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ABSTRACT

Approximate variational inference has shown to be a powerful tool for modeling
unknown, complex probability distributions. Recent advances in the field allow us
to learn probabilistic sequence models. We apply a Stochastic Recurrent Network
(STORN) to learn robot time series data. Our evaluation demonstrates that we can
robustly detect anomalies both off- and on-line.

1 INTRODUCTION

With a complex system like a robot, we would like to be able to discriminate between normal and
anomalous behavior of this system. For instance, we would like to be able to recognize that some-
thing went wrong while the robot was fulfilling a task. Generally speaking, determining whether an
unknown sample is structurally different from prior knowledge is referred to as anomaly detection.

Recording anomalous data is costly (or even dangerous) in comparison to normal data. Moreover,
anomalies are inherently diverse, which prohibits explicit modeling. Due to the underrepresentation
of anomalous samples in training data, anomaly detection remains a challenging instance of two-
class classification to this day. Consequently, the problem is reversed: Firstly, a normality criterion
is learned from normal data only, and the fully trained normality criterion is used to discriminate
anomalous from normal data by thresholding.

The contribution of this paper is an application of approximate variational inference for anomaly
detection. We learn a generative time series model of the data, which can handle high-dimensional,
spatially and temporally structured data, and requires no domain knowledge.

2 PROBLEM DESCRIPTION: ANOMALY DETECTION

As Pimentel et al. (2014) show, a plethora of anomaly detection approaches exist. However, no
previous approach is suitable for high-dimensional time series data with spatial and temporal de-
pendencies as in our data set, while requiring no domain knowledge (of, e.g., robot dynamics). A
notable exception is Milacski et al. (2015). However, their approach, requiring the entire time series
for processing, lacks on-line capability. An & Cho (2015) have independently developed a VI-based
detection algorithm, though only suited for static data. Since no comparable algorithm exists, no
comparison is possible.

For training and testing, we recorded the joint configurations of the seven joints of a Rethink
Robotics Baxter Robot arm. We recorded 1000 anomaly-free samples at 15 Hz of a pick-and-place
task, our target distribution. This task is simulated by traversing a random sequence of waypoints
from a fixed pool of 10 waypoints. For this distribution, we would like to learn a generative model.
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Figure 1: Receiver operating characteristic (ROC) for evaluating the off-line detection algorithm for
different normality criteria and thresholds.

For testing purposes, we recorded 300 samples with anomalies obtained by manually hitting the
robot on random hit commands. For each time stamp, we obtained two labels: whether or not a hit
command occurred within the previous 4 seconds (a rough bound on the human response time), and
unusual torque1. Both are depicted as red and blue background color in Fig. (2). Neither of these
labels is perfect, the temporal label is necessarily too loose, while the torque label misses subtle
anomalies while putting false positive labels on artifacts in the data.

3 METHODOLOGY: VARIATIONAL INFERENCE AND STOCHASTIC
RECURRENT NETWORKS

In the wake of Rezende et al. (2014); Kingma & Welling (2013), who introduced the Variational
Auto-Encoder (VAE), there has been a renewed interest in variational inference.

The VAE has been extended to time series by Bayer & Osendorfer (2014): Exchanging the neu-
ral networks of the VAE with recurrent neural networks yields Stochastic Recurrent Networks
(STORNs). Inspired by the factorization

p(x1:T , z1:T ) =

T∏
t=1

p(xt | hgt )p(zt | h
p
t ) (1)

of the generative model2, we arrive at a very similar lower bound to the marginal likelihood p(x1:T ):

L(qφ) := Eqφ

[
T∑
t=1

ln p(xt | hgt )

]
−KL(qφ(z1:T | x1:T ) || p(z1:T | hp0:T )) ≤ ln p(x1:T ) (2)

This lower bound can be used to simultaneously train all adjustable parameters by stochastic back-
propagation.

4 EXPERIMENTS

Prior to any anomaly detection, we trained STORN on 640 randomly selected normal time series.

Off-line detection results can be seen in Fig. (1). Off-line detection means detecting whether an un-
known test sample has an anomaly or not. We used different normality criteria: The lower bound (2),

1Torque was only used for labeling, not for learning.
2It should be noted that (1) and (2) show an extension of STORNs. We drop the initial STORN assumption

of temporally factorizing priors, and install a third RNN capturing trends in the prior. This is an extension of
Chung et al. (2015)
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Figure 2: Anomalous test sample with labels (red and blue background colors), hit commands (black
lines), and on-line anomaly detection (4 criteria, 3 thresholds each)—red indicates that the respective
threshold was exceeded.

a Monte Carlo estimate of the true marginal likelihood (for comparative reasons only); furthermore,
because (2) is evaluated in log-space, we have a step-wise lower bound on the step-wise marginal
likelihood as well as step-wise MAP predictions (under the assumption of unidirectional RNNs in
both recognition and generative model). Extreme-values in step-wise lower bound and prediction
error were also taken as criteria for anomalies.

The more challenging case of on-line detection is depicted in Fig. (2). Again, we applied different
normality criteria. Three were based on the step-wised lower bound—we used the step-wise lower
bound output of our model, as well as a smoothed version of it (with a narrow Gaussian Kernel),
and the forward differences magnitudes. As a fourth criterion, we used the gradient of the trained
model with respect to the input. A large gradient magnitude in one time step indicates a significant
perturbation from a more likely time series—an indicator for anomalous data.

For each of the four approaches, we extracted different thresholds, each leveraging the two types of
labels differently. We observed best results with

κ∗ = argmin
κ

(
ft(κ)

2 + (1− tt(κ))2 −
tt(κ)

tt(κ) + ft(κ)
− λ tc(κ)

tc(κ) + fc(κ)

)
, (3)

which leverages true and false positive rates (ft/fc and tt/tc, respectively) for torque-based and
command-based labels, valuing a high positive precision rate.

5 CONCLUSION AND FUTURE WORK

In this paper, we successfully applied the framework of variational inference (VI), in particular
Stochastic Recurrent Networks (STORNs), for learning a probabilistic generative model of high-
dimensional robot time series data. No comparable approach has been proposed previously.

This new approach enables off- and on-line detection without further assumptions on the data. In
particular, no domain knowledge is required for applying the learning and the detection algorithm.
This renders our algorithm a very flexible, generic approach for anomaly detection in spatially and
temporally structured time series. We have shown that the new approach is able to detect anomalies
in robot time series data with remarkably high precision.

Future research will have to show reproducibility of the results (i) with different kinds of anomalies,
(ii) in new environments (e.g., on other robots). Furthermore, we believe that variational inference
will enable us to extract the true latent dynamics of the system from observable data by introducing
suitable priors and transitions into STORN.
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