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ABSTRACT

Integration of multiple microphone data is one of the key ways to achieve ro-
bust speech recognition in noisy environments or when the speaker is located at
some distance from the input device. Signal processing techniques such as beam-
forming are widely used to extract a speech signal of interest from background
noise. These techniques, however, are highly dependent on prior spatial informa-
tion about the microphones and the environment in which the system is being used.
In this work, we present a neural attention network that directly combines multi-
channel audio to generate phonetic states without requiring any prior knowledge
of the microphone layout or any explicit signal preprocessing for speech enhance-
ment. We embed an attention mechanism within a Recurrent Neural Network
(RNN) based acoustic model to automatically tune its attention to a more reli-
able input source. Unlike traditional multi-channel preprocessing, our system can
be optimized towards the desired output in one step. Although attention-based
models have recently achieved impressive results on sequence-to-sequence learn-
ing, no attention mechanisms have previously been applied to learn potentially
asynchronous and non-stationary multiple inputs. We evaluate our neural atten-
tion model on the CHiME-3 challenge task, and show that the model achieves
comparable performance to beamforming using a purely data-driven method.

1 INTRODUCTION

Many real-world speech recognition applications, including teleconferencing, robotics and in-car
spoken dialog systems, must deal with speech from distant microphones in noisy environments.
When a human voice is captured with far-field microphones in these environments, the audio signal
is severely degraded by reverberation and background noise. This makes the distant speech recog-
nition task far more challenging than near-field speech recognition, which is commonly used for
voice-based interaction today.

Acoustic signals from multiple microphones can be used to enhance recognition accuracy due to the
availability of additional spatial information. Many researchers have proposed techniques to effi-
ciently integrate inputs from multiple distant microphones. The most representative multi-channel
processing technique is the beamforming approach (Van Compernolle et al., 1990; Seltzer et al.,
2004; Kumatani et al., 2012; Pertilä & Nikunen, 2015), which generates an enhanced single output
signal by aligning multiple signals through digital delays that compensate for the different distances
of the input signals. However, the performance of beamforming is highly dependant on prior in-
formation about microphone location and the location of the target source. For downstream tasks
such as speech recognition, this preprocessing step is suboptimal because it is not directly optimized
towards the final objective of interest: speech recognition accuracy (Seltzer, 2008).

Recently, an ”attention mechanism” in neural networks has been proposed to address the problem
of learning variable-length input and output sequences (Bahdanau et al., 2014). At each output step,
the previous output history is used to generate an attention vector over the input sequence. This
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attention vector enables models to learn to focus attention on specific parts of their input. However,
no attention mechanisms have been applied to learn to integrate multiple inputs.

In this work, we propose a novel attention-based model that enables to learn misaligned and non-
stationary multiple input sources for distant speech recognition. We embed an attention mechanism
within a Recurrent Neural Network (RNN) based acoustic model to automatically tune its attention
to a more reliable input source among misaligned and non-stationary input sources at each output
step. The attention module is learned with the normal acoustic model and is jointly optimized
towards phonetic state accuracy. Our attention module is unique in the way that we 1) deal with the
problem of integrating different qualities and misalignment of multiple sources, and 2) exploit spatial
information between multiple sources to accelerate learning of auditory attention. Our system plays
a similar role to traditional multichannel preprocessing through deep neural network architecture, but
bypasses the limitations of preprocessing, which requires an expensive, separate step and depends
on prior information.

2 MODEL

Our model is based on typical hybrid DNN-HMM frameworks (Morgan & Bourlard, 1994; Hinton
et al., 2012), wherein the acoustic model estimates hidden Markov model (HMM) state posteriors.
Given a set of input sequences X = {Xch1 , · · · ,XchN }, where Xchi is from the ith microphone,
our system computes a corresponding sequence of HMM acoustic states, y = (y1, · · · , yT ). We
model each output yt at time t as a conditional distribution over the previous outputs y<t and the
multiple inputs Xt at time t.

Our system consists of two subnetworks: AttendMultiSource and LSTM-AM.
AttendMultiSource is an attention-equipped Recurrent Neural Network (RNN) for learning
to determine and focus on reliable channels and temporal locations among the candidate multiple
input sequences. AttendMultiSource produces re-weighted inputs, X̂, based on the learned
attention. This X̂ is used for the next subnetwork LSTM-AM, which is a Long Short-Term
Memory (LSTM) acoustic model to estimate the probability of the output HMM state y.

The challenge we attempt to address with the neural attention mechanism is the problem of mis-
aligned multiple input sources with non-stationary quality over time. Specifically, in multi-channel
distant speech recognition, the arrival time of each channel is different because the acoustic path
length of each signal differs according to the location of the microphone. This results in the mis-
alignment of input features. At every output step t, the AttendMultiSource function produces a
re-weighted input representation X̂c, given cth candidate input set Xc. Xc is a subsequence of time
frames. For re-weighting the input Xc, AttendMultiSource predicts an attention weight matrix
Atime,ch

t at each output step t. Unlike previous attention mechanisms, we produce a weight matrix
rather than a vector, because our attention mechanism additionally identifies which channel, in a
given time step, is more relevant. Therefore, Atime,ch

t is the (number of channels) by (number of
candidate input frames) matrix - here it is N x l matrix. Attention weights are calculated based
on four different information sources: 1) attention history Atime,ch

t−1 , 2) content in the candidate
sequences Xc, 3) decoding history st−1, and 4) additional spatial information between multiple mi-
crophones based on phase difference information PDc corresponding to Xc. The following three
formulations describe the AttendMultiSource function:

Etime,ch
t = MLP(st−1,A

time,ch
t−1 ,PDc,Xc) (1)

Atime,ch
t = softmax(Etime,ch

t ) (2)

X̂c = Atime,ch
t ·Xc (3)

3 EXPERIMENTS

We evaluated the performance of our architecture on the CHiME-3 task. The CHiME-3 (Barker,
2015) task is automatic speech recognition for a multi-microphone tablet device in an everyday
environment - a cafe, a street junction, public transport, and a pedestrian area. We use one layer of
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Table 1: Comparison of WERs(%) on development and evaluation set of the CHiME-3 task between
the baseline system, and our proposed framework, ALSTM.

MODEL (Input) DEV (WER %) TEST (WER %)
Baselines - Real + Simulated Data (18hrs)
LSTM (Preprocessing 5 noisy-channel) 18.6 32.0
Proposed - Real + Simulated Data (18hrs)
ALSTM 16.5 26.5

LSTM architecture with 512 cells. There is a mismatch between the Kaldi baseline (Povey et al.,
2011) and our results because we did not perform sequence training (sMBR) or language model
rescoring (5-gram rescoring or RNNLM). The inputs for all networks were log-filterbank features,
with 5 channels stacking, and then with 7 frames stacking (+3-3).

In Table 1, we summarize word error rates (WERs) obtained on the CHiME3 task. ALSTM is our
proposed model, which has an attention mechanism for multiple inputs. As our baseline, LSTM
(Preprocessing 5 noisy-channel) was trained on the enhanced signal from 5 noisy channels. We
obtained the enhanced signal from the beamforming toolkit, which was provided by the CHiME3
organizer (Barker, 2015; Loesch & Yang, 2010; Blandin et al., 2012; Mestre et al., 2003). Our model
with the attention mechanism provided a significant improvement in WER compared to LSTM (5
noisy-channel). These results suggest that we can leverage the attention mechanism to integrate
multiple channels efficiently.

4 CONCLUSIONS

We proposed an attention-based model (ALSTM) that uses asynchronous and non-stationary inputs
from multiple channels to generate outputs. For a distant speech recognition task, we embedded a
novel attention mechanism within a RNN-based acoustic model to automatically tune its attention
to a more reliable input source. We presented our results on the CHiME3 task and found that AL-
STM showed a substantial improvement in WER. Our model achieved comparable performance to
beamforming without any prior knowledge of the microphone layout or any explicit preprocessing.
Our findings suggest that this approach will likely do well on tasks that need to exploit misaligned
and non-stationary inputs from multiple sources, such as multimodal problems and sensory fusion.
We believe that our attention framework can greatly improve these tasks by maximizing the benefits
of using inputs from multiple sources.
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