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Abstract

Providing good explanations plays a pivotal
role in enhancing human understanding. First,
we organize explanations into categories based
on a framework inspired by scientific and philo-
sophical discussions on the nature of explana-
tions. We then focus on developing retrieval
techniques for single-sentence explanations,
aiming to lay the groundwork for creating an
open-source corpus of scientific articles con-
taining annotations of explanations. A user
study was conducted to label 100 sentences ac-
cording to our classification categories. This
collection of annotated examples, balanced
with topic-related non-explanatory sentences,
was used to refine three large language models
(LLMs) via the Cohere API, enabling them to
perform (a) semantic search, (b) binary classifi-
cation and (c) single-label classification. Mod-
els (b) and (c) presented results superior to base
Llama 3 8B and on par with GPT-4, with model
(b) showing balanced results and outperform-
ing GPT-4 by 12% accuracy.

1 Introduction

As generative models become more sophisticated
and a standard tool, and as Large Language Models
(LLMs) are employed for text generation, a notable
use of this technology is its combination with ML
models that emphasize explainability. Explanations
for machine learning decisions, crucial in sectors
like healthcare (Ribeiro et al., 2016; Linardatos
et al., 2020; Ghassemi et al., 2021), need to be im-
pactful and human-like (Kulesza et al., 2015; Ali
et al., 2023). Addressing the challenge of creating
explanations prioritizing proximal over procedu-
ral aspects remains a key issue (Tan, 2022). The
scarcity of large-scale datasets containing human-
generated explanations poses a challenge yet of-
fers a potential solution (Wiegreffe and Marasovic,
2021). This research aims to develop a corpus
of high-quality scientific explanatory data and ex-
plores the performance of easily accessible LLMs

for classifying explanatory sentences. Our ap-
proach begins with the joint annotation of 100
sentences, from which we derive classification cat-
egories based on the data. This document will
designate the annotated sentence collection as the
Annotated Explanatory Dataset. We provide the
Annotated Explanatory Dataset and supplementary
materials to the research community via a desig-
nated GitHub repository (anonymized for the pur-
pose of the review) (git).

The remainder of this paper is organized as fol-
lows: Section 2 puts our work in context, Section
3 explains the construction of the Annotated Ex-
planatory Dataset and presents the techniques for
extracting explanations from corpora. The subse-
quent sections, 4 and 5, explore and analyze the
findings. The paper ends with conclusions and an
outline of future research directions.

2 Related Work

The quest to understand the essence of explanations
spans a wide array of scientific research, with sig-
nificant contributions from both the social sciences
and, more recently, the fields of ML and Al. In
social sciences, many definitions and research di-
rections have been drawn from the seminal efforts
of philosophers like Aristotle, John Stuart Mill, and
Hume, among others. The scholarly contributions
of Miller (2019); Mill (2012); Thagard (2012);
Lombrozo (2006); Halpern and Pearl (2005); Lewis
(1986) have explored the multifaceted nature of ex-
planations. These works examine various critical
aspects, such as causality, which delves into the
cause-and-effect relationships; contrast, exploring
the distinctions between differing scenarios; rele-
vance, focusing on the importance and applicability
of explanations; and truth, evaluating the accuracy
and verifiability of explanations. Meanwhile, ML
and NLP focus on operational definitions and the
importance of constructing datasets, as seen in stud-



ies by Tan (2022); Wiegreffe and Marasovi¢ (2021);
Hartmann and Sonntag (2022).

Additionally, NLP researchers have crafted
highly accurate methods for identifying relation-
ships between concepts. The efforts to derive
causal connections from textual content are particu-
larly relevant to our study. A review of these efforts
is Yang et al. (2021). The Penn Discourse Tree-
bank (PDTB) version 2.0 is a relevant dataset for
causal relations. It was introduced in Prasad et al.
(2008) and is the most extensive collection of anno-
tated discourse relations to date, featuring 72,135
non-causal and 9,190 causal examples derived from
2,312 articles from The Wall Street Journal. Focus-
ing instead on the relations dictated by comprehen-
sion and common sense, the ECQA and TriviaQA
datasets are an example of the most recent direction
in the field, a question-answer-evidence approach
(Aggarwal et al., 2021; Joshi et al., 2017).

Particularly noteworthy is the work by Overton
(Overton, 2012), which bridges the gap between
the philosophical discourse on explanations and
the practical concerns of analyzing scientific texts;
it does so by exploring the diverse philosophical
accounts of scientific explanation by analyzing Sci-
ence journal articles using text mining. Overton
identifies the prevalent use of terms like "explain"
and "cause," noting that "explain" words are espe-
cially common and often used with qualifiers or
negations, offering new insights into the practice
of scientific explanation beyond traditional analy-
ses. Our work aims to connect the dots between
the social science perspective and Al explainabil-
ity, utilizing the latest LLMs techniques to distil
explanatory sentences from scientific articles cor-
pora.

3 Methods

This section outlines the creation of the Annotated
Explanatory Dataset, validated through user stud-
ies, and discusses the LLMs employed for the auto-
mated classification of explanations.

3.1 Sentence Selection

The focus of our search for valid corpora for ex-
planation extraction was narrowed to scientific text
for three main reasons. The first reason was the
need for concise explanations that would present
information in a direct manner; the second was to
avoid the potential semantic complications emerg-
ing from the social aspect of non-scientific dis-

course; the third was to limit the subjectivity of the
information presented as much as possible.

The PMC Open Access Subset selected as our
corpus facilitates easy replication of results and
contains plenty of scientific explanations, and of-
fers millions of freely usable journal articles and
preprints under licenses like Creative Commons.
It’s a key part of PubMed Central’s effort to en-
hance access to scientific research for text mining
and reuse. This subset enables broader distribution
and use than typical copyrighted works, support-
ing NIH’s open access goals through services like
cloud and FTP for efficient retrieval and analysis of
biotechnology-related literature. Specifically, we
employed:

1. The content from txt format documents
located in the PMCQ@8 split within the
oa_bulk/oa_comm/txt directory. This split
contains approximately 530,000 documents of
varying lengths and formats, from abstracts to
full papers, spanning multiple specializations
such as chemistry, medicine, and physics, all
unified under the primary topic of biotechnol-

0gy.

2. Every document was processed using the
NLTK (Bird and Loper, 2004) library, partic-
ularly the nltk.tokenize.sent_tokenize
function, with ’English’ as the chosen lan-
guage and any trailing white spaces removed
before processing. The sentences extracted
through this process were then stored in a lo-
cal database and categorized as described in
the introduction to the following section.

Drawing upon the research detailed in Over-
ton (2012), which links explanatory sentences to
prevalent scientific literature keywords, we initially
sorted the data. We assigned each sentence one
or more identifiers grounded in specific categories,
delineated by their pertinent keywords. These cate-
gories and their respective keywords are outlined
as follows:

* because: associated with the keyword be-
cause.

* cause: linked to keywords such as cause* and
due to.

* confirm: corresponding to confirm*.

* contrast: encompasses although, contrast*,
despite, however, and while.



« effects: pertains to effect and effects.

* evidence: involves eviden*.

* explain: includes expla* and unexpla*.

¢ indicate: related to indicat*, point, and direct.
* negation: identified by not.

» show: involves show* and illustrate*.

* suggest: associated with sugges*.

Each keyword pattern (denoted with an asterisk)
represents a wildcard, indicating any extension of
the root word.

The differences in keywords and categories be-
tween this research and that of Overton (2012) stem
from the varied thematic realms explored in the
datasets of each study. After organizing the dataset
and selecting a representative sample of 1200 sen-
tences that mirror the overall keyword distribution,
a preliminary qualitative review was conducted by
hand. This review pinpointed around 430 sentences
with potential for explanatory significance.

3.2 Annotated Explanatory Dataset

Refining around 430 potential explanations led to a
concise set of seed sentences through manual eval-
uation and categorization, focusing on identifying
core characteristics that define each group. This
categorization process, driven by the dataset, dif-
ferentiated explanatory from non-explanatory con-
tent, aiming to understand the commonalities and
differences within the explanations. This method
avoided pre-set criteria, instead exploring the in-
trinsic connections between categories and the
dataset’s subject, informed by existing discussions
in philosophical and scientific discourse.100 single-
sentence explanations deemed appropriate for act-
ing as foundational sentence seeds have been cho-
sen. This is our Annotated Explanatory Dataset
from which we derived the explanation categories.

Causation. Explanations in this category identify
and describe the relationship between cause and ef-
fect, emphasizing that one event or condition leads
to another. These explanations connect the cause
and outcome without exploring the detailed mecha-
nisms between them. For foundational insights on
causation, see Mackie (1974).

Example: “A deficiency of vitamin D in the body
causes weakened bones and the onset of osteoporo-

ER)

S18.

Mechanistic causation. This category delves
into the processes or mechanisms by which a cause
leads to an effect, offering a deeper understanding
than simple causation. It describes the intermediate
steps or biological processes that elucidate how and
why the cause effects the outcome, as discussed in
Machamer et al. (2000).

Example: “Treatment at an early stage when
cancer cells are confined in the organ significantly
increases the curative rate.”

Contrastive. Contrastive explanations focus on
comparing scenarios to explain why a particular
outcome occurred in one case but not in another,
emphasizing divergent outcomes. This approach is
explored in Jacovi et al. (2021).

Example: “The temperature of a large objective
lens was higher than that of a small one due to
stronger light concentration at higher magnifica-
tion.”

Correlation. These explanations detail relation-
ships between variables where changes in one are
associated with changes in another but without es-
tablishing causality. It highlights observed patterns
or trends indicating simultaneous changes in vari-
ables.

Example: “Greater improvements in DXA-based
BMD are associated with a greater reduction in
fracture risk, especially for spine and hip fractures.”

Functional Functional explanations describe the
evolution or maintenance of traits due to their utility
or role. They focus on the function of a trait in
relation to its form and effectiveness, particularly
in biology, as discussed in Mayr (1988).

Example: “The owl’s wing feathers have evolved
for silent flight, aiding in stealthy hunting.”

Pragmatic approach. This category emphasizes
practicality in choices or actions, focusing on real-
world applicability. It explains the selection of
methods or models based on convenience or effec-
tiveness, further elaborated in Morgan and Morri-
son (1999).

Example: “Liquid formulations are preferred in
paediatrics for their ease of administration.”

3.3 User study and annotator consensus

To reduce the impact of any possible biases from
the authors on how sentences were categorized, we
conducted a study involving a total of fifteen volun-
teers who graduated from diverse academic fields
(i.e., computer science, linguistics, psychology and



robotics) that were not represented in the topic do-
main of the sentences. This method was chosen to
help prevent knowledge bias by forcing the analysis
of unfamiliar data purely on a sentence-structure
level, without precognitions. The sentences were
divided into three equal parts, each containing 33
or 34 sentences. These groups were then utilized
in a survey, which included a learning section, re-
ferred to as tutorial, and a task where participants
categorized sentences, referred to as classification.
The survey was administered using Google Forms,
which were divided into two macro-sections. In
the tutorial, for each category, the following were
provided:

(a) An example sentence,
(b) A written definition,

(c) A graphical representation illustrating the def-
inition.

After the tutorial, participants were tasked with
a classification activity structured as a multiple-
choice questionnaire. Each of the three question-
naires was delivered to five different annotators,
with no annotator being exposed to more than one
questionnaire to avoid carry-on knowledge bias; the
form was filled in one sitting by each of the users,
and no interaction between annotators was allowed
to preserve the quality of the results. The average
per-sentence consensus between users resulted in
a score of 3.57; to further confirm the robustness
of the consensus, we computed the Fleiss kappa
(Fleiss, 1971) for the set, resulting in a score of
0.303. At first glance, such a score might not seem
to indicate quality agreement, but Fleiss’ kappa
score uses a peculiar agreement scale and it is
known to produce lower results with the scaling of
categories and annotators (McHugh, 2012). There-
fore, considering the kappa score being categorized
as "fair agreement” (Landis and Koch, 1977) and
the consensus score having a potential range from
1 to 5, the quality test was deemed satisfactory for
the seed and the definitions.

While the size of the sentence seed might seem
too small for the number of categories available
(100 to 6), we believe that the limitations on lan-
guage imposed by the topic domain and the source
of the original data can mitigate the semantic bi-
ases that would naturally appear. The annotated
sentence seed is available as a csv file at the
anonymized GitHub repository (git).

3.4 Approaches to explanation classification

Since vector embeddings from large text corpora
effectively maintain the semantic connections be-
tween sentences (Guha et al., 2003; Bast et al.,
2016; Uren et al., 2007), our first approach used
semantic search to extract explanations.

The Cohere API (coh) offers developers access
to advanced natural language processing capabil-
ities, enabling easy text generation, classification,
and analysis integration into applications. It’s de-
signed to make cutting-edge language Al technolo-
gies accessible for various uses, from automating
tasks to enhancing user interactions and extracting
insights from data.

The ‘embed-english-v3.0‘ model was fed with a
seed sentence and approximately 50,000 sentences
from the dataset. By tweaking the input configu-
rations, the process was enhanced to rerank and
cluster the sentences based on their vector cosine
similarity. This methodology allowed us to pin-
point and collect the 20 sentences closely aligned
with each seed sentence from its specific cluster.

However, a different approach was adopted after
it was found that the initial method did not produce
the desired results; less than 30% of the retrieved
sentences were actual explanations, with many sim-
ply mirroring the seed sentences. The following
sections introduce two classification-focused meth-
ods tested on a randomly selected subset of around
3,700 sentences from our dataset.

Considering the selected seed sentences did not
provide a sufficiently large dataset for full model
training, a decision was made to fine-tune a pre-
existing large language model (LLM) trained on
English text for classification and embedding tasks.
Two models were experimented with, starting with
embed-english-v3.0 from Cohere (coh), and the
following fine-tuning steps were undertaken:

1. For the binary classification task:

1.1 Label the chosen explanatory sentences
from the biotechnology domain as posi-
tive.

1.2 Collect and label a set of 95 non-
explanatory sentences from related top-
ics (wik) as negative.

1.3 Create the fine-tuning dataset by combin-
ing the positive and negative sets.

1.4 Adapt the base LLM into a binary classi-
fication model.

2. For the multi-class classification task:



2.1 Individually label the sentences from the
explanatory seed according to their spe-
cific explanation category.

2.2 Select and label a set of 20 non-
explanatory sentences from the previ-
ously collected ones as non-explanatory.

2.3 Produce the fine-tuning dataset by merg-
ing these sets.

2.4 Refine the base LLM into a multi-class
classification model.

Two types of models were designed and evaluated:
a binary classifier and a multi-class classifier. The
binary classifier determines whether a sentence is
an explanation. The multi-class classifier catego-
rizes sentences into one of the explanatory cate-
gories from the Annotated Explanatory Dataset or
labels them as non-explanatory.

The datasets for fine-tuning these models are
accessible at the anonymized GitHub repository
(git), stored in tsv format. The model IDs for the
Cohere API are provided in the same repository
and can be called through the Cohere API.

3.5 Baseline LLMs and comparative
evaluation

Given the advancements in OpenAI’s GPT archi-
tecture, particularly with the introduction of GPT-4,
it was logical to employ this architecture for the
research. Similarly, the most recent architecture
by MetaAl, Llama-3 (lla), was integrated. To en-
sure lightweight solutions for ease of reproducibil-
ity, scalability, and general use, the 8B version of
Llama-3 was chosen.

Three templates (£0, t1, t2) were developed to
aid the models in their classification tasks and de-
termine the optimal amount of information to in-
clude in the prompt. The first template exemplifies
zero-shot learning, while the next two exemplify
few-shot learning. The information was distributed
in the following ways:

(a) Executing multi-class classification on any
given English sentence, allocating the sen-
tence to predefined categories, (10, t1, t2).

(b) Integrating a comprehensive list of these cate-
gories, each accompanied by definitions, (70,
tl, 12)

(c) Accompanying the definitions with three illus-
trative sentences, (1, t2)

(d) Adding additional illustrative sentences (min
0, max 7) to mimic the proportions in the orig-
inal seed, (12)

(e) Presenting the analyzed sentence alongside a
prompt for the appropriate category label (t0,
tl, t2).

These templates applied consistently across our
dataset, offering clear examples and directives for
the classification task. Examples of these templates
are available at our anonymized GitHub repository
(git), where they have been uploaded in a txt for-
mat.

The testing was done using Google Colab note-
books, with the baseline Llama 3 8B run on L4
GPUs and GPT-4 through API; the overall cost
for operating Llama 3 and GPT-4 was ~ 80 euros.
However, the Llama model required more than 3
hours compared to GPT-4, which needed just a few
minutes.

4 Results

For a thorough comparison, 300 sentences rang-
ing from 50 to 500 characters in length were ran-
domly selected from the test set and manually anno-
tated to serve as a golden standard for assessment.
This subset did not include functional explanations,
highlighting their rarity in the larger dataset due
to the domain’s specific nature. Since the absence
of the functional category had a negligible effect
on the baseline models and no effect on the fine-
tuned ones, it was excluded when evaluating the
multiclass performance of the models.

Table 1 offers a side-by-side general perfor-
mance evaluation of all models tested: the fine-
tuned Cohere binary classifier and multi-class clas-
sifiers, GPT-4, Llama 3 8B. The 70/t1/t2 mark rep-
resents the template used to prompt the genera-
tive model. The fine-tuned models demonstrated
slightly superior accuracy when compared to GPT-
4, with the performance of base Llama 3 8B being
inferior to both models independently of the prompt
template used to run the tests.

An important finding was the repetition of high
recall scores achieved by GPT-4’s and Llama 3’s
binary classification, largely due to the tendency
of both models to broadly label sentences as ex-
planations. This approach correctly identified all
positive instances while mistakenly categorizing
a large amount of the non-explanatory sentences.
The class-by-class comparison for the fine-tuned



model precision recall accuracy F1-score
finetuned binary .63/— .70/— .76/— .66/ —

finetuned multi —/60 —/4 —/.0 — /.51

GPT - 4 (10) 41732 99742 51/.31 .58/.36
GPT -4 (t1) 46/.47 99/.58 61/.49 .63/.52
GPT -4 (12) S56/.45 93749 73/.58 70/.47
Llama3 8B (t0) .34/.22 98/.21 .35/.11 .50/.22
Llama 3 8B (t1) .35/.14 .87/.15 .40/.17 .49/.15
Llama3 8B (t2) .34/.14 94/.21 .35/.13 .50/.17

Table 1: Evaluation metrics of the fine-tuned classifiers, base GPT-4 and base Llama 3 8B. The values presented are

binary score / multiclass score.

multi finetuned

precision recall F1
causation 0.40 047 044
contrastive 0.73 0.57 0.64
correlation 0.38 0.28 0.32
mech. caus. 0.83 0.33 048
prag. app. 0.50 0.07 0.13
non-expl 0.78 0.88 0.83
GPT-4 (12)

precision recall F1
causation 0.28 0.57 0.37
contrastive 0.50 0.21 0.30
correlation 0.27 046 0.34
mech. caus. 0.36 0.27 0.31
prag. app 0.31 0.79 045
non-expl 0.95 0.63 0.76

Table 2: Performance comparison of the two best-
performing models by class label.

multi-class model and the GPT-4 with the best per-
forming template is depicted in Table 2.

5 Discussion

With the results provided in the previous section, it
is possible to extract useful information regarding
the performance of the two fine-tuned LLM classi-
fiers, the baseline models and the possible pitfalls
and issues within the procedures. Firstly, the ran-
dom sampling of the test set (300 sentences out of
3600+) and its subsequent manual annotation as the
golden standard has led to the non-representation
of the functional category of explanations, as it can
be seen missing from Table 2. While this might
seem counterproductive for the testing process, it
is also important to note that the functional cate-
gory is related to the biology specific niche of the

topic macro-domain. This representation could be
a fairly accurate approximation when scaled to real
corpora.

Second, as shown in Table 1, even fine-tuning
with just 200 sentences enabled a binary classifica-
tion model to achieve slightly better accuracy than
a sophisticated system like GPT-4. This model
demonstrated more balanced precision and recall
values and avoided the overclassification of positive
labels, a problem observed with GPT-4 in Tabel 2.
Although the 0.76 accuracy may not entail a fully
automated classification process, it suggests the
feasibility of employing binary classification mod-
els for accurately compiling large collections of
explanatory sentences. This approach could be exe-
cuted semi-supervised, with future progress leading
to unsupervised approaches.

Third, although the multi-class classifier failed
to recall the majority of pragmatic approach ex-
planations within the test sample, its performance
across the remaining categories was strong enough
to surpass the best-prompted GPT-4 model in terms
of overall accuracy and precision and scores. De-
spite the results not being revolutionary for LLM
or GPT-4 architectures, the potential for improve-
ment with additional high-quality data is evident
and significant. This allows combining a fine-tuned
binary classifier for preliminary screening with a
prompted GPT model for more nuanced classifica-
tion tasks.

As an aside, the inferior performance of base-
line Llama 3 8B was surprising but not entirely so.
An interesting finding was the difference in per-
formance depending on the template complexity,
achieving slightly better results with a medium-
complexity zero-shot template (t1) compared to
both the simpler and more complex templates (t0,
t2). Perhaps a comparison between the larger 70B



Llama 3 and the other models used in the paper
might have been more appropriate considering the
parameter size; alternatively, using a fine-tuned ver-
sion of the 8B model could have led to better results.
Nonetheless, the base 8B model was a good enough
compromise between size and effectiveness to be
used as a baseline, given the previously mentioned
constraints.

6 Conclusion and future work

This study was initiated to establish a foundation
for creating a corpus of explanatory sentences
to pinpoint effective data-gathering and catego-
rization methods. We have introduced a frame-
work for identifying explanatory sentences within
biotechnology-related topics and reported find-
ings from experiments with the fine-tuned Cohere
LLM, base Llama 3 8B and GPT-4, demonstrat-
ing over 0.7 accuracy in binary classification of
explanatory content. Considering the Cohere API’s
performance with a relatively small qualitative
dataset against a system like GPT-4, combined with
its user-friendly nature and minimal resource de-
mands, this suggests promising avenues for further
exploration. This lays the basis for Al-aided user
annotations for a wider sentence seed, further refin-
ing of the model, and even better corpus-building
capabilities to be achieved.

Future research directions involve more exten-
sive comparisons between tunable LLMs to help ex-
pand the qualitative sentence seed from this project
and investigate potential avenues to develop a clas-
sification system capable of handling explanations
that span multiple sentences. We believe that by
assembling vast collections of human-generated ex-
planations, we can refine the annotated explanatory
dataset with improved annotations for more effi-
cient model tuning, which would not require spe-
cific pairs of explanations and "added theory" to ex-
tract explanatory sentences from textual data. Fur-
thermore, this could enable the conversational out-
puts of XAl generative models to more accurately
reflect human conversation and produce explana-
tory text; this could pair well with effective coun-
terfactual frameworks in providing understandable
Al outputs for both laymen and outsiders of the
machine-learning field.
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Ethical implications and risks

All the work done with annotators has been carried
on within the best ethical constraints, with volun-
tary work being paid for in kindness and treats,
correct and compliant use of the licensing provided
by the datasets used in the paper and the fair and
correct use of the models deployed. While volun-
teering annotators were not allowed to complete
the survey in multiple tranches, the time required
was between 30 and 45 minutes and thus did not
endanger, harm or strain the annotators mentally or
physically.

Since the information contained in the datasets,
the sentence seed, and the test set are obtained from
academically trusted scientific resources, the risk
of spreading misinformation or biased production
of results should be minimal and non-threatening
for the scientific community. Moreover, since the
dataset focuses on explanatory single sentences re-
lated to the biotechnology domain, the risk of bias
towards marginalised communities is almost non-
existent. We did not personally read the entirety of
the PMC corpus, so we cannot say that the risk is
zero, but there is a strong assumption of safety.

While future work down the line could provide
materials that could be used with malicious intent,
such as applying convincing explanatory output to
biased or faulty models, we believe that the current
risk is not heightened by the publication of this
work.

Reproducibility

To provide as much reproducibility of the results
presented in this paper as possible, all the test
data, the tuning data and the templates to correctly
prompt the GPT-4 and Llama 3 8B models have
been included in the currently anonymized GitHub
repository (git) previously mentioned in the paper.
The folder is organized to provide an easily under-
standable division of all the materials relevant to
this paper, and in addition to the aforementioned
data, contains the executable Python files derived
from the Colab notebooks used to run the GPT-4
and Llama 3 8B models. The exact split of the test
set randomly selected to evaluate the models is also
freely available, along with the Cohere model IDs
to allow for reproducible API calls and the original



sentence seed with the annotator consensus score.
For the purpose of the review, the data and soft-
ware used will also be uploaded in the respective
sections of the ARR form.

Limitations

Time and computational constraints were not
the main limitations of this work since using
lightweight, fast-to-deploy architectures was a rea-
soned choice to avoid gatekeeping materials and
procedures from anybody without easy access to
powerful cloud computing structures. However, ex-
tensive testing and template engineering could not
be performed to assess the best possible version
of GPT-4 and baseline Llama 3 against the Co-
here LLMs; three templates are certainly enough,
but perhaps not extensively so, since it is known
that slight modification in a prompt for generative
LLMs can produce a wide array of unexpected re-
sults.

Certainly, the number of annotators can be ad-
dressed as a limitation in the scope of the presented
work, alongside the narrow domain topic chosen
for the dataset. Future work will consider both of
these limitations to produce more robust claims
and strive for a higher annotator consensus, aiming
for wider-reaching studies and clearer definitions.
Similarly, the reduced sample test set of 300 sen-
tences out of 3600+ could have skewed the results
in favour of one model or another; the development
of a bigger golden-standard test set is planned for
future refinement of the dataset.
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