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Abstract
Providing good explanations plays a pivotal001
role in enhancing human understanding. First,002
we organize explanations into categories based003
on a framework inspired by scientific and philo-004
sophical discussions on the nature of explana-005
tions. We then focus on developing retrieval006
techniques for single-sentence explanations,007
aiming to lay the groundwork for creating an008
open-source corpus of scientific articles con-009
taining annotations of explanations. A user010
study was conducted to label 100 sentences ac-011
cording to our classification categories. This012
collection of annotated examples, balanced013
with topic-related non-explanatory sentences,014
was used to refine three large language models015
(LLMs) via the Cohere API, enabling them to016
perform (a) semantic search, (b) binary classifi-017
cation and (c) single-label classification. Mod-018
els (b) and (c) presented results superior to base019
Llama 3 8B and on par with GPT-4, with model020
(b) showing balanced results and outperform-021
ing GPT-4 by 12% accuracy.022

1 Introduction023

As generative models become more sophisticated024

and a standard tool, and as Large Language Models025

(LLMs) are employed for text generation, a notable026

use of this technology is its combination with ML027

models that emphasize explainability. Explanations028

for machine learning decisions, crucial in sectors029

like healthcare (Ribeiro et al., 2016; Linardatos030

et al., 2020; Ghassemi et al., 2021), need to be im-031

pactful and human-like (Kulesza et al., 2015; Ali032

et al., 2023). Addressing the challenge of creating033

explanations prioritizing proximal over procedu-034

ral aspects remains a key issue (Tan, 2022). The035

scarcity of large-scale datasets containing human-036

generated explanations poses a challenge yet of-037

fers a potential solution (Wiegreffe and Marasović,038

2021). This research aims to develop a corpus039

of high-quality scientific explanatory data and ex-040

plores the performance of easily accessible LLMs041

for classifying explanatory sentences. Our ap- 042

proach begins with the joint annotation of 100 043

sentences, from which we derive classification cat- 044

egories based on the data. This document will 045

designate the annotated sentence collection as the 046

Annotated Explanatory Dataset. We provide the 047

Annotated Explanatory Dataset and supplementary 048

materials to the research community via a desig- 049

nated GitHub repository (anonymized for the pur- 050

pose of the review) (git). 051

The remainder of this paper is organized as fol- 052

lows: Section 2 puts our work in context, Section 053

3 explains the construction of the Annotated Ex- 054

planatory Dataset and presents the techniques for 055

extracting explanations from corpora. The subse- 056

quent sections, 4 and 5, explore and analyze the 057

findings. The paper ends with conclusions and an 058

outline of future research directions. 059

2 Related Work 060

The quest to understand the essence of explanations 061

spans a wide array of scientific research, with sig- 062

nificant contributions from both the social sciences 063

and, more recently, the fields of ML and AI. In 064

social sciences, many definitions and research di- 065

rections have been drawn from the seminal efforts 066

of philosophers like Aristotle, John Stuart Mill, and 067

Hume, among others. The scholarly contributions 068

of Miller (2019); Mill (2012); Thagard (2012); 069

Lombrozo (2006); Halpern and Pearl (2005); Lewis 070

(1986) have explored the multifaceted nature of ex- 071

planations. These works examine various critical 072

aspects, such as causality, which delves into the 073

cause-and-effect relationships; contrast, exploring 074

the distinctions between differing scenarios; rele- 075

vance, focusing on the importance and applicability 076

of explanations; and truth, evaluating the accuracy 077

and verifiability of explanations. Meanwhile, ML 078

and NLP focus on operational definitions and the 079

importance of constructing datasets, as seen in stud- 080
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ies by Tan (2022); Wiegreffe and Marasović (2021);081

Hartmann and Sonntag (2022).082

Additionally, NLP researchers have crafted083

highly accurate methods for identifying relation-084

ships between concepts. The efforts to derive085

causal connections from textual content are particu-086

larly relevant to our study. A review of these efforts087

is Yang et al. (2021). The Penn Discourse Tree-088

bank (PDTB) version 2.0 is a relevant dataset for089

causal relations. It was introduced in Prasad et al.090

(2008) and is the most extensive collection of anno-091

tated discourse relations to date, featuring 72,135092

non-causal and 9,190 causal examples derived from093

2,312 articles from The Wall Street Journal. Focus-094

ing instead on the relations dictated by comprehen-095

sion and common sense, the ECQA and TriviaQA096

datasets are an example of the most recent direction097

in the field, a question-answer-evidence approach098

(Aggarwal et al., 2021; Joshi et al., 2017).099

Particularly noteworthy is the work by Overton100

(Overton, 2012), which bridges the gap between101

the philosophical discourse on explanations and102

the practical concerns of analyzing scientific texts;103

it does so by exploring the diverse philosophical104

accounts of scientific explanation by analyzing Sci-105

ence journal articles using text mining. Overton106

identifies the prevalent use of terms like "explain"107

and "cause," noting that "explain" words are espe-108

cially common and often used with qualifiers or109

negations, offering new insights into the practice110

of scientific explanation beyond traditional analy-111

ses. Our work aims to connect the dots between112

the social science perspective and AI explainabil-113

ity, utilizing the latest LLMs techniques to distil114

explanatory sentences from scientific articles cor-115

pora.116

3 Methods117

This section outlines the creation of the Annotated118

Explanatory Dataset, validated through user stud-119

ies, and discusses the LLMs employed for the auto-120

mated classification of explanations.121

3.1 Sentence Selection122

The focus of our search for valid corpora for ex-123

planation extraction was narrowed to scientific text124

for three main reasons. The first reason was the125

need for concise explanations that would present126

information in a direct manner; the second was to127

avoid the potential semantic complications emerg-128

ing from the social aspect of non-scientific dis-129

course; the third was to limit the subjectivity of the 130

information presented as much as possible. 131

The PMC Open Access Subset selected as our 132

corpus facilitates easy replication of results and 133

contains plenty of scientific explanations, and of- 134

fers millions of freely usable journal articles and 135

preprints under licenses like Creative Commons. 136

It’s a key part of PubMed Central’s effort to en- 137

hance access to scientific research for text mining 138

and reuse. This subset enables broader distribution 139

and use than typical copyrighted works, support- 140

ing NIH’s open access goals through services like 141

cloud and FTP for efficient retrieval and analysis of 142

biotechnology-related literature. Specifically, we 143

employed: 144

1. The content from txt format documents 145

located in the PMC008 split within the 146

oa_bulk/oa_comm/txt directory. This split 147

contains approximately 530,000 documents of 148

varying lengths and formats, from abstracts to 149

full papers, spanning multiple specializations 150

such as chemistry, medicine, and physics, all 151

unified under the primary topic of biotechnol- 152

ogy. 153

2. Every document was processed using the 154

NLTK (Bird and Loper, 2004) library, partic- 155

ularly the nltk.tokenize.sent_tokenize 156

function, with ’English’ as the chosen lan- 157

guage and any trailing white spaces removed 158

before processing. The sentences extracted 159

through this process were then stored in a lo- 160

cal database and categorized as described in 161

the introduction to the following section. 162

Drawing upon the research detailed in Over- 163

ton (2012), which links explanatory sentences to 164

prevalent scientific literature keywords, we initially 165

sorted the data. We assigned each sentence one 166

or more identifiers grounded in specific categories, 167

delineated by their pertinent keywords. These cate- 168

gories and their respective keywords are outlined 169

as follows: 170

• because: associated with the keyword be- 171

cause. 172

• cause: linked to keywords such as cause* and 173

due to. 174

• confirm: corresponding to confirm*. 175

• contrast: encompasses although, contrast*, 176

despite, however, and while. 177
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• effects: pertains to effect and effects.178

• evidence: involves eviden*.179

• explain: includes expla* and unexpla*.180

• indicate: related to indicat*, point, and direct.181

• negation: identified by not.182

• show: involves show* and illustrate*.183

• suggest: associated with sugges*.184

Each keyword pattern (denoted with an asterisk)185

represents a wildcard, indicating any extension of186

the root word.187

The differences in keywords and categories be-188

tween this research and that of Overton (2012) stem189

from the varied thematic realms explored in the190

datasets of each study. After organizing the dataset191

and selecting a representative sample of 1200 sen-192

tences that mirror the overall keyword distribution,193

a preliminary qualitative review was conducted by194

hand. This review pinpointed around 430 sentences195

with potential for explanatory significance.196

3.2 Annotated Explanatory Dataset197

Refining around 430 potential explanations led to a198

concise set of seed sentences through manual eval-199

uation and categorization, focusing on identifying200

core characteristics that define each group. This201

categorization process, driven by the dataset, dif-202

ferentiated explanatory from non-explanatory con-203

tent, aiming to understand the commonalities and204

differences within the explanations. This method205

avoided pre-set criteria, instead exploring the in-206

trinsic connections between categories and the207

dataset’s subject, informed by existing discussions208

in philosophical and scientific discourse.100 single-209

sentence explanations deemed appropriate for act-210

ing as foundational sentence seeds have been cho-211

sen. This is our Annotated Explanatory Dataset212

from which we derived the explanation categories.213

Causation. Explanations in this category identify214

and describe the relationship between cause and ef-215

fect, emphasizing that one event or condition leads216

to another. These explanations connect the cause217

and outcome without exploring the detailed mecha-218

nisms between them. For foundational insights on219

causation, see Mackie (1974).220

Example: “A deficiency of vitamin D in the body221

causes weakened bones and the onset of osteoporo-222

sis.”223

Mechanistic causation. This category delves 224

into the processes or mechanisms by which a cause 225

leads to an effect, offering a deeper understanding 226

than simple causation. It describes the intermediate 227

steps or biological processes that elucidate how and 228

why the cause effects the outcome, as discussed in 229

Machamer et al. (2000). 230

Example: “Treatment at an early stage when 231

cancer cells are confined in the organ significantly 232

increases the curative rate.” 233

Contrastive. Contrastive explanations focus on 234

comparing scenarios to explain why a particular 235

outcome occurred in one case but not in another, 236

emphasizing divergent outcomes. This approach is 237

explored in Jacovi et al. (2021). 238

Example: “The temperature of a large objective 239

lens was higher than that of a small one due to 240

stronger light concentration at higher magnifica- 241

tion.” 242

Correlation. These explanations detail relation- 243

ships between variables where changes in one are 244

associated with changes in another but without es- 245

tablishing causality. It highlights observed patterns 246

or trends indicating simultaneous changes in vari- 247

ables. 248

Example: “Greater improvements in DXA-based 249

BMD are associated with a greater reduction in 250

fracture risk, especially for spine and hip fractures.” 251

Functional Functional explanations describe the 252

evolution or maintenance of traits due to their utility 253

or role. They focus on the function of a trait in 254

relation to its form and effectiveness, particularly 255

in biology, as discussed in Mayr (1988). 256

Example: “The owl’s wing feathers have evolved 257

for silent flight, aiding in stealthy hunting.” 258

Pragmatic approach. This category emphasizes 259

practicality in choices or actions, focusing on real- 260

world applicability. It explains the selection of 261

methods or models based on convenience or effec- 262

tiveness, further elaborated in Morgan and Morri- 263

son (1999). 264

Example: “Liquid formulations are preferred in 265

paediatrics for their ease of administration.” 266

3.3 User study and annotator consensus 267

To reduce the impact of any possible biases from 268

the authors on how sentences were categorized, we 269

conducted a study involving a total of fifteen volun- 270

teers who graduated from diverse academic fields 271

(i.e., computer science, linguistics, psychology and 272

3



robotics) that were not represented in the topic do-273

main of the sentences. This method was chosen to274

help prevent knowledge bias by forcing the analysis275

of unfamiliar data purely on a sentence-structure276

level, without precognitions. The sentences were277

divided into three equal parts, each containing 33278

or 34 sentences. These groups were then utilized279

in a survey, which included a learning section, re-280

ferred to as tutorial, and a task where participants281

categorized sentences, referred to as classification.282

The survey was administered using Google Forms,283

which were divided into two macro-sections. In284

the tutorial, for each category, the following were285

provided:286

(a) An example sentence,287

(b) A written definition,288

(c) A graphical representation illustrating the def-289

inition.290

After the tutorial, participants were tasked with291

a classification activity structured as a multiple-292

choice questionnaire. Each of the three question-293

naires was delivered to five different annotators,294

with no annotator being exposed to more than one295

questionnaire to avoid carry-on knowledge bias; the296

form was filled in one sitting by each of the users,297

and no interaction between annotators was allowed298

to preserve the quality of the results. The average299

per-sentence consensus between users resulted in300

a score of 3.57; to further confirm the robustness301

of the consensus, we computed the Fleiss kappa302

(Fleiss, 1971) for the set, resulting in a score of303

0.303. At first glance, such a score might not seem304

to indicate quality agreement, but Fleiss’ kappa305

score uses a peculiar agreement scale and it is306

known to produce lower results with the scaling of307

categories and annotators (McHugh, 2012). There-308

fore, considering the kappa score being categorized309

as "fair agreement" (Landis and Koch, 1977) and310

the consensus score having a potential range from311

1 to 5, the quality test was deemed satisfactory for312

the seed and the definitions.313

While the size of the sentence seed might seem314

too small for the number of categories available315

(100 to 6), we believe that the limitations on lan-316

guage imposed by the topic domain and the source317

of the original data can mitigate the semantic bi-318

ases that would naturally appear. The annotated319

sentence seed is available as a csv file at the320

anonymized GitHub repository (git).321

3.4 Approaches to explanation classification 322

Since vector embeddings from large text corpora 323

effectively maintain the semantic connections be- 324

tween sentences (Guha et al., 2003; Bast et al., 325

2016; Uren et al., 2007), our first approach used 326

semantic search to extract explanations. 327

The Cohere API (coh) offers developers access 328

to advanced natural language processing capabil- 329

ities, enabling easy text generation, classification, 330

and analysis integration into applications. It’s de- 331

signed to make cutting-edge language AI technolo- 332

gies accessible for various uses, from automating 333

tasks to enhancing user interactions and extracting 334

insights from data. 335

The ‘embed-english-v3.0‘ model was fed with a 336

seed sentence and approximately 50,000 sentences 337

from the dataset. By tweaking the input configu- 338

rations, the process was enhanced to rerank and 339

cluster the sentences based on their vector cosine 340

similarity. This methodology allowed us to pin- 341

point and collect the 20 sentences closely aligned 342

with each seed sentence from its specific cluster. 343

However, a different approach was adopted after 344

it was found that the initial method did not produce 345

the desired results; less than 30% of the retrieved 346

sentences were actual explanations, with many sim- 347

ply mirroring the seed sentences. The following 348

sections introduce two classification-focused meth- 349

ods tested on a randomly selected subset of around 350

3,700 sentences from our dataset. 351

Considering the selected seed sentences did not 352

provide a sufficiently large dataset for full model 353

training, a decision was made to fine-tune a pre- 354

existing large language model (LLM) trained on 355

English text for classification and embedding tasks. 356

Two models were experimented with, starting with 357

embed-english-v3.0 from Cohere (coh), and the 358

following fine-tuning steps were undertaken: 359

1. For the binary classification task: 360

1.1 Label the chosen explanatory sentences 361

from the biotechnology domain as posi- 362

tive. 363

1.2 Collect and label a set of 95 non- 364

explanatory sentences from related top- 365

ics (wik) as negative. 366

1.3 Create the fine-tuning dataset by combin- 367

ing the positive and negative sets. 368

1.4 Adapt the base LLM into a binary classi- 369

fication model. 370

2. For the multi-class classification task: 371
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2.1 Individually label the sentences from the372

explanatory seed according to their spe-373

cific explanation category.374

2.2 Select and label a set of 20 non-375

explanatory sentences from the previ-376

ously collected ones as non-explanatory.377

2.3 Produce the fine-tuning dataset by merg-378

ing these sets.379

2.4 Refine the base LLM into a multi-class380

classification model.381

Two types of models were designed and evaluated:382

a binary classifier and a multi-class classifier. The383

binary classifier determines whether a sentence is384

an explanation. The multi-class classifier catego-385

rizes sentences into one of the explanatory cate-386

gories from the Annotated Explanatory Dataset or387

labels them as non-explanatory.388

The datasets for fine-tuning these models are389

accessible at the anonymized GitHub repository390

(git), stored in tsv format. The model IDs for the391

Cohere API are provided in the same repository392

and can be called through the Cohere API.393

3.5 Baseline LLMs and comparative394

evaluation395

Given the advancements in OpenAI’s GPT archi-396

tecture, particularly with the introduction of GPT-4,397

it was logical to employ this architecture for the398

research. Similarly, the most recent architecture399

by MetaAI, Llama-3 (lla), was integrated. To en-400

sure lightweight solutions for ease of reproducibil-401

ity, scalability, and general use, the 8B version of402

Llama-3 was chosen.403

Three templates (t0, t1, t2) were developed to404

aid the models in their classification tasks and de-405

termine the optimal amount of information to in-406

clude in the prompt. The first template exemplifies407

zero-shot learning, while the next two exemplify408

few-shot learning. The information was distributed409

in the following ways:410

(a) Executing multi-class classification on any411

given English sentence, allocating the sen-412

tence to predefined categories, (t0, t1, t2).413

(b) Integrating a comprehensive list of these cate-414

gories, each accompanied by definitions, (t0,415

t1, t2)416

(c) Accompanying the definitions with three illus-417

trative sentences, (t1, t2)418

(d) Adding additional illustrative sentences (min 419

0, max 7) to mimic the proportions in the orig- 420

inal seed, (t2) 421

(e) Presenting the analyzed sentence alongside a 422

prompt for the appropriate category label (t0, 423

t1, t2). 424

These templates applied consistently across our 425

dataset, offering clear examples and directives for 426

the classification task. Examples of these templates 427

are available at our anonymized GitHub repository 428

(git), where they have been uploaded in a txt for- 429

mat. 430

The testing was done using Google Colab note- 431

books, with the baseline Llama 3 8B run on L4 432

GPUs and GPT-4 through API; the overall cost 433

for operating Llama 3 and GPT-4 was ≃ 80 euros. 434

However, the Llama model required more than 3 435

hours compared to GPT-4, which needed just a few 436

minutes. 437

4 Results 438

For a thorough comparison, 300 sentences rang- 439

ing from 50 to 500 characters in length were ran- 440

domly selected from the test set and manually anno- 441

tated to serve as a golden standard for assessment. 442

This subset did not include functional explanations, 443

highlighting their rarity in the larger dataset due 444

to the domain’s specific nature. Since the absence 445

of the functional category had a negligible effect 446

on the baseline models and no effect on the fine- 447

tuned ones, it was excluded when evaluating the 448

multiclass performance of the models. 449

Table 1 offers a side-by-side general perfor- 450

mance evaluation of all models tested: the fine- 451

tuned Cohere binary classifier and multi-class clas- 452

sifiers, GPT-4, Llama 3 8B. The t0/t1/t2 mark rep- 453

resents the template used to prompt the genera- 454

tive model. The fine-tuned models demonstrated 455

slightly superior accuracy when compared to GPT- 456

4, with the performance of base Llama 3 8B being 457

inferior to both models independently of the prompt 458

template used to run the tests. 459

An important finding was the repetition of high 460

recall scores achieved by GPT-4’s and Llama 3’s 461

binary classification, largely due to the tendency 462

of both models to broadly label sentences as ex- 463

planations. This approach correctly identified all 464

positive instances while mistakenly categorizing 465

a large amount of the non-explanatory sentences. 466

The class-by-class comparison for the fine-tuned 467
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model precision recall accuracy F1-score
finetuned binary .63 / — .70 / — .76 / — .66 / —
finetuned multi — / .60 — / .44 — / .70 — / .51
GPT - 4 (t0) .41 / .32 .99 / .42 .51 / .31 .58 / .36
GPT - 4 (t1) .46 / .47 .99 / .58 .61 / .49 .63 / .52
GPT - 4 (t2) .56 / .45 .93 / .49 .73 / .58 .70 / .47
Llama 3 8B (t0) .34 / .22 .98 / .21 .35 / .11 .50 / .22
Llama 3 8B (t1) .35 / .14 .87 / .15 .40 / .17 .49 / .15
Llama 3 8B (t2) .34 / .14 .94 / .21 .35 / .13 .50 / .17

Table 1: Evaluation metrics of the fine-tuned classifiers, base GPT-4 and base Llama 3 8B. The values presented are
binary score / multiclass score.

multi finetuned
precision recall F1

causation 0.40 0.47 0.44
contrastive 0.73 0.57 0.64
correlation 0.38 0.28 0.32
mech. caus. 0.83 0.33 0.48
prag. app. 0.50 0.07 0.13
non-expl 0.78 0.88 0.83

GPT-4 (t2)
precision recall F1

causation 0.28 0.57 0.37
contrastive 0.50 0.21 0.30
correlation 0.27 0.46 0.34
mech. caus. 0.36 0.27 0.31
prag. app 0.31 0.79 0.45
non-expl 0.95 0.63 0.76

Table 2: Performance comparison of the two best-
performing models by class label.

multi-class model and the GPT-4 with the best per-468

forming template is depicted in Table 2.469

5 Discussion470

With the results provided in the previous section, it471

is possible to extract useful information regarding472

the performance of the two fine-tuned LLM classi-473

fiers, the baseline models and the possible pitfalls474

and issues within the procedures. Firstly, the ran-475

dom sampling of the test set (300 sentences out of476

3600+) and its subsequent manual annotation as the477

golden standard has led to the non-representation478

of the functional category of explanations, as it can479

be seen missing from Table 2. While this might480

seem counterproductive for the testing process, it481

is also important to note that the functional cate-482

gory is related to the biology specific niche of the483

topic macro-domain. This representation could be 484

a fairly accurate approximation when scaled to real 485

corpora. 486

Second, as shown in Table 1, even fine-tuning 487

with just 200 sentences enabled a binary classifica- 488

tion model to achieve slightly better accuracy than 489

a sophisticated system like GPT-4. This model 490

demonstrated more balanced precision and recall 491

values and avoided the overclassification of positive 492

labels, a problem observed with GPT-4 in Tabel 2. 493

Although the 0.76 accuracy may not entail a fully 494

automated classification process, it suggests the 495

feasibility of employing binary classification mod- 496

els for accurately compiling large collections of 497

explanatory sentences. This approach could be exe- 498

cuted semi-supervised, with future progress leading 499

to unsupervised approaches. 500

Third, although the multi-class classifier failed 501

to recall the majority of pragmatic approach ex- 502

planations within the test sample, its performance 503

across the remaining categories was strong enough 504

to surpass the best-prompted GPT-4 model in terms 505

of overall accuracy and precision and scores. De- 506

spite the results not being revolutionary for LLM 507

or GPT-4 architectures, the potential for improve- 508

ment with additional high-quality data is evident 509

and significant. This allows combining a fine-tuned 510

binary classifier for preliminary screening with a 511

prompted GPT model for more nuanced classifica- 512

tion tasks. 513

As an aside, the inferior performance of base- 514

line Llama 3 8B was surprising but not entirely so. 515

An interesting finding was the difference in per- 516

formance depending on the template complexity, 517

achieving slightly better results with a medium- 518

complexity zero-shot template (t1) compared to 519

both the simpler and more complex templates (t0, 520

t2). Perhaps a comparison between the larger 70B 521
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Llama 3 and the other models used in the paper522

might have been more appropriate considering the523

parameter size; alternatively, using a fine-tuned ver-524

sion of the 8B model could have led to better results.525

Nonetheless, the base 8B model was a good enough526

compromise between size and effectiveness to be527

used as a baseline, given the previously mentioned528

constraints.529

6 Conclusion and future work530

This study was initiated to establish a foundation531

for creating a corpus of explanatory sentences532

to pinpoint effective data-gathering and catego-533

rization methods. We have introduced a frame-534

work for identifying explanatory sentences within535

biotechnology-related topics and reported find-536

ings from experiments with the fine-tuned Cohere537

LLM, base Llama 3 8B and GPT-4, demonstrat-538

ing over 0.7 accuracy in binary classification of539

explanatory content. Considering the Cohere API’s540

performance with a relatively small qualitative541

dataset against a system like GPT-4, combined with542

its user-friendly nature and minimal resource de-543

mands, this suggests promising avenues for further544

exploration. This lays the basis for AI-aided user545

annotations for a wider sentence seed, further refin-546

ing of the model, and even better corpus-building547

capabilities to be achieved.548

Future research directions involve more exten-549

sive comparisons between tunable LLMs to help ex-550

pand the qualitative sentence seed from this project551

and investigate potential avenues to develop a clas-552

sification system capable of handling explanations553

that span multiple sentences. We believe that by554

assembling vast collections of human-generated ex-555

planations, we can refine the annotated explanatory556

dataset with improved annotations for more effi-557

cient model tuning, which would not require spe-558

cific pairs of explanations and "added theory" to ex-559

tract explanatory sentences from textual data. Fur-560

thermore, this could enable the conversational out-561

puts of XAI generative models to more accurately562

reflect human conversation and produce explana-563

tory text; this could pair well with effective coun-564

terfactual frameworks in providing understandable565

AI outputs for both laymen and outsiders of the566

machine-learning field.567
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zero, but there is a strong assumption of safety. 597

While future work down the line could provide 598

materials that could be used with malicious intent, 599

such as applying convincing explanatory output to 600

biased or faulty models, we believe that the current 601

risk is not heightened by the publication of this 602

work. 603

Reproducibility 604

To provide as much reproducibility of the results 605

presented in this paper as possible, all the test 606

data, the tuning data and the templates to correctly 607

prompt the GPT-4 and Llama 3 8B models have 608

been included in the currently anonymized GitHub 609

repository (git) previously mentioned in the paper. 610

The folder is organized to provide an easily under- 611

standable division of all the materials relevant to 612

this paper, and in addition to the aforementioned 613

data, contains the executable Python files derived 614

from the Colab notebooks used to run the GPT-4 615

and Llama 3 8B models. The exact split of the test 616

set randomly selected to evaluate the models is also 617

freely available, along with the Cohere model IDs 618

to allow for reproducible API calls and the original 619

7



sentence seed with the annotator consensus score.620

For the purpose of the review, the data and soft-621

ware used will also be uploaded in the respective622

sections of the ARR form.623

Limitations624

Time and computational constraints were not625

the main limitations of this work since using626

lightweight, fast-to-deploy architectures was a rea-627

soned choice to avoid gatekeeping materials and628

procedures from anybody without easy access to629

powerful cloud computing structures. However, ex-630

tensive testing and template engineering could not631

be performed to assess the best possible version632

of GPT-4 and baseline Llama 3 against the Co-633

here LLMs; three templates are certainly enough,634

but perhaps not extensively so, since it is known635

that slight modification in a prompt for generative636

LLMs can produce a wide array of unexpected re-637

sults.638

Certainly, the number of annotators can be ad-639

dressed as a limitation in the scope of the presented640

work, alongside the narrow domain topic chosen641

for the dataset. Future work will consider both of642

these limitations to produce more robust claims643

and strive for a higher annotator consensus, aiming644

for wider-reaching studies and clearer definitions.645

Similarly, the reduced sample test set of 300 sen-646

tences out of 3600+ could have skewed the results647

in favour of one model or another; the development648

of a bigger golden-standard test set is planned for649

future refinement of the dataset.650
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