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Abstract

Learning-based solvers have emerged as a promising means of tackling complex1

optimization problems. However, they remain prone to infeasible or suboptimal2

solutions, and often rely on iterative refinement procedures that incur significant3

latency. We introduce OptiHive, a framework that enhances solver-generation4

pipelines through statistical ensemble modeling. OptiHive generates diverse com-5

ponents (solvers, problem instances, and validation tests) in a single batch and6

filters out erroneous components to ensure fully interpretable outputs. Taking into7

account the imperfection of the generated components, we employ a statistical8

model to infer their true performance, enabling principled uncertainty quantification9

and solver selection. On tasks ranging from traditional combinatorial optimization10

problems to challenging variants of the Multi-Depot Vehicle Routing Problem,11

OptiHive significantly outperforms baselines, increasing the optimality rate from12

5% to 92% on the most complex problems.13

1 Introduction14

Learning-based solvers, including solvers generated by Large Language Models (LLMs) and end-15

to-end neural solvers, have demonstrated remarkable capabilities across diverse domains. However,16

their application to complex optimization tasks remains hindered by unreliable solutions and self-17

evaluation. Such solvers often exhibit two failure modes: (i) hard errors (syntax or runtime failures)18

that render solvers unusable, and (ii) soft errors (incorrect algorithms or suboptimal solutions) that19

cannot be detected deterministically.20

Existing learning-based optimization pipelines rely on costly validation. While they can address21

syntactic failures, they struggle to assess solution quality, often suffer from cyclical errors, and incur22

high latency. Test-based approaches that prompt LLMs to generate input-output pairs or simple23

verification functions can improve assessment in simple settings, but rarely yield valid tests for24

complex problems, where ground truth is unavailable without solving the problem itself.25

We present OptiHive, a two-stage framework that separates interpretability from quality estimation.26

In Stage 1, solvers, instances, and tests are generated simultaneously and filtered via an MILP to27

remove non-interpretable outputs. In Stage 2, a latent-class model jointly infers instance feasibility,28

solver quality, and test reliability, enabling principled solver selection.29

By estimating solver performance statistically rather than relying on self-critique, OptiHive departs30

from “generate-then-fix" pipelines. With minimal computational overhead from filtering, inference,31

and selection, OptiHive effectively serves two purposes: a low-latency, high-performance LLM-based32

pipeline for solver generation, or a wrapper around an existing solver generation framework to33

greatly improve performance through rigorous statistical inference. While the framework relies on34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



the generation step to produce at least one correct solver, the stochasticity in the generation process35

enables OptiHive to uncover correct solvers even when deterministic generation fails.36

In summary, our work makes the following contributions:37

1. Minimal and consistent latency via single-batch generation and parallelization. Op-38

tiHive produces solvers, instances, and tests once and in parallel, eliminating iterative39

self-correction loops. Combined with fully parallel cross-evaluation of solutions and tests,40

this design yields high-quality solvers with minimal latency.41

2. Statistical solver selection. Unlike prior work relying on LLMs’ poor self-critique abilities42

[1, 2, 3], we treat all components as noisy and employ rigorous statistical methods to estimate43

the true performance of solvers.44

3. Numerical experiments on two classes of complex optimization problems. We demon-45

strate that OptiHive reliably identifies high-quality solvers and substantially outperforms46

baselines on complex variants of the Multi-Depot Vehicle Routing Problem and the Weighted47

Set Cover Problem.48

2 Related Work49

Learning-based solvers have demonstrated remarkable abilities in problem solving across a wide50

range of domains [4, 5, 6, 7, 8], making them increasingly relevant tools for tackling complex51

computational tasks. Our work lies at the intersection of two streams of research within this field:52

Learning-based solvers for optimization problems and LLM-generated test functions.53

Learning-Based Solvers for Optimization Problems. Chain-of-Thought prompting (CoT) [9]54

and Chain-of-Experts [10] improve reasoning by eliciting intermediate reasoning steps. Iterative55

refinement approaches, including OptiMUS [11], OptimAI [12], Optimization by PROmpting [13],56

Self-Guiding Exploration [14], and Hercules [15], iteratively generate, evaluate, and repair solvers,57

which incur high latency and are prone to repetitive iterations that fail to converge. Parallel to these58

methods, LLMOPT [16], and LLaMoCo [17] enhance problem formulation and solver generation via59

instruction-tuning, but also rely on self-correction loops. Instance-level selection of neural solvers60

in [18] requires training a separate selection model. In contrast, OptiHive avoids such refinement61

procedures: it generates solvers, instances, and tests in one batch and efficiently selects the best62

solver, achieving low latency and high performance.63

LLM-Generated Test Functions. LLMs are known to be biased and poor at self-critique [1, 2, 3, 19],64

motivating external test generation. Most work focuses on unit tests [20, 21, 22, 23, 24], which65

reduce manual effort but are limited to simple input-output checks. Other studies [25, 26, 27] propose66

complete test functions, but are typically restricted to a series of assert-based checks over fixed67

inputs. In contrast, we generate reusable test functions that verify problem-specific invariants, such68

as constraint feasibility and objective value consistency. The decoupling of tests from specific inputs69

(i.e. problem instances) makes our framework thrifty, as each test can be reused to validate diverse70

solver-instance pairs.71

3 Methodology72

Figure 1 illustrates OptiHive’s two stages. The full procedure is described as an algorithm in73

Appendix A, and we now detail each stage.74

3.1 Generation of Valid Components75

3.1.1 Components Generation.76

Given a problem description with input-output specifications, we use a single LLM call to generate:77

1. Candidate Solvers S̄: each solver s ∈ S̄ takes an instance i and returns either infeasible78

if no solution exists, or the best solution found with status optimal or time_limit.79

2. Problem Instances Ī: generated with varied seeds and prompt phrasing, explicitly requesting80

feasible, infeasible, or random instances.81

3. Validity Tests T̄ : each test t ∈ T̄ takes an instance-solution pair (i, x) and evaluates whether82

solution x is feasible for instance i and its true objective value matches the reported value.83
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Figure 1: OptiHive produces optimization solvers through a two-stage process. In the first stage,
it produces candidate solvers, problem instances, and tests, then filters out components to retain
only fully interpretable solver-instance-test triples (represented as cubes). In the second stage, it
applies latent class analysis [28] to estimate the performance of each solver and selects the most
promising candidate. Red, yellow, and green bubbles denote solvers that return infeasible, feasible
but suboptimal, and optimal solutions, respectively.

All prompts are provided in Appendix B. Components are independent, enabling parallel generation84

of S̄, Ī, T̄ in one batch. No further LLM calls are needed during subsequent steps, which is key to85

the low latency of our framework.86

3.1.2 Testing.87

LLM-generated components may be syntactically or semantically invalid. For each (s, i) ∈ S̄ × Ī ,88

we call solver s on instance i: the pair is interpretable if it compiles, execution raises no error, and89

the report contains a valid status field. A triple (s, i, t) is interpretable if test t compiles and either90

(s, i) yields a report with infeasible status, or (s, i) yields a solution and running test t on it does91

not raise an error during execution, and returns a boolean.92

3.1.3 Filtering.93

Instead of integrating a costly (and often unreliable) self-correction loop for each component to94

ensure compilability, executability, and evaluability, we filter out a subset of the components to retain95

only interpretable triples (s, i, t).96

To retain a maximum number of components while filtering out all the non-interpretable triples, we97

formulate the following MILP:98

max
w

∑
j∈S̄∪Ī∪T̄

wj (1)

s.t. ws + wi + wt ≤ 2, ∀(s, i, t) ∈ U
wj ∈ {0, 1}, ∀j ∈ S̄ ∪ Ī ∪ T̄

where wj indicates whether component j is kept, and U = {(s, i, t) ∈ S̄ × Ī × T̄ :99

(s, i, t) is not interpretable}. After solving (1), we obtain the optimal selections w⋆ and define100

S ≜ {s ∈ S̄ : w⋆
s = 1}, I ≜ {i ∈ Ī : w⋆

i = 1}, and T ≜ {t ∈ T̄ : w⋆
t = 1}. By construction,101

every triple in S × I × T is interpretable. This MILP is tractable even with hundreds of solvers,102

instances, and tests, as the number of variables grows linearly with the number of components, and U103

exhibits a highly structured pattern since failure of a solver, instance, or test often induces multiple104

non-interpretable triples involving that component.105

3.2 Solver Characterization and Selection106

3.2.1 Characterization.107

Although every triple (s, i, t) is now interpretable, we only observe solver reports and, when a report108

contains a solution, whether that solution passes a suite of imperfect tests. Notably, the true feasibility109

of instances and the validity of reported solutions are unknown, as both solvers and tests are generated110

by an LLM and thus cannot be assumed to be perfectly trustworthy. By treating these unobserved111

variables as latent, we use a latent-class model to jointly estimate the membership of instances and112

solutions, the accuracy of solvers, and the reliability of tests.113
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We introduce the following families of variables. Observed variables are rs,i ∈ {0, 1}, indicating114

whether solver s reports a solution on instance i, and rs,i,t ∈ {0, 1}, indicating whether that solution115

passes test t. Latent variables are fi ∈ {0, 1}, indicating whether instance i admits a feasible solution,116

and fs,i ∈ {0, 1}, indicating whether the reported solution of (s, i) is truly feasible.117

Our model assumes that (i) each instance is feasible with probability λ, (ii) solvers have false positive118

(resp. negative) rates αs (resp. βs) and rate of feasible reported solution γs, and (iii) the aggregated119

test outcomes Cs,i =
∑

t∈T rs,i,t follow Beta-Binomial distributions when conditioned on feasibility.120

Namely:121

Cs,i | fs,i = 0 ∼ BetaBinomial (|T |, a0, b0) , and Cs,i | fs,i = 1 ∼ BetaBinomial (|T |, a1, b1)

Let θ = (λ, {αs, βs, γs}s∈S , a0, b0, a1, b1) denote the set of all parameters, and R (resp. F) be the122

set of observed (resp. latent) variables. We use the expectation-maximization (EM) algorithm to find123

a set of parameters θ⋆ locally maximizing the observed data likelihood function by iterating over the124

following update125

θk+1 = argmax
θ

EF∼P(· | R,θk) [lnP (R,F | θk)] (2)

until convergence. The distribution of the latent variables {fi}i∈I , {fs,i}(s,i)∈S×I can then be126

estimated from θ⋆. See Appendix D for details on the EM algorithm.127

3.2.2 Selection.128

For all reports containing a solution, let zs,i be the objective value reported by solver s on instance i,129

and Zs = Ei∼P(· | rs,i=1,fs,i=1) [zs,i] be the conditional expected objective over feasible solutions130

reported by solver s. Since solvers may differ in their ability to detect infeasible instances or return131

high-quality solutions on feasible ones, we define a scalarized objective function that summarizes132

overall solver quality in a single score:133

g(θ⋆, s) ≜ λ(1− βs)γsZs + λβsPmiss + ((1− λ)αs + λ(1− βs)(1− γs))Pfail (3)
Here, Pmiss penalizes reporting no solution on a feasible instance and Pfail penalizes reporting an134

infeasible solution. We set Pmiss = Pfail = 10Zmax, where Zmax is the maximum absolute objective135

value reported across all solver-instance pairs. This ensures that both under-reporting and over-136

reporting solvers are severely penalized. The final solver is selected as s⋆ = argmins∈S g(θ⋆, s).137

4 Experimental Results138

Previous benchmarks such as NLP4LP [29] and ComplexOR [10] include problems that recent139

LLMs can now solve reliably, yet perfect scores remain unattainable due to ambiguity in problem140

statements (e.g., describing integer-valued quantities but asking to formulate an LP). As failures141

may reflect prompt ambiguity rather than solver quality, these datasets offer limited insight into142

solver performance. To address this, we design variants of the Multi-Depot Vehicle Routing Problem143

(MDVRP) and Weighted Set Cover Problem (WSCP) with controlled complexity, enabling meaningful144

performance evaluation. The complete problem descriptions are provided in Appendix C.145

4.1 Experimental Setup146

We compare solvers selected by OptiHive with those produced directly by the same LLM to isolate147

the marginal improvement from OptiHive’s selection mechanism. Rather than benchmarking against148

other existing LLM-based optimization pipelines, our goal is to demonstrate how OptiHive can149

enhance any such pipeline by extracting high-quality solvers from a pool of candidates.150

For each problem, we sample random tractable instances and compute ground-truth solutions using151

a reference solver. A candidate is feasible if all its reported solutions satisfy the problem-specific152

constraints, and optimal if reported objectives also match the ground truth within tolerance.153

We generate 100 solvers, 100 instances, and 100 tests per problem, pre-compute all solver-instance154

and solver-instance-test outputs, and evaluate by repeatedly sampling components with replacement.155

Each run applies filtering, characterization, and selection, repeated 10,000 times with random seeds.156

We use OpenAI models (gpt-4.1-nano, gpt-4.1-mini, o3) with default temperature 0.7. Runs157

are parallelized on an AMD EPYC 9734 with the EM algorithm limited to 100 iterations. Each158

completes in under one second, negligible relative to typical LLM-based code-synthesis pipelines.159
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(a) DCMDVRP: Feasibility and optimality (b) MDVRP+OBS: Feasibility and optimality

Figure 2: Feasibility and optimality rates on DCMDVRP and MDVRP+OBS across varying numbers
of generated solvers, instances, and tests. The purple curve shows the optimality rate under perfect
selection i.e. the probability that at least one of the generated solvers is optimal.

4.2 Multi-Depots Vehicle Routing Problems160

We study two variants of MDVRP [30]:161

• Distance-Constrained Multi-Depot Vehicle Routing Problem (DCMDVRP), where each162

vehicle has an upper bound on the total distance traveled by each vehicle.163

• Multi-Depot Vehicle Routing Problem with Obstacles (MDVRP+OBS), where line-segment164

obstacles are present and alter the feasible routing space.165

The former is a straightforward extension of the standard MDVRP, while the latter requires a non-166

trivial code (visibility graph construction, obstacle-aware shortest paths, MILP solving, and route167

reconstruction), making it substantially harder. We generate components with gpt-4.1-mini for168

DCMDVRP and o3 for MDVRP+OBS, since o3 consistently produces optimal solvers on DCMDVRP169

and gpt-4.1-mini never produced optimal solutions on MDVRP+OBS.170

Figure 2 reports the optimality rate of OptiHive as the number of candidate solvers, instances, and171

tests increases. OptiHive consistently outperforms the single-solver baseline: with 50 components of172

each type, feasibility/optimality improves from 43%/40% to 98.7%/97.0% on DCMDVRP and from173

35%/5% to 99.9%/92.1% on MDVRP+OBS.174

Performance depends strongly on component diversity. More instances provide richer signals for the175

latent-class model, helping distinguish optimal solvers from near-optimal ones that fail on corner176

cases. Instance diversity is thus key to recovering optimal solvers, in particular when most candidates177

cluster around incorrect solutions. The number of solvers is also critical: in DCMDVRP, performance178

plateaus once a few optimal solvers are sampled (2a), but in MDVRP+OBS, large solver pools179

markedly increase the chance of including an optimal candidate and thus has a much greater impact180

on overall performance (2b). Since evaluating correctness is generally easier than solving the problem181

itself, performance saturates quickly as the number of tests increases. While test diversity remains182

useful to cover rare failure modes, improvements are smaller than those from adding solvers or183

instances.184

4.3 Weighted Set Cover Problem185

The WSCP [31, 32] can be illustrated through a practical scenario involving emitters and clients.186

Each emitter is characterized by a location, radius, and activation cost. An emitter is said to cover a187

client if the client lies within its coverage range. The objective is to select a minimum-cost subset of188

emitters so every client is covered by at least one active emitter. We consider three variants:189

• K-robust WSCP: Coverage must remain after any K adversarial emitter failures. While this190

may appear as a complex combinatorial requirement, this variant is a standard WSCP in191

disguise where each client must be within range of at least K + 1 selected emitters.192

• Probabilistic WSCP: Emitter i fails independently with probability pi, and each client193

j requires coverage with probability no less than πj . The non-linear constraint194

P (client j covered) ≜ 1 −
∏

{i∈Sj :xi=1} pi ≥ πj becomes linear after taking the loga-195

rithm of both sides, yielding a tractable MILP formulation.196
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• Time-dependent WSCP: Clients move at constant speed along straight paths over a fixed197

horizon. Solving it involves computing time intervals where each client is within range of an198

emitter (via a quadratic equation), identifying critical subintervals with changing coverage199

sets, solving a static WSCP, and merging selected subintervals into contiguous activation200

schedules. These compounded complexities make the time-dependent variant the hardest to201

solve.202

Ablation study. We evaluate the impact of solver, instance, and test quality by replacing one203

component type at a time with generations from a smaller LLM to isolate the impact of each204

component’s quality on overall performance. The baseline method generates a single solver and205

returns it. For OptiHive, we sample 50 elements of each component type, run the EM algorithm,206

and return the solver that minimizes the scalarized objective in (3) with default penalties. Table 1207

reports the results, with the reference setting using gpt-4.1-mini to generate all component types,208

and other settings using gpt-4.1-nano to generate one component type while keeping the other two209

generated by gpt-4.1-mini.210

K-robust Probabilistic Time-dependent

Baseline OptiHive Baseline OptiHive Baseline OptiHive

Opt. Feas. Opt. Feas. Opt. Feas. Opt. Feas. Opt. Feas. Opt. Feas.

Reference 98% 98% 100% 100% 73% 75% 100% 100% 3% 12% 64.1% 74.5%
nano solvers 42% 44% 83.1% 83.1% 33% 36% 89.9% 89.9% 0% 2% 0% 0.01%
nano instances 98% 98% 99.3% 99.3% 73% 75% 100% 100% 3% 12% 23.5% 37.7%
nano tests 98% 98% 100% 100% 73% 75% 100% 100% 3% 12% 19.7% 24.1%

Table 1: Ablation study on variants of the Weighted Set Cover Problem.

Across all variants, OptiHive markedly improves optimality and feasibility rates over the baseline,211

even with degraded component quality, showing that the latent-class model extracts useful signal from212

noisy ensembles. In the K-robust and probabilistic cases, weaker instances or tests have little effect.213

This is consistent with the fact that the complexity of these variants stems from conceptual depth214

rather than substantial coding effort, and supports our hypothesis that tests are generally substantially215

easier to write correctly than the solvers themselves.216

In contrast, the time-dependent variant shows a marked performance drop when the quality of either217

instances or tests is weakened. Generating a balanced mix of feasible and infeasible instances is harder218

here, and validity tests themselves are also non-trivial to produce. This challenges the assumption219

that testing is significantly easier than solving. Still, noisy tests from the smaller model provide a220

meaningful signal, enabling OptiHive to still outperform the baseline and illustrating its ability to221

extract value from very noisy components.222

Finally, OptiHive can successfully identify optimal solvers even when they are rare. On the time-223

dependent WSCP, OptiHive raises optimality from 3% to 64.1%, while with NS = 50 solvers perfect224

selection would achieve 78.2%. Conditioned on sampling at least one optimal solver, OptiHive selects225

it 81.6% of the time in the reference setting, and 30.9% (resp. 25.3%) with degraded instances (resp.226

tests).227

5 Conclusion228

We introduced OptiHive, a two-stage framework that (i) generates solvers, instances, and tests in229

parallel while filtering out unusable components, and (ii) applies a latent-class model to infer solver230

quality and enable informed solver selection. By generating diverse components and avoiding self-231

correction loops, OptiHive delivers high-performance solutions with minimal latency, or enhances232

existing solver-generation pipelines by acting as a wrapper.233

Experiments show substantial performance improvement: optimality rises from 5% to 92% on the234

hardest problems, while simple problems approach near-perfect optimality rates. Our ablation studies235

highlight the importance of high-quality instances and tests for distinguishing optimal solvers. Yet,236

OptiHive still improves performance when components come from smaller models.237

Future work will explore heterogeneous solver sources and multi-stage generation to build richer238

ensembles and tackle even more challenging optimization problems.239
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A Full Algorithm328

Algorithm 1 OptiHive

Require: Sample sizes NS , NI , NT

1: // Generation step
2: Perform single batch query to the LLM to obtain:
3: solvers S̄ of size NS

4: instances Ī of size NI

5: tests T̄ of size NT

6: // Testing step
7: for all (s, i) ∈ S̄ × Ī do
8: Execute solver s on instance i to obtain report rs,i
9: if rs,i = 1 then

10: for all t ∈ T̄ do
11: Execute test t on solution of (s, i) to obtain rs,i,t
12: end for
13: end if
14: end for
15: // Filtering step
16: Solve (1) to obtain w⋆

17: S ← {s ∈ S̄ : w⋆
s = 1}

18: I ← {i ∈ Ī : w⋆
i = 1}

19: T = {t ∈ T̄ : w⋆
t = 1}

20: R← {rs,i,t : (s, i, t) ∈ S × I × T}
21: // Characterization step
22: Initialize θ0 = (λ, {αs, βs, γs}s∈S , a0, b0, a1, b1)
23: repeat
24: Compute θk+1 from (2) with θk and R
25: until convergence to θ⋆ or iteration limit
26: // Selection step
27: s⋆ ← argmins∈S g(θ⋆, s)
28: return s⋆

B Prompt Templates329

B.1 Solvers330

Solver Generation
You are a code-generation agent expert in Python and Gurobi.

[Problem Specifications]
Here is the problem description: {problem_description}
Here is the template for the problem input: {input_template}
The output of the function must follow the template: {output_template}

[Instructions]
Your task is to implement a function solve with a unique argument data as
input and returning a solution to the problem.
Write the complete, executable, and well-indented code of the solve
function, including necessary imports.
Status codes are: OPTIMAL for a proven best feasible solution,
INFEASIBLE when no feasible solution is found.
Use a TimeLimit of 5 seconds for the optimization. Do not include
example usage.

331
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B.2 Instances332

We encourage diversity of instances via two mechanisms. First, we rotate diversity directives among333

six options:334

1. If possible, the data should be an infeasible instance for the above problem.335

2. The data should be a clearly feasible instance for the above problem in that it admits a simple336

feasible solution.337

3. The data should result in optimal solutions to the above problem having tight constraints.338

4. The data should be randomized.339

5. The data should be randomized with hyperparameters that will make the instance likely340

feasible.341

6. The data should be randomized with hyperparameters that will make the instance likely342

infeasible.343

Second, we sample and provide a random sequence of 100 digits to limit the similarity of numerical344

values across generated instances. To avoid lengthy LLM outputs, we ask the LLM to provide345

a function that outputs an instance of the considered problem, rather than directly outputting the346

instance.347

Instance Generation
You are a code-generation agent expert in Python.

[Problem Specifications]
Consider the following problem: {problem_description}
Here is the template for the problem input: {input_template}

[Instructions]
Your task is to implement a function generate_input with no argument and
returning a input following the input template.
{diversity_directives}
Write the complete, executable and well indented code of the
generate_input function, including necessary imports.
Take inspiration from the following: {seed}

348

B.3 Tests349

Test Generation
You are a code-generation agent expert in Python.

[Problem Specifications]
Here is the problem description: {problem_description}
Here is the input template: {input_template}
Here is the solution template: {output_template}

[Instructions]
For every concrete instance data that follows the input template, there
is a corresponding solution object that follows the solution template.
Your task is to implement a function test(data, solution) -> bool that
returns True if and only if all of the following hold:

1. The solution is feasible (it satisfies every problem constraint).
2. The reported objective value matches the cost you compute (within a

small numerical tolerance).
3. All solution fields are internally coherent.

Write the complete, executable, and well-indented Python code
implementing the test function, including necessary imports.

350
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Do not include example usage.
351

C Problem Descriptions352

C.1 Multi-Depot Vehicle Routing Problems353

DCMDVRP

Given:
- A set of vehicles, each having a unique start location ("start_point")

. Each vehicle can travel from its start location and must return to
its own start location. A vehicle may also remain unused (i.e., it

does not move).
- A set of target nodes ("goal_point"). Each target node must be visited

exactly once by exactly one vehicle.
- A vehicle specific maximum distance (if any) that each vehicle can

travel.
- All positions (start points, goal points) are given as 2D coordinates

in Euclidean space.

Task:
- For each vehicle, find a closed path (starting and ending at its own

start point), such that:
> Each goal point is visited exactly once by exactly one vehicle.
> A vehicle may be unused (in which case its path remains at its
start point).
> The total distance travel by any vehicle must not exceed the its
maximum distance.

- The overall objective is to minimize the sum of Euclidean distances
traveled by all vehicles.

Additional Details:
- The path of each vehicle is a sequence of locations.
- The problem is INFEASIBLE if and only if at least one goal is

unreachable while strictly respecting the maximum distance rule.
354

MDVRP+OBS

Given:
- A set of vehicles, each having a unique start location ("start_point")

. Each vehicle can travel from its start location and must return to
its own start location. A vehicle may also remain unused (i.e., it

does not move).
- A set of target nodes ("goal_point"). Each target node must be visited

exactly once by exactly one vehicle.
- A set of obstacles, each obstacle defined as a line segment by two

endpoints. Vehicles are prohibited from crossing or touching the
interior of any obstacle, but may reach either endpoint of the
obstacle line segment.

- All positions (start points, goal points, and obstacle endpoints) are
given as 2D coordinates in Euclidean space.

Task:
- For each vehicle, find a closed path (starting and ending at its own

start point), such that:
> Each goal point is visited exactly once by exactly one vehicle.

355
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> A vehicle may be unused (in which case its path remains at its
start point).
> The path must not cross nor touch the open segement of any
obstacle.
> Vehicles may touch or end at an obstacle endpoint if needed.

- The overall objective is to minimize the sum of Euclidean distances
traveled by all vehicles.

Additional Details:
- The path of each vehicle is a sequence of locations such that direct

segments between consecutive locations do not cross the interior of
any obstacle.

- The problem is INFEASIBLE if and only if at least one goal is
unreachable while strictly respecting the obstacle-avoiding rule.

356

C.2 Weighted Set Cover Problems357

Robust WSCP

Given:
- A set of emitters defined by:

> a non-negative cost,
> a two-dimensional position (x, y),
> a positive coverage radius.

- A set of clients. Each client has a two-dimensional position (x, y).
- A client is considered covered by an emitter if the straight-line

distance between the client and the emitter is less than or equal to
the emitter’s coverage radius.

- An integer K, greater than or equal to 0, representing the number of
emitters that may be deactivated by an adversary.

- An emitter is either selected or not selected. Only selected emitters
can cover clients.

- The adversary can later observe the selected emitters and is allowed
to deactivate any K of them.

- After the adversary deactivates K selected emitters, the remaining
active emitters must collectively cover all clients.

Task:
- Select a subset of emitters such that the total cost of the selected

emitters is minimum.
- The selected emitters must be chosen in a way that, for every possible

way the adversary might deactivate exactly K of the selected
emitters, the remaining emitters still cover all clients.

Additional Details:
- A client may be covered by more than one emitter.
- A client is considered covered as long as at least one of the selected

and active emitters lies within its coverage radius.
- The solution is feasible if and only if all clients remain covered

after any possible combination of K deactivations.
358

Probabilistic WSCP

Given:
- A set of emitters defined by:

> a non-negative cost,
359
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> a two-dimensional position (x, y),
> a positive coverage radius,
> a probability of failure.

- A set of clients defined by:
> a two-dimensional position (x, y),
> a minimum required probability of coverage.

- A client is considered covered by an emitter if the emitter is active
and if the straight-line distance between the client and the emitter
is less than or equal to the emitter’s coverage radius.

- An emitter is either selected or not selected. Only selected emitters
can cover clients.

Task:
- Select a subset of emitters such that the total cost of the selected

emitters is minimum.
- The selected emitters must be chosen in a way that every client is

covered with sufficient probability.

Additional Details:
- A client may be covered by more than one emitter.
- The failures of emitters happen independently.
- A client is considered covered as long as at least one of the selected

and active emitters lies within its coverage radius.
- The solution is feasible if and only if all clients are covered with

sufficient probability.
360

Time-dependent WSCP

Given:
- A continuous time interval [0, T]
- A set of emitters defined by:

> a non-negative operating cost incurred per unit of time the
emitter is active,
> a fixed two-dimensional position (x, y),
> a positive coverage radius.

- A set of clients. Each client moves at a constant speed and in
straight line from (x1, y1) at t=0 to (x2, y2) at t=T.

- An emitter is either active or inactive. Only active emitters can
cover clients.

- A client is considered covered at a given time if the straight-line
distance between the current client position and at least one active
emitter is less than or equal to that emitter’s coverage radius.

Task:
- Choose an activation schedule for each emitter.
- Minimize the total operating costs of the active emitters over the

horizon.
- All clients must be covered at any time of the horizon.

Additional details:
- A client may be covered by more than one emitter.
- Activation and deactivation decisions are independent; an emitter can

change its on/off state freely and at any time.
- The schedules must be provided as explicit time interval endpoints
- The solution is feasible if and only if, at any time of the horizon,

every client is covered by at least one active emitter.
361
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D Expectation Maximization Model Specifications362

Observed variables:363

rs,i =

{
1 if solver s reports a solution on instance i
0 otherwise. , ∀(s, i) ∈ S × I

rs,i,t =

{
1 solution (s, i) passes test t
0 otherwise. , ∀(s, i, t) ∈ S × I × T s.t. rs,i = 1

For all (s, i) ∈ S × I such that rs,i = 1, we define Cs,i =
∑

t∈T rs,i,t.364

365

Latent variables:366

fi =

{
1 if instance i admits a feasible solution
0 otherwise. , ∀i ∈ I

fs,i =

{
1 solution (s, i) is feasible
0 otherwise. , ∀(s, i) ∈ S × I s.t. rs,i = 1

Parameters:
θ = (λ, (αs)s∈S , (βs)s∈S , (γs)s∈S , a0, b0, a1, b1)

where367

λ = P (fi = 1) (feasiblity rate of instances)
αs = P (rs,i = 1 | fi = 0) (type I error of solver s)
βs = P (rs,i = 0 | fi = 1) (type II error of solver s)
γs = P (fs,i = 1 | fi = 1, rs,i = 1) (feasibility rate of solutions reported by s on feasible instances)

a0, b0 Parameters of the Beta–Binomial for infeasible instances
a1, b1 Parameters of the Beta–Binomial for feasible instances

D.1 E-step368

We first compute the intermediate quantities involved in the conditional expectations of fi and fs,i.369

Let R denote all observed variable and Rs = {rs,i : i ∈ I} ∪ {rs,i,t : (i, t) ∈ I × T, rs,i = 1}370

denote the observed variables related to solver s. Let ν(k | n, a, b) =
(
n
k

)B(k+a,n−k+b)
B(a,b) be the371

probability mass function of the Beta-Binomial distribution, where B is the beta function. We define372

for all (s, i) ∈ S × I:373

A
(0)
s,i ≜ ν(Cs,i | T, a0, b0)

A
(1)
s,i ≜ ν(Cs,i | T, a1, b1)

and, for all i ∈ I:374

B
(0)
i ≜ P (R | fi = 0, θ)

=
∏
s∈S

[αsP (Rs | fi = 0, θ)]
rs,i (1− αs)

(1−rs,i)

=
∏
s∈S

[
αsA

(0)
s,i

]rs,i
(1− αs)

(1−rs,i)

B
(1)
i ≜ P (R | fi = 1, θ)

=
∏
s∈S

[(1− βs) (γsP (Rs | rs,i = 1, fs,i = 1, θ) + (1− γs)P (Rs | rs,i = 1, fs,i = 0, θ))]
rs,i β(1−rs,i)

s

=
∏
s∈S

[
(1− βs)

(
γsA

(1)
s,i + (1− γs)A

(0)
s,i

)]rs,i
β(1−rs,i)
s
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We then proceed to compute the conditional expectation of fi and fs,i for a given θ. For all i ∈ I:375

E [fi | R, θ] = P (fi = 1 | R, θ)

=
P (R | fi = 1, θ)P (fi = 1 | θ)

P (R | θ)

=
P (R | fi = 1, θ)P (fi = 1 | θ)

P (R | fi = 1, θ)P (fi = 1) + P (R | fi = 0, θ)P (fi = 0)

=
λB

(1)
i

λB
(1)
i + (1− λ)B

(0)
i

For all (s, i) ∈ S × I such that rs,i = 1:376

P (fs,i = 1 | fi = 1,R, θ)

=
P (R | fs,i = 1, fi = 1, θ)P (fs,i = 1 | fi = 1, θ)

P (R | fi = 1, θ)

=
P (R | fs,i = 1, fi = 1, θ)P (fs,i = 1 | fi = 1, θ)

P (R | fs,i = 1, fi = 1, θ)P (fs,i = 1 | fi = 1) + P (R | fs,i = 0, fi = 1, θ)P (fi = 0 | fi = 1)

=
γsA

(1)
s,i

γsA
(1)
s,i + (1− γs)A

(0)
s,i

Since P (fs,i = 1 | fi = 0) = 0, we obtain:377

E [fs,i | R, θ] = P (fs,i = 1 | fi = 1,R, θ)P (fi = 1 | R, θ) + P (fs,i = 1 | fi = 0,R, θ)P (fi = 0 | R, θ)

=
γsA

(1)
s,i

γsA
(1)
s,i + (1− γs)A

(0)
s,i

λB
(1)
i

λB
(1)
i + (1− λ)B

(0)
i

D.2 M-step378

The log-likelihood is given by:379

ln P (R,F | θ)

=
∑
i∈I

lnP (fi) +
∑
s∈S

lnP (rs,i | fi) +
∑
s∈S

rs,i=1

[
lnP (fs,i | fi) +

∑
t∈T

lnP (rs,i,t | fs,i)

]
=
∑
i∈I

[fi ln(λ) + (1− fi) ln(1− λ)]

+
∑
i∈I

∑
s∈S

[rs,i (fi ln(1− βs) + (1− fi) ln(αs)) + (1− rs,i) (fi ln(βs) + (1− fi) ln(1− αs))]

+
∑
i∈I

∑
s∈S

rs,i=1

fi [fs,i ln(γs) + (1− fs,i) ln(1− γs)]

+
∑
i∈I

∑
s∈S

rs,i=1

[fs,i ln ν(Cs,i | T, a1, b1) + (1− fs,i) ln ν(Cs,i | T, a0, b0)]

Let f̂i ≜ E [fi | R, θ] and f̂s,i ≜ E [fs,i | R, θ] = E [fifs,i | R, θ]. Taking the conditional expectation380

and differentiating with respect to λ, we have:381

∂

∂λ
E [lnP (R,F | θ) | R, θ] =

∑
i∈I

(
f̂i
λ
− 1− f̂i

1− λ

)
(4)
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Equating (4) to 0, we obtain: λ =
∑

i∈I f̂i
|I| . With analogous reasoning, we obtain:382

αs =

∑
i∈I(1− f̂i)rs,i∑
i∈I(1− f̂i)

βs =

∑
i∈I f̂i(1− rs,i)∑

i∈I f̂i

γs =

∑
i∈I rs,if̂s,i∑
i∈I rs,if̂i

We use the method of moments to update the parameters a0, b0, a1, and b1 using a Beta prior with383

(ᾱ, β̄) = (20, 1) for the true positive rate. Define:384

p0 =

∑
s,i

(
1− f̂s,i

)
Cs,i

T∑
s,i

(
1− f̂s,i

)
p1 =

∑
s,i f̂s,i

Cs,i

T + ᾱ− 1∑
s,i f̂s,i + ᾱ+ β̄ − 2

and385

µ0 =

∑
s,i

(
1− f̂s,i

)
Cs,i

T ·
∑

s,i

(
1− f̂s,i

)
σ2
0 =

∑
s,i

(
1− f̂s,i

)
(Cs,i/T − µ0)

2∑
s,i

(
1− f̂s,i

)
µ1 =

∑
s,i f̂s,iCs,i

T ·
∑

s,i f̂s,i

σ2
1 =

∑
s,i f̂s,i (Cs,i/T − µ1)

2∑
s,i f̂s,i

Then for k ∈ {0, 1}:386

ρk =

Tσ2
k

µk(1−µk)
− 1

T − 1

Finally, retrieve ak and bk from pk and ρk for k ∈ {0, 1} as:387

ak = pk

(
1

ρk
− 1

)
bk = (1− pk)

(
1

ρk
− 1

)
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NeurIPS Paper Checklist388

1. Claims389

Question: Do the main claims made in the abstract and introduction accurately reflect the390

paper’s contributions and scope?391

Answer: [Yes]392

Justification: The abstract and introduction clearly state the main contributions, which are393

supported by experiments.394

Guidelines:395

• The answer NA means that the abstract and introduction do not include the claims396

made in the paper.397

• The abstract and/or introduction should clearly state the claims made, including the398

contributions made in the paper and important assumptions and limitations. A No or399

NA answer to this question will not be perceived well by the reviewers.400

• The claims made should match theoretical and experimental results, and reflect how401

much the results can be expected to generalize to other settings.402

• It is fine to include aspirational goals as motivation as long as it is clear that these goals403

are not attained by the paper.404

2. Limitations405

Question: Does the paper discuss the limitations of the work performed by the authors?406

Answer: [Yes]407

Justification: The paper highlights its reliance on the backbone LLM to produce correct408

solvers, and the necessity of sufficiently diverse components to recover them.409

Guidelines:410

• The answer NA means that the paper has no limitation while the answer No means that411

the paper has limitations, but those are not discussed in the paper.412

• The authors are encouraged to create a separate "Limitations" section in their paper.413

• The paper should point out any strong assumptions and how robust the results are to414

violations of these assumptions (e.g., independence assumptions, noiseless settings,415

model well-specification, asymptotic approximations only holding locally). The authors416

should reflect on how these assumptions might be violated in practice and what the417

implications would be.418

• The authors should reflect on the scope of the claims made, e.g., if the approach was419

only tested on a few datasets or with a few runs. In general, empirical results often420

depend on implicit assumptions, which should be articulated.421

• The authors should reflect on the factors that influence the performance of the approach.422

For example, a facial recognition algorithm may perform poorly when image resolution423

is low or images are taken in low lighting. Or a speech-to-text system might not be424

used reliably to provide closed captions for online lectures because it fails to handle425

technical jargon.426

• The authors should discuss the computational efficiency of the proposed algorithms427

and how they scale with dataset size.428

• If applicable, the authors should discuss possible limitations of their approach to429

address problems of privacy and fairness.430

• While the authors might fear that complete honesty about limitations might be used by431

reviewers as grounds for rejection, a worse outcome might be that reviewers discover432

limitations that aren’t acknowledged in the paper. The authors should use their best433

judgment and recognize that individual actions in favor of transparency play an impor-434

tant role in developing norms that preserve the integrity of the community. Reviewers435

will be specifically instructed to not penalize honesty concerning limitations.436

3. Theory assumptions and proofs437

Question: For each theoretical result, does the paper provide the full set of assumptions and438

a complete (and correct) proof?439
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Answer: [NA]440

Justification: The paper introduces algorithms and statistical modeling, but does not contain441

formal theorems or proofs.442

Guidelines:443

• The answer NA means that the paper does not include theoretical results.444

• All the theorems, formulas, and proofs in the paper should be numbered and cross-445

referenced.446

• All assumptions should be clearly stated or referenced in the statement of any theorems.447

• The proofs can either appear in the main paper or the supplemental material, but if448

they appear in the supplemental material, the authors are encouraged to provide a short449

proof sketch to provide intuition.450

• Inversely, any informal proof provided in the core of the paper should be complemented451

by formal proofs provided in appendix or supplemental material.452

• Theorems and Lemmas that the proof relies upon should be properly referenced.453

4. Experimental result reproducibility454

Question: Does the paper fully disclose all the information needed to reproduce the main ex-455

perimental results of the paper to the extent that it affects the main claims and/or conclusions456

of the paper (regardless of whether the code and data are provided or not)?457

Answer: [Yes]458

Justification: Experimental setup, evaluation protocol, and models used are fully described.459

LLM prompt templates, complete problem descriptions, and the detailed EM algorithm are460

provided in Appendix.461

Guidelines:462

• The answer NA means that the paper does not include experiments.463

• If the paper includes experiments, a No answer to this question will not be perceived464

well by the reviewers: Making the paper reproducible is important, regardless of465

whether the code and data are provided or not.466

• If the contribution is a dataset and/or model, the authors should describe the steps taken467

to make their results reproducible or verifiable.468

• Depending on the contribution, reproducibility can be accomplished in various ways.469

For example, if the contribution is a novel architecture, describing the architecture fully470

might suffice, or if the contribution is a specific model and empirical evaluation, it may471

be necessary to either make it possible for others to replicate the model with the same472

dataset, or provide access to the model. In general. releasing code and data is often473

one good way to accomplish this, but reproducibility can also be provided via detailed474

instructions for how to replicate the results, access to a hosted model (e.g., in the case475

of a large language model), releasing of a model checkpoint, or other means that are476

appropriate to the research performed.477

• While NeurIPS does not require releasing code, the conference does require all submis-478

sions to provide some reasonable avenue for reproducibility, which may depend on the479

nature of the contribution. For example480

(a) If the contribution is primarily a new algorithm, the paper should make it clear how481

to reproduce that algorithm.482

(b) If the contribution is primarily a new model architecture, the paper should describe483

the architecture clearly and fully.484

(c) If the contribution is a new model (e.g., a large language model), then there should485

either be a way to access this model for reproducing the results or a way to reproduce486

the model (e.g., with an open-source dataset or instructions for how to construct487

the dataset).488

(d) We recognize that reproducibility may be tricky in some cases, in which case489

authors are welcome to describe the particular way they provide for reproducibility.490

In the case of closed-source models, it may be that access to the model is limited in491

some way (e.g., to registered users), but it should be possible for other researchers492

to have some path to reproducing or verifying the results.493
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5. Open access to data and code494

Question: Does the paper provide open access to the data and code, with sufficient instruc-495

tions to faithfully reproduce the main experimental results, as described in supplemental496

material?497

Answer: [No]498

Justification: Code is not available at submission time, but will be made publicly available499

upon acceptance.500

Guidelines:501

• The answer NA means that paper does not include experiments requiring code.502

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/503

public/guides/CodeSubmissionPolicy) for more details.504

• While we encourage the release of code and data, we understand that this might not be505

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not506

including code, unless this is central to the contribution (e.g., for a new open-source507

benchmark).508

• The instructions should contain the exact command and environment needed to run to509

reproduce the results. See the NeurIPS code and data submission guidelines (https:510

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.511

• The authors should provide instructions on data access and preparation, including how512

to access the raw data, preprocessed data, intermediate data, and generated data, etc.513

• The authors should provide scripts to reproduce all experimental results for the new514

proposed method and baselines. If only a subset of experiments are reproducible, they515

should state which ones are omitted from the script and why.516

• At submission time, to preserve anonymity, the authors should release anonymized517

versions (if applicable).518

• Providing as much information as possible in supplemental material (appended to the519

paper) is recommended, but including URLs to data and code is permitted.520

6. Experimental setting/details521

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-522

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the523

results?524

Answer: [Yes]525

Justification: The paper reports chosen LLM models and temperatures, accompanied by526

justification for these choices.527

Guidelines:528

• The answer NA means that the paper does not include experiments.529

• The experimental setting should be presented in the core of the paper to a level of detail530

that is necessary to appreciate the results and make sense of them.531

• The full details can be provided either with the code, in appendix, or as supplemental532

material.533

7. Experiment statistical significance534

Question: Does the paper report error bars suitably and correctly defined or other appropriate535

information about the statistical significance of the experiments?536

Answer: [Yes]537

Justification: The paper reports the number of runs (10,000), which is sufficient to recover538

confidence intervals for binary outcomes. Explicitly reporting them would add little value539

given the large performance gaps.540

Guidelines:541

• The answer NA means that the paper does not include experiments.542

• The authors should answer "Yes" if the results are accompanied by error bars, confi-543

dence intervals, or statistical significance tests, at least for the experiments that support544

the main claims of the paper.545
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• The factors of variability that the error bars are capturing should be clearly stated (for546

example, train/test split, initialization, random drawing of some parameter, or overall547

run with given experimental conditions).548

• The method for calculating the error bars should be explained (closed form formula,549

call to a library function, bootstrap, etc.)550

• The assumptions made should be given (e.g., Normally distributed errors).551

• It should be clear whether the error bar is the standard deviation or the standard error552

of the mean.553

• It is OK to report 1-sigma error bars, but one should state it. The authors should554

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis555

of Normality of errors is not verified.556

• For asymmetric distributions, the authors should be careful not to show in tables or557

figures symmetric error bars that would yield results that are out of range (e.g. negative558

error rates).559

• If error bars are reported in tables or plots, The authors should explain in the text how560

they were calculated and reference the corresponding figures or tables in the text.561

8. Experiments compute resources562

Question: For each experiment, does the paper provide sufficient information on the com-563

puter resources (type of compute workers, memory, time of execution) needed to reproduce564

the experiments?565

Answer: [Yes]566

Justification: The hardware and execution time are provided in the Experimental Results567

section.568

Guidelines:569

• The answer NA means that the paper does not include experiments.570

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,571

or cloud provider, including relevant memory and storage.572

• The paper should provide the amount of compute required for each of the individual573

experimental runs as well as estimate the total compute.574

• The paper should disclose whether the full research project required more compute575

than the experiments reported in the paper (e.g., preliminary or failed experiments that576

didn’t make it into the paper).577

9. Code of ethics578

Question: Does the research conducted in the paper conform, in every respect, with the579

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?580

Answer: [Yes]581

Justification: No ethical concerns arise, the work aligns with NeurIPS Code of Ethics.582

Guidelines:583

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.584

• If the authors answer No, they should explain the special circumstances that require a585

deviation from the Code of Ethics.586

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-587

eration due to laws or regulations in their jurisdiction).588

10. Broader impacts589

Question: Does the paper discuss both potential positive societal impacts and negative590

societal impacts of the work performed?591

Answer: [NA]592

Justification: No societal impact.593

Guidelines:594

• The answer NA means that there is no societal impact of the work performed.595
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• If the authors answer NA or No, they should explain why their work has no societal596

impact or why the paper does not address societal impact.597

• Examples of negative societal impacts include potential malicious or unintended uses598

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations599

(e.g., deployment of technologies that could make decisions that unfairly impact specific600

groups), privacy considerations, and security considerations.601

• The conference expects that many papers will be foundational research and not tied602

to particular applications, let alone deployments. However, if there is a direct path to603

any negative applications, the authors should point it out. For example, it is legitimate604

to point out that an improvement in the quality of generative models could be used to605

generate deepfakes for disinformation. On the other hand, it is not needed to point out606

that a generic algorithm for optimizing neural networks could enable people to train607

models that generate Deepfakes faster.608

• The authors should consider possible harms that could arise when the technology is609

being used as intended and functioning correctly, harms that could arise when the610

technology is being used as intended but gives incorrect results, and harms following611

from (intentional or unintentional) misuse of the technology.612

• If there are negative societal impacts, the authors could also discuss possible mitigation613

strategies (e.g., gated release of models, providing defenses in addition to attacks,614

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from615

feedback over time, improving the efficiency and accessibility of ML).616

11. Safeguards617

Question: Does the paper describe safeguards that have been put in place for responsible618

release of data or models that have a high risk for misuse (e.g., pretrained language models,619

image generators, or scraped datasets)?620

Answer: [NA]621

Justification: No high risk for misuse.622

Guidelines:623

• The answer NA means that the paper poses no such risks.624

• Released models that have a high risk for misuse or dual-use should be released with625

necessary safeguards to allow for controlled use of the model, for example by requiring626

that users adhere to usage guidelines or restrictions to access the model or implementing627

safety filters.628

• Datasets that have been scraped from the Internet could pose safety risks. The authors629

should describe how they avoided releasing unsafe images.630

• We recognize that providing effective safeguards is challenging, and many papers do631

not require this, but we encourage authors to take this into account and make a best632

faith effort.633

12. Licenses for existing assets634

Question: Are the creators or original owners of assets (e.g., code, data, models), used in635

the paper, properly credited and are the license and terms of use explicitly mentioned and636

properly respected?637

Answer: [Yes]638

Justification: Existing benchmarks are cited and credited.639

Guidelines:640

• The answer NA means that the paper does not use existing assets.641

• The authors should cite the original paper that produced the code package or dataset.642

• The authors should state which version of the asset is used and, if possible, include a643

URL.644

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.645

• For scraped data from a particular source (e.g., website), the copyright and terms of646

service of that source should be provided.647
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• If assets are released, the license, copyright information, and terms of use in the648

package should be provided. For popular datasets, paperswithcode.com/datasets649

has curated licenses for some datasets. Their licensing guide can help determine the650

license of a dataset.651

• For existing datasets that are re-packaged, both the original license and the license of652

the derived asset (if it has changed) should be provided.653

• If this information is not available online, the authors are encouraged to reach out to654

the asset’s creators.655

13. New assets656

Question: Are new assets introduced in the paper well documented and is the documentation657

provided alongside the assets?658

Answer: [Yes]659

Justification: The complete description of problem variants is provided in Appendix C.660

Guidelines:661

• The answer NA means that the paper does not release new assets.662

• Researchers should communicate the details of the dataset/code/model as part of their663

submissions via structured templates. This includes details about training, license,664

limitations, etc.665

• The paper should discuss whether and how consent was obtained from people whose666

asset is used.667

• At submission time, remember to anonymize your assets (if applicable). You can either668

create an anonymized URL or include an anonymized zip file.669

14. Crowdsourcing and research with human subjects670

Question: For crowdsourcing experiments and research with human subjects, does the paper671

include the full text of instructions given to participants and screenshots, if applicable, as672

well as details about compensation (if any)?673

Answer: [NA]674

Justification: The work does not involve human subjects or crowdsourcing.675

Guidelines:676

• The answer NA means that the paper does not involve crowdsourcing nor research with677

human subjects.678

• Including this information in the supplemental material is fine, but if the main contribu-679

tion of the paper involves human subjects, then as much detail as possible should be680

included in the main paper.681

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,682

or other labor should be paid at least the minimum wage in the country of the data683

collector.684

15. Institutional review board (IRB) approvals or equivalent for research with human685

subjects686

Question: Does the paper describe potential risks incurred by study participants, whether687

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)688

approvals (or an equivalent approval/review based on the requirements of your country or689

institution) were obtained?690

Answer: [NA]691

Justification: The work does not involve human subjects.692

Guidelines:693

• The answer NA means that the paper does not involve crowdsourcing nor research with694

human subjects.695

• Depending on the country in which research is conducted, IRB approval (or equivalent)696

may be required for any human subjects research. If you obtained IRB approval, you697

should clearly state this in the paper.698
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• We recognize that the procedures for this may vary significantly between institutions699

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the700

guidelines for their institution.701

• For initial submissions, do not include any information that would break anonymity (if702

applicable), such as the institution conducting the review.703

16. Declaration of LLM usage704

Question: Does the paper describe the usage of LLMs if it is an important, original, or705

non-standard component of the core methods in this research? Note that if the LLM is used706

only for writing, editing, or formatting purposes and does not impact the core methodology,707

scientific rigorousness, or originality of the research, declaration is not required.708

Answer: [Yes]709

Justification: LLMs are central to solver, instance, and test generation. Their usage is710

explicitly described.711

Guidelines:712

• The answer NA means that the core method development in this research does not713

involve LLMs as any important, original, or non-standard components.714

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)715

for what should or should not be described.716
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