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ABSTRACT

Distance weighted discrimination (DWD) was originally proposed to handle the
data piling issue in the support vector machine. In this paper, we consider the
sparse penalized DWD for high-dimensional classification. The state-of-the-art
algorithm for solving the standard DWD is based on second-order cone program-
ming, however such an algorithm does not work well for the sparse penalized
DWD with high-dimensional data. In order to overcome the challenging com-
putation difficulty, we develop a very efficient algorithm to compute the solution
path of the sparse DWD at a given fine grid of regularization parameters. We
implement the algorithm in a publicly available R package sdwd. We conduct
extensive numerical experiments to demonstrate the computational efficiency and
classification performance of our method.
Key words: High-dimensional classification, SVM, DWD.

1 INTRODUCTION

The support vector machine (SVM) (Vapnik, 1995) is a widely used modern classification method.
In the standard binary classification problem, training dataset consists of n pairs, {(xi, yi)}ni=1,
where xi ∈ Rp and yi ∈ {−1, 1}. The linear SVM seeks a hyperplane {x : β0 + xTβ = 0} which
maximizes the smallest margin of all data points:

arg max
β0,β

min
i
di,

subject to di = yi(β0 + xTi β) + ηi ≥ 0, ηi ≥ 0, ∀i,
∑

ηi ≤ c, ||β||22 = 1,

where di is defined as the margin of the ith data point, ηi’s are slack variables introduced to ensure
all margins non-negative, and c > 0 is a tuning parameter controlling the overlap. By using a kernel
trick, the SVM can also produce nonlinear decision boundaries by fitting an optimal separating
hyperplane in the extended kernel feature space.

Marron et al. (2007) noticed that when the SVM is applied on some data with n < p, many data
points lie on two hyperplanes parallel to the decision boundary. Marron et al. (2007) referred to
this phenomenon as data pilling and claimed that the data pilling can “affect the generalization
performance of SVM”. To overcome this issue, Marron et al. (2007) proposed a new method called
the distance weighted discrimination (DWD), which finds a separating hyperplane minimizing the
sum of the inverse margins of all data points,

arg min
β0,β

∑
1/di,

subject to di = yi(β0 + xTi β) + ηi ≥ 0, ηi ≥ 0, ∀i,
∑

ηi ≤ c, ||β||22 = 1.

Marron et al. (2007) asserted the DWD can avoid the data piling and thereby improve the gener-
alizability. As for the computation of the DWD, Marron et al. (2007) observed that the DWD is
an application of the second-order cone programming. The algorithm has been implemented in a
Matlab implementation (Marron, 2013) and an R package DWD (Huang et al., 2012).
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Figure 1: The solution paths for the prostate data (n = 102, p = 6033) using the elastic-net DWD
and the elastic-net SVM. In every method, λ2 is fixed to be 1. The dashed vertical lines indicate the
λ1 selected by the five-folder ross validation. Both timings are averaged over 10 runs.

In this paper we focus on classification with high-dimensional data where the number of covariates
is much larger than the sample size. The standard SVM and DWD are not suitable tools for high-
dimensional classification for two reasons. First, based on the scientific hypothesis that only a few
important variables affect the outcome, a good classifier for high-dimensional classification should
have the ability to select important variables and discard irrelevant ones. However, the standard
SVM and DWD use all variables and do not conduct variable selection. Second, because these two
classifiers use all variables, they may have very poor classification performance. Owing to these
two considerations, sparse classifiers are generally preferred for high-dimensional classification. In
the literature, some penalties have been applied to the SVM to produce sparse SVMs such as the `1
SVM (Bradley and Mangasarian, 1998; Zhu et al., 2004), the SCAD SVM (Zhang et al., 2006), and
the elastic-net penalized SVM (Wang et al., 2006).

In this work we consider sparse penalized DWD for high dimensional classification. Compared to
the standard DWD, the sparse DWD is computationally more challenging and requires a different
computing algorithm. To this end, we derive an efficient algorithm to solve the sparse DWD by
combining majorization-minimization principle and coordinate-descent. We have implemented the
algorithm in an R package sdwd. To give a quick demonstration here, we use the prostate cancer
data (Singh et al., 2002) as an example. The left panel of Figure 1 depicts the solution paths of
the elastic-net DWD, and sdwd only took 0.453 second to compute the whole solution path. We
observed that the timing of the sparse SVM was about 290 times larger than that of the sparse DWD.

2 SPARSE DWD

In this section we present several sparse penalized DWDs. We first propose an `1 DWD:(
β̂0(lasso), β̂(lasso)

)
= arg min

β0,β

1

n

n∑
i=1

V
(
yi(β0 + xTi β)

)
+ λ1||β||1. (2.1)

where the loss function is given by

V (u) =

{
1− u, if u ≤ 1/2,

1/(4u), if u > 1/2.

Similar to the `1 SVM, we replace the `2 norm penalty with the `1 norm penalty to achieve sparsity in
the DWD classifier. The lasso penalized DWD classification rule is Sign(β̂0(lasso) + xT β̂(lasso)).

Besides the `1 norm penalty, we also consider the elastic-net penalty (Zou and Hastie, 2005). It
is now well-known that the elastic-net often outperforms the lasso (`1 norm penalty) in prediction.
Wang et al. (2006) studied the elastic-net penalized SVM (DrSVM) and showed that the DrSVM
performs better than the `1 norm SVM. Similarly, we propose the elastic-net penalized DWD:(

β̂0(enet), β̂(enet)
)
= arg min

β0,β

1

n

n∑
i=1

V (yi(β0 + xTi β)) +

p∑
j=1

(
λ1|βj |+

λ2
2
β2
j

)
. (2.2)

The elastic-net penalized DWD classification rule is Sign(β̂0(enet)+xT β̂(enet)). In our paper, we
also present the adaptive elastic-net DWD, which produces estimators with the oracle properties.
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Table 1: The mean mis-classification percentage and timings (in seconds) for four benchmark
datasets. All the timings include the five-folder cross validation. For each data, the methods with
the best prediction accuracy are marked by black boxes.

Arcene Breast LSVT Prostate
n = 100, p = 10000 n = 42, p = 22283 n = 126, p = 309 n = 102, p = 6033

error time error time error time error time

enet DWD 34.43 123.41 26.50 58.40 16.01 8.28 10.22 28.18
(0.56) (5.16) (1.00) (1.90) (0.34) (0.23) (0.30) (0.95)

aenet DWD 34.60 200.19 26.86 116.12 15.92 13.72 10.26 39.25
(0.57) (9.24) (1.00) (3.78) (0.34) (0.29) (0.26) (1.24)

enet logistic 34.16 211.18 24.67 145.35 16.96 10.73 10.65 102.19
(0.58) (3.40) (1.00) (0.74) (0.37) (0.18) (0.29) (1.56)

aenet logistic 34.15 393.03 25.12 290.31 16.93 17.02 10.75 189.44
(0.57) (6.52) (0.87) (1.47) (0.37) (0.29) (0.29) (2.84)

enet SVM 35.10 7410.09 23.95 567.43 16.27 63.10 10.56 2508.94
(0.67) (1465.68) (1.00) (15.19) (0.37) (0.77) (0.36) (0.77)

3 COMPUTATION

In this section, we propose an intuitive but efficient algorithm for computing the solution paths of
the sparse DWD. Our algorithm uses the generalized coordinate descent (GCD) proposed by Yang
and Zou (2013). The same algorithm solves all `1, elastic-net, and adaptive elastic-net DWDs.

Without loss of generality, we assume that the variables xj are standardized. We fix λ1 and λ2 and
let ui = yi(β̃0 + xTi β̃). We focus on βj’s first. For each βj , we define the coordinate-wise update:

F (βj |β̃, β̃0) =
1

n

n∑
i=1

V
(
ui + yixij(βj − β̃j)

)
+ pλ1,λ2(βj). (3.1)

Then the standard coordinate descent algorithm suggests cyclically updating

β̂j = arg min
βj

F (βj |β̃0, β̃) (3.2)

for each j = 1, . . . , p. However, (3.2) does not have a closed-form solution. The GCD algorithm
solves this issue by adopting the MM principle (De Leeuw and Heiser, 1977; Lange et al. , 2000;
Hunter and Lange, 2004). We approximate the F function by a quadratic function

Q(βj |β̃, β̃0) =
∑n
i=1 V (ui)

n
+

∑n
i=1 V

′(ui)yixij
n

(βj − β̃j) + 2(βj − β̃j)2 + pλ1,λ2
(βj). (3.3)

Define S(z, r) = sign(z)(|z| − r)+ (Donoho and Johnston, 1994). We then update β̃j by β̃new
j , the

closed-form minimizer of (3.3), β̃new
j = S

(
Mβ̃j − 1

n

∑n
i=1 V

′(ui)yixij , λ1

)
/(4 + λ2).

We prove the algorithm enjoys the strict descent property and guarantees convergence to the correct
solution satisfying the KKT condition. We have implemented the algorithm in an R package sdwd,
where we exploit the warm-start, the strong rule, and the active set trick to accelerate the algorithm.

4 REAL DATA EXAMPLES

In this section we analyzed four benchmark data (Lichman, 2013). We compared timings and predic-
tion accuracy of elastic-net DWD, adaptive elastic-net DWD, elastic-net logistic regression, adaptive
elastic-net logistic regression, and elastic-net SVM. Table 1 summarizes the results. For the sparse
DWD, we get the same message as Marron et al. (2007) concluded for the standard DWD: “it very
often is competitive with the best of the others and sometimes is better.” We also notice that the
computation of the sparse DWD is the fastest in almost all cases.
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