural mechanisms behind com-
plex learned behaviors. Such studies require a precise classification of song itself. Previous semi-
automatic methods for classifying song syllables involve clustering heuristic acoustic features (Tch-
ernichovski et al. (2000)). However, clusters often overlap, especially in juvenile song, which has
required manual classification of syllables from spectrograms (fig 1 A and B, Tchernichovski et al.
(2001), Okubo et al. (2015)).

We applied our on-line t-SNE method to automatically extract song structure useful for classifying
syllables and tracking their development.

Birdsong is produced in discrete syllables, separated by short gaps (fig 1A). As input to t-SNE, we
used the song spectrogram (binned in 5ms slices, T = 10s, dt = 0.1s), as well as information about
the location of each spectral slice within the syllable. Our embedding captured each syllable type as
a distinct trajectory, well separated from that of other syllables (fig 1C). We made a GUI allowing
users to label a small number of syllables, and these labels automatically propagate to the rest of the
data (see video here: https://goo.gl/7XHkPk).

The embedding method allowed us to visualize the emergence of song structure during develop-
ment (see video here: https://goo.gl/LgoJN8, dph = days post hatch, rotation added for clarity of
visualization). We were able to visualize the progressive dissociation of a protosyllable into multi-
ple distinct syllable types (fig1 D), consistent with previous observations of syllable differentiation
(Tchernichovski et al. (2000), Okubo et al. (2015)).

4 DISCUSSION

Our on-line t-SNE method uses overlapping sliding windows to capture local structure, while main-
taining consistency across time. We were able to represent song syllables as they emerged from
babbling, then become adult songs. The learned representation was also useful for automatic syl-
lable classification, a task which often previously involved tedious manual labeling. Our method
could easily be adapted to efficiently and objectively classify events in other types of non-stationary
time series.

Since our method is able to compactly represent the entity of song development, it opens up in-
triguing possibilities for quantifying cases of abnormal song development. Abnormal auditory ex-
perience, as well as certain brain manipulations, lead to pathological song (Scharff & Nottebohm
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Figure 1: Extracting song structure with t-SNE: comparison with classical methods, and tracking
emerging structure over development. We use a song where we have manual syllable labels as
ground truth (Okubo et al. (2015)). A: Spectrogram of the song, for frequencies ranging from 0.5
to 6kHz, with manual syllable labels. Below the spectrogram is the time stamp code indicating
the location of each spectral slice within the syllable (also used for t-SNE). B: Scatter plots of
syllables, showing three different heuristic acoustic features versus syllable duration. Note that the
cyan, green and red syllables are not well separated. C: (Top) t-SNE embedding of the song in a 2-
dimensional space. Each dot represents a 5ms spectral slice. Each color corresponds to a different
syllable (manual labeling), and saturation indicates the time of the slice within the syllable. Dots
corresponding to consecutive slices are connected by a line. (Bottom) t-SNE embedding of the
song in a 3-dimensional space. Note that t-SNE syllable trajectories form clusters consistent with
manual labels. D: t-SNE embedding showing new syllables emerging during development from
a common protosyllable. Trajectories at different ages are shown in separate panels, along with
example spectrograms of each syllable type. Panels: (58 days post hatch, dph) protosyllable stage;
(63 dph) emergence of two syllables, red and green indicate manual labeling; (81 dph) late juvenile
stage showing further separation of the red and green syllables, and the emergence of a new syllable
type, yellow; (111 dph) adult song.

(1991),Fehr et al. (2009)). Our new method provides a clear and compact representation of song
development, which could help pinpoint how and when during development pathological songs first
deviate from normal.

In the case of non-stationary time series, this on-line embedding method could be a useful alternative
to a comprehensive embedding of the whole dataset. When a time series evolve to be very different
from epochs to epochs, embedding all the data points in a single map will result in a less accurate
picture of each epoch without adding relevant structure, since there is almost no useful structure to
be kept across different epochs. From a computational point of view, it is a challenge to embed all
the points of a huge dataset, because t-SNE has a O(n2) complexity. A recent study (Berman et al.
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(2014)) has found a solution to embed huge datasets with t-SNE consisting in selecting a fraction
of representative data points to shape the embedding space, but this selection still involves some
computation overhead.
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