© ©® N O O A W N =

o

11

OptiHive: Ensemble Selection for Learning-Based
Optimization via Statistical Modeling

Anonymous Author(s)
Affiliation
Address

email

Abstract

Learning-based solvers have emerged as a promising means of tackling complex
optimization problems. However, they remain prone to infeasible or suboptimal
solutions, and often rely on iterative refinement procedures that incur significant
latency. We introduce OptiHive, a framework that enhances solver-generation
pipelines through statistical ensemble modeling. OptiHive generates diverse com-
ponents (solvers, problem instances, and validation tests) in a single batch and
filters out erroneous components to ensure fully interpretable outputs. Taking into
account the imperfection of the generated components, we employ a statistical
model to infer their true performance, enabling principled uncertainty quantification
and solver selection. On tasks ranging from traditional combinatorial optimization
problems to challenging variants of the Multi-Depot Vehicle Routing Problem,
OptiHive significantly outperforms baselines, increasing the optimality rate from
5% to 92% on the most complex problems.

1 Introduction

Learning-based solvers, including solvers generated by Large Language Models (LLMs) and end-
to-end neural solvers, have demonstrated remarkable capabilities across diverse domains. However,
their application to complex optimization tasks remains hindered by unreliable solutions and self-
evaluation. Such solvers often exhibit two failure modes: (i) hard errors (syntax or runtime failures)
that render solvers unusable, and (ii) soft errors (incorrect algorithms or suboptimal solutions) that
cannot be detected deterministically.

Existing learning-based optimization pipelines rely on costly validation. While they can address
syntactic failures, they struggle to assess solution quality, often suffer from cyclical errors, and incur
high latency. Test-based approaches that prompt LLMs to generate input-output pairs or simple
verification functions can improve assessment in simple settings, but rarely yield valid tests for
complex problems, where ground truth is unavailable without solving the problem itself.

We present OptiHive, a two-stage framework that separates interpretability from quality estimation.
In Stage 1, solvers, instances, and tests are generated simultaneously and filtered via an MILP to
remove non-interpretable outputs. In Stage 2, a latent-class model jointly infers instance feasibility,
solver quality, and test reliability, enabling principled solver selection.

By estimating solver performance statistically rather than relying on self-critique, OptiHive departs
from “generate-then-fix" pipelines. With minimal computational overhead from filtering, inference,
and selection, OptiHive effectively serves two purposes: a low-latency, high-performance LLM-based
pipeline for solver generation, or a wrapper around an existing solver generation framework to
greatly improve performance through rigorous statistical inference. While the framework relies on

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

50
51
52
53

54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71

72

73
74

75

76

the generation step to produce at least one correct solver, the stochasticity in the generation process
enables OptiHive to uncover correct solvers even when deterministic generation fails.

In summary, our work makes the following contributions:

1. Minimal and consistent latency via single-batch generation and parallelization. Op-
tiHive produces solvers, instances, and tests once and in parallel, eliminating iterative
self-correction loops. Combined with fully parallel cross-evaluation of solutions and tests,
this design yields high-quality solvers with minimal latency.

2. Statistical solver selection. Unlike prior work relying on LLMs’ poor self-critique abilities
[1L2L13], we treat all components as noisy and employ rigorous statistical methods to estimate
the true performance of solvers.

3. Numerical experiments on two classes of complex optimization problems. We demon-
strate that OptiHive reliably identifies high-quality solvers and substantially outperforms
baselines on complex variants of the Multi-Depot Vehicle Routing Problem and the Weighted
Set Cover Problem.

2 Related Work

Learning-based solvers have demonstrated remarkable abilities in problem solving across a wide
range of domains [4} 5] |6, [7, 18], making them increasingly relevant tools for tackling complex
computational tasks. Our work lies at the intersection of two streams of research within this field:
Learning-based solvers for optimization problems and LLM-generated test functions.

Learning-Based Solvers for Optimization Problems. Chain-of-Thought prompting (CoT) [9]
and Chain-of-Experts [[10] improve reasoning by eliciting intermediate reasoning steps. Iterative
refinement approaches, including OptiMUS [11]], OptimAI [[12], Optimization by PROmpting [[13]],
Self-Guiding Exploration [[14]], and Hercules [15], iteratively generate, evaluate, and repair solvers,
which incur high latency and are prone to repetitive iterations that fail to converge. Parallel to these
methods, LLMOPT [16], and LLaMoCo [17] enhance problem formulation and solver generation via
instruction-tuning, but also rely on self-correction loops. Instance-level selection of neural solvers
in [[18]] requires training a separate selection model. In contrast, OptiHive avoids such refinement
procedures: it generates solvers, instances, and tests in one batch and efficiently selects the best
solver, achieving low latency and high performance.

LLM-Generated Test Functions. LLMs are known to be biased and poor at self-critique [[1,2}|3,119],
motivating external test generation. Most work focuses on unit tests [20, 21} 22| 23| 24]], which
reduce manual effort but are limited to simple input-output checks. Other studies [25} 26} 27]] propose
complete test functions, but are typically restricted to a series of assert-based checks over fixed
inputs. In contrast, we generate reusable test functions that verify problem-specific invariants, such
as constraint feasibility and objective value consistency. The decoupling of tests from specific inputs
(i.e. problem instances) makes our framework thrifty, as each test can be reused to validate diverse
solver-instance pairs.

3 Methodology

Figure [I] illustrates OptiHive’s two stages. The full procedure is described as an algorithm in
Appendix |Al and we now detail each stage.

3.1 Generation of Valid Components
3.1.1 Components Generation.

Given a problem description with input-output specifications, we use a single LLM call to generate:

1. Candidate Solvers S: each solver s € S takes an instance ¢ and returns either infeasible
if no solution exists, or the best solution found with status optimal or time_limit.

2. Problem Instances I: generated with varied seeds and prompt phrasing, explicitly requesting
feasible, infeasible, or random instances.

3. Validity Tests T": each test t € T takes an instance-solution pair (7,) and evaluates whether
solution z is feasible for instance ¢ and its true objective value matches the reported value.

84
85
86

87

88
89
90
91
92

93

94
95
96

97
98

99

101
102
103
104
105

106

107

108
109
110
111
112
113

Objective value
no-solution

ms{ances%
%
-

¥

Statistical
Filter

tests
Aoy

pass

non-interpretable > Select

solvers

1. Generation of Valid Components 2. Characterization and Selection of Solvers

Figure 1: OptiHive produces optimization solvers through a two-stage process. In the first stage,
it produces candidate solvers, problem instances, and tests, then filters out components to retain
only fully interpretable solver-instance-test triples (represented as cubes). In the second stage, it
applies latent class analysis [28]] to estimate the performance of each solver and selects the most
promising candidate. Red, yellow, and green bubbles denote solvers that return infeasible, feasible
but suboptimal, and optimal solutions, respectively.

All prompts are provided in Appendix [B] Components are independent, enabling parallel generation
of S, I,T in one batch. No further LLM calls are needed during subsequent steps, which is key to
the low latency of our framework.

3.1.2 Testing.

LLM-generated components may be syntactically or semantically invalid. For each (s,i) € S x I,
we call solver s on instance ¢: the pair is interpretable if it compiles, execution raises no error, and
the report contains a valid status field. A triple (s, i, t) is interpretable if test t compiles and either
(s,14) yields a report with infeasible status, or (s,) yields a solution and running test ¢ on it does
not raise an error during execution, and returns a boolean.

3.1.3 Filtering.

Instead of integrating a costly (and often unreliable) self-correction loop for each component to
ensure compilability, executability, and evaluability, we filter out a subset of the components to retain
only interpretable triples (s, ,t).

To retain a maximum number of components while filtering out all the non-interpretable triples, we
formulate the following MILP:

max Z w; (1)
Y jesurur
st ws +w; +w <2, V(s,i,t) €U
w; € {0,1}, VjeSuluT
where w; indicates whether component j is kept, and U = {(s,i,t) € S x I x T

(s,i,t) is not interpretable}. After solving (I), we obtain the optimal selections w* and define
S&2{seS:w=1},12{iel:wf=1}andT = {t € T : wf = 1}. By construction,
every triple in S x I x T is interpretable. This MILP is tractable even with hundreds of solvers,
instances, and tests, as the number of variables grows linearly with the number of components, and U/
exhibits a highly structured pattern since failure of a solver, instance, or test often induces multiple
non-interpretable triples involving that component.

3.2 Solver Characterization and Selection
3.2.1 Characterization.

Although every triple (s, i,) is now interpretable, we only observe solver reports and, when a report
contains a solution, whether that solution passes a suite of imperfect tests. Notably, the true feasibility
of instances and the validity of reported solutions are unknown, as both solvers and tests are generated
by an LLM and thus cannot be assumed to be perfectly trustworthy. By treating these unobserved
variables as latent, we use a latent-class model to jointly estimate the membership of instances and
solutions, the accuracy of solvers, and the reliability of tests.

114
115
116
117

118
119
120
121

122
123
124
125

126
127

128

129
130
131
132
133

134
135
136
137

138

139
140
141
142
143
144
145

146

147
148
149
150

151
152
153

154
155
156
157
158
159

We introduce the following families of variables. Observed variables are 7, ; € {0, 1}, indicating
whether solver s reports a solution on instance ¢, and 7, ; ; € {0, 1}, indicating whether that solution
passes test t. Latent variables are f; € {0, 1}, indicating whether instance ¢ admits a feasible solution,
and f, ; € {0, 1}, indicating whether the reported solution of (s, 7) is truly feasible.

Our model assumes that (i) each instance is feasible with probability A, (ii) solvers have false positive
(resp. negative) rates a5 (resp. 35) and rate of feasible reported solution -y, and (iii) the aggregated
test outcomes Cs ; = >, e Ts,i,t follow Beta-Binomial distributions when conditioned on feasibility.
Namely:

Cs.i | fs,i =0 ~ BetaBinomial (|T'|, ag,bo), and Cs; | fs; = 1 ~ BetaBinomial (|T'|, a1, b1)

Let 6 = (A, {as, Bs, Vs }sess ao, bo, a1, by) denote the set of all parameters, and R, (resp. F) be the
set of observed (resp. latent) variables. We use the expectation-maximization (EM) algorithm to find
a set of parameters 6* locally maximizing the observed data likelihood function by iterating over the
following update

9k+1 = argemaxEFNp(‘ | R,01) [hlp (R, F ‘ Qk)] (2)

until convergence. The distribution of the latent variables {f;}icr, {fs,i}(s,i)esxr can then be
estimated from 6*. See Appendix [D|for details on the EM algorithm.

3.2.2 Selection.

For all reports containing a solution, let z ; be the objective value reported by solver s on instance ¢,
and Zs = Ejup(. | r, ,=1,1,,=1) [25.:] be the conditional expected objective over feasible solutions
reported by solver s. Since solvers may differ in their ability to detect infeasible instances or return
high-quality solutions on feasible ones, we define a scalarized objective function that summarizes
overall solver quality in a single score:

g(e*v S) £ >\(1 - ﬁs)'YsZs + ABs Priss + ((]— - A)as +)\(]— - Bs)(]- - 'Vs)) Prai 3)
Here, P, penalizes reporting no solution on a feasible instance and P, penalizes reporting an
infeasible solution. We set Piss = Pril = 10Z1max, Where Z,ax 1S the maximum absolute objective
value reported across all solver-instance pairs. This ensures that both under-reporting and over-
reporting solvers are severely penalized. The final solver is selected as s* = argmin g g(0*, s).

4 Experimental Results

Previous benchmarks such as NLP4LP [29] and ComplexOR [10] include problems that recent
LLMs can now solve reliably, yet perfect scores remain unattainable due to ambiguity in problem
statements (e.g., describing integer-valued quantities but asking to formulate an LP). As failures
may reflect prompt ambiguity rather than solver quality, these datasets offer limited insight into
solver performance. To address this, we design variants of the Multi-Depot Vehicle Routing Problem
(MDVRP) and Weighted Set Cover Problem (WSCP) with controlled complexity, enabling meaningful
performance evaluation. The complete problem descriptions are provided in Appendix [C]

4.1 Experimental Setup

We compare solvers selected by OptiHive with those produced directly by the same LLM to isolate
the marginal improvement from OptiHive’s selection mechanism. Rather than benchmarking against
other existing LLM-based optimization pipelines, our goal is to demonstrate how OptiHive can
enhance any such pipeline by extracting high-quality solvers from a pool of candidates.

For each problem, we sample random tractable instances and compute ground-truth solutions using
a reference solver. A candidate is feasible if all its reported solutions satisfy the problem-specific
constraints, and optimal if reported objectives also match the ground truth within tolerance.

We generate 100 solvers, 100 instances, and 100 tests per problem, pre-compute all solver-instance
and solver-instance-test outputs, and evaluate by repeatedly sampling components with replacement.
Each run applies filtering, characterization, and selection, repeated 10,000 times with random seeds.
We use OpenAl models (gpt-4.1-nano, gpt-4.1-mini, 03) with default temperature 0.7. Runs
are parallelized on an AMD EPYC 9734 with the EM algorithm limited to 100 iterations. Each
completes in under one second, negligible relative to typical LLM-based code-synthesis pipelines.

160

161

162
163
164
165

166
167
168
169
170

171
172
173
174

175
176
177
178
179
180
181
182
183
184

185

186
187

189

190
191
192
193
194
195
196

Iy
)

-
o
-
)

o
@
o
@

| s Sl U et~

i =5
f 11

2 2 -] 2
c . c c c
2 oe ?‘gé’Qi St Z o8 O e e e — |I|=50 z2 2 e
3 / © 3 @
: .0 — =1 g :
EOA Cc>x0.4 o |T|=5 K Cc>x0.4
|T|=50
0.2 0.2 0.2 0.2
0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
solvers generated # solvers generated # solvers generated # solvers generated
(a) DCMDVREP: Feasibility and optimality (b) MDVRP+OBS: Feasibility and optimality

Figure 2: Feasibility and optimality rates on DCMDVRP and MDVRP+OBS across varying numbers
of generated solvers, instances, and tests. The purple curve shows the optimality rate under perfect
selection i.e. the probability that at least one of the generated solvers is optimal.

4.2 Multi-Depots Vehicle Routing Problems

We study two variants of MDVRP [30]:

* Distance-Constrained Multi-Depot Vehicle Routing Problem (DCMDVRP), where each
vehicle has an upper bound on the total distance traveled by each vehicle.

* Multi-Depot Vehicle Routing Problem with Obstacles (MDVRP+OBS), where line-segment
obstacles are present and alter the feasible routing space.

The former is a straightforward extension of the standard MDVRP, while the latter requires a non-
trivial code (visibility graph construction, obstacle-aware shortest paths, MILP solving, and route
reconstruction), making it substantially harder. We generate components with gpt-4.1-mini for
DCMDVRP and 03 for MDVRP+OBS, since 03 consistently produces optimal solvers on DCMDVRP
and gpt-4.1-mini never produced optimal solutions on MDVRP+OBS.

Figure [2]reports the optimality rate of OptiHive as the number of candidate solvers, instances, and
tests increases. OptiHive consistently outperforms the single-solver baseline: with 50 components of
each type, feasibility/optimality improves from 43%/40% to 98.7%/97.0% on DCMDVRP and from
35%15% t0 99.9%/92.1% on MDVRP+OBS.

Performance depends strongly on component diversity. More instances provide richer signals for the
latent-class model, helping distinguish optimal solvers from near-optimal ones that fail on corner
cases. Instance diversity is thus key to recovering optimal solvers, in particular when most candidates
cluster around incorrect solutions. The number of solvers is also critical: in DCMDVRP, performance
plateaus once a few optimal solvers are sampled (2a), but in MDVRP+OBS, large solver pools
markedly increase the chance of including an optimal candidate and thus has a much greater impact
on overall performance (2b). Since evaluating correctness is generally easier than solving the problem
itself, performance saturates quickly as the number of tests increases. While test diversity remains
useful to cover rare failure modes, improvements are smaller than those from adding solvers or
instances.

4.3 Weighted Set Cover Problem

The WSCP [31}132] can be illustrated through a practical scenario involving emitters and clients.
Each emitter is characterized by a location, radius, and activation cost. An emitter is said to cover a
client if the client lies within its coverage range. The objective is to select a minimum-cost subset of
emitters so every client is covered by at least one active emitter. We consider three variants:

* K-robust WSCP: Coverage must remain after any K adversarial emitter failures. While this
may appear as a complex combinatorial requirement, this variant is a standard WSCP in
disguise where each client must be within range of at least K + 1 selected emitters.

* Probabilistic WSCP: Emitter ¢ fails independently with probability p;, and each client
J requires coverage with probability no less than 7;. The non-linear constraint
P (client j covered) = 1 — [] {i€S,:w,—1} Pi = T; becomes linear after taking the loga-
rithm of both sides, yielding a tractable MILP formulation.

197
198
199
200
201
202

210

211
212
213
214
215
216

217
218
219
220
221
222

223
224
225
226
227

228

229
230
231
232
233

234

236

237

238
239

* Time-dependent WSCP: Clients move at constant speed along straight paths over a fixed
horizon. Solving it involves computing time intervals where each client is within range of an
emitter (via a quadratic equation), identifying critical subintervals with changing coverage
sets, solving a static WSCP, and merging selected subintervals into contiguous activation
schedules. These compounded complexities make the time-dependent variant the hardest to
solve.

Ablation study. We evaluate the impact of solver, instance, and test quality by replacing one
component type at a time with generations from a smaller LLM to isolate the impact of each
component’s quality on overall performance. The baseline method generates a single solver and
returns it. For OptiHive, we sample 50 elements of each component type, run the EM algorithm,
and return the solver that minimizes the scalarized objective in (3) with default penalties. Table I]
reports the results, with the reference setting using gpt-4.1-mini to generate all component types,
and other settings using gpt-4.1-nano to generate one component type while keeping the other two
generated by gpt-4.1-mini.

K -robust Probabilistic Time-dependent

Baseline OptiHive Baseline OptiHive Baseline OptiHive

Opt. Feas. Opt. Feas. Opt. Feas. Opt. Feas. Opt. Feas. Opt. Feas.

Reference 98% 98% 100% 100% 73% 75% 100% 100% 3% 12% 64.1% 74.5%
nano solvers 42% 44% 83.1% 83.1% 33% 36% 89.9% 89.9% 0% 2% 0% 0.01%
nano instances ~ 98% 98% 993% 993% 13% 75% 100% 100% 3% 12% 235% 37.1%
nano tests 98% 98% 100% 100% 73% 75% 100% 100% 3% 12% 197% 24.1%

Table 1: Ablation study on variants of the Weighted Set Cover Problem.

Across all variants, OptiHive markedly improves optimality and feasibility rates over the baseline,
even with degraded component quality, showing that the latent-class model extracts useful signal from
noisy ensembles. In the K -robust and probabilistic cases, weaker instances or tests have little effect.
This is consistent with the fact that the complexity of these variants stems from conceptual depth
rather than substantial coding effort, and supports our hypothesis that tests are generally substantially
easier to write correctly than the solvers themselves.

In contrast, the time-dependent variant shows a marked performance drop when the quality of either
instances or tests is weakened. Generating a balanced mix of feasible and infeasible instances is harder
here, and validity tests themselves are also non-trivial to produce. This challenges the assumption
that testing is significantly easier than solving. Still, noisy tests from the smaller model provide a
meaningful signal, enabling OptiHive to still outperform the baseline and illustrating its ability to
extract value from very noisy components.

Finally, OptiHive can successfully identify optimal solvers even when they are rare. On the time-
dependent WSCP, OptiHive raises optimality from 3% to 64.1%, while with Ng = 50 solvers perfect
selection would achieve 78.2%. Conditioned on sampling at least one optimal solver, OptiHive selects
it 81.6% of the time in the reference setting, and 30.9% (resp. 25.3%) with degraded instances (resp.
tests).

5 Conclusion

We introduced OptiHive, a two-stage framework that (i) generates solvers, instances, and tests in
parallel while filtering out unusable components, and (ii) applies a latent-class model to infer solver
quality and enable informed solver selection. By generating diverse components and avoiding self-
correction loops, OptiHive delivers high-performance solutions with minimal latency, or enhances
existing solver-generation pipelines by acting as a wrapper.

Experiments show substantial performance improvement: optimality rises from 5% to 92% on the
hardest problems, while simple problems approach near-perfect optimality rates. Our ablation studies
highlight the importance of high-quality instances and tests for distinguishing optimal solvers. Yet,
OptiHive still improves performance when components come from smaller models.

Future work will explore heterogeneous solver sources and multi-stage generation to build richer
ensembles and tackle even more challenging optimization problems.

240

241
242
243

i

244
245
246

247
248
249

250
251

252
253
254

255
256
257

258
259
260

261
262
263

264
265
266

267
268
269
270

271
272
273

274
275

276
277
278

279
280
281

282
283
284

285
286
287

@

288
289
290

@

291
292

References

[1] Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification
limitations of large language models on reasoning and planning tasks. arXiv preprint
arXiv:2402.08115, 2024.

[2] Justin Chih-Yao Chen, Archiki Prasad, Swarnadeep Saha, Elias Stengel-Eskin, and Mohit
Bansal. Magicore: Multi-agent, iterative, coarse-to-fine refinement for reasoning. arXiv preprint
arXiv:2409.12147, 2024.

[3] Jiwon Moon, Yerin Hwang, Dongryeol Lee, Taegwan Kang, Yongil Kim, and Kyomin Jung.
Don’t judge code by its cover: Exploring biases in 1lm judges for code evaluation. arXiv preprint
arXiv:2505.16222, 2025.

[4] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combina-
torial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

[6] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[8] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. Science, 378(6624):1092-1097, 2022.

[9] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

[10] Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han,
Xiaojin Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet
complex operations research problems. In The twelfth international conference on learning
representations, 2023.

[11] Ali AhmadiTeshnizi, Wenzhi Gao, Herman Brunborg, Shayan Talaei, Connor Lawless, and
Madeleine Udell. Optimus-0.3: Using large language models to model and solve optimization
problems at scale. arXiv preprint arXiv:2407.19633, 2024.

[12] Raghav Thind, Youran Sun, Ling Liang, and Haizhao Yang. Optimai: Optimization from natural
language using llm-powered ai agents. arXiv preprint arXiv:2504.16918, 2025.

[13] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on
Learning Representations, 2023.

[14] Zangir Iklassov, Yali Du, Farkhad Akimov, and Martin Takac. Self-guiding exploration for
combinatorial problems. Advances in Neural Information Processing Systems, 37:130569—
130601, 2024.

[15] Xuan Wu, Di Wang, Chunguo Wu, Lijie Wen, Chunyan Miao, Yubin Xiao, and You Zhou.
Efficient heuristics generation for solving combinatorial optimization problems using large
language models. arXiv preprint arXiv:2505.12627, 2025.

[16] Caigao Jiang, Xiang Shu, Hong Qian, Xingyu Lu, Jun Zhou, Aimin Zhou, and Yang Yu. LImopt:
Learning to define and solve general optimization problems from scratch. arXiv preprint
arXiv:2410.13213, 2024.

[17] Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Guojun Peng, Zhiguang Cao, Yining Ma, and
Yue-Jiao Gong. Llamoco: Instruction tuning of large language models for optimization code
generation. arXiv preprint arXiv:2403.01131, 2024.

[18] Chengrui Gao, Haopu Shang, Ke Xue, and Chao Qian. Neural solver selection for combinatorial
optimization. arXiv preprint arXiv:2410.09693, 2024.

293
294
295

296
297

299
300

302
303

305
306

307
308

309
310
311

312
313
314

315
316
317

318
319
320

321
322

323

324
325

326
327

[19] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying
Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

[20] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022.

[21] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

[22] Archiki Prasad, Elias Stengel-Eskin, Justin Chih-Yao Chen, Zaid Khan, and Mohit Bansal.
Learning to generate unit tests for automated debugging. arXiv preprint arXiv:2502.01619,
2025.

[23] Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin. Chatu-
nitest: A framework for 1lm-based test generation. In Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering, pages 572-576, 2024.

[24] Zi Lin, Sheng Shen, Jingbo Shang, Jason Weston, and Yixin Nie. Learning to solve and verify:
A self-play framework for code and test generation. arXiv preprint arXiv:2502.14948, 2025.

[25] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin
Peng. No more manual tests? evaluating and improving chatgpt for unit test generation. arXiv
preprint arXiv:2305.04207, 2023.

[26] Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of using
large language models for automated unit test generation. IEEE Transactions on Software
Engineering, 50(1):85-105, 2023.

[27] Nikitha Rao, Kush Jain, Uri Alon, Claire Le Goues, and Vincent J Hellendoorn. Cat-Im training
language models on aligned code and tests. In 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 409-420. IEEE, 2023.

[28] Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer
error-rates using the em algorithm. Journal of the Royal Statistical Society: Series C (Applied
Statistics), 28(1):20-28, 1979.

[29] Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. Optimus: Optimization modeling
using mip solvers and large language models. arXiv preprint arXiv:2310.06116, 2023.

[30] Paolo Toth and Daniele Vigo. The vehicle routing problem. SIAM, 2002.

[31] Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations
research, 4(3):233-235, 1979.

[32] Alberto Caprara, Paolo Toth, and Matteo Fischetti. Algorithms for the set covering problem.
Annals of Operations Research, 98(1):353-371, 2000.

s A Full Algorithm

A

Igorithm 1 OptiHive

Require: Sample sizes Ng, Ny, Np

PRIN AR

: // Generation step

: Perform single batch query to the LLM to obtain:
solvers S of size Ng

instances I of size Ny

tests 1" of size N

: // Testing step

: forall (s,i) € S x I do

Execute solver s on instance ¢ to obtain report ' ;

9: ifry; =1 then

10 forallt € T do

11: Execute test ¢ on solution of (s, ¢) to obtain 7 ; ;
12: end for

13: end if

14: end for

15: // Filtering step

16: Solve (I)) to obtain w*

17: S+ {seS:w=1}

18: [+ {iel:w=1}

19: T={teT:w;=1}

20: R« {rsi¢:(s,4,t) € SxIxT}

21: // Characterization step

22: Initialize 90 = ()\7 {Oés, 657 ,YS}SES) ao, bO; ai, bl)
23: repeat

24: Compute 61 from (Z) with 6;, and R
25: until convergence to §* or iteration limit
26: // Selection step

27: s* — argmin g (0%, s)

28: return s*

29 B Prompt Templates

330

331

B

.1 Solvers

-
Solver Generation

g

You are a code-generation agent expert in Python and Gurobi.

[Problem Specifications]

Here is the problem description: {problem_description}

Here is the template for the problem input: {input_templatel}

The output of the function must follow the template: {output_template}

[Instructions]

Your task is to implement a function solve with a unique argument data as
input and returning a solution to the problem.

Write the complete, executable, and well-indented code of the solve
function, including necessary imports.

Status codes are: OPTIMAL for a proven best feasible solution,
INFEASIBLE when no feasible solution is found.

Use a TimelLimit of 5 seconds for the optimization. Do not include
example usage.

332

333

334

335

336
337

338

339

340
341

342
343

344

346
347

348

349

350

B.2 Instances

We encourage diversity of instances via two mechanisms. First, we rotate diversity directives among
six options:
1. If possible, the data should be an infeasible instance for the above problem.

2. The data should be a clearly feasible instance for the above problem in that it admits a simple
feasible solution.

3. The data should result in optimal solutions to the above problem having tight constraints.
4. The data should be randomized.

5. The data should be randomized with hyperparameters that will make the instance likely
feasible.

6. The data should be randomized with hyperparameters that will make the instance likely
infeasible.

Second, we sample and provide a random sequence of 100 digits to limit the similarity of numerical
values across generated instances. To avoid lengthy LLM outputs, we ask the LLM to provide
a function that outputs an instance of the considered problem, rather than directly outputting the
instance.

Ve N\
Instance Generation

You are a code-generation agent expert in Python.

[Problem Specifications]
Consider the following problem: {problem_description}
Here is the template for the problem input: {input_templatel}

[Instructions]

Your task is to implement a function generate_input with no argument and
returning a input following the input template.

{diversity_directives}

Write the complete, executable and well indented code of the
generate_input function, including necessary imports.

| Take inspiration from the following: {seed}

B.3 Tests

-
Test Generation

You are a code-generation agent expert in Python.

[Problem Specifications]

Here is the problem description: {problem_description}
Here is the input template: {input_templatel}

Here is the solution template: {output_template}

[Instructions]
For every concrete instance data that follows the input template, there
is a corresponding solution object that follows the solution template.
Your task is to implement a function test(data, solution) -> bool that
returns True if and only if all of the following hold:
1. The solution is feasible (it satisfies every problem constraint).
2. The reported objective value matches the cost you compute (within a
small numerical tolerance) .
3. All solution fields are internally coherent.
Write the complete, executable, and well-indented Python code
implementing the test function, including necessary imports.

10

51 LDo not include example usage.

352

353

354

355

C Problem Descriptions

C.1 Multi-Depot Vehicle Routing Problems

Vs

DCMDVRP

Given:
- A set of vehicles, each having a unique start location ("start_point")
. Each vehicle can travel from its start location and must return to
its own start location. A vehicle may also remain unused (i.e., it
does not move).
- A set of target nodes ("goal_point"). Each target node must be visited
exactly once by exactly one vehicle.
- A vehicle specific maximum distance (if any) that each vehicle can
travel.
- A1l positions (start points, goal points) are given as 2D coordinates
in Euclidean space.

Task:

- For each vehicle, find a closed path (starting and ending at its own
start point), such that:
> Each goal point is visited exactly once by exactly one vehicle.
> A vehicle may be unused (in which case its path remains at its
start point).
> The total distance travel by any vehicle must not exceed the its
maximum distance.

- The overall objective is to minimize the sum of Euclidean distances
traveled by all vehicles.

Additional Details:

- The path of each vehicle is a sequence of locations.

- The problem is INFEASIBLE if and only if at least one goal is
unreachable while strictly respecting the maximum distance rule.

MDVRP+0OBS

Given:

- A set of vehicles, each having a unique start location ("start_point")
. Each vehicle can travel from its start location and must return to

its own start location. A vehicle may also remain unused (i.e., it
does not move).

- A set of target nodes ("goal_point"). Each target node must be visited

exactly once by exactly one vehicle.

- A set of obstacles, each obstacle defined as a line segment by two
endpoints. Vehicles are prohibited from crossing or touching the
interior of any obstacle, but may reach either endpoint of the
obstacle line segment.

- A1l positions (start points, goal points, and obstacle endpoints) are
given as 2D coordinates in Euclidean space.

Task:

- For each vehicle, find a closed path (starting and ending at its own
start point), such that:
> Each goal point is visited exactly once by exactly one vehicle.

11

> A vehicle may be unused (in which case its path remains at its
start point).
> The path must not cross nor touch the open segement of any
obstacle.
> Vehicles may touch or end at an obstacle endpoint if needed.

- The overall objective is to minimize the sum of Euclidean distances
traveled by all vehicles.

Additional Details:

- The path of each vehicle is a sequence of locations such that direct
segments between consecutive locations do not cross the interior of
any obstacle.

- The problem is INFEASIBLE if and only if at least one goal is
unreachable while strictly respecting the obstacle-avoiding rule.

356

357 C.2 Weighted Set Cover Problems

Robust WSCP

Given:

- A set of emitters defined by:
> a non-negative cost,
> a two-dimensional position (x, y),
> a positive coverage radius.

- A set of clients. Each client has a two-dimensional position (x, y).

- A client is considered covered by an emitter if the straight-line
distance between the client and the emitter is less than or equal to
the emitter’s coverage radius.

- An integer K, greater than or equal to O, representing the number of
emitters that may be deactivated by an adversary.

- An emitter is either selected or not selected. Only selected emitters
can cover clients.

- The adversary can later observe the selected emitters and is allowed
to deactivate any K of them.

- After the adversary deactivates K selected emitters, the remaining
active emitters must collectively cover all clients.

Task:

- Select a subset of emitters such that the total cost of the selected
emitters is minimum.

- The selected emitters must be chosen in a way that, for every possible
way the adversary might deactivate exactly K of the selected
emitters, the remaining emitters still cover all clients.

Additional Details:

- A client may be covered by more than one emitter.

- A client is considered covered as long as at least one of the selected
and active emitters lies within its coverage radius.

- The solution is feasible if and only if all clients remain covered
after any possible combination of K deactivatioms.

358

Probabilistic WSCP

Given:
- A set of emitters defined by:
> a non-negative cost,

359

12

360

361

> a two-dimensional position (x, y),
> a positive coverage radius,
> a probability of failure.
- A set of clients defined by:
> a two-dimensional position (x, y),
> a minimum required probability of coverage.
- A client is considered covered by an emitter if the emitter is active
and if the straight-line distance between the client and the emitter
is less than or equal to the emitter’s coverage radius.
- An emitter is either selected or not selected. Only selected emitters
can cover clients.

Task:

- Select a subset of emitters such that the total cost of the selected
emitters is minimum.

- The selected emitters must be chosen in a way that every client is
covered with sufficient probability.

Additional Details:

- A client may be covered by more than one emitter.

- The failures of emitters happen independently.

- A client is considered covered as long as at least one of the selected
and active emitters lies within its coverage radius.

- The solution is feasible if and only if all clients are covered with
sufficient probability.

Time-dependent WSCP

Given:

- A continuous time interval [0, T]

- A set of emitters defined by:
> a non-negative operating cost incurred per unit of time the
emitter is active,
> a fixed two-dimensional position (x, y),
> a positive coverage radius.

- A set of clients. Each client moves at a constant speed and in
straight line from (x1, y1) at t=0 to (x2, y2) at t=T.

- An emitter is either active or inactive. Only active emitters can
cover clients.

- A client is considered covered at a given time if the straight-line
distance between the current client position and at least one active
emitter is less than or equal to that emitter’s coverage radius.

Task:

- Choose an activation schedule for each emitter.

- Minimize the total operating costs of the active emitters over the
horizon.

- All clients must be covered at any time of the horizon.

Additional details:

- A client may be covered by more than one emitter.

- Activation and deactivation decisions are independent; an emitter can
change its on/off state freely and at any time.

- The schedules must be provided as explicit time interval endpoints

- The solution is feasible if and only if, at any time of the horizon,
every client is covered by at least one active emitter.

13

362

363

364
365

366

367

368

369
370

371

372
373

374

D Expectation Maximization Model Specifications

Observed variables:

1 if solver s reports a solution on instance % .
Tsii = { 0 otherwise. , V(si)eSxI

V(s,i,t) e SxIxTstrg;, =1

S 1 solution (s,) passes test ¢
s4t =1 0 otherwise. ’

For all (s,i) € S x I suchthatr,; = 1, wedefine Cs s = >, 7s,t-

Latent variables:

|
|

if instance ¢ admits a feasible solution

otherwise. , viel

solution (s, %) is feasible

O = O =

fsi= V(s,i) € SxIstrg; =1

otherwise. ’
Parameters:
0= ()‘a (as)s€S7 (65)5657 (75)5657 ap, b07 ai, bl)
where
A=P(f;=1) (feasiblity rate of instances)

as=P(rs;, =1 fi =0) (type I error of solver s)

Bs=P(rs;=0]|fi=1) (type II error of solver s)

vs =P (fs;=1]fi=1,rs; =1) (feasibility rate of solutions reported by s on feasible instances)
agp, by Parameters of the Beta—Binomial for infeasible instances
ay, by Parameters of the Beta—Binomial for feasible instances
D.1 E-step

We first compute the intermediate quantities involved in the conditional expectations of f; and f; ;.
Let R denote all observed variable and Ry = {rs; : i € I} U{rs;¢: (i,t) e I xT,rs; =1}
denote the observed variables related to solver s. Let v(k | n,a,b) = (}) W be the
probability mass function of the Beta-Binomial distribution, where B is the beta function. We define
forall (s,i) € S x It

A(O) é V(CSJ‘ | T7 aop, b())

EXS

A(‘:z) e V(CS’Z' | :Z—‘7 ai, bl)

and, forall 7 € I:
BY £PR|f;=0,0)
= T o (R | fi = 0.0)]" (1~ a)* =)

seS

=TT [ort®] ™ (1= ai=re0
ses

BV LPR| fi=10)

= H [(1 - 65) (rYs]P (Rs | Ts,i = 17 fs,i = 17 9) + (1 - 78)P (Rs | Ts,i = 17 fs,i - 07 9))]7"51 ﬁ‘glirs‘i)
sES

= [T [0 =89 (AR + (1 =A@ e

seS

14

a5 We then proceed to compute the conditional expectation of f; and f; ; for a given §. For all ¢ € I:
E[fi | R, 0] =P(fi =1|R,0)
_PRIfi=1LOP(fi=1]06)
P(R[0)
_ PR|fi=1,0)P(fi=1]0)
PR[fi=10)P(f;=1)+PR[f;=0,0)F(f; =0)
ABM
- aBY +(1-ABY

sze Forall (s,4) € S x I such thatr, ; = 1:
P(fsi=1]fi=1R,0)
_PR|fi=1fi=10P(fi=1]fi=10)
PR| fi=1,0)
= PR| fsi=1fi=10)P(fsi=1]fi=1,0)
PR|foi=1fi=10)P(foi=1]fi=D)+PR|[fi=0,fi=LOP(fi=0]fi=1)
1AL

AN (1= ,) A

sz Since P (fs; = 1] f; = 0) = 0, we obtain:

) A5
1AL + (1 =7 A ABY + (1 - 2)BY

S,1

s7s D.2 M-step

a79 The log-likelihood is given by:
InP(R,F|0)

= Z ln]P)(fz) +ZIH]P)(T5,'£ | fz) + Z lnP(fs,i | fz) +ZIHP(Ts,i,t | fs,i)

el seSs seS teT
Ts,i=1

=3 [filn(\) + (1 = £i) In(1 = V)]
iel
+30D frea (Filn(L = B) + (1= fi) In(a)) + (1=) (fi n(B) + (1= f) In(1 =)]
i€l s€S

+ Z Z filfsiln(ys) + (1 = foi) In(1 —)]

i€l seS

rsy,;zl

)Y [failnw(Coi | Tyar,by) + (1= foi) Inv(Coi | T, ag, bo)]

i€l seS

rs,i=1

ss0 Let f, £ E[f; | R,0] and f“ 2E[f.: | RO =E [fifs,i | R, 6]. Taking the conditional expectation
381 and differentiating with respect to A, we have:

o . fz 1_fi
aE[ln]P(R,F\G) IR,9];<A1_A> @

15

ss2 Equating (@) to 0, we obtain: A = Zeiff With analogous reasoning, we obtain:

1]

_ et = fi)rsa
T S
s fill = ri)
Zz‘el fl
_ Ziel Ts,z'fs,i
c Ziel Ts,ifz'

552

33 We use the method of moments to update the parameters ag, bo, a1, and b; using a Beta prior with
s (@, 8) = (20, 1) for the true positive rate. Define:

£ Cs,i

Zs,i (1 - fS,i) T
Zs,i (1 - fs,i)

Y faS a1

Seifsita+B—2

Po =

b1

3s5 and

Zs,i (1 - fs,i) Cs,i

Ho = .
T Zs,i (]‘ - fs,i)
Zs,i (1 - fs,i) (Cs,,'/T — NO)Z
e :
Zs,i (1 - fs,i)
= 2371‘ fS,iCSJ
| ==
T : Zs,i fSﬂ;
o2 — Zs,i fs,i (CSJ/T — ‘ul)Q
1= —
Zs’i fS,i
sss Thenfor k € {0,1}:
To?
s
; T-1

ss7 Finally, retrieve ay, and by, from py, and py, for k € {0,1} as:

16

388

389

390
391

392

393
394

395

404

406

407

408
409

410

411
412

413

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

437

438
439

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions, which are
supported by experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper highlights its reliance on the backbone LLM to produce correct
solvers, and the necessity of sufficiently diverse components to recover them.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

17

440

441
442

443

444

445
446

447

448
449

451
452

454

455
456
457

458

459
460
461

462

463

464
465
466

467
468

469
470
471
472
473
474
475
476
477

478
479
480
481
482

484
485
486
487
488
489
490
491
492
493

Answer: [NA]

Justification: The paper introduces algorithms and statistical modeling, but does not contain
formal theorems or proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental setup, evaluation protocol, and models used are fully described.
LLM prompt templates, complete problem descriptions, and the detailed EM algorithm are
provided in Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

18

494

495
496
497

498

499
500

501

502

503
504

505
506
507
508

509
510
511

512

514
515
516

517
518

519
520

521

522
523
524

525

526
527

528

529

530
531

532
533

534

535
536

538
539
540

541

542

544
545

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Code is not available at submission time, but will be made publicly available
upon acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper reports chosen LLM models and temperatures, accompanied by
justification for these choices.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports the number of runs (10,000), which is sufficient to recover
confidence intervals for binary outcomes. Explicitly reporting them would add little value
given the large performance gaps.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

546
547
548

549
550

552
553

554
555
556

557
558
559

560
561

562

563
564
565

566

567
568

569

570

571
572

573
574

575
576
577

578

579
580

582

583

584

585
586

587
588

589

590
591

592

593

595

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The hardware and execution time are provided in the Experimental Results
section.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: No ethical concerns arise, the work aligns with NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: No societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

20

https://neurips.cc/public/EthicsGuidelines

596
597

598
599
600
601

602
603
604
605
606
607
608

609
610
611
612

613
614
615
616

617

618
619
620

621

622

623

624

625
626
627
628

629
630

632
633

635
636
637

638

639

640

641
642

643
644

645

646
647

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Existing benchmarks are cited and credited.
Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

21

648
649
650
651

652
653

654
655
656

657
658

659

660

661

662
663
664
665
666
667
668
669

671
672
673

674

675

676

677

678
679
680
681
682
683
684

685
686

687
688
689
690

691

692

693

694
695
696
697
698

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The complete description of problem variants is provided in Appendix [C]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The work does not involve human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The work does not involve human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

22

paperswithcode.com/datasets

699 * We recognize that the procedures for this may vary significantly between institutions

700 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
701 guidelines for their institution.

702 * For initial submissions, do not include any information that would break anonymity (if
703 applicable), such as the institution conducting the review.

704 16. Declaration of LLM usage

705 Question: Does the paper describe the usage of LLMs if it is an important, original, or
706 non-standard component of the core methods in this research? Note that if the LLM is used
707 only for writing, editing, or formatting purposes and does not impact the core methodology,
708 scientific rigorousness, or originality of the research, declaration is not required.

709 Answer: [Yes]

710 Justification: LLMs are central to solver, instance, and test generation. Their usage is
711 explicitly described.

712 Guidelines:

713 * The answer NA means that the core method development in this research does not
714 involve LLMs as any important, original, or non-standard components.

715 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
716 for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Methodology
	Generation of Valid Components
	Components Generation.
	Testing.
	Filtering.

	Solver Characterization and Selection
	Characterization.
	Selection.

	Experimental Results
	Experimental Setup
	Multi-Depots Vehicle Routing Problems
	Weighted Set Cover Problem

	Conclusion
	Full Algorithm
	Prompt Templates
	Solvers
	Instances
	Tests

	Problem Descriptions
	Multi-Depot Vehicle Routing Problems
	Weighted Set Cover Problems

	Expectation Maximization Model Specifications
	E-step
	M-step

