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Abstract Bayesian optimization is a powerful method for automating tuning of compilers. The
complex landscape of autotuning provides amyriad of rarely considered structural challenges
for black-box optimizers, and the lack of standardized benchmarks has limited the study
of Bayesian optimization within the domain. To address this, we present CATBench, a
comprehensive benchmarking suite that captures the complexities of compiler autotuning,
ranging from discrete, conditional, and permutation parameter types to known and unknown
binary constraints, as well as both multi-fidelity and multi-objective evaluations. The
benchmarks in CATBench span a range of machine learning-oriented computations, from
tensor algebra to image processing and clustering, and uses state-of-the-art compilers, such
as TACO and RISE/ELEVATE. CATBench offers a unified interface for evaluating Bayesian
optimization algorithms, promoting reproducibility and innovation through an easy-to-use,
fully containerized setup of both surrogate and real-world compiler optimization tasks.
We validate CATBench on several state-of-the-art algorithms, revealing their strengths and
weaknesses and demonstrating the suite’s potential for advancing both Bayesian optimization
and compiler autotuning research.

1 Introduction
Bayesian optimization (BO) [37, 31, 47, 18, 20] is a powerful tool for automating the optimization of
resource-intensive black-box systems, such as machine learning hyperparameter optimization [16,
44, 28, 29, 30], hardware design [38, 15], and scientific discovery [24, 36, 50]. By intelligently
exploring the configuration space and learning from observed performance, BO can efficiently
identify high-performing configurations with limited resource consumption.

Autotuning [1, 5, 54, 55, 58, 4, 35] is the black-box optimization process of any performance-
impacting parameters in a general program on a hardware platform. The impact of optimization is
profound, and efficiency gains of up to 1.5x - 11.9x are frequently observed in practice [4, 56, 26].
However, autotuning is not without its challenges: the search spaces are commonly discrete,
categorical, and permutation-based and may involve both known and unknown constraints on the
parameter space. Moreover, multiple output metrics are of relevance [45], and performance differs
across hardware and the type of computation that is to be performed [56, 54, 4]. As such, despite
the importance of autotuning for the performance of compiled programs, most applications of BO
in this domain [59, 54] have not been adapted to address these unique challenges. In-depth design
of BO methods for this domain have thus been limited, with the notable exceptions of the Bayesian
Compiler Optimization framework (BaCO) [26] and GPTune [35, 4].

To facilitate further research and development in BO for autotuning, it is crucial to have a
diverse and representative set of benchmarks. A comprehensive benchmarking suite is necessary to
evaluate optimization algorithms effectively, ensuring that they can handle the complex and varied
nature of real-world autotuning problems. We introduce CATBench1, a comprehensive benchmarking
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suite designed to evaluate black-box optimization algorithms in the context of compiler autotuning.
CATBench builds upon the real-world applications used in the BaCO [26] framework, incorporating
additional parameters, fidelity levels, and multiple objectives. The suite encompasses a wide range
of domains, including tensor algebra, image processing, and machine learning, and targets various
backend hardware platforms, e.g., Intel CPUs and Nvidia GPUs. By providing a standardized set
of real-world benchmarks with a unified, containerized interface usable on a variety of hardware,
CATBench enables fair benchmarking of optimization algorithms and facilitates reproducibility.
Additionally, the architecture of our benchmarking suite makes it easy to extend the benchmark
suite with new compiler frameworks and autotuning problems.

The main contributions of this paper are as follows:

1. A comprehensive benchmark suite consisting of ten real-world compiler optimization tasks,
which encompass mixed discrete, categorical, and permutation-based search spaces, incorporate
both known and unknown binary constraints, and support multiple tuning objectives and
multi-fidelity information sources.

2. A benchmarking framework that provides a simple interface and makes it easy to prototype
using surrogate models and run large scale experiments on clusters of server machines,

3. Thorough evaluation of popular BO methods and Evolutionary Algorithms showcasing the
properties of the benchmarking suite. Since the existing optimization methods do not cover all
the features needed by autotuning we include necessary adaptations for compatibility with the
requirements of CATBench.

2 Background

2.1 Bayesian Optimization

BO aims to find a minimizer x∗ ∈ argminx∈S 𝑓 (x) of the black-box function 𝑓 (x) : S → R, over
some possibly discontinuous, non-euclidean input space S . 𝑓 can only be observed pointwise and
its observations are perturbed by Gaussian noise, 𝑦 (x) = 𝑓 (x) + 𝜀𝑖 , where 𝜀𝑖 ∼ N (0, 𝜎2𝜀 ). The
Gaussian processes (GPs) is the model class of choice in most BO applications. A GP provides a
distribution over functions 𝑓 ∼ GP (𝑚(·), 𝑘 (·, ·)), fully defined by the mean function 𝑚(·) and
the covariance function 𝑘 (·, ·). Under this distribution, the value of the function 𝑓 (x) at a given
location x is normally distributed with a closed-form solution for the mean 𝜇 (x) and variance
𝜎2(x). We model a constant mean, so the covariance function fully determines the dynamics 𝑘 (·, ·).
The acquisition function uses the surrogate model to quantify the utility of a point in S . Acquisition
functions balance exploration and exploitation, typically employing a greedy heuristic. The most
common is Expected Improvement (EI) [31, 3], but other acquisition functions, such as Thompson
sampling [53] and Upper Confidence Bound [49, 48], are also frequently utilized [17, 57].

2.2 Compiler Optimization

Compiler autotuning is the process of automatically optimizing compiler parameters to enhance
the performance of software on specific hardware backends. The task at hand is to generate code
that minimize objectives such as program execution time, memory use, storage size, and power
consumption for a given low-level program, such as matrix-matrix multiplication [26]. Tunable
parameters include loop ordering, the number of threads for parallel execution, data chunk sizes,
and various boolean flags related to in-lining and loop unrolling, among multiple others. These
parameters enable us to optimize the memory access patterns so that more of the program data can
stay in the CPU cache, which in turn accelerates the program to complete faster.

This optimization process is crucial for achieving efficient execution of programs, particularly
on modern heterogeneous computing architectures, such as central processing units (CPUs), graph-
ical processing units (GPUs), and field-programmable gate array (FPGAs). Autotuning typically
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leverages heuristic search algorithms [1], evolutionary methods [9, 25], or BO [26, 60, 61] to ex-
plore the vast configuration spaces, which include discrete, categorical, and permutation-based
parameters, while considering both known and unknown constraints.

2.3 Related Work

Bayesian Optimization over Discrete Search Spaces. BO has seen multiple adaptations to ac-
commodate alternatively structured search spaces. SMAC [27, 34] natively supports discrete and
categorical parameter types due to its use of a Random Forests surrogate. [39, 11, 41, 43, 57] propose
kernels that handle integer-valued or categorical parameters, while [8, 21] focus on optimizing
the acquisition function in this context. Additionally, [40, 10] consider BO algorithms specifically
designed for permutation-based search spaces. The BaCO framework [26] integrates multiple
components to address the unique characteristics of compiler search spaces. This includes cate-
gorical [43, 57] and permutation-based [10] kernels, acquisition functions for handling unknown
constraints [19, 22], and Random Forests surrogate models for constraint prediction [27].

Autotuning Methods. In the context of compiler autotuning, BO has been successfully applied
to find high-performing compiler configurations for various programming languages, compilers,
and target architectures [2, 4, 59, 54, 26]. The autotuning problem is formulated as a black-box
optimization problem, where the objective is the performance metric of interest (execution, energy
usage) and the input space consists of compiler flags, parameters, and transformations.

Benchmarking Suites. Autotuning lacks a standardized benchmarking suite, despite various efforts
to develop such resources [42, 23, 52, 56, 60]. In Table 1, we present a comparative analysis of our
benchmarking suite against these prior works. PolyBench [23, 60] offers a substantial collection
of benchmarks, each with multiple input datasets. While some benchmarks include up to 10
optimization parameters, they are predominantly boolean parameters (which is a specific instance
of categorical parameters), with none being permutation variables, resulting in unrealistically small
search spaces which are not representative of real-world autotuning applications. Furthermore,
PolyBench does not emphasize multi-objective optimization or multi-fidelity parameters and
consists of C-based benchmarks without a Python interface. KTT [42] exhibits similar limitations
to PolyBench, although it provides benchmarks with larger search spaces. BAT [52, 56] features a
suite of Nvidia CUDA GPU kernels, accessible via a Python interface, with generally larger search
spaces than those in PolyBench and KTT. Nevertheless, each benchmark is limited to a single input
dataset and lacks permutation variables, unknown constraints, and support for multi-objective
tuning or multi-fidelity information sources. In the category of reinforcement-learning agents
there is also the notable work of CompilerGym [7], an extensive suite of compiler environments.

In the context of BO, a large collection of benchmarking suites have been proposed. primarily in
the context of Hyperparameter Optimization (HPO) [65, 33]. HPOBench [14] provides a collection of
models for evaluating hyperparameter optimization algorithms, and captures a range of parameter
types as well as multi-fidelity evaluations, whereas [62, 12, 64] target benchmarking of Neural
Architecture Search (NAS) algorithms. MCBO [13] collects discrete and categorical tasks and BO
algorithms in a modular structure. Lastly, BaCO [26] introduced a set of benchmarks for evaluating
BO algorithms in the context of autotuning, derived from real-world applications and compilers,
covering a range of domains and target architectures.

CATBench is a comprehensive suite based on BaCO, which: 1) expands the Tensor Algebra
COmpiler (TACO) benchmarks with additional parameters and options, 2) implements and exposes
multiple multi-fidelity and multi-objective parameters, and 3) incorporates CPU and GPU energy
measurements to extend the benchmarks to multi-objective problems.
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Name Types Bench. 𝑀 𝐷 Datasets 𝐹 |S | Cons. Python

PolyBench OC 30 1 3 − 10 5 0 102 − 105 K N
KTTBench OC 10 1 5 − 15 1 0 102 − 105 K N
BAT OC 8 1 6 − 10 1 0 102 − 106 K Y

CATBench OCP 10 2 − 3 4 − 10 1 − 15 2 − 4 103 − 108 K/H Y

Table 1: Benchmark characteristics for various benchmark suites. In order, left to right: Name of
the benchmark suite, exposed parameter types (O=ordinal, C=categorical, P=permutations),
number of benchmarks Bench., number of exposed objectives 𝑀 , input dimensionality 𝐷 ,
number of input datasets, number of fidelity dimensions 𝐹 , search space cardinality S , the
types of constraints included (K=known, H=hidden), and whether or not the benchmarks are
easily callable from Python.

3 The CATBench Benchmarking Suite

CATBench is a comprehensive benchmarking suite designed to evaluate BO algorithms in the con-
text of autotuning, which presents unique challenges to black-box optimization. These challenges
include a unique combination of conditions such as permutation variables, known and unknown
constraints, and variations in search spaces between hardware architectures [26]. CATBench com-
prises a diverse set of benchmarks derived from real-world applications and compilers, covering
various domains, hardware platforms, and optimization challenges. The suite is accessible through
an intuitive Python interface, enabling users to quickly prototype novel algorithms with surrogate
models or deploy the benchmarks to a cluster of servers using our client-server architecture.

3.1 The CATBench Interface

The CATBench Python interface facilitates benchmarking via a client-server architecture and Docker
containers. The interface significantly simplifies the evaluation process by providing a consistent
environment for performance assessments. The code snippet illustrates a typical benchmarking
workflow using CATBench, using either a surrogate model or a hardware benchmarking server:

1 import catbench as cb
2
3 study = cb.benchmark("asum") # Surrogate example
4 study = cb.benchmark("asum", dataset="server", # Hardware example
5 server_addresses =["your_benchmark_server"])
6
7 space = study.definition.search_space
8 optimizer = your_optimizer_setup(space)
9
10 while optimizer.not_done:
11 config , fidelities = optimizer.next()
12 # e.g. fidelities: { "iterations ": 10 }
13
14 result = study.query(config , fidelities)
15 optimizer.update(result)

Listing 1: Benchmarking with CATBench

A naive approach could involve an interface that directly calls the TACO and RISE benchmarks
using Python subprocesses. However, this method is inefficient due to the high overhead of
repeatedly starting and initializing a benchmark for each configuration, including reloading all
input datasets, making the process extremely time-consuming. To overcome this inefficiency, we
designed a client-server benchmark setup. By starting the server once, we can initially load the
program and datasets, then continuously listen for and execute new configurations, significantly
reducing initialization overhead and streamlining the benchmarking process.
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Figure 1: The CATBench network-based client-server model.

The architecture, depicted in Figure 1, builds on the client-server interface concept introduced by
HyperMapper [38] and BaCO [26], extending it to a network-oriented protocol. We adopt Google’s
RPC framework, gRPC, which is well-suited for network communication. With gRPC, benchmarks
can be implemented in any programming languagewhile maintaining seamless communicationwith
a Python-based optimizer. This decoupling enables deploying benchmarks on separate machines
and optimizing them from another machine, as shown in Figure 1. Consequently, this setup allows
for creating a scalable server cluster to run benchmarks and distribute tasks across machines.

CATBench provides surrogate models of the benchmarks for quick prototyping and piloting.
These surrogate models enable preliminary testing and optimization without requiring specific
GPUs or CPUs, and can soften particular requirements of the real benchmark. The surrogates aim
to provide value in early stages of development, when computational resources may be limited, or
quick iterations are needed to inform decisions on algorithm design. We employ Docker containers
to encapsulate benchmarking tools and their dependencies, ensuring consistency and reproducibility
across diverse environments. This approach enables the user to easily set up an environment that
mitigates software version conflicts and system incompatibilities, ensuring reliable and comparable
results. This approach, akin to NASBench [63] in the context of NAS, is outlined in App. A.

3.2 Benchmark Characteristics

Table 2 provides a detailed overview of the benchmarks included in CATBench. The table presents
key characteristics and statistics of each benchmark, allowing for a comprehensive understanding
of their complexity and optimization challenges. The benchmarks are categorized into two groups
based on the types of hardware, tasks, and the compiler used: The TACO tasks, which are based
on the Tensor Algebra Compiler (TACO) [32] and address the optimization of computations made
on the CPU, and RISE/ELEVATE [51], which are based on the RISE data parallel language and its
optimization strategy language ELEVATE and address computations made on the GPU. Apart from
the types of programs in each group of benchmarks, the groups of benchmarks additionally differ
in their search spaces, number of objectives, fidelities, and constraint characteristics.

3.2.1 TACO. The TACO benchmarks focus on sparse matrix, vector, and tensor computations on the CPU.
The benchmarks include sparse matrix multiplication (SpMM), sparse matrix-vector multiplication
(SpMV), sampled dense-dense matrix multiplication (SDDMM), tensor times vector (TTV), and ma-
tricized tensor times Khatri-Rao product (MTTKRP). The search spaces involve ordinal, categorical,
and permutation parameters, with known and unknown constraints on how the program can be
compiled. The objective is to minimize the execution time and the CPU energy consumption of
the generated code. TACO is a compiler written in C++ that generates, compiles, and runs a C
program to solve the tensor algebra expression based on the input configuration provided by the
user. The optimal choice of values for these optimization parameters will vary based on the specific
hardware architecture details of the CPU that the program is running on. See subsection B.1 for
more details on the TACO benchmarks.

The TACO benchmarks are characterized by a mix of ordinal, categorical, and permutation
parameters. For example, the loop ordering parameter in these benchmarks is a permutation
parameter that determines the order in which nested loops are executed—a critical factor affecting
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Group Benchmark Params 𝑀 𝐷 𝐹 |V ⊆ S | |V |
|S | Cons. Hardware

RI
SE

GEMM O 3 10 4 156 · 106 1.34% K/H GPU
Asum O 3 5 4 61.7 · 103 4.80% K GPU
Kmeans O 3 4 4 3.62 · 103 24.70% K/H GPU
Scal O 3 7 4 4.24 · 106 10.70% K/H GPU
Stencil O 3 4 4 3.64 · 103 24.90% K GPU

TA
C
O

SpMM OCP 2 8 2 310 · 103 5.40% K CPU
SpMV OCP 2 9 2 14.2 · 106 10.69% K CPU
SDDMM OCP 2 8 2 576 · 106 3.71% K CPU
TTV OCP 2 9 2 17.8 · 106 21.20% K/H CPU
MTTKRP OCP 2 8 2 5.87 · 106 19.70% K CPU

Table 2: Properties of each benchmark in CATBench. In order, left to right: Exposed parameter types
(O=ordinal, C=categorical, P=permutations), number of exposed objectives𝑀 , input dimen-
sionality 𝐷 , number of fidelity dimensions 𝐹 , number of known valid configurations |V ⊆ S |,
ratio of known valid configurations |V ||S | , and the types of constraints (K=known, H=hidden).

memory access patterns and cache utilization. The benchmarks have relatively large search space
sizes and a high percentage of valid configurations. The TACO benchmarks also feature known
constraints. Compared with the TACO benchmarks from BaCO [26] we have extended the search
space with two new parameters, added four multi-fidelity parameters, and added CPU energy as an
additional objective.

3.2.2 RISE/ELEVATE. The RISE/ELEVATE benchmarks are derived from the RISE/ELEVATE [51] compiler
framework. The RISE programming language and ELEVATE configuration language specify how the
framework should generate an optimized GPU OpenCL kernel. The benchmarks cover dense linear
algebra (GEMM, Asum, Scal), clustering (Kmeans), and stencil computations (Stencil). The objectives
are to minimize execution time of the generated code on the GPU, while minimizing energy on
the CPU, the GPU, or both. See subsection B.2 for details the benchmark computations. The
benchmarks involve ordinal parameters and have a relatively low percentage of valid configurations
due to substantial known and hidden constraints. The search spaces involve a mix of ordinal and
continuous parameters, with known as well as hidden constraints, which are exposed when a
configuration is queried. These benchmarks have moderate search space sizes and multiple fidelity
dimensions.

3.2.3 Constraint Handling. We expect the optimization algorithms to handle known constraints directly,
which can avoid querying invalid configurations. Unknown (hidden) constraints, which are only
discovered upon evaluation, are modeled by returning a constant poor objective value when a
configuration violates such constraints. Invalid configurations are not discarded but rather assigned
penalty values to maintain a consistent optimization interface.

3.2.4 Multi-fidelity and Multi-objective Benchmarks.
Multi-fidelity Evaluation As the evaluations of both energy usage and runtime of compiled

programs are typically subject to substantial noise, it is conventional to evaluate a configuration tens
of times and use the average (median or mean) observation for optimization purposes. Moreover,
there is an additional option to repeat runs several times, where the cache is cleared before re-
evaluation to eliminate a source of bias. After evaluation, transitory background noise might appear
from periodic background disturbances. To counteract these events, we allow the user to specify
the wait time between benchmark repeats. Finally, we also allow for the control of the wait period
after the benchmarking is finished before a new configuration may start. This process exposes four
fidelity parameters: the number of iterations to compute the kernel, the re-evaluations after the
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Benchmark CPU/GPU #Cores Memory Figure Labels

TACO
2x Intel Xeon E5-2630 v4 2 × 10 128 GB DDR4 XeonE5
2x Intel Xeon Gold 6242 2 × 16 768 GB DDR4 XeonG
2x AMD Epyc 7742 2 × 64 256 GB DDR4 Epyc

RISE/ELEVATE Nvidia Titan RTX 4608 24 GB GDDR6 TitanV / TV
Nvidia Titan V 5120 12 GB HBM2 RTXTitan / RTX

Table 3: Hardware Specifications for TACO and RISE/ELEVATE Benchmarks.

cache is cleared, wait between repeats, and a wait after evaluation. All benchmarks in CATBench
support multi-fidelity evaluation along multiple dimensions, to facilitate complex cost-efficient
optimization. The number of fidelity dimensions are displayed in the 𝐹 column of Table 2. In our
experiments, we used default fidelity settings of 10 iterations for kernel execution, 5 repeats with
cache clearing between each repeat, 1 second wait between repeats, and 10 seconds wait between
configurations. While we did not perform extensive evaluation of multi-fidelity optimization
algorithms in this work, these parameters provide a foundation for future multi-fidelity studies.
For TACO benchmarks specifically, the iterations parameter controls how many times the kernel is
called in the inner loop, while repeats determines the number of outer loop executions with cache
clearing between each repetition.

Multi-Objective Evaluations All benchmarks in CATBench are amenable to multiple optimiza-
tion objectives, where the objectives display varying degrees of conflict, as visualized in Figure 6.
The exposed objectives are program runtime and energy usage. The "Obj" column in Table 2
indicates the number of objectives for each benchmark.

3.2.5 Variability Across Hardware. The optimal compiler configuration varies with different hardware,
making each hardware effectively a new CATBench benchmark. As shown in Figure 4, we illustrate
this by running a set of configurations on three tasks, SpMV, SDDMM and Stencil, and plotting the
distribution of output values. The output values’ distribution varies between tasks and indicates
that the tasks are similar but not identical. This demonstrates CATBench’s utility in a transfer
learning context: practitioners can optimize tasks on one hardware and use transfer learning to
warm-start optimization on other models.

Benchmark variability necessitates running all algorithms on the same hardware during an op-
timization round to ensure consistency. Additionally, CATBench benchmarks are influenced by hard-
ware conditions, such as operational temperature, affecting performance. Significant evaluations
should be conducted on managed compute clusters to minimize external factors. Since performance
evaluations on real hardware are inherently noisy and environment-dependent, CATBench provides
surrogate tasks to model the underlying objective for reproducibility in controlled settings.

4 Results

We now assess various properties of CATBench. We demonstrate the performance of various
optimization algorithms on the CATBench, in a single-objective context on TACO, and for multiple
objectives on RISE/ELEVATE. We evaluate three optimization algorithms: BaCO, NSGA-II, and
Random Search. To provide a diverse display, the TACO benchmarks focus on single-objective
optimization for compute time, whereas for the RISE/ELEVATE benchmarks, we perform multi-
objective optimization considering both compute time and GPU energy consumption. We assess
variability across hardware for three tasks and analyze feature importance for the Stencil and SPMM
benchmark. Lastly, we provide insight on multi-objective components of CATBench. Table 3 outlines
hardware specifications used for our experiments, which determines benchmark characteristics.
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Figure 2: Minimum average compute time including two standard errors per optimization algorithm
on the TACO optimization tasks on XeonE5. BaCO substantially outperforms non-BO
algorithms. NSGA-2 encountered numerical errors on SDDMM and MTTKRP.

4.1 Optimization Results
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Figure 3: Hypervolume improvement on compute time and GPU energy consumption from a reference
point, including two standard errors per optimization algorithm on the RISE/ELEVATE
optimization tasks on RTXTitan. BaCO substantially outperforms non-BO algorithms.

We evaluate the optimization performance of three algorithms, BaCO, NSGA-II and Random
Search on CATBench. For the TACO results in Figure 2 we run single-objective optimization on
the compute time of the kernels. For our RISE/ELEVATE benchmarks we run multi-objective
optimization with compute time and GPU energy consumption as seen in Figure 3. Here, BaCO
significantly outperforms the non-BO algorithms, with NSGA-II encountering numerical errors on
SDDMM and MTTKRP. For the RISE/ELEVATE benchmarks, we perform multi-objective optimiza-
tion considering both compute time and GPU energy consumption. Figure 6 illustrates that BaCO
also substantially outperforms the other algorithms in this context, in all tasks but Stencil.

4.2 Understanding the CATBench Benchmarks

Variability Across Hardware We evaluate the variability across hardware for three tasks to assess
the general variation, and assess the potential for CATBench in the context of meta-learning. In
Figure 4, we plot the empirical PDF for the computational speedup of 5000 random samples
across three tasks (SpMV, SDDMM, and Stencil) and different hardware types, specified in Table 3.
Depending on hardware, tuning these application can deliver between a 10x improvement in
performance from a non-tuned, default setting application.

Feature Importance Many of the CATBench compilers have similar search spaces, but their
characteristics may vary substantially. In Figure 5, the permutation feature importance for both
objectives on the Stencil benchmark run on an TitanRTX (RTX) and a TitanV (TV) and the same
metric for compute time of the SPMM benchmark across hardware. Some parameters, like omp_-
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Figure 4: Empirical density of speedups for SPMV, SDDMM and Stencil for three anthreed two sets of
hardware, respectively. The distribution of output is similar across tasks, suggesting that a
change in hardware yields a similar, albeit not identical task.

num_threads for SPMM, and tuned_gs0 and tuned_gs1 for Stencil, have substantially varying feature
importance. The benchmarks are moderately sparse in the number of high-impact dimensions.
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Figure 5: (left) Feature importance for both objectives on the Stencil benchmark run on an TitanRTX
(RTX) and a TitanV (TV). (right) Feature importance for compute time for the SPMM bench-
mark across hardware. The omp_num_threads parameter is the most important on both Epyc
and XeonE5, while only marginally impactful when run on XeonG. While all objectives are
fairly sparse, the feature importances can vary substantially between hardware.
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Figure 6: Computational speedup and energy efficiency for all explored configurations on the Kmeans
and Stencil benchmarks. The objectives display moderate correlation, and Pareto front
configurations exhibit various trade-offs in computational speed-up.

Multi-Objective Trade-offs. Figure 6 highlight the multi-objective trade-offs that CATBench exposes
by displaying approximate trade-offs between the two objectives, runtime and energy consuption,
for the two RISE tasks KMeans and Stencil. The two objectives are moderately correlated for
lower-performing configurations, yet produces a broad Pareto front with diverse characteristics.
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5 Conclusion

We introduce CATBench, a benchmarking suite for evaluating BO algorithms in compiler autotuning.
CATBench features a diverse set of benchmarks derived from real-world applications, covering
various domains, hardware platforms, and optimization challenges. These benchmarks are selected
to reflect the unique characteristics of compiler autotuning tasks. CATBench offers a novel set of
challenging tasks to BO through exotic search spaces, multi-objective and multi-fidelity evaluations,
and transfer learning capabilities. By providing a standardized set of benchmarks and a unified
evaluation interface, CATBench enables fair comparison reproducibility, while enabling accelerated
progress towards more efficient and effective autotuning methods.

CATBench aims to be a valuable resource for researchers and practitioners, enabling the develop-
ment and evaluation of novel algorithms, identifying strengths and weaknesses of existing methods,
and assessing the impact of different design choices. Future work includes expanding CATBench
with additional benchmarks from emerging domains, incorporating new performance metrics, and
establishing a public leaderboard and repository of state-of-the-art results akin to DAWNBench [6].

Acknowledgements

Luigi Nardi was supported in part by affiliate members and other supporters of the Stanford DAWN
project — Ant Financial, Facebook, Google, Intel, Microsoft, NEC, SAP, Teradata, and VMware. Carl
Hvarfner and Luigi Nardi were partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. Luigi
Nardi was partially supported by the Wallenberg Launch Pad (WALP) grant Dnr 2021.0348. The
experiments were performed on resources provided by Sigma2 — the National Infrastructure for
High-Performance Computing and Data Storage in Norway, as well as the IDUN [46] computing
cluster at NTNU.

References

[1] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M. O’Reilly, and
S. Amarasinghe. OpenTuner: an extensible framework for program autotuning. In Proceedings
of the 23rd international conference on Parallel architectures and compilation, PACT ’14, pages
303–316, New York, NY, USA, Aug. 2014. Association for Computing Machinery. ISBN
978-1-4503-2809-8. doi: 10.1145/2628071.2628092. URL https://doi.org/10.1145/2628071.
2628092.

[2] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano. A Survey on Compiler
Autotuning using Machine Learning. ACM Computing Surveys, 51(5):1–42, Sept. 2018. ISSN
03600300. doi: 10.1145/3197978. URL http://dl.acm.org/citation.cfm?doid=3271482.
3197978.

[3] A. D. Bull. Convergence rates of efficient global optimization algorithms. 12:2879–2904, 2011.

[4] Y. Cho, J. W. Demmel, J. King, X. S. Li, Y. Liu, and H. Luo. Harnessing the crowd for autotuning
high-performance computing applications. In 2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 635–645. IEEE. URL https://ieeexplore.ieee.org/
abstract/document/10177466/.

[5] R. Clint Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimizations of software
and the ATLAS project. Parallel Computing, 27(1):3–35, Jan. 2001. ISSN 0167-8191. doi:
10.1016/S0167-8191(00)00087-9. URL http://www.sciencedirect.com/science/article/
pii/S0167819100000879.

10

https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/2628071.2628092
http://dl.acm.org/citation.cfm?doid=3271482.3197978
http://dl.acm.org/citation.cfm?doid=3271482.3197978
https://ieeexplore.ieee.org/abstract/document/10177466/
https://ieeexplore.ieee.org/abstract/document/10177466/
http://www.sciencedirect.com/science/article/pii/S0167819100000879
http://www.sciencedirect.com/science/article/pii/S0167819100000879


[6] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi, P. Bailis, K. Olukotun, C. Ré,
and M. Zaharia. Dawnbench: An end-to-end deep learning benchmark and competition.
Training, 100(101):102, 2017.

[7] C. Cummins, B. Wasti, J. Guo, B. Cui, J. Ansel, S. Gomez, S. Jain, J. Liu, O. Teytaud,
B. Steiner, Y. Tian, and H. Leather. CompilerGym: Robust, Performant Compiler Op-
timization Environments for AI Research. arXiv:2109.08267 [cs], Dec. 2021. URL http:
//arxiv.org/abs/2109.08267. arXiv: 2109.08267.

[8] S. Daulton, X. Wan, D. Eriksson, M. Balandat, M. A. Osborne, and E. Bakshy. Bayesian
optimization over discrete and mixed spaces via probabilistic reparameterization. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems, volume 35, pages 12760–12774. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
531230cfac80c65017ad0f85d3031edc-Paper-Conference.pdf.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002. doi:
10.1109/4235.996017.

[10] A. Deshwal, S. Belakaria, J. R. Doppa, and D. H. Kim. Bayesian optimization over permutation
spaces. Proceedings of the AAAI Conference on Artificial Intelligence, 36(6):6515–6523, Jun. 2022.
doi: 10.1609/aaai.v36i6.20604. URL https://ojs.aaai.org/index.php/AAAI/article/view/
20604.

[11] A. Deshwal, S. Ament, M. Balandat, E. Bakshy, J. R. Doppa, and D. Eriksson. Bayesian
optimization over high-dimensional combinatorial spaces via dictionary-based embeddings.
In F. Ruiz, J. Dy, and J.-W. van deMeent, editors, Proceedings of The 26th International Conference
on Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research,
pages 7021–7039. PMLR, 25–27 Apr 2023. URL https://proceedings.mlr.press/v206/
deshwal23a.html.

[12] X. Dong and Y. Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations (ICLR), 2020. URL https:
//openreview.net/forum?id=HJxyZkBKDr.

[13] K. Dreczkowski, A. Grosnit, and H. B. Ammar. Framework and benchmarks for combinatorial
and mixed-variable bayesian optimization. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2023. URL https://openreview.net/
forum?id=qi0Zrm6E5E.

[14] K. Eggensperger, P. Müller, N. Mallik, M. Feurer, R. Sass, A. Klein, N. Awad, M. Lindauer, and
F. Hutter. HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for
HPO, Oct. 2022. URL http://arxiv.org/abs/2109.06716. arXiv:2109.06716 [cs].

[15] A. Ejjeh, L. Medvinsky, A. Councilman, H. Nehra, S. Sharma, V. Adve, L. Nardi, E. Nurvitadhi,
and R. A. Rutenbar. Hpvm2fpga: Enabling true hardware-agnostic fpga programming. In Pro-
ceedings of the 33rd IEEE International Conference on Application-specific Systems, Architectures,
and Processors, 2022.

[16] D. Eriksson and M. Jankowiak. High-dimensional Bayesian optimization with sparse axis-
aligned subspaces. In C. de Campos and M. H. Maathuis, editors, Proceedings of the Thirty-
Seventh Conference on Uncertainty in Artificial Intelligence, volume 161 of Proceedings ofMachine

11

http://arxiv.org/abs/2109.08267
http://arxiv.org/abs/2109.08267
https://proceedings.neurips.cc/paper_files/paper/2022/file/531230cfac80c65017ad0f85d3031edc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/531230cfac80c65017ad0f85d3031edc-Paper-Conference.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/20604
https://ojs.aaai.org/index.php/AAAI/article/view/20604
https://proceedings.mlr.press/v206/deshwal23a.html
https://proceedings.mlr.press/v206/deshwal23a.html
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=qi0Zrm6E5E
https://openreview.net/forum?id=qi0Zrm6E5E
http://arxiv.org/abs/2109.06716


Learning Research, pages 493–503. PMLR, 27–30 Jul 2021. URL https://proceedings.mlr.
press/v161/eriksson21a.html.

[17] D. Eriksson, M. Pearce, J. Gardner, R. D. Turner, and M. Poloczek. Scalable global optimization
via local bayesian optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf.

[18] P. I. Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

[19] J. Gardner, M. Kusner, X. Zhixiang, K. Weinberger, and J. Cunningham. Bayesian optimization
with inequality constraints. In E. P. Xing and T. Jebara, editors, Proceedings of the 31st
International Conference on Machine Learning, volume 32 of Proceedings of Machine Learning
Research, pages 937–945, Bejing, China, 22–24 Jun 2014. PMLR. URL https://proceedings.
mlr.press/v32/gardner14.html.

[20] R. Garnett. Bayesian Optimization. Cambridge University Press, 2023. to appear.

[21] E. C. Garrido-Merchán and D. Hernández-Lobato. Dealing with categorical and integer-valued
variables in Bayesian Optimization with Gaussian processes. Neurocomputing, 380:20–35, Mar.
2020. ISSN 0925-2312. doi: 10.1016/j.neucom.2019.11.004. URL http://www.sciencedirect.
com/science/article/pii/S0925231219315619.

[22] M. A. Gelbart, J. Snoek, and R. P. Adams. Bayesian optimization with unknown constraints,
2014.

[23] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos. Auto-tuning a high-level
language targeted to gpu codes. In 2012 Innovative Parallel Computing (InPar), pages 1–10,
2012. doi: 10.1109/InPar.2012.6339595.

[24] R.-R. Griffiths and J. M. Hernández-Lobato. Constrained bayesian optimization for automatic
chemical design using variational autoencoders. Chemical Science, 2020.

[25] N. Hansen andA. Ostermeier. Completely derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159–195, 2001. doi: 10.1162/106365601750190398.

[26] E. Hellsten, A. Souza, J. Lenfers, R. Lacouture, O. Hsu, A. Ejjeh, F. Kjolstad, M. Steuwer,
K. Olukotun, and L. Nardi. BaCO: A Fast and Portable Bayesian Compiler Optimization
Framework. Dec. 2022. doi: 10.48550/arXiv.2212.11142. URL https://arxiv.org/abs/2212.
11142v1.

[27] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential Model-Based Optimization for General
Algorithm Configuration. In C. A. C. Coello, editor, Learning and Intelligent Optimization,
Lecture Notes in Computer Science, pages 507–523, Berlin, Heidelberg, 2011. Springer. ISBN
978-3-642-25566-3. doi: 10.1007/978-3-642-25566-3_40.

[28] C. Hvarfner, D. Stoll, A. Souza, M. Lindauer, F. Hutter, and L. Nardi. PiBO: Augmenting
Acquisition Functions with User Beliefs for Bayesian Optimization. In International Conference
on Learning Representations, 2022.

[29] C. Hvarfner, E. O. Hellsten, and L. Nardi. Vanilla Bayesian optimization performs great in
high dimensions. In R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, and
F. Berkenkamp, editors, Proceedings of the 41st International Conference on Machine Learning,

12

https://proceedings.mlr.press/v161/eriksson21a.html
https://proceedings.mlr.press/v161/eriksson21a.html
https://proceedings.neurips.cc/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
https://proceedings.mlr.press/v32/gardner14.html
https://proceedings.mlr.press/v32/gardner14.html
http://www.sciencedirect.com/science/article/pii/S0925231219315619
http://www.sciencedirect.com/science/article/pii/S0925231219315619
https://arxiv.org/abs/2212.11142v1
https://arxiv.org/abs/2212.11142v1


volume 235 of Proceedings of Machine Learning Research, pages 20793–20817. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/v235/hvarfner24a.html.

[30] C. Hvarfner, F. Hutter, and L. Nardi. A general framework for user-guided bayesian opti-
mization. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=NjU0jtXcYn.

[31] D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13:455–492, 12 1998. doi: 10.1023/A:1008306431147.

[32] F. Kjolstad, S. Chou, D. Lugato, S. Kamil, and S. Amarasinghe. Taco: A tool to generate tensor
algebra kernels. In 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 943–948, Urbana, IL, Oct. 2017. IEEE. ISBN 978-1-5386-2684-9. doi:
10.1109/ASE.2017.8115709. URL http://ieeexplore.ieee.org/document/8115709/.

[33] A. Klein, Z. Dai, F. Hutter, N. Lawrence, and J. Gonzalez. Meta-surrogate benchmarking for
hyperparameter optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/0668e20b3c9e9185b04b3d2a9dc8fa2d-Paper.pdf.

[34] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T. Ruhkopf,
R. Sass, and F. Hutter. Smac3: A versatile bayesian optimization package for hyperparameter
optimization. Journal of Machine Learning Research, 23(54):1–9, 2022. URL http://jmlr.org/
papers/v23/21-0888.html.

[35] Y. Liu, W. M. Sid-Lakhdar, O. Marques, X. Zhu, C. Meng, J. W. Demmel, and X. S. Li. GPTune:
multitask learning for autotuning exascale applications. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 234–246. ACM.
ISBN 978-1-4503-8294-6. doi: 10.1145/3437801.3441621. URL https://dl.acm.org/doi/10.
1145/3437801.3441621.

[36] N. Maus, H. Jones, J. Moore, M. J. Kusner, J. Bradshaw, and J. Gardner. Local latent space
bayesian optimization over structured inputs. In S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-
grave, K. Cho, and A. Oh, editors,Advances in Neural Information Processing Systems, volume 35,
pages 34505–34518. Curran Associates, Inc., 2022.

[37] J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking the
extremum. Towards Global Optimization, 2(117-129):2, 1978.

[38] L. Nardi, D. Koeplinger, and K. Olukotun. Practical design space exploration. In 2019 IEEE
27th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS), pages 347–358. IEEE, 2019.

[39] C. Oh, J. Tomczak, E. Gavves, and M. Welling. Combinatorial bayesian optimization using
the graph cartesian product. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/2cb6b10338a7fc4117a80da24b582060-Paper.pdf.

[40] C. Oh, R. Bondesan, E. Gavves, and M. Welling. Batch bayesian optimization on permutations
using the acquisition weighted kernel. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho,
editors, Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=LODRFJr96v.

13

https://proceedings.mlr.press/v235/hvarfner24a.html
https://openreview.net/forum?id=NjU0jtXcYn
http://ieeexplore.ieee.org/document/8115709/
https://proceedings.neurips.cc/paper_files/paper/2019/file/0668e20b3c9e9185b04b3d2a9dc8fa2d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/0668e20b3c9e9185b04b3d2a9dc8fa2d-Paper.pdf
http://jmlr.org/papers/v23/21-0888.html
http://jmlr.org/papers/v23/21-0888.html
https://dl.acm.org/doi/10.1145/3437801.3441621
https://dl.acm.org/doi/10.1145/3437801.3441621
https://proceedings.neurips.cc/paper_files/paper/2019/file/2cb6b10338a7fc4117a80da24b582060-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/2cb6b10338a7fc4117a80da24b582060-Paper.pdf
https://openreview.net/forum?id=LODRFJr96v
https://openreview.net/forum?id=LODRFJr96v


[41] L. Papenmeier, L. Nardi, and M. Poloczek. Bounce: a Reliable Bayesian Optimization Algorithm
for Combinatorial and Mixed Spaces. arXiv preprint arXiv:2307.00618, 2023.

[42] F. Petrovič, D. Střelák, J. Hozzová, J. Ol’ha, R. Trembecký, S. Benkner, and J. Filipovič. A
benchmark set of highly-efficient cuda and opencl kernels and its dynamic autotuning with
kernel tuning toolkit. Future Generation Computer Systems, 108:161–177, 2020. ISSN 0167-
739X. doi: https://doi.org/10.1016/j.future.2020.02.069. URL https://www.sciencedirect.
com/science/article/pii/S0167739X19327360.

[43] B. Ru, A. S. Alvi, V. Nguyen, M. A. Osborne, and S. J. Roberts. Bayesian optimisation over
multiple continuous and categorical inputs. arXiv preprint arXiv:1906.08878, 2019.

[44] B. Ru, X. Wan, X. Dong, and M. Osborne. Interpretable neural architecture search via bayesian
optimisation with weisfeiler-lehman kernels. arXiv preprint arXiv:2006.07556, 2020.

[45] R. Schoonhoven, B. Veenboer, B. Van Werkhoven, and K. J. Batenburg. Going green: opti-
mizing GPUs for energy efficiency through model-steered auto-tuning. In 2022 IEEE/ACM
International Workshop on Performance Modeling, Benchmarking and Simulation of High Per-
formance Computer Systems (PMBS), pages 48–59. doi: 10.1109/PMBS56514.2022.00010. URL
https://ieeexplore.ieee.org/abstract/document/10024022.

[46] M. Själander, M. Jahre, G. Tufte, and N. Reissmann. EPIC: An Energy-Efficient, High-
Performance GPGPU Computing Research Infrastructure. arXiv:1912.05848 [cs], Dec. 2020.
URL http://arxiv.org/abs/1912.05848. arXiv: 1912.05848.

[47] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of
Machine Learning Algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,
pages 2951–2959. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf.

[48] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit
setting: No regret and experimental design. In Proceedings of the 27th International Conference
on Machine Learning, pages 1015–1022, 2010.

[49] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger. Information-theoretic regret bounds
for gaussian process optimization in the bandit setting. IEEE Transactions on Information
Theory, 58(5):3250–3265, May 2012. ISSN 1557-9654. doi: 10.1109/tit.2011.2182033. URL
http://dx.doi.org/10.1109/TIT.2011.2182033.

[50] S. Stanton, W.Maddox, N. Gruver, P. Maffettone, E. Delaney, P. Greenside, and A. G.Wilson. Ac-
celerating bayesian optimization for biological sequence design with denoising autoencoders.
arXiv preprint arXiv:2203.12742, 2022.

[51] M. Steuwer, T. Koehler, B. Kopcke, and F. Pizzuti. RISE & shine: Language-
oriented compiler design. URL https://www.semanticscholar.org/paper/
RISE-%26-Shine%3A-Language-Oriented-Compiler-Design-Steuwer-Koehler/
66603dad4b237c2a47852ac39db99f2c0361294d.

[52] I. Sund, K. A. Kirkhorn, J. O. Tørring, and A. C. Elster. BAT: A Benchmark suite for AutoTuners.
Norsk IKT-konferanse for forskning og utdanning, (1):44–57, Nov. 2021. ISSN 1892-0721. URL
https://ojs.bibsys.no/index.php/NIK/article/view/915. Number: 1.

14

https://www.sciencedirect.com/science/article/pii/S0167739X19327360
https://www.sciencedirect.com/science/article/pii/S0167739X19327360
https://ieeexplore.ieee.org/abstract/document/10024022
http://arxiv.org/abs/1912.05848
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://dx.doi.org/10.1109/TIT.2011.2182033
https://www.semanticscholar.org/paper/RISE-%26-Shine%3A-Language-Oriented-Compiler-Design-Steuwer-Koehler/66603dad4b237c2a47852ac39db99f2c0361294d
https://www.semanticscholar.org/paper/RISE-%26-Shine%3A-Language-Oriented-Compiler-Design-Steuwer-Koehler/66603dad4b237c2a47852ac39db99f2c0361294d
https://www.semanticscholar.org/paper/RISE-%26-Shine%3A-Language-Oriented-Compiler-Design-Steuwer-Koehler/66603dad4b237c2a47852ac39db99f2c0361294d
https://ojs.bibsys.no/index.php/NIK/article/view/915


[53] W. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[54] J. O. Tørring and A. C. Elster. Analyzing Search Techniques for Autotuning Image-based GPU
Kernels: The Impact of Sample Sizes. In 2022 IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW), pages 972–981, May 2022. doi: 10.1109/IPDPSW55747.
2022.00155. URL https://ieeexplore.ieee.org/abstract/document/9835509.

[55] J. O. Tørring, J. Christian Meyer, and A. C. Elster. Autotuning Benchmarking Techniques:
A Roofline Model Case Study. In 2021 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 806–815, June 2021. doi: 10.1109/IPDPSW52791.2021.
00119.

[56] J. O. Tørring, B. van Werkhoven, F. Petrovč, F.-J. Willemsen, J. Filipovič, and A. C. Elster.
Towards a Benchmarking Suite for Kernel Tuners. In 2023 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pages 724–733, May 2023. doi: 10.
1109/IPDPSW59300.2023.00124. URL https://ieeexplore.ieee.org/abstract/document/
10196663.

[57] X. Wan, V. Nguyen, H. Ha, B. Ru, C. Lu, and M. A. Osborne. Think global and act local:
Bayesian optimisation over high-dimensional categorical and mixed search spaces. Interna-
tional Conference on Machine Learning (ICML) 38, 2021.

[58] F.-J. Willemsen, R. Schoonhoven, J. Filipovič, J. O. Tørring, R. van Nieuwpoort, and B. van
Werkhoven. A methodology for comparing optimization algorithms for auto-tuning. 159:489–
504. ISSN 0167-739X. doi: 10.1016/j.future.2024.05.021. URL https://www.sciencedirect.
com/science/article/pii/S0167739X24002498.

[59] F.-J. Willemsen, R. van Nieuwpoort, and B. van Werkhoven. Bayesian Optimization for auto-
tuning GPU kernels. In 2021 International Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS), pages 106–117, Nov. 2021. doi:
10.1109/PMBS54543.2021.00017.

[60] X. Wu, M. Kruse, P. Balaprakash, H. Finkel, P. Hovland, V. Taylor, and M. Hall. Autotuning
polybench benchmarks with llvm clang/polly loop optimization pragmas using bayesian
optimization. In 2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), pages 61–70, 2020. doi: 10.1109/PMBS51919.2020.00012.

[61] X. Wu, P. Balaprakash, M. Kruse, J. Koo, B. Videau, P. Hovland, V. Taylor, B. Geltz, S. Jana,
and M. Hall. ytopt: Autotuning scientific applications for energy efficiency at large scales.
arXiv preprint arXiv:2303.16245, 2023.

[62] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. NAS-bench-101: Towards
reproducible neural architecture search. In K. Chaudhuri and R. Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 7105–7114, Long Beach, California, USA, 09–15 Jun 2019.
PMLR. URL http://proceedings.mlr.press/v97/ying19a.html.

[63] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In International conference on machine learning, pages
7105–7114. PMLR, 2019.

15

https://ieeexplore.ieee.org/abstract/document/9835509
https://ieeexplore.ieee.org/abstract/document/10196663
https://ieeexplore.ieee.org/abstract/document/10196663
https://www.sciencedirect.com/science/article/pii/S0167739X24002498
https://www.sciencedirect.com/science/article/pii/S0167739X24002498
http://proceedings.mlr.press/v97/ying19a.html


[64] A. Zela, J. N. Siems, L. Zimmer, J. Lukasik, M. Keuper, and F. Hutter. Surrogate NAS benchmarks:
Going beyond the limited search spaces of tabular NAS benchmarks. In International Conference
on Learning Representations, 2022. URL https://openreview.net/forum?id=OnpFa95RVqs.

[65] K. Šehić, A. Gramfort, J. Salmon, and L. Nardi. LassoBench: A High-Dimensional Hyperpa-
rameter Optimization Benchmark Suite for Lasso, June 2022. URL http://arxiv.org/abs/
2111.02790. arXiv:2111.02790 [cs].

16

https://openreview.net/forum?id=OnpFa95RVqs
http://arxiv.org/abs/2111.02790
http://arxiv.org/abs/2111.02790


A Surrogate Models

For a subset of benchmarks, we provide surrogate models to aid in algorithm development. The
surrogates are CatBoost models that are trained on a large dataset, accumulated throughout our
experimentation phase of the benchmarks. In Fig. 7, we show the R2-scores as a measure of
prediction quality for all surrogates on the included tasks. Prediction errors are generally low, with
the primary exceptions being TTV and MTTKRP. On Stencil, predictions are perfect, which can
be attributed to the small search space. Notably, the surrogates do not enforce neither hidden nor
known constraints, as they are able to predict the values of otherwise infeasible configurations. As
such, the surrogate tasks are practical for developing an algorithm one component at a time.
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Figure 7: R2 scores on all tasks for which CatBoost surrogates are provided. Scores are generally high,
with notable exceptions in TTV and MTTKRP on specific hardware.

B Benchmark Details

B.1 TACO

The TACO benchmarks are based on the Tensor Algebra Compiler (TACO) [32] and focus on
sparse tensor computations. The benchmarks include sparse matrix multiplication (SpMM), sparse
matrix-vector multiplication (SpMV), sampled dense-dense matrix multiplication (SDDMM), tensor
times vector (TTV), and matricized tensor times Khatri-Rao product (MTTKRP). The search spaces
involve ordinal, categorical, and permutation parameters, with known constraints. The objective is
to minimize the execution time of the generated code on CPUs.

The TACO benchmarks in CATBench focus on sparse tensor computations and are derived from
TACO [32]. These benchmarks include:

Sparse Matrix Multiplication (SpMM): The SpMM operation computes the product of a sparse
matrix 𝐴 and a dense matrix 𝐵, resulting in a dense matrix 𝐶 . It can be expressed as:

𝐶𝑖 𝑗 =
∑︁
𝑘

𝐴𝑖𝑘𝐵𝑘 𝑗 (1)

Sparse Matrix-Vector Multiplication (SpMV): The SpMV operation computes the product of a
sparse matrix 𝐴 and a dense vector 𝑥 , resulting in a dense vector 𝑦. It can be expressed as:

𝑦𝑖 =
∑︁
𝑗

𝐴𝑖 𝑗𝑥 𝑗 (2)
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Benchmark Computation Comment

SpMM 𝐴𝑖 𝑗 = 𝐵𝑖𝑘𝐶𝑘 𝑗 𝐵 sparse, 𝐶 dense
SpMV 𝑦𝑖 = 𝐵𝑖 𝑗𝑥 𝑗 + 𝑧𝑖 B sparse, 𝑥, 𝑧 dense
SDDMM 𝐴𝑖 𝑗 = 𝐵𝑖 𝑗𝐶𝑖𝑘𝐷𝑘 𝑗 𝐵 sparse, 𝐶, 𝐷 dense
MTTKRP 𝐴𝑖 𝑗 = X𝑖𝑘𝑙𝐷𝑙 𝑗𝐶𝑘 𝑗 X sparse, 𝐶, 𝐷 dense
TTV 𝐴𝑖 𝑗 = X𝑖 𝑗𝑘𝑧𝑘 X sparse, 𝑧 dense

Table 4: Executed computation by each program in the TACO tasks of CATBench. Each benchmark
involves fundamental operations of ML algorithms, such as sparse matrix multiplication or
tensor-vector multiplication. Upper-case variables denote matrices, lower-case denote vectors,
and curly variables denote tensors. Indices 𝑖, 𝑗 ,𝑘 and 𝑙 are iterated through according to the
size of the matrix.

Benchmark Computation Comment

Asum
∑𝑛
𝑖=1 |𝑥𝑖 | 𝑥 dense

GEMM 𝐶𝑖 𝑗 =
∑
𝑘 𝐶𝑖𝑘𝐷𝑘 𝑗 𝐶, 𝐷 dense

Scal 𝑥𝑖 ← 𝛼𝑥𝑖 𝑥𝑖 dense, 𝛼 scalar
Stencil 𝐴𝑖, 𝑗 = 𝑤𝑐𝐶𝑖, 𝑗 +𝑤𝑛𝐶𝑖−1, 𝑗 +𝑤𝑠𝐶𝑖+1, 𝑗 +𝑤𝑤𝐶𝑖, 𝑗−1 +𝑤𝑒𝐶𝑖, 𝑗+1 𝐶 dense,𝑤 5-tuple
Kmeans

∑𝐾
𝑖=1

∑
𝑥∈𝐶𝑖
∥𝑥 − 𝜇𝑖 ∥2 See Appendix B.2

Table 5: Executed computation by each program in the RISE/ELEVATE tasks of CATBench. Benchmarks
involve a combination of elementary operations and prominent ML algorithms. Upper-case
variables denote matrices, lower-case denote vectors, and curly variables denote tensors.
Indices 𝑖, 𝑗 and 𝑘 are iterated through according to the size of the matrix.

Sampled Dense-Dense Matrix Multiplication (SDDMM): The SDDMM operation computes
the element-wise product of two dense matrices 𝐶 and 𝐷 , and then multiplies the result with a
sparse matrix 𝐵. It can be expressed as:

𝐴𝑖 𝑗 =
∑︁
𝑘

𝐵𝑖 𝑗𝐶𝑖𝑘𝐷𝑘 𝑗 (3)

Tensor Times Vector (TTV): The TTV operation computes the product of a sparse tensor X
and a dense vector 𝑣 along a specified mode 𝑛. It can be expressed as:

Y𝑖1 ...𝑖𝑛−1𝑖𝑛+1 ...𝑖𝑁 =
∑︁
𝑖𝑛

X𝑖1 ...𝑖𝑁 𝑣𝑖𝑛 (4)

Matricized Tensor Times Khatri-Rao Product (MTTKRP): The MTTKRP operation is a key
computation in tensor decomposition algorithms, such as CP decomposition. It computes the
product of a matricized tensor 𝑋 (𝑛) and the Khatri-Rao product of factor matrices 𝐴 (1) , . . . , 𝐴 (𝑁 )

except 𝐴 (𝑛) . It can be expressed as:

𝑀(𝑛) = 𝑋 (𝑛) (𝐴 (𝑁 ) ⊙ · · · ⊙ 𝐴 (𝑛+1) ⊙ 𝐴 (𝑛−1) ⊙ · · · ⊙ 𝐴 (1) ) (5)

B.2 RISE/ELEVATE

The RISE/ELEVATE benchmarks are derived from the RISE/ELEVATE [51] compiler frameworks.
These benchmarks cover, dense linear algebra (GEMM, Asum, Scal), clustering (Kmeans), and
stencil computations (Stencil). The search spaces involve ordinal parameters, with known and
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hidden constraints. The objective is to minimize the execution time of the generated code on CPUs
or GPUs.

The RISE/ELEVATE benchmarks in CATBench are derived from the RISE/ELEVATE [51] compiler
framework. These benchmarks include:

Matrix Multiplication (GEMM): The GEMM benchmark performs dense matrix multiplication
of two matrices 𝐴 and 𝐵, resulting in a matrix 𝐶 . It can be expressed as:

𝐶𝑖 𝑗 =
∑︁
𝑘

𝐴𝑖𝑘𝐵𝑘 𝑗 (6)

Asum: The Asum benchmark computes the sum of absolute values of elements in a vector 𝑥 of
length 𝑛. It can be expressed as:

Asum =

𝑛∑︁
𝑖=1
|𝑥𝑖 | (7)

K-means Clustering: The K-means benchmark performs K-means clustering on a set of data
points 𝑥1, . . . , 𝑥𝑛 . The goal is to partition the data points into 𝐾 clusters, where each data point
belongs to the cluster with the nearest mean. The objective function minimized in K-means
clustering is:

𝐾∑︁
𝑖=1

∑︁
𝑥∈𝐶𝑖

∥𝑥 − 𝜇𝑖 ∥2 (8)

where 𝐶𝑖 is the set of data points assigned to cluster 𝑖 , and 𝜇𝑖 is the mean of the data points in
cluster 𝑖 .

Scal: The Scal benchmark scales a vector 𝑥 of length 𝑛 by a scalar value 𝛼 . It can be expressed
as:

𝑥𝑖 ← 𝛼𝑥𝑖 ∀𝑖 ∈ {1, . . . , 𝑛} (9)

Stencil Computation: The Stencil benchmark performs a stencil computation on a 2D grid 𝐴.
The value of each cell in the output grid 𝐵 is computed as a weighted sum of its neighboring cells
in the input grid 𝐴. For a 5-point stencil, it can be expressed as:

𝐵𝑖, 𝑗 = 𝑤𝑐𝐴𝑖, 𝑗 +𝑤𝑛𝐴𝑖−1, 𝑗 +𝑤𝑠𝐴𝑖+1, 𝑗 +𝑤𝑤𝐴𝑖, 𝑗−1 +𝑤𝑒𝐴𝑖, 𝑗+1 (10)

where𝑤𝑐 , 𝑤𝑛 , 𝑤𝑠 , 𝑤𝑤 , and𝑤𝑒 are the stencil weights for the center, north, south, west, and east
neighbors, respectively.

C Multi-Objective Results

We additionally visualize the empirical Pareto fronts on the Kmeans, GEMM and Stencil benchmarks.
While runtime and speedup are substantially positively correlated, all benchmarks still provide
meaningful trade-offs between the two objectives. Most prominently, Kmeans offers very diverse
solutions along the Pareto front, suggesting a complex multi-objective optimization task.
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Kmeans GEMM Stencil

Figure 8: Scatterplot of speedup vs energy efficiency for RISE benchmarks. Pareto fronts are generally
diverse, which is most prominently displayed on Kmeans and GEMM. Notably, the speedup
factors on GEMM from the median configuration go as high as 80× the runtime of the median.
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