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Abstract

Recent work has shown that an adversary can re-
construct training examples given access to the
parameters of a deep learning image classification
model. We show that the quality of reconstruction
depends heavily on the type of activation functions
used. In particular, we show that ReLU activations
lead to much lower quality reconstructions com-
pared to smooth activation functions. We explore
if this phenomenon is a fundamental property of
models with ReLU activations, or if it is a weak-
ness of current attack strategies. We first study the
training dynamics of small MLPs with ReLU acti-
vations and identify redundant model parameters
that do not memorise training examples. Building
on this, we propose our Mnemonist method, which
is able to detect redundant model parameters, and
then guide current attacks to focus on informative
parameters to improve the quality of reconstruc-
tions of training examples from ReLU models.

1 INTRODUCTION

Machine Learning (ML) models have the capacity to mem-
orize examples from training data [Zhang et al., 2017]. Con-
sequently, releasing ML models can be a risk to privacy if
the training data is sensitive. In the most serious example of
a privacy breach, verbatim examples of training data points
can be reconstructed [Haim et al., 2022, Balle et al., 2022,
Guo et al., 2022, Fowl et al., 2022]. For example, it has
been shown that an informed adversary with knowledge of
all the data points in a training set except one (the target
point) can reconstruct the target point if they have access
to the model parameters [Balle et al., 2022]. To do this, the
informed adversary trains a Reconstructor Neural Network
(RecoNN) that receives all parameters from the model as
the input and reconstructs the target point as the output.

We show that this adversary will not successfully recon-
struct training examples with high probability if the model is
trained with ReLU [Glorot et al., 2011] activation functions.
This is a significant weakness of the attack since ReLU acti-
vations are very common. Their popularity is in part because
they often yield superior performance over models trained
with other activation functions, and also due to their faster
convergence rates [Krizhevsky et al., 2012, Glorot et al.,
2011]. ReLU activations also negatively affect the success
of attacks in other settings such as federated learning [Wei
et al., 2020] where the attack relies on access to intermediate
model updates. Haim et al. [2022] replaced ReLU activa-
tions with Sigmoid activations to run their training data
reconstruction attack because ReLU “contains flat regions
which are hard to optimize”. In order to understand the ex-
tent to which models using ReLU activations are vulnerable
to reconstruction attacks, we ask the following questions:

Q1: Why do ReLU activations lead to much lower quality
reconstructions compared to smooth activations?

Q2: How can we improve the quality of the reconstruction
of target points from models with ReLU activations?

Our approach to answering these questions is to learn how
important each parameter of the model is to the success of
the reconstruction of the target point. We then design new
attack methods that shift the focus of the attack towards the
parameters that are identified as important.

First, we analytically demonstrate that not all parameters in
ReLU activated models store information about the target
point. Intuitively, this is because ReLU deactivates neurons
with negative outputs in the forward pass – later in the
backward pass these non-activated neurons prevent their
incoming parameters from being updated by making the
gradient of the loss with respect to the input zero, thus no
information about the input is stored in incoming parameters
to non-activated neurons. This is not the case for models
with smooth activations (including Sigmoid) as their deriva-
tives are always nonzero. We empirically demonstrate this
behaviour by studying the training dynamic of the models,
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namely the per-example gradient and number of training ex-
amples stored in each parameter across all shadow models.

Second, we design an approach we call Mnemonist, which
distinguishes between parameters that contain no informa-
tion about the target point and parameters that contain a lot
of information about the target point. Mnemonist is black-
box in the sense that it does not need access to intermediate
model updates throughout training, and is instantiated by ex-
tending the approach of Local Interpretable Model-Agnostic
Explanations (LIME) [Ribeiro et al., 2016] to operate in the
parameter space. Mnemonist starts by semantically group-
ing parameters into superparameters. These superparam-
eters each represent all incoming parameters to each indi-
vidual neuron. Then, Mnemonist learns the importance of
each superparameter for data reconstruction as coefficients
of an interpretable model which is trained on the response of
RecoNN to the absence or presence of each superparameter.

Finally, based on Mnemonist, we introduce an attack, called
Mnemonist-RecoNN, that can improve the quality of recon-
structions of target points from models trained with ReLU
activations by training RecoNN on only informative param-
eters. We highlight the following contributions:

• We characterise the fundamental property of the existence
of redundant parameters in models with ReLU activations
through both theoretically and empirically analysing their
training dynamics.

• We propose a black-box explanation technique,
Mnemonist, which identifies parameters that are likely
to store information about the target point we aim
to reconstruct. We provide theoretical and empirical
justifications for the performance of Mnemonist.

• We show that naively applying the attack proposed by
Balle et al. [2022] on models with ReLU activations re-
sults in much lower quality reconstruction than smooth
activations. We improve the quality of reconstruction by
applying the attack to only a subset of parameters that are
identified by Mnemonist as informative.

2 THREAT MODEL AND SETUP

Recent work on training data reconstruction attacks has
focused on attacking federated learning set-ups where
an adversary has access to all intermediate model up-
dates [Boenisch et al., 2023, Wen et al., 2022, Fowl et al.,
2022]. Similar to the threat model considered by Balle et al.
[2022], we assume the adversary does not have access to
intermediate model updates; the adversary can only observe
the initial and final model parameters. This restriction on the
adversary means that our work is applicable to approaches
beyond federated learning.

More formally, we assume a model developer trains an ML
model on a supervised learning task, which we refer to as

Table 1: Notation.

Meaning Meaning

Winit Initial model param. W Released model param.
Wi Shadow model param. z̄ A public target example
w(s) Model superparam. W′ Perturbed model
M # perturbed models b binary mask
D− Fixed dataset N − 1 Size of fixed set
K # shadow models RecoNN Reconstructed network
T # training steps S Adversary side knowledge
LRec Reconstruction loss ϕ RecoNN parameters

the released model. They use an off-the-shelf optimization
algorithm such as SGD with momentum to transform a set
of initial model parameters, Winit, to a set of final model pa-
rameters W, by training for T steps on a dataset D− ∪ {z},
where D− is referred to as the fixed dataset, z is the tar-
get point, |D−| = N − 1 and both z and all points in D−
are sampled from an input space Z . Table 1 describes all
necessary notation used throughout this paper.

Following the terminology used by Balle et al. [2022], we
assume the adversary is informed. That is, the adversary
has knowledge of the tuple (D−, Winit, W, S), where S
represents the side-knowledge available to the adversary. We
assume S includes all training hyperparameters such as T ,
initial model parameters Winit, the size of mini-batch, the
optimizer and the learning rate of the optimizer. However,
we do not assume the adversary knows the randomness used
to sample mini-batches from D− ∪ {z} at each step, nor do
they have access to intermediate model parameters. The goal
of the adversary is to reconstruct the target point z given
(D−, Winit, W, S). To do this, we run the attack proposed
by Balle et al. [2022]. This attack is designed based on the
intuition that the impact of the private target point z on the
released model W trained on D− ∪ {z} is similar to the
impact of a public target point z̄ on a shadow model W̄
trained on D− ∪{z̄}. In particular, the attack consists of the
following three stages [Balle et al., 2022]:

1. Training shadow models to collect information
about the impact of training examples on model
parameters. We assume the adversary has access to a
public dataset Z̄ = {z̄i}Ki=1 containing K data points
disjoint from D− ∪ {z}. We train K shadow models,
{W̄i}Ki=1, where each shadow model W̄i is trained
on the fixed dataset plus the i-th public data point,
D−∪{z̄i} using side-knowledge S (including the same
initial parameters Winit and optimizer as the ones used
for the released model).

2. Training a Reconstructor Neural Network to
output training examples from model param-
eters. We train a Reconstructor Neural Network,



RecoNN(·), whose inputs lie in the parameter space
of shadow models and outputs lie in the input space
of the shadow models. In particular, the RecoNN
receives Wi as an input and tries to reconstruct
its corresponding target point z̄i as an output by
minimizing the Mean Squared Error (MSE) and
Mean Absolute Error (MAE) between the target z̄i
and its reconstruction RecoNN(Wi), as LRec =
MSE

(
RecoNN(Wi), z̄i

)
+ MAE

(
RecoNN(Wi), z̄i

)
.

3. Producing a candidate reconstruction for the target
point. We obtain a reconstruction candidate for the tar-
get point z by inputting the released model parameters
W to the trained RecoNN.

While the assumption that such an informed adversary ex-
ists is perhaps unrealistic for practical attacks, the attacks
we study in this work are designed to reveal the maximum
amount of privacy leakage that could be revealed to such an
adversary. As such, our work is similar in spirit to the long
list of research on auditing the privacy of machine learning
models [Lu et al., 2022, Nasr et al., 2021, Jagielski et al.,
2020, Zanella-Béguelin et al., 2023], and should be viewed
as complementary to research on reconstructing training
data from federated learning systems, which leans more
on the practical side. Finally, we note that recent work by
Haim et al. [2022] also investigates reconstructing training
data without adversarial access to intermediate model up-
dates. However, the focus of their work is untargeted in that
they try and reconstruct any training data points, while our
work aims to reconstruct a specific training example. Fur-
thermore, their reconstruction attacks are confined to simple
linear models, while our attacks operate on fully-connected
neural networks; Balle et al. [2022] have already shown
that closed form solutions for reconstruction attacks with
informed adversaries exist on convex models.

Setup. We focus on fully-connected neural networks
(FCNN) and CIFAR10 following the baseline approach
of Balle et al. [2022]1. Our experimental setup is sum-
marised in Table 2 and unless stated otherwise, all experi-
mental results are reported by averaging across 1,000 recon-
structions where the targets are selected from the CIFAR10
test set. Regarding performance measures, we quantify the
quality of reconstruction by computing the MAE+MSE be-
tween the target point and its reconstructed point.

3 RECONSTRUCTING TRAINING DATA
FROM MODELS WITH RELU
ACTIVATIONS IS HARD

We examine issues associated with training data reconstruc-
tions mounted against models with ReLU activations. In

1See Section 6 for a discussion on the choice of the dataset
and model architectures.

Table 2: Experimental setup.

Released/Shadow models
Architecture Optimizer #steps

FCNN (layer:4, width:10) SGD+Momentum (Full-Batch) T=40
CIFAR10 dataset RecoNN

Fixed size Shadow size Architecture Loss #steps
N − 1=10k K=40k Transposed CNN MAE+MSE 200
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Figure 1: Reconstruction loss of target points in ReLU ver-
sus Sigmoid activated models across 20 different initializa-
tions. ReLU activations lead to higher reconstruction loss
and higher variance compared to Sigmoid activations.

particular, we compare the effect of changing the model
activation functions from Sigmoid2 to ReLU on the quality
of reconstructing target points from model parameters.

Figure 1 shows the impact of the activation function in the
released model on the loss of reconstructing target points
from the final released model parameters across initializa-
tions (Winit). The results demonstrate that the reconstruction
of target points from ReLU activated released models is, in
general, harder than from Sigmoid activated released mod-
els. Examples of reconstructions are visualised in Figure 2
to help the interested reader calibrate how numeric recon-
struction losses map to the visual quality of reconstructions;
in general, one can confidently pair the reconstruction with
the target if it has a reconstruction loss smaller than 0.15.
The quality of target points reconstructed from Sigmoid
activated models are better than the quality of target points
reconstructed from ReLU activated models. Figure 1 also
shows that the variation of the gap between ReLU and Sig-
moid due to the randomness of the parameter initialization
is large. The reconstruction loss of models with ReLU acti-
vations ranges from 0.05 to 0.29, while Sigmoid activations
lead to a low magnitude and narrow range of around 0.03.

We consider the quality of reconstruction in the Sigmoid

2Other smooth activation functions give similar results to Sig-
moid in terms of data reconstruction (Table V in Balle et al.
[2022]).



Target ReLU Sigmoid

LRec = .3072 LRec = .0189

LRec = .2996 LRec = .0289

LRec = .1161 LRec = .0292

LRec = .0533 LRec = .0167

Figure 2: Original target example and their reconstruction
candidates obtained by training RecoNN on ReLU and Sig-
moid activated fully connected models. The quality of recon-
structing target examples from Sigmoid activated models is
closer to the quality of the original target example.

case to be the benchmark, and identify intializations for
released models that lead to a small or large gap between
ReLU and Sigmoid reconstruction losses. We refer these
two groups as good and bad initializations. Using these two
initialization groups, we study the reconstruction loss of indi-
vidual examples (i.e., per-sample reconstructions) as well as
per-class reconstructions in which the reconstruction losses
of data points belonging to the same class are aggregated.

Per-class reconstruction losses in Figure 3 show that, in
general, samples belonging to all classes are harder to re-
construct in the ReLU case than the Sigmoid case. For
“good” initializations, ReLU activations still lead to larger re-
construction losses than Sigmoid activations, however, this
gap is much larger for “bad” initializations. Reconstruction
losses across classes vary slightly more in the ReLU case
than the Sigmoid case, and this variation increases with “bad”
initializations. Across both initializations and activations,
we observe that some data points and classes are inherently
more difficult to reconstruct than others – possibly because
some classes are less complex e.g. the airplane class has
many images with blue skies while the truck class images
have more intricate backgrounds on average.
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Figure 3: Impact of the choice of the activation function
on the per-class reconstruction loss across two different ini-
tializations. Reconstructing target points from models with
ReLU activations, independent of the class that they belong
to, is less successful than those with Sigmoid activations.

Figure 4 shows the effect of changing the released model
activations from Sigmoid to ReLU on per-sample reconstruc-
tion losses using both “good” and “bad” initializations. In
general, the histogram of per-sample reconstruction loss in
Sigmoid is more condensed than the ReLU ones. We plot the
histogram across initializations using the same x-axis scale
in the first column of Figure 4 to highlight that the spread of
reconstruction losses on ReLU models drops significantly
when transitioning from “bad” to “good” initializations. For
“good” initializations there is a large overlap between ReLU
and Sigmoid reconstruction losses, which is not the case for
“bad” initializations. The second column of Figure 4 shows
that a few samples are reconstructed better in the ReLU case
than the Sigmoid case when we use the “good” initialization.

4 WHY IS TRAINING DATA
RECONSTRUCTION FROM RELU
ACTIVATED MODELS HARD?

We theoretically and empirically analyze why ReLU activa-
tions lead to higher reconstruction loss and variations across
parameter initialization compared to the Sigmoid activation.
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Figure 4: Comparing the effect of changing the activation
function from Sigmoid to ReLU on the per-sample recon-
struction loss using “bad” initialization and “good” initial-
izations. ReLU activations lead to higher per-sample recon-
struction loss compared to Sigmoid activations especially in
the “bad” initialization case.

4.1 EXISTENCE OF REDUNDANT MODEL
PARAMETERS IN THEORY

Consider a fully connected layer that receives an input
x ∈ Rnx and outputs the activation a ∈ Rnh = R(h) which
is computed by applying a non-linear activation function
R(·) on the pre-activation h ∈ Rnh = Wx+ b. Parame-
ters W ∈ Rnh×nx and bias b ∈ Rnh are initialized ran-
domly. The parameter matrix W contains as many rows as
the number of neurons at the output of the fully connected
layer such that each row wl denotes all the edges connecting
x to an output neuron hl. At each training step t, each row
wl is updated based on the gradient of the loss L w.r.t. this
row as wl

t+1 = wl
t − lr ∂L

∂wl
t
, where lr is the learning rate.

The gradient is obtained as

∂L
∂wl

t

=
∂L
∂alt

· ∂a
l
i

∂hl
t

· ∂h
l
t

∂wl
t

=
∂L
∂alt

·R′(hl
t) · x , (1)

where R′ is the derivative of the activation function R.

For the Sigmoid activation function, R′ is always non-zero,
thus each row stores a copy of x. However, recall that for
the ReLU activation we have R′(h) = 0 whenever h ≤ 0,
and R′(h) = 1 otherwise. This means that

∂L
∂wl

t

=

{
0 if hl

t ≤ 0

scale · x otherwise ,
(2)

where scale = ∂L
∂al

t
. In particular, when hl

t is positive, the

update step will store a copy of x (proportional to lr ∂L
∂al

t
)

in wl
t+1, but otherwise the parameter update will be inde-

pendent of the input x. In the latter case, the update of
row wl does not store any information useful to perform
a reconstruction attack against target x – we call such a
row redundant. The existence of these redundant rows de-
creases the quality of reconstruction. In addition to this, the
number of redundant parameters varies across different ini-
tializations, resulting in high variance. Next we empirically
investigate how these redundant parameters manifest during
training of ReLU activated FCNN.

4.2 EXISTENCE OF REDUNDANT MODEL
PARAMETERS IN PRACTICE

We study the training dynamics of ReLU activated models
versus those of Sigmoid activated models. We focus on the
first layer where each row of parameters can store a scaled
version of target points depending on the value of scale in
Equation 2. In our experiments, we efficiently compute the
scale of each row l at each training step t using the gradient
of the loss with respect to the bias of l-th neuron as:

∂L
∂blt

=
∂L
∂alt

· ∂a
l
t

∂blt
=

∂L
∂alt

= scale . (3)

We compute the scale of each row for all 1,000 target points,
and binarize to demarcate which row stores a copy of the
target input:

B-scale =

{
0 if scale = 0

1 otherwise ,
(4)

where 0 implies that no information about the target point
is stored, while 1 indicates that an exact copy of the target
point is stored in that specific row. Figure 5 shows the his-
togram of the summation of B-scale of all rows per target
point (i.e., the number of rows that store each target point)
over time. Almost3 all the parameters of models with Sig-
moid activations store all the target points, while for ReLU
activations, some rows store no information about the tar-
get training point. This effect becomes more severe at later
steps, where a larger number of rows store no information
about the target point for ReLU models. The histogram of

3Figure 5 shows that none of superparameters in Sigmoid acti-
vated model store two (out of 1000) target points. We hypothesize
that this is due to the saturation of Sigmoid for these two target
points whose pixel values are mostly zero (visually black).
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Figure 5: Training dynamics of ReLU activated models ver-
sus Sigmoid activated models using different initializations.
Each plot shows the histogram of number of rows (S) that
store each target point. Not all parameters of ReLU activated
models store target points, while all parameters of Sigmoid
activated models store information about target points.

the number of rows that store each target point in “good” ini-
tializations is more condensed than for “bad” initializations.
This offers an intuitive explanation for why reconstruction
becomes more difficult on ReLU models with “bad” ini-
tializations: the number of rows storing target points varies
across points and time in the “bad” initialization. That is,
for “bad” initializations the pattern for redundant rows over
training can differ wildly for two different target points,
making it more difficult for the RecoNN to learn.

5 MNEMONIST: FINDING PARAMETERS
THAT STORE TARGET EXAMPLES

5.1 METHODOLOGY

With a view to identifying redundant parameters that are
not useful for a reconstruction attack without accessing
intermediate updates from the released model, we intro-
duce Mnemonist. Our proposed Mnemonist method is a
black-box approach that explains which parameters of the
released model store target points. Mnemonist quantifies
the contribution of parameters on reconstructing each tar-
get point by extending techniques from explainable ML. In
particular, we extend the approach of Local Interpretable
Model-Agnostic Explanations (LIME [Ribeiro et al., 2016])
to operate in parameter space. Figure 6 shows an overview
of Mnemonist, which consists of three sequential phases: 1)
Grouping model parameters into sets, which we term super-
parameters; 2) Building different variants of released model
based on the presence or absence of each superparameter; 3)

Training an interpretable model specifying the importance
of each superparameter. Next, we describe each phase of
Mnemonist in detail.

Phase 1: Grouping parameters into superparameters.
Randomly changing an individual parameter of the model
cannot change the output of RecoNN as models often con-
tains a large number of parameters. We propose to group the
model parameters into superparameters such that changing
individual superparameters significantly changes the quality
of the reconstructed target point output by RecoNN if the
superparameter stores the target point. For each layer i, we
group the parameters into S superparameters {w(i,s)}Ss=1

based on the destination nodes of this layer, where S is
the total number of destination nodes. Each superparameter
w(i,s) represents the s-th row of model parameters of the
i-th layer which might store a scaled copy of the input de-
pending on the sign of the signal passed to ReLU activations
in the forward pass while training the model (see Section 4).

Phase 2: Building different variants of the released
model based on the presence or absence of each superpa-
rameter. In order to determine whether a particular super-
parameter stores the target point, we capture the effect of
masking out the superparameter on the RecoNN responses.
To do that, we create M perturbed models {W′

m}Mm=1 by
randomly selecting several superparameters identified by
1s in each binary mask {bm ∈ {0, 1}S}Mm=1 and replacing
the value of the rest of superparameters with values used to
initialise parameters. Reverting back values of a superparam-
eter into its initial values removes the effect of all updates
done during training, thus removing any information about
target points that might have been stored in that superparam-
eter. In particular, the value of each superparameter within
W′

m is set as follows:

w′(s)
m =

{
w(s) if b

(s)
m ̸= 0

w
(s)
init otherwise .

(5)

Phase 3: Training an interpretable model specifying
the importance of each superparameter. We aim to cre-
ate an interpretable model that can capture and explain
the RecoNN responses to the present or absence of each
individual superparameter. We consider a 1-dimensional
output linear regression model whose coefficient explains
the importance of each individual input feature on its 1
dimensional output. We train the linear regression model
Regressor : B → L where the input is a binary vector in-
dicating the presence or absence of each superparameter,
and the output is MSE loss between the reconstructed target
example and the target example. In particular, we create the
input and output of the regression model as follows:

• Output: we query RecoNN to obtain reconstructed im-
ages {ẑm}Mm=1 on these M perturbed released models.
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Figure 7: Coefficients of the interpretbale model in Mnemonist as a function
of number of target points points stored in each superparameter across 1,000
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after 1 step. Mnemonist coefficients are aligned with training dynamics such
that it can detect important and redundant superparameters.
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Figure 8: Coefficients of the interpretable
model in Mnemonist as a function of recon-
structing targets based on each superparam-
eter after 40 steps. Mnemonist can detect
important and redundant superparameters.

To create 1 dimensional output for the interpretable lin-
ear regression, we compute the MSE between each ẑm
and the target example z as {lm = LMSE(ẑm, z)}Mm=1.

• Input: binary masks, {bm ∈ {0, 1}S}Mm=1, indicating
the presence or absence of superparameter.

Once the linear regression model is trained, we have a coeffi-
cient per superparameter that identifies the effect of each in-
dividual superparameter on the quality of the reconstruction.
We interpret the coefficients of the trained linear regression
model as follows. The presence of superparameters with neg-
ative coefficients can decrease the MSE reconstruction loss,
thus improving the quality of the reconstruction. However,
the presence of superparameters with positive coefficients
can increase the MSE reconstruction loss, thus damaging the
quality of the reconstruction. Therefore, we identify super-
parameters with negative (or small) coefficients as important
superparameters for reconstructing target points.

5.2 VALIDATION

We validate the performance of Mnemonist in estimating the
importance of parameters. First, we analyze the performance
of Mnemonist on released models trained with a single up-
date step in order to evaluate how well Mnemonist detects
superparameters with non-zero gradients. Figure 7 illustrates
the coefficients of Mnemonist as a function of both scale
of each superparameter (see Equation 2) and number of
target points stored in each superparameter. The smaller the
value of the Mnemonist coefficient, the more important the
superparameter. As the scale (or number of stored target ex-
amples) increases, the Mnemonist coefficient decreases. For
example, the Mnemonist coefficient of S3 that stores more
than 90% of target points is (−0.03) while the coefficient
of S6 that stores less than 25% of target points is (+0.01).

Second, we evaluate the behaviour of Mnemonist on re-
leased models trained for more than one step. In Figure 8,
we again observe that superparameters with negative coeffi-
cients are those superparameters with the best performance
when we train RecoNN on each individual superparame-



Algorithm 1: Mnemonist-RecoNN

Input: Fixed set D−, K public target examples {z̄k}Kk=1,
Shadow model training Algorithm A(·), RecoNN
training algorithm B(·).

Output: Mnemonist-guided RecoNN.

1: for all k ∈ range(K) do
2: W̄k ← A(D− ∪ {z̄k}) ▷ Train K shadow models

3: ϕ← B({W̄k, z̄k}Kk=1) ▷ Train RecoNN

4: I ← Mnemonist(ϕ) ▷ Apply Mnemonist to identify the

importance of superparameters

5: for all k ∈ range(K) do
6: W̃k ← Selector(W̄k, I) ▷ Select only important

superparameters

7: ϕ̃← B({W̃k, z̄k}Kk=1) ▷ Train RecoNN on the selected

important superparameters

8: return ϕ̃ ▷ Mnemonist-guided RecoNN

Table 3: Mnemonist improves the loss of reconstructing
target points from models with ReLU activation function.

Approach run1 run2 run3 run4
RecoNN .2040 .2705 .0908 .1315
RecoNN +Mnemonist .1738 .2385 .0730 .1158

ter: the smaller the Mnemonist coefficient, the better the
reconstruction loss.

As Mnemonist coefficients are aligned with the training
dynamic of released models, they can be used to improve the
success of RecoNN by shifting its focus towards important
superparameters and ignoring redundant superparameters.

5.3 APPLICATION

We aim to improve the quality of reconstruction of training
examples obtained by RecoNN, based on insights provided
by Mnemonist regarding where and how target examples are
stored in ReLU activated models. To do that, we design our
Mnemonist-RecoNN attack in which RecoNN are trained
only on those superparameters that have Mnemonist neg-
ative coefficients (see Algorithm 1). Table 3 and Figure 9
show the effect of Mnemonist on the reconstruction success
of current attack. Results show that Mnemonist can guide
and improve the performance of the current RecoNN.

6 DISCUSSION AND FUTURE WORK

We provided theoretical and empirical analyses investigating
the effect of the type of non-linearity used in the model spec-
ification on the quality of reconstructing examples from the
model parameters. We proposed a theoretically motivated
explanation technique, Mnemonist, to locate model param-
eters that memorize training examples, thus improving the

Target RecoNN Mnemonist-RecoNN

LRec = .1161 LRec = .0671

LRec = .3042 LRec = .0632

LRec = .0533 LRec = .0414

LRec = .0772 LRec = .0458

Figure 9: Target examples and their reconstruction candi-
dates obtained from ReLU activated fully connected models
using RecoNN and Mnemonist-RecoNN. Mnemonist helps
RecoNN to improve the quality of reconstructions.

quality of reconstructions of current attack on small MLPs
with ReLU activations. Below, we discuss some limitations
of our approach and promising directions for future work.

Model architecture. Fully connected neural networks are
the focus of many current training data reconstruction at-
tacks [Fowl et al., 2022, Boenisch et al., 2023, Haim et al.,
2022], and yet is it not fully understood what training con-
ditions lead to successful reconstruction attacks in these
networks. Our work investigates the necessary properties
of model specification in fully connected neural networks
that enable better reconstruction attacks. However, an inter-
esting future direction is to extend our proposed explana-
tion technique to other architectures such as Convolutional
Neural Networks (CNNs) with ReLU activations. If the
adversary has the ability to choose or design the model ar-
chitecture [Fowl et al., 2022, Boenisch et al., 2023], then
Section 4.1 shows that by using a fully connected layer in
the first layer, reconstruction attacks become easier. This is
because complete copies of targets can be stored in first layer
updates (see Equation 2). Indeed, our Mnemonist approach
can be used in this setting to help identify the parameters of
linear layers that store these examples.



Extending our approach to CNNs in a benign setting. In
more benign settings, where the adversary does not have the
capability to manipulate or choose the model architecture,
to apply our approach to standard CNN architectures, our
theoretical analysis will need to be extended to establish
how data points are memorised in each convolutional layer.
CNNs typically have fully connected layers at the end: the
last convolutional layer outputs embeddings which are the
input of the first fully connected layer located after this last
convolutional layer. Therefore, our approach can extend to
CNNs using an embedding reconstruction attack followed
by an embedding to data mapping as follows; i) dropping
all convolutional layers and perform the attack on the first
fully connected layer in which our fully connected based
method and analyses can be used; ii) training RecoNN such
that it receives the parameters of the first fully connected
layer and tries to reconstruct its corresponding embeddings
and iii) training a network that maps the embedding to data.

Efficiency. The reconstruction attacks described in this work
inherit the computation bottleneck of the attack described in
[Balle et al., 2022], as (1) thousands of shadow models need
to be trained, and (2) the RecoNN uses the parameters of the
shadow model as input, which can become extremely large
for large models and high dimensional datasets. Reducing
the number of shadow models that need to be trained, or
reducing the number of parameters that need to be passed
as inputs to the RecoNN can improve the efficiency of the
attack. In turn, this will allow us to scale reconstruction
attacks to larger datasets and models. For example, our ex-
periments show that we don’t need the full set of parameters
to perform good reconstruction attacks, which opens the
door for future work on identifying and reducing the num-
ber of parameters we need to use as inputs.

The quality of the data reconstruction versus privacy-
accuracy trade-offs in DPSGD. Papernot et al. [2021]
has demonstrated that replacing ReLU activation functions
with smooth activation functions can improve the trade-
offs between privacy and accuracy of Differentially Pri-
vate Stochastic Gradient Descent (DPSGD). However, we
demonstrate that the informed adversary proposed by Balle
et al. [2022] cannot successfully reconstruct training exam-
ples from ReLU activated models. This conflicting evidence
between the impact of the activation function on the quality
of the data reconstruction versus privacy-accuracy trade-offs
in DPSGD presents a promising direction for future work.
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